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Abstract. Password-based authenticated key exchange are protocols which are designed to be
secure even when the secret key or password shared between two users is drawn from a small
set of values. Due to the low entropy of passwords, such protocols are always subject to on-
line guessing attacks. In these attacks, the adversary may succeed with non-negligible probability
by guessing the password shared between two users during itson-line attempt to impersonate
one of these users. The main goal of password-based authenticated key exchange protocols is to
restrict the adversary to this case only. In this paper, we consider password-based authenticated
key exchange in the three-party scenario, in which the userstrying to establish a secret do not
share a password between themselves but only with a trusted server. Towards our goal, we recall
some of the existing security notions for password-based authenticated key exchange protocols
and introduce new ones that are more suitable to the case of generic constructions. We then present
a natural generic construction of a three-party protocol, based on any two-party authenticated key
exchange protocol, and prove its security without making use of the Random Oracle model. To
the best of our knowledge, the new protocol is the first provably-secure password-based protocol
in the three-party setting.
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1 Introduction

Motivation. A fundamental problem in cryptography is how to communicatesecurely over
an insecure channel, which might be controlled by an adversary. It is common in this scenario
for two parties to encrypt and authenticate their messages in order to protect the privacy and
authenticity of these messages. One way of doing so is by using public-key encryption and
signatures, but the cost associated with these primitives may be too high for certain applica-
tions. Another way of addressing this problem is by means of akey exchange protocol, in
which users establish a common key which they can then use in their applications.

In practice, one finds several flavors of key exchange protocols, each with its own benefits
and drawbacks. Among the most popular ones is the3-party Kerberosauthentication sys-
tem [31]. Another one is the2-party SIGMA protocol [21] used as the basis for the signature-
based modes of the Internet Key Exchange (IKE) protocol. Yetanother flavor of key exchange
protocols which has received significant attention recently are those based on passwords.

PASSWORD-BASED KEY EXCHANGE. Password-based authenticaded key exchange protocols
assume a more realistic scenario in which secret keys are notuniformly distributed over a large
space, but rather chosen from a small set of possible values (a four-digit pin, for example).
They also seem more convenient since human-memorable passwords are simpler to use than,
for example, having additional cryptographic devices capable of storing high-entropy secret
keys. The vast majority of protocols found in practice do notaccount, however, for such
scenario and are often subject to so-calleddictionary attacks. Dictionary attacks are attacks
in which an adversary tries to break the security of a scheme by a brute-force method, in
which it tries all possible combinations of secret keys in a given small set of values (i.e., the
dictionary). Even though these attacks are not very effective in the case of high-entropy keys,
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they can be very damaging when the secret key is a password since the attacker has a non-
negligible chance of winning. Such attacks are usually divided in two categories:off-line and
onlinedictionary attacks.

To address this problem, several protocols have been designed to be secure even when
the secret key is a password. The goal of these protocols is torestrict the adversary’s success
to on-line guessing attacks only. In these attacks, the adversary must be present and interact
with the system in order to be able to verify whether its guessis correct. The security in these
systems usually relies on a policy of invalidating or blocking the use of a password if a certain
number of failed attempts has occurred.

3-PARTY PASSWORD-BASED KEY EXCHANGE. Passwords are mostly used because they are
easier to remember by humans than secret keys with high entropy. Consequently, users prefer
to remember very few passwords but not many. However, in scenarios where a user wants to
communicate with many other users, then the number of passwords that he or she would need
to remember would be linear in the number of possible partners. In order to limit the number
of passwords that each user needs to remember, we consider inthis paper password-based
authenticated key exchange in the3-party model, where each user only shares a password
with a trusted server. The main advantage of this solution isthat it provides each user with
the capability of communicating securely with other users in the system while only requiring
it to remember a single password. This seems to be a more realistic scenario in practice than
the one in which users are expected to share multiple passwords, one for each party with
which it may communicate privately. Its main drawback is that the server is needed during the
establishment of all communication as in the Needham and Schroeder protocol.

KEY PRIVACY. One potential disadvantage of a3-party model is that the privacy of the com-
munication with respect to the server is not always guaranteed. Since we want to trust as little
as possible the third party, we develop a new notion called key privacy which roughly means
that, even though the server’s help is required to establisha session key between two users in
the system, the server should not be able to gain any information on the value of that session
key. Here we assume that the server is honest but curious. Please note that key distribution
schemes usually donot achieve this property.

INSIDER ATTACKS. One of the main differences between the2-party and the3-party scenarios
is the existence of insider attacks. To better understand the power of these attacks, consider
the protocol in Figure 1, based on the encrypted key exchangeof Bellovin and Merritt[8], in
which the server simply decrypts the message it receives andre-encrypts it under the other
user’s password. In this protocol, it is easy to see that one can mount an off-line dictionary by
simply playing the role of one of the involved parties. Notice that bothA andB can obtain
the necessary information to mount an off-line dictionary attack against each other simply by
eavesdropping on the messages that are sent out by the server. More specifically,A andB can
respectively learn the valuesX⋆

S = EPWB
(XS) andY ⋆

S = EPWA
(YS) and mount a dictionary

attack against each other using the fact thatXS = XA andYS = YB . Insider attacks do not
need be considered explicitly in the case of 2-party protocols due to the independence among
the passwords shared between pairs of honest users and thoseshared with malicious users.

A NEW SECURITY MODEL. In order to analyze the security of3-party password-based au-
thenticated key exchange protocols, we put forward a new security model and define two
notions of security: semantic security of the session key and key privacy with respect to the
server. The first of these notions is the usual one and is a straight-forward generalization of
the equivalent notion in the2-party password-based authenticated key exchange model. The
second one is new and particular to the new setting, and captures the privacy of the key with
respect to the trusted server to which all passwords are known.
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SK A ← H(A‖B ‖S ‖KA) SK B ← H(A ‖B ‖S ‖KB)

Fig. 1. An insecure3-party password-based encrypted key exchange protocol.

A GENERIC CONSTRUCTION. In this paper, we consider a generic construction of3-party
password-based protocol. Our construction is a natural one, building upon existing2-party
password-based key exchange and3-party symmetric key distribution schemes, to achieve
provable security in the strongest sense. Moreover, our construction is also modular in the
sense that it can be broken into two parts, a3-party password-based key distribution protocol
and2-party authenticated key exchange. The second part is only needed if key privacy with
respect to the server is required.

THE NEED FOR NEW SECURITY NOTIONS. Surprisingly, the proof of security for the new
schemedoes notfollow from the usual security notions for the underlying schemes as one
would expect and requires anewandstrongernotion of security for the underlying2-party
password-based scheme (see Section 2). In fact, this new security notion is not specific to
password-based schemes and is one of the main contributionsof this paper. Fortunately, we
observe that most existing2-party password-based schemes do in fact satisfy this new prop-
erty [10, 13, 19, 25]. More specifically, only a few small changes are required in their proof
in order to achieve security in the new model. The bounds obtained in their proof remain
essentially unchanged.

Contributions. In this paper, we consider password-based (implicitly) authenticated key ex-
change in the3-party model, where each user only shares a password with a trusted server.

NEW SECURITY MODELS. Towards our goal, we put forth a new formal security model that
is appropriate for the3-party password-based authenticated key exchange scenario and give
precise definitions of what it means for it to be secure. Our model builds upon those of Bel-
lare and Rogaway [6, 7] for key distribution schemes and thatof Bellare, Pointcheval, and
Rogaway [4] for password-based authenticated key exchange.

