
CRYPTOGRAPHIC IMPLICATIONS OF HESS’

GENERALIZED GHS ATTACK

ALFRED MENEZES AND EDLYN TESKE

Abstract. A finite field K is said to be weak for elliptic curve cryp-
tography if all instances of the discrete logarithm problem for all elliptic
curves over K can be solved in significantly less time than it takes Pol-
lard’s rho method to solve the hardest instances. By considering the
GHS Weil descent attack, it was previously shown that characteristic
two finite fields Fq5 are weak. In this paper, we examine characteristic
two finite fields Fqn for weakness under Hess’ generalization of the GHS
attack. We show that the fields Fq7 are potentially partially weak in
the sense that any instance of the discrete logarithm problem for half of
all elliptic curves over Fq7 , namely those curves E for which #E(Fq7)
is divisible by 4, can likely be solved in significantly less time than it
takes Pollard’s rho method to solve the hardest instances. We also show
that the fields Fq3 are partially weak, that the fields Fq6 are potentially
weak, and that the fields Fq8 are potentially partially weak. Finally, we
argue that the other fields F2N where N is not divisible by 3, 5, 6, 7 or
8, are not weak under Hess’ generalized GHS attack.

1. Introduction

The elliptic curve discrete logarithm problem (ECDLP) is the following:
given an elliptic curve E defined over a finite field Fq, a point P ∈ E(Fq)
of order r, and a second point Q ∈ 〈P 〉, determine the integer λ ∈ [0, r − 1]
such that Q = λP . Intractability of the ECDLP is the basis for the security
of all elliptic curve cryptographic systems.

The best general-purpose algorithm known for solving the ECDLP is Pol-
lard’s rho method [20, 19] which has a fully-exponential expected running
time of

√
πr/2 point additions. For a fixed field Fq, maximum resistance to

Pollard’s rho method is attained by selecting an elliptic curve E for which r
is prime and as large as possible, i.e., r ≈ q. The challenge faced by crypt-
analysts is to devise faster ECDLP solvers for such curves. This has been
accomplished for some special classes of elliptic curves, including those for
which the order of q modulo r is small [4, 16], and for prime-field anomalous
curves [21, 22, 23].
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Recently Gaudry [8] used an index-calculus approach to solve the ECDLP
on curves defined over Fqn where n is composite. His method is asymptoti-
cally faster than Pollard’s rho method when n is divisible by a small number
greater than 2. For example, if 3|n, then the running time of Gaudry’s al-

gorithm is O(q10n/21+ε), whereas Pollard’s rho method has a running time

of O(qn/2+ε). However, it has yet to be determined whether Gaudry’s al-
gorithm is indeed faster than Pollard’s rho method for finite fields of sizes
that might be deployed in practice, namely where qn ∈ [2160, 2600].

Weil descent. Frey [3] first proposed using Weil descent as a means to re-
duce the ECDLP in elliptic curves over extension fields Fqn to the discrete
logarithm problem (DLP) in the jacobian variety JC(Fq) of an algebraic
curve C of genus g ≥ 2 over the proper subfield Fq of Fqn . The hope was
that index-calculus techniques could then be employed to solve the DLP
in JC(Fq) significantly faster than it takes Pollard’s rho method to solving
the original ECDLP instance in E(Fq). Later, Gaudry, Hess and Smart
(GHS) [9] showed how Frey’s methodology could be implemented in the
case where the characteristic of Fqn is 2 to obtain a hyperelliptic curve C.
Their reduction was cryptographically significant because subexponential-
time index-calculus algorithms are known [1, 7, 2] for solving the DLP in
the jacobians of hyperelliptic curves. The GHS attack was shown to be in-
effective in the case Fqn = F2N where N ∈ [160, 600] is prime [17]. The case
where N ∈ [160, 600] is composite was studied in [15], and the elliptic curves
most susceptible to the GHS attack were identified and enumerated.

Menezes, Teske and Weng [18] provided an exact (non-asymptotic) anal-
ysis of the GHS attack for the case Fqn = F25l . They showed that these
fields were weak in the sense that any instance of the ECDLP for any el-
liptic curve over these fields can be solved in significantly less time than it
takes Pollard’s rho method to solve the hardest instances. For example, the
speedup for the case Fqn = F2600 is by a factor of 269. We emphasize that the
ECDLP over fields F25l with l ∈ [32, 120] is still intractable using existing
computer technology (otherwise we would call these fields bad). Neverthe-
less, the results are cryptographically meaningful because they provide some
evidence that the fields F25l may be bad and therefore unsuitable for elliptic
curve cryptography.

Our work. Recently, Hess [13] generalized the GHS attack whereby the curve
C obtained is not necessarily hyperelliptic. The purpose of this paper is to
explore the cryptographic implications of this generalized GHS attack. Our
objective is to find new examples of weak fields. We stress that we are
not interested in families of fields that are asymptotically weak, i.e., where
the ECDLP can be solved faster than Pollard’s rho method as the field size
tends to infinity. Instead, we are interested in fields F2N whereN ∈ [160, 600]
because these are the fields that might be used in practice.

Our analysis is incomplete because the curves C produced by the general-
ized GHS reduction have not been explicitly described and, in particular, we



CRYPTOGRAPHIC IMPLICATIONS OF HESS’ GENERALIZED GHS ATTACK 3

do not have concrete measures of the cost of performing arithmetic in JC(Fq)
and of solving DLP instances in JC(Fq) using index-calculus methods. We
do, however, make reasonable assumptions about these costs and argue that
our conclusions are cryptographically meaningful (cf. §3.3). If a field is
found to be weak under these assumptions, then we call the field potentially
weak. We call a field F2N (potentially) partially weak if the ECDLP for
only a non-negligible proportion of all elliptic curves over F2N can be solved
significantly faster than it takes Pollard’s rho method to solve the hardest
instances (under the aforementioned assumptions). By ‘non-negligible pro-
portion’, we mean something like one-half or one-quarter. If a field can be
shown to be (potentially) partially weak, then one could reasonably suspect
that the field is (potentially) weak and therefore unsuitable for elliptic curve
cryptography.

Subject to these assumptions, our results are the following:

(1) The fields F27l and F28l are potentially partially weak.
(2) The fields F26l are potentially weak.
(3) The fields F23l are partially weak.
(4) The weakness of F27l , F26l and F23l supports the contention in [18]

that the field F2210 is particularly weak.
(5) The fields F2N where N is not divisible by 3, 5, 6, 7 or 8, are not

(potentially) weak under Hess’ generalized GHS attack.

Organization. The remainder of this paper is organized as follows. Hess’
generalized GHS attack is outlined in §2. §3 summarizes the running time
of Pollard’s rho method and the Enge-Gaudry algorithm, and discusses our
assumptions about JC(Fq). §4 reviews material on computing isogenies be-
tween elliptic curves. The vulnerability of the fields F27l , F26l and F23l to
the generalized GHS attack are examined in §§5, 6 and 7, respectively. The
results for F2210 are summarized in §8. The remaining cases F2N where N is
not divisible by 3, 6 or 7 are considered in §9. We draw our conclusions in
§10 and list some open problems.

Notation. Let l and n be positive integers, and let N = ln. Let q = 2l,
and let k = Fq and K = Fqn . The absolute trace function Tr : K → F2 is

defined by Tr(a) =
∑N−1

i=0 a2
i
. The relative trace function TrK/k : K → k

is defined by TrK/k(a) =
∑n−1

i=0 a
qi . In general, for a subfield K1 = Fqs of

K where s|n, the relative trace function TrK/K1
: K → K1 is defined by

TrK/K1
(a) =

∑

n
s
−1

i=0 aq
is
. Let α ∈ K be an element with Tr(α) = 1. The

2(qn − 1) isomorphism classes of non-supersingular elliptic curves defined
over K have representatives

(1) Ea,b = E : y2 + xy = x3 + ax2 + b, a ∈ {0, α}, b ∈ K∗.