NEW SECURITY NOTIONS. We also present a new and stronger model for2-party authen-
ticated key exchange protocols, which we call the Real-Or-Random model. Our new model
is provably stronger than the existing model, to which we refer to as the Find-Then-Guess
model, in the sense that a scheme proven secure in the new model is also secure in the exist-
ing model. However, the reverse is not necessarily true due to an unavoidable non-constant
factor loss in the reduction. Such losses in the reduction are extremely important in the case
of password-based protocols.
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A GENERIC CONSTRUCTION IN THE STANDARD MODEL. We present a generic and natural
framework for constructing a3-party password-based authenticated key exchange protocol
from any secure2-party password-based one. We do so by combining a3-party key dis-
tribution scheme, an authenticated Diffie-Hellman key exchange protocol, and the2-party
password-based authenticated key exchange protocol. The proof of security relies solely on
the security properties of underlying primitives it uses and does not assume the Random Or-
acle model [5]. Hence, when appropriately instantiated, this construction yields a secure pro-
tocol in the standard model.

A SEPARATION BETWEEN KEY DISTRIBUTION AND KEY EXCHANGE. In addition to seman-
tic security of the session key, we present a new property, called key privacy, which is specific
to key exchange protocols. This new notion captures in a quantitative way the idea that the
session key shared between two instances should be only known to these two instances and
no one else, including the trusted server.

Related Work. Password-based authenticated key exchange has been extensively studied
in the last few years [4, 9–13, 15–18, 20, 22–24, 26, 28, 32–35], with a portion of the work
dealing with the subject of group key exchange and the vast majority dealing with different
aspects of2-party key exchange. Only a few of them (e.g., [11, 22, 32]) consider password-
based protocols in the3-party setting, but none of their schemes enjoys provable security. In
fact, our generic construction seems to be the first provably-secure3-party password-based
authenticated key exchange protocol.

Another related line of research is authenticated key exchange in the3-party setting. The
first work in this area is the protocol of Needham and Schroeder [27], which inspired the
Kerberosdistributed system. Later, Bellare and Rogaway introduceda formal security model
in this scenario along with a construction of the first provably-secure symmetric-key-based
key distribution scheme [7]. In this paper, we consider the special but important case in which
the secret keys are drawn from a small set of values.

Organization. In Section 2, we recall the existing security model for2-party password-based
authenticated key exchange and introduce a new one. Next, inSection 3, we introduce new
models for3-party password-based authenticated key exchange. Section 4 then presents our
generic construction of a3-party password-based authenticated key exchange protocol, called
GPAKE, along with the security claims and suggestions on how to instantiate it. Some future
extensions of this work are presented in Section 5. The proofs of security forGPAKE are given
in Appendix A. Also in the appendix are the more detailed descriptions of the cryptographic
primitives and assumptions on whichGPAKE is based. We conclude by presenting some
results in Appendix C regarding the relation between the existing security notions and the
new ones being introduced in this paper.

2 Security models for2-party password-based key exchange

A secure2-party password-based key exchange is a2PAKE protocol where the parties use
their password in order to derive a common session keysk that will be used to build secure
channels. Loosely speaking, such protocols are said to be secure againstdictionary attacksif
the advantage of an attacker in distinguishing a real session key from a random key is less
thanO(n/|D|) + ε(k) where|D| is the size of the dictionaryD, n is the number of active
sessions andε(k) is a negligible function depending on the security parameter k.

In this section, we recall the security model for2-party password-based authenticated key
exchange protocols introduced by Bellare, Pointcheval, and Rogaway (BPR) [4] and introduce
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a new one. For reasons that will soon become apparent, we refer to the new model as the
Real-Or-Random (ROR) model and to the BPR model as the Find-Then-Guess (FTG) model,
following the terminology of Bellareet al.for symmetric encryption schemes [3].

2.1 Communication model

PROTOCOL PARTICIPANTS. Each participant in the2-party password-based key exchange is
either a clientC ∈ C or a serverS ∈ S. The set of all users or participantsU is the union
C ∪ S.

LONG-LIVED KEYS. Each clientC ∈ C holds a passwordpwC . Each serverS ∈ S holds a
vectorpwS = 〈pwS [C]〉C∈C with an entry for each client, wherepwS [C] is the transformed-
password, as defined in [4]. In a symmetric model,pwS [C] = pwC , but they may be different
in some schemes.pwC andpwS are also called the long-lived keys of clientC and serverS.

PROTOCOL EXECUTION. The interaction between an adversaryA and the protocol partici-
pants occurs only via oracle queries, which model the adversary capabilities in a real attack.
During the execution, the adversary may create several concurrent instances of a participant.
These queries are as follows, whereU i denotes the instancei of a participantU :

– Execute(Ci, Sj): This query models passive attacks in which the attacker eavesdrops on
honest executions between a client instanceCi and a server instanceSj. The output of
this query consists of the messages that were exchanged during the honest execution of
the protocol.

– Send(U i,m): This query models an active attack, in which the adversary may intercept a
message and then either modify it, create a new one, or simplyforward it to the intended
participant. The output of this query is the message that theparticipant instanceU i would
generate upon receipt of messagem.

2.2 Security definitions

PARTNERING. We use the notion of partnering based on session identifications (sid), which
says that two instances are partnered if they hold the same non-null sid. In practice, thesid is
taken to be the partial transcript of the conversation between the client and the server instances
before the acceptance.

FRESHNESS. In order to properly formalize security notions for the session key, one has to be
careful to avoid cases in which adversary can trivially break the security of the scheme. For
example, an adversary who is trying to distinguish the session key of an instanceU i from a
random key can trivially do so if it obtains the key for that instance through aRevealquery
(see definition below) to instanceU i or its partner. Instead of explicitly defining a notion of
freshness and mandating the adversary to only perform testson freshinstances as in previous
work, we opted to embed that notion inside the definition of the oracles.

Semantic security in the Find-Then-Guess model.This is the definition currently being
used in the literature. In order to measure the semantic security of the session key of user
instance, the adversary is given access to two additional oracles: theRevealoracle, which
models the misuse of session keys by a user, and theTest oracle, which tries to capture the
adversary’s ability (or inability) to tell apart a real session key from a random one. Letb be
a bit chosen uniformly at random at the beginning of the experiment defining the semantic
security in the Find-Then-Guess model. These oracles are defined as follows.
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– Reveal(U i): If a session key is not defined for instanceU i or if a Test query was asked
to eitherU i or to its partner, then return⊥. Otherwise, return the session key held by the
instanceU i.

– Test(U i): If no session key for instanceU i is defined or if aRevealquery was asked
to eitherU i or to its partner, then return the undefined symbol⊥. Otherwise, return the
session key for instanceU i if b = 1 or a random of key of the same size ifb = 0.

The adversary in this case is allowed to ask multiple queriesto the Execute, Reveal, and
Sendoracles, but it is restricted to ask only asinglequery to theTestoracle. The goal of the
adversary is to guess the value of the hidden bitb used by theTest oracle. The adversary is
considered successful if it guessesb correctly.

Let SUCC denote the event in which the adversary is successful. Theftg-ake-advantage
of an adversaryA in violating the semantic security of the protocolP in the Find-Then-
Guess sense and theadvantage functionof the protocolP , when passwords are drawn from
a dictionaryD, are respectively

Adv
ftg−ake
P,D (A) = 2 · Pr[ SUCC ]− 1; and

Adv
ftg−ake
P,D (t, R) = max

A
{Adv

ftg−ake
P,D (A) },

where the maximum is over allA with time-complexity at mostt and using resources at
mostR (such as the number of queries to its oracles). The definitionof time-complexity that
we use henceforth is the usual one, which includes the maximum of all execution times in
the experiments defining the security plus the code size [1].Note that the advantage of an
adversary that simply guesses the bitb is 0 in the above definition due to the rescaling of the
probabilities.