The set of all such representatives is denoted by E . The subset of curves
Ea,b ∈ E with Tr(a) = 0 (resp. Tr(a) = 1) is denoted E0 (resp. E1).
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2. Generalized GHS Weil descent attack

Consider the elliptic curve E = Ea,b ∈ E . We assume that #E(K) = dr
where r is prime and d is small, whence r ≈ qn. These are the elliptic curves
of interest in cryptographic applications1. Let P ∈ E(K) be a point of order
r.

For γ ∈ K, let Ordγ(X) denote the unique polynomial f ∈ F2[X] of least
degree satisfying f(σ)(γ) = 0. Here, σ : K → K is the Frobenius auto-

morphism defined by α 7→ αq. Also, if f(X) =
∑d

i=0 aiX
i ∈ F2[X], then

f(σ)(γ) =
∑d

i=0 aiγ
qi . Let γ1, γ2 ∈ K such that b = (γ1γ2)

2. The following
result from [18] is sometimes useful for determining when a suitable decom-
posion of b exists. Here, Φ denotes the Euler phi function for polynomials.
For a divisor m(X) ∈ F2[X] of Xn + 1, Φ(m(X)) is the number of elements
γ ∈ Fqn with Ordγ = m(X).

Theorem 1. Let n = n1n2, K = Fqn, K1 = Fqn1 , and k = Fq. Let β ∈ K.
(i) There exist γ1, γ2 ∈ K with β = γ1γ2 and

(2) Ordγ1 |(Xn1 + 1) and Ordγ2 |
(X + 1)(Xn + 1)

Xn1 + 1
.

(ii) If TrK/K1
(β) 6= 0 then γ1 = TrK/K1

(β) and γ2 = β/γ1 satisfy (2).
(ii) If TrK/K1

(β) = 0 then γ1 = 1 and γ2 = β satisfy (2).
(iv) Suppose that β = δ1δ2, where Ordδ1 = m1(X)|(Xn1+1) and Ordδ2 =

m2(X)|(X + 1)(Xn + 1)/(Xn1 + 1), and suppose that TrK/K1
(β) 6=

0. Let B = {γ1γ2 : Ordγ1 = m1(X) and Ordγ2 = m2(X)}. Then
#B = Φ(m1(X))Φ(m2(X))/(q − 1).

Now let s1 = deg(Ordγ1), s2 = deg(Ordγ2), and

t =

{

deg(lcm(Ordγ1 ,Ordγ2)), if Tr(a) = 0,
deg(lcm(Ordγ1 ,Ordγ2 , X + 1)), if Tr(a) = 1.

If Tr(a) = 1, then we further assume that

(3) either TrK/k(γ1) 6= 0 or TrK/k(γ2) 6= 0.

Via a birational transformation the defining equation of E can be brought
into the form y2 + y = γ1/x+ a+ γ2x. Then Hess’ generalization [13, The-
orems 11,12] of the GHS reduction constructs an explicit group homomor-
phism

(4) φ : E(K)→ JC(k),

where C is a curve defined over k of genus

(5) g = 2t − 2t−s1 − 2t−s2 + 1.

1In particular, we are not interested in subfield curves, i.e., elliptic curves E defined
over K whose isomorphism class has a representative Ea,b such that L = F2(a, b) is a
proper subfield of K. For such curves, #E(L)|#E(K) and hence the ECDLP in E(K)
can already be solved in significantly fewer than

√
qn steps.
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Remark 2. (generalized GHS versus GHS ) The generalized GHS reduction

specializes to the GHS reduction [9] by selecting γ1 = 1 and γ2 = b1/2.
Then condition (3) is equivalent to: either n is odd or (X+1)u|Ordb, where
u = v2(n). Furthermore, if we define

m =

{

deg(Ordb), if (X + 1)|Ordb,
deg(Ordb) + 1, if (X + 1) - Ordb,

then C is a hyperelliptic curve of genus g where

g =

{

2m−1, if (X + 1)|Ordb,
2m−1 − 1, if (X + 1) - Ordb.