Semantic security in the Real-Or-Random model.This is a new definition. In the Real-
Or-Random model, we only allow the adversary to askExecute, Send, andTest queries. In
other words, theRevealoracle that exists in the Find-Then-Guess model is no longeravailable
to the adversary. Instead, we allow the adversary to ask as many Test queries as it wants to
different instances. AllTestqueries in this case will be answered using the same value forthe
hidden bitb that was chosen at the beginning . That is, the keys returned by theTestoracle are
either all real or all random. However, in the random case, the same random key value should
be returned forTest queries that are asked to two instances which are partnered.Please note
that theTestoracle is the oracle modeling the misuse of keys by a user in this case. The goal
of the adversary is still the same: to guess the value of the hidden bitb used to answerTest
queries. The adversary is considered successful if it guessesb correctly.

Let SUCC denote the event in which the adversary is successful. Theror-ake-advantage
Advror−ake

P,D (A) of an adversaryA in violating the semantic security of the protocolP in the

Real-Or-Random sense and theadvantage functionAdvror−ake
P,D (t, R) of the protocolP are

then defined as in the previous definition.

Relation between notions.As we prove in Appendix C, the Real-Or-Random (ROR) secu-
rity model is actually stronger than the Find-Then-Guess (FTG) security model. More specif-
ically, we show that proofs of security in the ROR model can beeasily translated into proofs
of security in the FTG model with only a2 factor loss in the reduction (see Lemma 8). The
reverse, however, is not necessarily true since the reduction is not security preserving. There
is a loss of non-constant factor in the reduction (see Lemma 9). Moreover, the loss in the
reduction cannot be avoided as there exist schemes for whichwe can prove such a loss in
security exists (see Proposition 10).



7

To better understand the gap between the two notions, imagine a password-based scheme
that was proven secure in the FTG model. By definition, the advantage of any adversary is at
mostO(n/|D|)+ε(k), wheren is the number of active sessions andε(k) is a negligible term.
By applying the reduction, we can show that no adversary can do better thanO(n2/|D|)+n ·
ε(k), which is not enough to guarantee the security of the same scheme in the ROR model.
Note that such a gap is not as important in the case where high-entropy keys are used since
both terms in the expression would be negligible.

As a consequence, we cannot take for granted the security of the existing schemes and
new proofs of security need be provided. Fortunately, we would like to point out here that
the security proof for several of the existing schemes can beeasily modified to meet the
new security goals with essentially the same bounds. The reason for that is that the security
proofs of most existing password-based schemes in fact prove something stronger than what
is required by the security model. More specifically, most proofs generally show that not
only the session key being tested looks random, but all the keys that may be involved in a
reveal query also look random to an adversary that does not know the secret password, thus
satisfying the security requirements of our new model. In particular, this is the case for the
KOY protocol [19] and its generalization [13], and some other schemes based on the encrypted
key exchange scheme of Bellovin and Merritt [8] (e.g., [10, 25]).

Since most existing password-based schemes do seem to achieve security in the new and
stronger security model and since the latter appears to be more applicable to situations in
which one wishes to use a password-based key exchange protocol as a black box, we suggest
the use of our new model when proving the security of new password-based schemes.

3 Security models for3-party password-based key exchange

In this section, we put forward new formal security models for 3-party password-authenticated
key exchange and key distribution protocols. Our models aregeneralizations of the model
of Bellare and Rogaway [7] for 3-party key distribution schemes to the password case and
that of Bellare, Pointcheval, and Rogaway [4] for2-party password-based authenticated key
exchange.

3.1 Protocol Syntax

PROTOCOL PARTICIPANTS. Each participant in a3-party password-based key exchange is
either a clientU ∈ U or a trusted serverS ∈ S. The set of clientsU is made up of two disjoint
sets:C, the set of honest clients, andE , the set of malicious clients. For simplicity, and without
loss of generality1, we assume the setS to contain only a single trusted server.

The inclusion of the malicious setE among the participants is one the main differences
between the2-party and the3-party models. Such inclusion is needed in the3-party model in
order to cope with the possibility of insider attacks. The set of malicious users did not need
to be considered in the2-party due to the independence among the passwords shared between
pairs of honest participants and those shared with malicious users.

LONG-LIVED KEYS. Each participantU ∈ U holds a passwordpwU . Each serverS ∈ S
holds a vectorpwS = 〈pwS[U ]〉U∈U with an entry for each client, wherepwS [U ] is the
transformed-password, following the definition in [4]. In asymmetric model,pwS [U ] =
pwU , but they may be different in some schemes. The set of passwordspwE, whereE ∈ E ,
is assumed to be known by the adversary.

1 This is so because we are working in the concurrent model and because all servers in the general case know all
users’ passwords.



8

3.2 Communication model

The interaction between an adversaryA and the protocol participants occurs only via oracle
queries, which model the adversary capabilities in a real attack. These queries are as follows:

– Execute(U i1
1 , Sj , U i2

2 ): This query models passive attacks in which the attacker eaves-
drops on honest executions among the client instancesU i1

1 andU i2
2 and trusted server

instanceSj . The output of this query consists of the messages that were exchanged dur-
ing the honest execution of the protocol.

– SendClient(U i,m): This query models an active attack, in which the adversary may
intercept a message and then modify it, create a new one, or simply forward it to the
intended client. The output of this query is the message thatclient instanceU i would
generate upon receipt of messagem.

– SendServer(Sj ,m): This query models an active attack against a server. It outputs the
message that server instanceSj would generate upon receipt of messagem.

3.3 Semantic security

The security definitions presented here build upon those of Bellare and Rogaway [6, 7] and
that of Bellare, Pointcheval, and Rogaway [4].

NOTATION. Following [6, 7], an instanceU i is said to beopenedif a queryReveal(U i) has
been made by the adversary. We say an instanceU i is unopenedif it is not opened. Similarly,
we say a participantU is corrupted if a queryCorrupt(U) has been made by the adversary.
A participantU is said to beuncorruptedif it is not corrupted. We say an instanceU i has
acceptedif it goes into an accept mode after receiving the last expected protocol message.

PARTNERING. Our definition of partnering follows that of [4], which usessession identifica-
tions (sid). More specifically, two instancesU i

1 andU j
2 are said to be partners if the following

conditions are met: (1) BothU i
1 andU j

2 accept; (2) BothU i
1 andU j

2 share the same session
identifications; (3) The partner identification forU i

1 is U j
2 and vice-versa; and (4) No instance

other thanU i
1 andU j

2 accepts with a partner identification equal toU i
1 or U j

2 . In practice, as
in the2-party case, thesid could be taken to be the partial transcript before the acceptance of
the conversation among all the parties involved in the protocol, a solution which may require
the forwarding of messages.

FRESHNESS. As in the2-party case, we opted to embed the notion of freshness insidethe
definition of the oracles.

Semantic security in Find-Then-Guess model.This definition we give here is the straight-
forward generalization of that of Bellare, Pointcheval, and Rogaway [4] for the2-party case,
combined with ideas of the model of Bellare and Rogaway [7] for 3-party key distribution. As
in the2-party case, we also define aRevealoracle to model the misuse of session keys and a
Test oracle to capture the adversary’s ability to distinguish a real session key from a random
one. Letb be a bit chosen uniformly at random at the beginning of the experiment defining
the semantic security in the Find-Then-Guess model. These oracles are defined as follows:

– Reveal(U i): If a session key is not defined for instanceU i or if a Test query was asked
to eitherU i or to its partner, then return⊥. Otherwise, return the session key held by the
instanceU i.

– Test(U i): If no session key is defined for instanceU i or if the intended partner ofU i is
part of the malicious set or if aRevealquery was asked to eitherU i or to its partner, then
return the invalid symbol⊥. Otherwise, return either the session key for instanceU i if
b = 1 or a random of key of the same size ifb = 0.
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Consider an execution of the key exchange protocolP by an adversaryA, in which the latter
is given access to theReveal, Execute, SendClient, SendServer, andTestoracles and asks a
singleTestquery, and outputs a guess bitb′. Such an adversary is said to win the experiment
defining the semantic security ifb′ = b, whereb is the hidden bit used by theTestoracle.

Let SUCC denote the event in which the adversary wins this game. Theftg-ake-advantage
Adv

ftg−ake
P,D (A) of an adversaryA in violating the semantic security of the protocolP in the

Find-Then-Guess sense and theadvantage functionAdv
ftg−ake
P,D (t, R) of the protocolP are

then defined as in previous definitions.
We say a3-party password-based key exchange protocolP is semantically secure in the

Find-Then-Guess sense if the advantageAdv
ftg−ake
P,D is only negligibly larger thankn/|D|,

wheren is number of active sessions andk is a constant. Note thatk = 1 in the best scenario
since an adversary that simply guesses the password in each of the active sessions has an
advantage ofn/|D|.

Semantic security in Real-Or-Random model. This is a new definition. In the Real-Or-
Random model,Revealqueries are no longer allowed and are replaced byTest queries. In
this case, however, the adversary is allowed to ask as manyTestqueries as it wants.

The modifications to theTest oracle are as follows. If aTest query is asked to a client
instance that has notaccepted, then return the undefined⊥. If a Test query is asked to an
instance of an honest client whose intended partner is dishonest or to an instance of a dishonest
client, then return the real session key. Otherwise, theTestquery returns either the real session
key if b = 1 and a random one ifb = 0, whereb is the hidden bit selected at random prior
to the first call. However, whenb = 0, the same random key value should be returned for
Testqueries that are asked to two instances which are partnered.The goal of the adversary is
still the same: to guess the value of the hidden bit used by theTest oracle. The adversary is
considered successful if it guessesb correctly.

Consider an execution of the key exchange protocolP by an adversaryA, in which the
latter is given access to theExecute, SendClient, SendServer, andTestoracles, and outputs a
guess bitb′. Such an adversary is said to win the experiment defining the semantic security in
the ROR sense ifb′ = b, whereb is the hidden bit used by theTest oracle. Let SUCC denote
the event in which the adversary wins this game. Theror-ake-advantageAdvror−ake

P,D (A) of
an adversaryA in violating the semantic security of the protocolP in the Real-Or-Random
sense and theadvantage functionAdvror−ake

P,D (t, R) of the protocolP are then defined as in
previous definitions.

3.4 Key privacy with respect to the server

Differently from previous work, we define the notion of key privacy to capture, in a quantita-
tive way, the idea that the session key shared between two instances should only be known to
these two instances and no one else, including the trusted server. The goal of this new notion
is to limit the amount of trust put into the server. That is, even though we rely on the server to
help clients establish session keys between themselves, westill want to guarantee the privacy
of these session keys with respect to the server. In fact, this is the main difference between a
key distribution protocol (in which the session key is knownto the server) and a key exchange
protocol (for which the session key remains unknown to the server).

In defining the notion of key privacy, we have in mind a server which knows the passwords
for all users, but that behaves in an honest but curious manner. For this reason, we imagine
an adversary who has access to all the passwords as well as to the ExecuteandSendClient
oracles but not to aRevealoracle or to aSendServeroracle, since the latter can be easily
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simulated using the passwords. To capture the adversary’s ability to tell apart the real session
key shared between any two instances from a random one, we also introduce a new type of
oracle, calledTestPair, defined as follows, whereb is a bit chosen uniformly at random at the
beginning of the experiment defining the notion of key privacy.

– TestPair(U i
1, U

j
2 ): If client instancesU i

1 andU j
2 do not share the same key, then return

the undefined symbol⊥. Otherwise, return the real session key shared between client
instancesU i

1 andU j
2 if b = 1 or a random key of the same size ifb = 0.

Consider an execution of the key exchange protocolP by an adversaryA with access to
theExecute, SendClient, andTestPairoracles and the passwords of all users, and letb′ be its
output. Such an adversary is said to win the experiment defining the key privacy ifb′ = b,
whereb is the hidden bit used by theTestPairoracle. Let SUCC denote the event in which
the adversary guessesb correctly. We can then define thekp-advantageAdv

kp−ake
P,D (A) of

A in violating the key privacy of the key exchange protocolP and theadvantage function
Adv

kp−ake
P,D (t, R) of P as in previous definitions.

Finally, we say an adversaryA succeeds in breaking the key privacy of a protocolP if
Adv

kp−ake
P,D (A) is non-negligible.

4 A generic three-party password-based protocol

In this section, we introduce a generic construction of a3-party password-based key exchange
protocol in the scenario in which we have anhonest-but-curiousserver. It combines a2-party
password-based key exchange, a secure key distribution protocol and a2-party MAC-based
key exchange and has several attractive features. First, itdoes not assume the Random Oracle
(RO) model [5]. That is, if the underlying primitives do not make use of the RO model,
neither does our scheme. Hence, by using schemes such as the KOY protocol [19] for the
2-party password-based key exchange and the3-party key distribution scheme in [7], one gets
a3-part password-based protocol whose security is in the standard model. Second, if2-party
password-based key exchange protocols already exist between the server and its users in a
distributed system, they can be re-used in the constructionof our3-party password-based key
exchange.

Description of the generic solution.Our generic construction can be seen as a form of com-
piler transforming any secure2-party password-based key exchange protocolP into a secure
password-based3-party key exchange protocolP ′ in the honest-but-curioussecurity model
using a secure key distributionKD, a secureMAC scheme, and generic number-theoretic op-
erations in a groupG for which the DDH assumption holds (see Appendix B).

The compiler, depicted in Figure 2, works as follows. First,we use the protocolP between
a userA and the serverS to establish a secure high-entropy session keyskA. Second, we use
the protocolP between the serverS and the userB in order to establish a session keyskB .
Third, using a key distributionKD, we have the serverS first select aMAC keykm, using the
key generation of the latter, and then distribute this key toA andB using the session keysskA

andskB , respectively, generated in the first two steps. Finally,A andB use aMAC-based key
exchange to establish a session keyCDH in an authenticated way.

Semantic security in the Real-Or-Random model.As the following theorem states, the
generic schemeGPAKE depicted in Figure 2 is a secure3-party password-based key exchange
protocol as long as the Decisional Diffie-Hellman assumption holds inG and the underlying
primitives it uses are secure.
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pwB

2PAKE(skA) 2PAKE(skB)

KD(skB, km)KD(skA, km)

gx, MAC(km, gx, B, A)

gy, MAC(km, gy, A, B)

BA S
pwA pwA pwB

Fig. 2.GPAKE: a generic three-party password-based key exchange

Theorem 1. Let2PAKE be a secure2-party password-based Key Exchange,KD be a secure
key distribution, andMAC be a secure MAC algorithm. Letqexe andqtest represent the number
of queries toExecuteandTestoracles, and letqA

send, qB
send, qkd, andqake represent the number

of queries to theSendClientandSendServeroracles with respect to each of the two2PAKE

protocols, theKD protocol, and the finalAKE protocol. Then,

Advror−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤

4 · (qexe + qkd) ·Adv
ftg−kd
KD (t, 1, 0) + 2 · qake ·Adveuf−cma

MAC (t, 2, 0)

+ 2 ·Advddh
G (t + 8(qexe + qake)τe) + 4 ·Advror−ake

2PAKE,D(t, qexe, qexe + qA
send, qA

send)

+ 4 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, qB
send) ,

whereτe denotes the exponentiation computational time inG.

Key privacy with respect to the server. As the following theorem states, the generic scheme
GPAKE depicted in Figure 2 has key privacy with respect to the server as long as the Deci-
sional Diffie-Hellman assumption holds inG.