Generalized GHS attack. The procedure for finding λ = logP Q where P is
a point of order r on the elliptic curve Ea,b, and Q ∈ 〈P 〉, is the following:

(1) Select a divisor n ≥ 2 of N .
(2) Select γ1, γ2 ∈ K such that b = (γ1γ2)

2 (and such that TrK/k(γ1) 6= 0
or TrK/k(γ2) 6= 0 if Tr(a) = 1).

(3) Use the generalized GHS reduction [13] to construct a curve C and
map the points P , Q to divisors DP , DQ in JC(k).

(4) Compute λ = logDP
DQ in JC(k).

Remark 3. (selection of n, γ1 and γ2) The parameters n, γ1, γ2 should
be selected so that the running time of the best DLP solver for JC(k) is
minimized. Since #JC(k) ≈ qg and JC(k) should contain a subgroup of order
r ≈ qn, we also require that g ≥ n. In the ideal situation, we would have
g ≈ n because then #JC(k) ≈ #E(K). Note that since Ordγ1 and Ordγ2

are divisors of Xn + 1, we have t ≤ n and g ≤ 2n − 1. Thus, the optimum
selection of n, γ1, and γ2 will depend on the degrees of the irreducible factors
of Xn + 1 over F2 over all divisors n ≥ 2 of N .

Remark 4. (efficiency of determining C and φ) The running time com-
plexity of the algorithms in [13] for finding the defining equation of C and
for computing φ has not been determined. However, if n is relatively small,
as will be the case in §§5–9, then this time will be dominated by the time it
takes to solve the DLP in JC(k). Hence our analyses will ignore the running
times for computing C and φ.

3. Analysis of discrete logarithm algorithms

3.1. Pollard’s rho method. The instances of the ECDLP over F2N most
resistant to Pollard’s rho method are for elliptic curves E that have almost
prime order #E(F2N ) = 2r for some prime r. Since r ≈ 2N−1, Pollard’s

rho method has an expected running time of
√
π2N−1/2 ≈ 2(N−1)/2 steps,

where the dominant operation in each step is an addition in E(F2N ). When
mixed affine-projective coordinates are employed, an elliptic curve opera-
tion requires 8 multiplications in F2N . Thus the expected running time of
Pollard’s rho method is Rρ ≈ cN20.5(N+5), where cN is the cost of a multipli-
cation in F2N . Since we will only be concerned with rough (but reasonably
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good) approximations, we will ignore the factor cN and henceforth use the
estimate

(6) Rρ ≈ 20.5(N+5).

3.2. Enge-Gaudry index-calculus algorithm. Let C be a hyperelliptic
curve of genus g defined over k = Fq = F2l . The Enge-Gaudy algorithm
[7, 2] is a subexponential-time index-calculus method for solving the DLP
in JC(Fq).

First, a factor base of size w is chosen. For curves of low genus, the
factor base will consist of (half) of all degree one divisors in JC(Fq), so
w ≈ q/2. Next, in the relation generation stage, slightly more than w linear
relations of factor base elements are found. The expected running time
of this stage is RRG ≈ (cJ + cS)

q
2g!, where cJ is the cost of an addition in

JC(Fq), and cS is the cost of testing whether a monic polynomial a(u) ∈ Fq[u]
of degree (at most) g is 1-smooth. As discussed in [18], the cost cJ has
experimentally been found to be less than cS for the values of g and Fq of
interest in this paper. The dominant computation in smoothness testing is

the evaluation of u2
l
mod a, which can be done by first iteratively computing

u2i mod a for 1 ≤ i ≤ g − 1, and then computing u2
i
mod a for 1 ≤ i ≤ l by

successive squarings. This can be done with 2g(dg/2e−1)+ lgdg/2e ≈ g2l/2
multiplications in F2l . Ignoring the cost of a multiplication in F2l , we get
the estimate

(7) RRG ≈
g2lq

4
g!.