Theorem 2. LetGPAKE be the3-party password-based authenticated key exchange scheme
depicted in Figure 2. Then,

Adv
kp−ake
GPAKE,D(t, qexe, qtest, q

A
send, qB

send, qkd, qake) ≤ 2 ·Advddh
G (t′) ,

wheret′ = t + 8 · (qexe + qake) · τe and the other parameters are defined as in Theorem 1.

Instantiations. Several practical schemes can be used in the instantiation of the 2-party
password-based key exchange of our generic construction. Among them are the KOY pro-
tocol [19] and its generalization [13], the PAK suite [25], and several other schemes based on
the encrypted key exchange scheme of Bellovin and Merritt [8] (e.g., [10]).

In the instantiation of the key distribution scheme, one could use the original proposal
in [7] or any other secure key distribution scheme. In particular, the server could use a chosen-
ciphertext secure symmetric encryption scheme to distribute the keys to the users. Indepen-
dently of the choice, one should keep in mind that the security requirements for the key dis-
tribution scheme are very weak. It only needs to provide security with respect to one session.

For the instantiation of the MAC, any particular choice thatmakes the MAC term in
Theorem 1 negligible will do. Possible choices are the HMAC [2] or the CBC MAC.

It is important to notice that, in order forGPAKE to be secure, the underlying2-party
password-based protocolmustbe secure in the ROR model. A2-party password-based secure
in the FTG model does not suffice to prove the security ofGPAKE.
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5 Concluding remarks

AUTHENTICATION. In order to take (explicit) authentication into account, one can easily ex-
tend our model using definitions similar to those of Bellareet al. [4] for unilateral or mutual
authentication. In their definition, an adversary is said tobreak authentication if it succeeds
in making any oracle instance terminate the protocol without a partner oracle. Likewise, one
could also use their generic transformation to enhance our generic construction so that it pro-
vides unilateral or mutual authentication. The drawback ofusing their generic transformation
is that it requires the random oracle model.

MORE EFFICIENT CONSTRUCTIONS. Even though the generic construction presented in this
paper is quite practical, more efficient solutions are possible. One example of such an im-
provement is a generic construction in which the key distribution and the final key exchange
phases are combined into a single phase. One can easily thinkof different solutions for this
scenario that are more efficient that the one we give. However, the overall gain in efficiency
would not be very significant since the most expensive part ofthese two phases, the Diffie-
Hellman protocol, seems to be necessary if key privacy with respect to the server is to be
achieved. Perhaps the best way to improve the efficiency of3-party password-based schemes
is to adapt specific solutions in the2-party model to the3-party model, instead of treating
these schemes as black boxes.

RELATION TO SIMULATION MODELS. In [29], the Find-Then-Guess model of [7] is shown
to be equivalent to simulation models in the sense that a scheme that is proven secure in one
model is also secure in the other model. By closely examiningtheir proof, one can easily
see that the equivalence does not apply to the case of password-based protocols due to the
non-security-preserving reduction. It seems, however, that their proof of equivalence can be
adapted to show the equivalence between the simulation model and the Real-Or-Random
model that we introduce in this paper in the case of password-based protocols. This is also the
subject of ongoing work.
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A Proof of security for GPAKE

Semantic security ofGPAKE in the ROR model. Without loss of generality, we assume
the set of honest users contains only usersA andB. The solution can be easily extended to
the more general case with essentially the same bounds.

Let A be an adversary against the semantic security ofGPAKE in the Real-Or-Random
sense with time-complexity at mostt, and asking at mostqexe queries to itsExecuteoracle,
qtest queries to itsTest oracle,qA

send queries toSendClientandSendServeroracles with re-
spect to the2PAKE protocol betweenA and the trusted serverS, qB

send queries with respect to
the2PAKE protocol betweenB andS, qkd queries with respect to theKD protocol, andqake

queries with respect to the final authenticated key exchangeprotocol.
Our proof consists of a sequence of hybrid experiments, starting with the real attack

againstGPAKE scheme and ending in an experiment in which the adversary’s advantage is
0, and for which we can bound the difference in the adversary’s advantage between any two
consecutive experiments. For each experimentExpn, we define an event SUCCn correspond-
ing to the case in which the adversary correctly guesses the hidden bitb involved in theTest
queries (see Section 3).

Experiment Exp0. This experiment corresponds to the real attack. By definition, we have

Advror−ake
GPAKE,D(A) = 2 · Pr[ SUCC0 ]− 1 (1)

Experiment Exp1. We now modify the simulation of the oracles as follows. We replace the
session keyskA used as input to theKD protocol by a random session keysk

′
A in all of the

sessions. As the following lemma shows, the difference between the success probability of
the adversaryA between the current and previous experiments is at most thatof breaking the
security of the underlying2PAKE protocol betweenA andS.

Lemma 3.
∣

∣Pr[ SUCC1 ]− Pr[ SUCC0 ]
∣

∣ ≤ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qA

send, q
A
send) .

Proof. LetA1 be a distinguisher for experimentsExp1 andExp0. We can build an adversary
Apake against the semantic security of the2PAKE protocol betweenA andS usingA1 as
follows.Apake starts by choosing a bitb uniformly at random and selecting the passwords for
all users in the system exceptA according to the distribution ofD. Next, it starts runningA1,
giving it the passwords for all the malicious clients in the system, and answering to its oracle
queries as follows.

– SendClientandSendServerqueries. IfA1 asks aSendClientor SendServerquery per-
taining to an instance of the2PAKE protocol betweenB andS, thenApake can answer it
using the password of clientB that it has picked at the beginning of its execution. If the
SendClientor SendServerquery pertains to an instance of the2PAKE protocol between
A andS, thenApake can answer it by asking the corresponding query to itsSendoracle.
If this query forces the given instance of clientA or S to accept or reject, then we also
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ask aTestquery to that instance (unlessTestquery had already been asked to its partner).
The output of thisTest query will be used to simulate the key distribution and final key
exchange phases of the protocol. All the otherSendClientandSendServerqueries byA1

can be easily answered either using the output of theTest queries made to instances of
A or S or the session keys computed in the execution of the2PAKE protocol betweenA
andB.

– Executequeries.Apake can easily answer these queries using its ownExecuteoracle and
the output of theTestqueries.

– Test queries.Apake can easily answer these queries using the bitb that it has previously
selected and the session keys that it has computed.

Let b′ be the output ofA1. If b′ = b, thenApake outputs1. Otherwise, it outputs0.
One can easily see that the probability thatApake outputs1 when itsTest oracle returns

real keys is exactly the probability thatA1 returns 1 in experimentExp0. Similarly, the prob-
ability thatApake outputs1 when itsTestoracle returns random keys is exactly the probability
thatA1 returns 1 in experimentExp1. The lemma follows by noticing thatApake has at most
time-complexityt and asks at mostqexe + qA

send queries to itsTestoracle, at mostqexe queries
to itsExecuteoracle, and at mostqA

send queries to itsSendoracle.

Experiment Exp2. We modify the previous experiment by replacing the sessionkey skB

used as input to theKD protocol by a random session keysk
′
B in all of the sessions. Using

similar arguments, one can prove the following lemma.

Lemma 4.
∣

∣Pr[ SUCC2 ]− Pr[ SUCC1 ]
∣

∣ ≤ 2 ·Advror−ake
2PAKE,D(t, qexe, qexe + qB

send, q
B
send) .

Experiment Exp3. In this experiment, we replace theMAC key km obtained via the key
distribution protocol with a random key in all of the sessions. According to the following
lemma, the difference between the success probability of the adversaryA between the cur-
rent and previous experiments is at most that of breaking thesecurity of the key distribution
schemeKD protocol betweenA, B, andS.

Lemma 5.
∣

∣Pr[ SUCC3 ]− Pr[ SUCC2 ]
∣

∣ ≤ 2 (qexe + qkd) Adv
ftg−kd
KD (t, 1) .

Proof. The proof of this lemma uses standard hybrid arguments [14] in order to replace each
of the key generated by the key distribution schemeKD. We can do so here because the input
of the key distribution scheme are all independents since experimentExp2.

The hybrids in this case consist of a sequence of random variablesVi, where0 ≤ i ≤ qs

andqs = (qexe + qkd), such that (1) the random variableVi is constructed as follows : in the
first (i − 1) sessions, the session keys are generated according to experimentExp3, (i.e. at
random), and in the(qs − i + 1) sessions, they are generated according to theExp2, (i.e.ac-
cording to the real protocol); (2) extreme hybrids(i = 0) and(i = qs) collide withExp2 and
Exp3 respectively; (3) random values of each hybrid can be produced by a probabilistic poly-
nomial time algorithm and the session that we modify is independent of the other sessions;
and (4) there are only polynomially many hybrids.

The hybrids allow us to defineqs different experiments where we only ask queries to the
Sendoracles of theKD scheme with respect to asinglesession in each of the hybrids. Indeed,
we start with a distinguisherA3,i for experimentsVi−1 andVi and we build an adversaryAi

kd

against theKD protocol. The adversaryAi
kd will choose at random the MAC keyskm for the

first i−1 sessions as well as the secret keysskA andskB shared between the server and clients
A andB, respectively. Hence, it can perfectly answer to the queries made by the adversary
A3,i to SendClient, SendServer, Execute, andTestoracles for the(i−1) first sessions. In the



16

i-th session of hybrid experimentExp3,i, A
i
kd will use theKD oracles to answer its queries.

It also makes aTestquery with respect to this session to obtain a keyk̃m and uses it in order
to simulate the remainder of theGPAKE protocol for that session.

If the output of theTest query is the real key, thenAi
kd is runningA3,i as in the hybrid

experimentVi−1. If the session key returned by theTest query is a random key, thenAi
kd

is runningA3,i as in the hybrid experimentVi Note the number of queries asked byAi
kd

to its Send oracles is at most the maximum number of messages in a single execution of
the protocol,c, hence the bound given in the lemma. Finally, when answeringto the Test
queries made byA3,i, Ai

kd uses the same random bitb chosen at random at the beginning
of its execution. Letb′ be the output of adversaryA3,i. If b′ = b, thenAi

kd returns1 or 0,
otherwise. Using classical probability analysis and the fact thatAi

kd has time-complexityt
and asks queries to itsSendoracle with respect to asinglesession and noRevealqueries, we
can show that the difference between the probabilities thatAi

kd in experimentsVi andVi−1 is
at most2 ·Adv

ftg−kd
KD (t, 1, 0). The lemma follows immediately by noticing that there are at

mostqs hybrids.

Experiment Exp4. In this experiment, we modify the oracle instances as follows. If the
adversary asks aSendClientquery containing a new pair message-MAC not previously gen-
erated by an oracle, then we consider the MAC invalid and force the instance in question
(which received a forged message) to terminate without accepting. As the following lemma
shows, the difference between the current and previous experiments should be negligible if
we use a secure MAC scheme.

Lemma 6.
∣

∣Pr[ SUCC4 ]− Pr[ SUCC3 ]
∣

∣ ≤ qake ·Adveuf−cma
MAC (t, 2, 0) .

Proof. The proof of this lemma also uses hybrid arguments in the sameas in the proof of
Lemma 5. The total number of hybrids in this case isqake, sinceExecutequeries do not
need to be taken into account in this case. In hybridVi, where0 ≤ i ≤ qake, queries in the
first i sessions are answered as in experimentExp4 and all other queries are answered as in
experimentExp3. LetA4,i be a distinguisher for hybridsVi andVi−1. UsingA4,i, we can
build an adversary for the MAC scheme as follows.

For the firsti − 1 sessions, the adversaryAi
mac will choose random values for the MAC

key and is therefore able to perfect simulate the oracles given toA4,i. In the i-th session,
Ai

mac makes use of itsMAC generation and verification oracles to answer queries fromA4,i.
If A4,i generates a pair message-MAC not previously generated byAi

mac, thenAi
mac halts

and outputs that pair as its forgery. If no such pair is generated, we output a failure indication.
For all remaining sessions,Ai

mac uses the actual MAC keys obtained via the key distribution
scheme as in experimentExp3 to answer queries fromA4,i.

Let F be the event in which a MAC is considered invalid in hybridVi but valid in hybrid
Vi−1. Notice thatPr[F ] is at most the probability that an adversaryAi

mac can forge a MAC
under a chosen-message attack. SinceAi

mac has time-complexityt and makes at most two
queries to itsMAC generation oracle (to answer theSendClientqueries) and no queries to
its verification oracle, we have thatPr[F ] ≤ Succeuf−cma

MAC (t, 2, 0). Moreover, since the two
hybrids proceed identically untilF occurs, we havePr[SUCCVi−1

∧¬F ] = Pr[SUCCVi
∧¬F ].

By Lemma 1 of [30], we have|Pr[SUCCVi−1
] − Pr[SUCCVi

]| ≤ Pr[F ]. The lemma follows
from the fact that there are at mostqake hybrids.

Experiment Exp5. In this experiment, we try to avoid the use of the discrete-log of the
elementsX,Y,Z in theTestqueries in order to correctly compute theCDH(X,Y ). We thus
introduce a random DDH triples(X,Y,Z). Then, using the classical random self-reducibility
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of the Diffie-Hellman problem, one can introduce the above triples in all the sessions which
can be tested by the adversary. We do not need to modify the other sessions.

The behavior of our simulation in this experiment is as follows. ExperimentExp5 is
identical to experimentExp4, except that we apply the following special rules when dealing
with Test(U i) andSendClient(U i,m) queries for the last two flows ofGPAKE:

R1: When processing aSendClient(Ai, Start) query, the simulator picks two random values
a0 andx0 in Zq, computesX0 = Xa0gx0 , and stores in someX -table(a0, x0,X0).

R2: When processing aSendClient(Bj, (X0,m0)) query in the last message of the protocol,

– if the elementX0 has been computed by our simulator and thus have been stored
in theX -table, then it generates the same way its answer by choosingtwo random
valuesb0, y0

R
← Zq, it computesY0 = Y b0gy0 and stores in someY-table(b0, y0,

Y0). It can now computeZ0 = Za0b0 × Y x0b0 ×Xa0y0 × gx0y0 for theTestqueries.
– if the elementsX0 has not been previously computed by ourA-simulation, then it

proceeds as in the experimentExp4.

R3: When processing aTest(U i) query, we know that such a query only reveal information
about the hidden bit when asked on an accepting instance, andan accepting instance can
only happen when the simulator knows the correct valueZ0 and can answer such query
as in the experimentExp4.

It is easy to see that in the second case of ruleR2, as in experimentExp4, the adversary will
not been able to forge aMAC tag, and then he will not be able to generate a correct message
for either one of the two last flows. Consequently, the session will not be accepted by any
party and so the adversary will not be able to send aTest query to any instance. Hence, the
simulation will be consistent.

It is then clear that experimentsExp4 andExp5 are equivalent, since we have consis-
tently replaced one set of random variables by another set ofidentically distributed random
variables. In particular,Pr[SUCC4] = Pr[SUCC5].

Experiment Exp6. ExperimentExp6 is exactly the same as experimentExp5, except that in
all the rules, we use a random triple(X,Y,Z) coming from a random distribution(gx, gy, gz),
instead of a DDH triple. As the following lemma shows, the difference between the current
and previous experiments should be negligible if DDH is hardin G.

Lemma 7.
∣

∣Pr[ SUCC6 ]− Pr[ SUCC5 ]
∣

∣ ≤ Advddh
G (t + 8(qexe + qake)τe) .