Finally, a linear system of dimension slightly more than w and having
about g non-zero coefficients per equation is solved using Lanczos’ algorithm.

This linear algebra stage has running time RLA ≈ cr
gq2

4 , where cr is cost
of a multiplication modulo an N -bit integer. We will henceforth ignore the
factor cr and use the approximation

(8) RLA ≈
gq2

4
.

3.3. Hess’ index-calculus algorithm. Suppose now that C is a curve of
genus g over k = Fq = F2l that was the result of Hess’ generalized GHS
reduction (see §2). The curve C is in general not hyperelliptic. This makes
an exact analysis of the generalized GHS attack difficult for two reasons.

The first is that a precise cost of performing arithmetic in JC(k) is not
known. Hess’ algorithm [11] for performing an addition in JC(k) takes O(g4)
k-operations, which is slower than Cantor’s algorithm for hyperelliptic curves
which takes O(g2) k-operations. In our analyses, we will make the following
assumption.

Assumption A. Let C be a (non-hyperelliptic) curve that is produced by
the generalized GHS reduction. The cost of an addition operation in JC(k)
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is approximately the same as the cost of an addition operation in the case
that C is hyperelliptic.

The second difficulty is that good estimates of the running times of
index-calculus algorithms for solving the DLP in JC(k) are not available.
Hess’ algorithm [12] has a subexponential running time of O(Lqg [

1
2 ]), where

Ln[d] = exp((c + o(1))(log n)d(log log n)1−d), but an exact analysis has not
been done. Nevertheless, when analyzing the generalized GHS attack, we
will make the following assumption.

Assumption B. Let C be a (non-hyperelliptic) curve that is produced by
the generalized GHS reduction. The cost of finding discrete logarithms in
JC(k) is approximately the same as the cost of the Ege-Gaudry algorithm
in the case that C is hyperelliptic.

Under these assumptions, the expected time so solve an instance of the
DLP in JC(k) is RRG +RLA, where RRG, RLA are as defined in (7), (8).

Remark 5. (reasonableness of Assumptions A and B) One would expect
that the best algorithms for adding in JC(k) and computing logarithms are
significantly slower (and certainly not any faster) when C is non-hyperelliptic
than the algorithms when C is hyperelliptic. However, the conclusions drawn
in this paper under Assumptions A and B remain valid even if the non-
hyperelliptic algorithms were several orders of magnitude slower than their
hyperelliptic counterparts. Thus we maintain that our results about the
potential or partial weakness of a field are meaningful in practice.

4. Random walks in isogeny classes of elliptic curves

Two elliptic curves E, E ′ ∈ E are said to be isogenous (over K) if
#E(K) = #E′(K); we write E ∼ E ′. The equivalence classes with respect
to isogeny are called isogeny classes.

Suppose now that W ⊂ E is a set of elliptic curves that are vulnerable
to the generalized GHS attack, and suppose that E 6∈ W. A strategy,
first proposed by Galbraith, Hess and Smart [6], for attacking an ECDLP
instance for E is to find an elliptic curve E ′ ∈ W that is isogenous to E,
and then map the ECDLP instance to E ′ using an isogeny ψ : E → E ′.

One approach for finding E ′ is to perform a random walk in the set of
elliptic curves isogenous to E. For each elliptic curve E ′′ encountered in
this walk, we must be able to efficiently determine whether E ′′ ∈ W. In the
remainder of this section, we outline the random walk method from [6] (see
also [18]). The problem of deciding whether E ′′ ∈ W is tackled in §§5–9 for
particular choices of W.