Proof. Let A be an attacker that breaks the semantic security experimentof GPAKE with a
different advantage in ExperimentExp6 than in ExperimentExp5. We can build an adver-
saryAddh for the DDH problem inG as follows. Let(X,Y,Z) be the input given toAddh.
Addh first selects a bitb at random and then starts runningA. If A asks aSendClient, Execute,
or Testquery, thenAddh computes its output exactly as in the previous experiment but using
the triple(X,Y,Z) that it had received as input. Letb′ be the output ofA. If b′ = b, thenAddh

returns 1 or 0, otherwise.
Let us now analyze the success probability ofAddh. Clearly, when the triple(X,Y,Z)

is a true Diffie-Hellman triple,Addh runsA exactly as in experimentExp5 and thus the
probability thatAddh outputs 1 is exactlyPr[SUCC5]. On the other hand, when(X,Y,Z) is
a random triple,Addh runsA exactly as in experimentExp6 and thus the probability that
Addh outputs 1 is exactlyPr[SUCC6]. The lemma follows from the fact thatAddh has time-
complexity at mostt + 8(qexe + qake)τe, due to the additional time for the computations of
the random self-reducibility.
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Due to the random self-reducibility property of the Diffie-Hellman problem, all the ses-
sions keysZ0 used to answerTest queries in experimentExp6 are randomly and indepen-
dently distributed inG. As a result, no information on the hidden bitb used by theTestoracle
is leaked to the adversary and thusPr[SUCC6] = 1

2 . This result combined with the previous
lemmas yields the result in Theorem 1.

Key privacy. The proof of key privacy uses arguments similar to those usedin experiments
Exp5 andExp6 in the proof of semantic security ofGPAKE. LetAkp be an adversary against
the key privacy ofGPAKE with time-complexity at mostt, and asking at mostqexe queries to
its Executeoracle,qtest queries to itsTestPairoracle, andqake queries toSendClientoracle
with respect to the final MAC-based authenticated key exchange protocol. UsingAkp, we can
build an adversaryAddh for the DDH problem inG as follows.

Let (X,Y,Z) be the input given toAddh. Addh first chooses the passwords for all users
in the system according to the distribution ofD. It also chooses a bitb at random that is used
to answer queries to theTestPairoracle. It then starts runningAkp giving all the password of
all users to it. SinceAddh knows the password of all users, it can easily answer queriesmade
byAkp. However, in order to useAkp to help it solve the DDH problem,Addh will use the
classical random self-reducibility of the Diffie-Hellman problem to introduce its input triple
in the answers toSendClient, Execute, andTestPairqueries with respect to the last two flows
of GPAKE.

To simulate theExecuteoracle, we simply use the passwords that we have chosen and
SendClientqueries. The simulation of theSendClientandTestPairare as follows:

R1: When processing aSendClient(Ai, Start) query,Addh picks two random valuesa0 and
x0 in Zq, computesX0 = Xa0gx0 , and stores in someX -table(a0, x0,X0).

R2: When processing aSendClient(Bj, (X0,m0)) query in the last message of the protocol,
– if the elementX0 has been computed byAddh and thus have been stored in theX -

table, thenAddh generates the same way its answer by choosing two random values
b0, y0

R
← Zq. It computesY0 = Y b0gy0 and stores in someY-table(b0, y0, Y0).Addh

can now computeZ0 = Za0b0 × Y x0b0 ×Xa0y0 × gx0y0 for theTestPairqueries.
– if the elementsX0 has not been previously computed byAddh, thenAddh proceeds

with the simulation as it would in a real attack.
R3: When processing aTestPair(U i

1, U
j
2 ) query,Addh first checks whetherU i

1 andU j
2 have

both accepted and have the same key. If the check fails, thenAddh returns⊥. If the check
passes, thenAddh knows the corresponding valueZ0 for the secret key and can answer it
based on the hidden bitb it had previously chosen.

Let b′ be the output ofAkp. If b′ = b, thenAddh returns 1 and 0, otherwise.
We would like to observe here that the second case of ruleR2 has no influence over

TestPairqueries, since the latter can only be asked to pair of oracle instances which share
the same key. This is because even though the instance involved in theSendClientmay itself
accept, its partner would not be an oracle instance. Hence, aTestPairquery involving this
instance would always return the invalid symbol⊥.

In order to analyze the success probability ofAddh, first consider the case in which the
triple (X,Y,Z) is a true Diffie-Hellman triple. Then, in this case, one can see that simu-
lation of theAkp oracles is perfect. Hence, the probability thatAddh outputs 1 is exactly
1
2 + 1

2Adv
kp−ake
GPAKE,D(Akp). On the other hand, when(X,Y,Z) is a random triple, the keys

Z0 used to answerTestPairqueries are all random and independent as a result of the ran-
dom self-reducibility property of the Diffie-Hellman problem. Hence, no information onb
is leaked throughTestPairqueries and the probability thatAddh outputs 1 is exactly12 in
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this case. The proof of Theorem 2 follows from the fact thatAddh has time-complexity at
mostt + 8(qexe + qake)τe, due to the additional time for the computations of the random
self-reducibility.

B Building blocks

In this section, we recall the definitions for the cryptographic primitives that we use in the
construction of our generic3-party password-based authenticated key exchange,GPAKE.

Decisional Diffie-Hellman assumption: DDH. The DDH assumption states, roughly, that
the distributions(gu, gv , guv) and (gu, gv , gw) are computationally indistinguishable when
u, v,w are drawn at random from{1, . . . , |G|}. This can be made more precise by defining
two experiments,Expddh-real

G (A) andExpddh-rand
G (A). In both experiments, we compute

two valuesU = gu andV = gv to be given toA. But in addition to that, we also provide a
third input, which isguv in Expddh-real

G (A) andgz for a randomz in Expddh-rand
G (A). The

goal of the adversary is to guess a bit indicating the experiment it thinks it is in. We definead-
vantageof A in violating the DDH assumption,Advddh

G (A), asPr[Expddh-real
G (A) = 1 ]−

Pr[Expddh-rand
G (A) = 1 ]. Theadvantage functionof the group,Advddh

G (t) is then defined
as the maximum value ofAdvddh

G (A) over allA with time-complexity at mostt.

Message authentication codes (MAC).A Message Authentication CodeMAC = (Key,
Tag,Ver) is defined by the following three algorithms: (1) AMAC key generation algorithm
Key, which on input1k produces aℓ-bit secret-keysk uniformly distributed in{0, 1}ℓ; (2)
A MAC generation algorithmTag, possibly probabilistic, which given a messagem and a
secret keysk ∈ {0, 1}ℓ, produces an authenticatorµ; and (3) AMAC verification algorithm
Ver, which given an authenticatorµ, a messagem, and a secret keysk , outputs1 if µ is a
valid authenticator form undersk and0 otherwise.

Like in signature schemes, the classical security level fora MAC is to prevent existential
forgeries, even for an adversary which has access to the generation and verification oracles.
We defineadvantageof A in violating the security of the MAC,Adveuf−cma

MAC (A), as

Pr
[

sk ← {0, 1}ℓ, (m,µ)← ATag(sk ;·),Ver(sk ;·,·)() : Ver(sk ;m,µ) = 1
]

,

and theadvantage functionof the MAC,Adveuf−cma
MAC (t, qg, qs), as the maximum value of

Adveuf−cma
MAC (A) over allA that asks up toqg andqv queries to the generation and verifica-

tion oracles, respectively, and with time-complexity at most t. Note thatA wins the above
experiment only if it outputs anewvalid authenticator.

3-party key distribution. A secure key distribution protocolKD is a 3-party protocol be-
tween2 parties and a trusted serverS whereS picks a session key at random and securely
sends it to the users. The security model, formally introduced in [7], is a generalization of that
for 2-party authenticated key exchange protocols, to which a neworacle was added to repre-
sent the trusted server. Their security is in the Find-Then-Guess model, using the terminology
that we introduced for key exchange protocols.

In our generic construction, we only need aKD secure with respect to a single session
since the symmetric keys used as input to the key distribution protocol differ from session to
session. They are the session keys obtained from the2-party password-based authenticated
key exchange protocols between the server and each of the twoparties. Since in this case,
both the Find-Then-Guess and Real-Or-Random notions are equivalent, we opted to use their
definition (i.e. FTG) adapted to our terminology. That is, wedefineAdv

ftg−kd
KD (A) as the
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advantageof adversaryA in violating the semantic security of a key distributionKD in the
FTG sense, andAdv

ftg−kd
KD (t, s, r) as theadvantage functionof KD, which is the maximum

value ofAdv
ftg−kd
KD (A) over allA with time-complexity at mostt, askingSendqueries with

respect to at mosts sessions and asking at mostr Revealqueries.

C Relations between notions

In this section, we prove the relation between the Find-Then-Guess (FTG) and Real-Or-
Random (ROR) notions of security for authenticated key exchange protocols. The relation
is not specific to password-based schemes, but its implications are more important in that
scenario. We do not present proofs for the forward-secure case as these proofs can be easily
derived from the proofs in the non-forward-secure case.

Lemma 8. For anyAKE, Adv
ftg−ake
AKE (t, qsend, qreveal, qexe) ≤ 2·Advror−ake

AKE (t, qsend, qreveal

+ 1, qexe).

Proof. In order to prove this lemma, we show how to build an adversaryAror against the
semantic security of an authenticated key exchangeAKE protocol in the ROR model given an
adversaryAftg against the semantic security of the same protocolAKE in the FTG model. We
know thatAftg has time-complexity at mostt and that it asks at mostqsend, qreveal, andqexe

queries to itsSend, Reveal, andExecuteoracles, respectively.
The description ofAror is as follows.Aror starts by choosing a bitb uniformly at random

and starts runningAftg. If Aftg asks aSendquery, thenAror asks the corresponding query to
its Sendoracle. IfAftg asks aExecutequery, thenAror asks the corresponding query to its
Executeoracle. IfAftg asks aRevealquery, thenAror asks aTestquery to itsTestoracle and
uses the answer it receives as the answer to theRevealquery. IfAftg asks aTestquery, then
Aror asks the corresponding query to itsTest oracle. Ifb = 1, thenAror uses the answer it
received as the answer to theTestquery. Otherwise, it returns a random key toAftg. Let b′ be
the final output ofAftg. If b′ = b, thenAror outputs1. Otherwise, it outputs0.

Note thatAror has time-complexity at mostt and asks at mostqsend, qreveal + 1, andqexe

queries to itsSend, Test, andExecuteoracles, respectively.
In order to analyze the advantage ofAror, first consider the case in which itsTest oracle

returns random keys. It is easy to see that, in this case,Aftg cannot gain any information
about the hidden bitb used to answer its singleTest. Therefore, the probability thatAror is
exactly 1

2 . Now consider the case in which itsTestoracle returns the actual sessions keys. In
this case, the simulation ofRevealis perfect andAror runsAftg exactly as in the experiment
defining the semantic security ofAftg in the FTG model. Therefore, the probability thatAror is

exactly1
2 + 1

2Adv
ftg−ake
AKE (Aftg) and, as a result,Adv

ftg−ake
AKE (Aftg) ≤ 2·Advror−ake

AKE (Aror) ≤

Advror−ake
AKE (t, qsend, qreveal + 1, qexe). The lemma follows easily.

Lemma 9. For anyAKE, Advror−ake
AKE (t, qsend, qtest, qexe) ≤ qtest ·Adv

ftg−ake
AKE (t, qsend, qtest

− 1, qexe).

Proof. In order to prove this lemma, we show how to build a sequence ofadversariesAi
ftg

against the semantic security of an authenticated key exchange AKE protocol in the FTG
model given an adversaryAror against the semantic security of the same protocolAKE in the
ROR model. We know thatAror has time-complexity at mostt and that it asks at mostqsend,
qtest, andqexe queries to itsSend, Test, andExecuteoracles, respectively.

The proof uses a standard hybrid argument, in which we define asequence ofqtest + 1
hybrid experimentsVi, where0 ≤ i ≤ qtest. In experimentVi, the firsti − 1 queries to the
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Test oracle are answered using a random key and all remainingTest queries are answered
using the real key. Please note that the hybrid experiments at the extremes correspond to the
real and random experiments in the definition of semantic security in the ROR model. Hence,
in order to prove the bound in the lemma, it suffices to prove that the difference in probability
that adversaryAror returns 1 between any two consecutive experimentsVi and Vi−1 is at
mostAdv

ftg−ake
AKE (t, qsend, qtest − 1, qexe). This is achieved by building a sequence ofqtest

adversariesAi
ftg, as described below.

Let Ai
ftg be a distinguisherAi

ftg for experimentsVi and Vi−1, where1 ≤ i ≤ qtest.
Ai

ftg starts runningAror answering to its queries as follows. IfAror asks aSendor Execute
query, thenAftg answers it using its corresponding oracle. IfAror asks aTest query, then
Aftg answers it with a random key if this query is among the firsti− 1. If this is thei-th Test,
thenAftg uses itsTest oracle to answer it. All remainingTest queries are answered using
the output of theRevealquery.Aftg finishes its execution by outputting the same guess bitb
outputted byAror.

Note thatAi
ftg has time-complexity at mostt and asks at mostqsend, qtest − 1, andqexe

queries to itsSend, Reveal, andExecuteoracles, respectively.
In order to analyze the advantage ofAi

ftg, first notice that whenTest oracle returns a
random key,Ai

ftg runsAror exactly as in the experimentVi. Next, notice that whenTest
oracle returns the real key,Ai

ftg runsAror exactly as in the experimentVi. It follows that the
difference in probability that adversaryAror returns 1 between experimentsVi andVi−1 is at
mostAdv

ftg−ake
AKE (Aror) ≤ Adv

ftg−ake
AKE (t, qsend, qtest − 1, qexe). The lemma follows easily.

Even though the reduction in Lemma 9 is not security-preserving (i.e., there is a non-
constant factor loss in the reduction), it does not imply that a gap really exists— there might
exist a tight reduction between the two notions that we have not yet found. In order to prove
that the non-constant factor loss in the reduction is indeedintrinsic, we need to show that there
exist schemes for which the gap does exist.

To achieve this goal, one can use techniques similar to thoseused to prove that a gap exists
between the Left-Or-Right and Find-Then-Guess notions of security for symmetric encryption
schemes [3]. In that paper, they show how to construct a new symmetric encryption scheme
E ′ from a secure encryption schemeE such thatE ′ exhibits the gap.E ′ was constructed in
such a way that its encryption function works like the encryption function ofE most of the
time, except in a few cases (which are easily identifiable) inwhich the ciphertext it generates
contains the plaintext. The probability in which such bad cases happen in their construction
is exactly1/q, whereq is the non-constant factor in the reduction.

A similar technique can be applied to authenticated key exchange protocols. Imagine a
secure authenticated key exchange protocolAKE exists. For simplicity, assumeqtest = 2l,
for some integerl. We can construct a new schemeAKE′ such that the session keyk that it
generates equals the one generated byAKE most of the time except when the firstl bits are
0. In this case, we just makek = 0. Using a proof technique similar to that used in [3], one
can prove the the gap in Lemma 9 cannot be avoided and we thus omit the detail. But before
stating our proposition, we make a final remark that when the underlying schemeAKE is a
password-based key exchange, not every choice of parameters will yield the desired result
claimed in the proposition. However, there are (easy) choices of parameters for which the gap
does exist and that suffices for the purpose of the proposition. We are now ready to state our
claim.

Proposition 10. The gap exhibited in Lemma 9 is intrinsic and cannot be avoided.