Recall that t = qn + 1 − #E(K) is the trace of E, and ∆ = t2 − 4 · qn
its discriminant. The endomorphism ring End(E) of E is an order in the

maximal order O of the imaginary quadratic number field Q(
√
∆). More
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precisely, Z[π] ⊆ End(E) ⊆ O, where π : E → E is the qn-th power Frobe-
nius map on E. The endomorphism class of E, denoted by C(E), is the set
of all isogenous, non-isomorphic curves E ′ with End(E) = End(E ′).

For any elliptic curve E ∈ E we can use an algorithm of Kohel [14] to
compute a chain of isogenies defined over K from E to an elliptic curve
E′ ∈ E with End(E′) = O. This takes running time O(s3), where s is the
largest prime dividing the conductor c = [O : End(E)] of End(E). Note
that c divides [O : Z[π]]. In practice, [O : Z[π]] is small and smooth so
that Kohel’s algorithm takes negligible time compared to the other steps
of the generalized GHS attack considered in §§5–9. For the following, we
therefore may assume that End(E) is maximal. Then there is one-to-one
correspondence between C(E) and the ideal class group Cl of the maximal
order O.

In our random walk, we have to make the following heuristic assumption
about the distribution of vulnerable curves among endomorphism classes.

Assumption C. Let X ⊆ E be the set of elliptic curves that belong to an
isogeny class of some curve in W, and let #W/#X = 2−v. Let E ∈ X .
Then the proportion of curves in C(E) that belong to W is 2−v.

Remark 6. (restriction of Assumption C ) Of course, Assumption C is not
accurate if #E(K) lies at the extreme ends of the Hasse interval, or if ∆
has a very large square factor; in either case #C(E) = #Cl is very small.
However, the former affects only a very small fraction of the elliptic curves
over K, while the latter is most unlikely for non-subfield curves.

Given a curve E ∈ X , it is now possible to compute a curve E ′ ∈ W
isogenous to E along with a chain of low-degree isogenies from E to E ′. This
is based on ideas from [6] to simulate a random walk in the endomorphism
class of E, exploiting the aforementioned one-to-one correspondence between
Cl and C(E). The random walk works as follows: Let E = Ea,b, let j(E) =

b−1 be its j-invariant, and let p be a prime with
(

∆
p

)

= 1. Then p splits in

O, (p) = p1p2, and the modular polynomial Φp(j(E), X) has two roots j1
and j2 in K [5]. These roots can be computed by a probabilistic algorithm
using O(Np2) operations in K. The two isogenies mapping E to Ea,j−1

1

and Ea,j−1
2

correspond to the multiplication of a fixed ideal, say O, by the

two prime ideals p1 and p2 lying over p. As explained in [6], it is easy to
determine whether j1 corresponds to p1 or p2. Now, let P be the set of

the 16 smallest odd primes p such that
(

∆
p

)

= 1, and such that the pairs

of ideal classes corresponding to the prime ideals lying over p are pairwise
distinct in Cl. A pseudo-random walk (Ei) in C(E) is defined as follows: Let
E0 = Ea,b and b0 = b and a0 = O. For i = 1, 2, . . ., let p ∈R P and j = b−1i−1,
and compute the two roots in K of Φp(j,X); let j′ be one of these roots,
and let bi = (j′)−1. Simultaneously a chain (ai) of ideals in Cl is computed
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such that for each index i, the ideal ai corresponds to the isogeny mapping
E to Ei.

Based on [24], and on extensive experimental evidence in this particular
application, the choice of P is so that the walk (Ei) simulates a random
walk in the endomorphism class of E. Also, considering 20000 randomly
chosen discriminants of various bitlengths, we found that max{p ∈ P} < 313
for all cases. Thus, each random walk step takes on average up to about
1
3N(max{p ∈ P})2 ≈ N · 215 operations in K, given that computing the
roots of the modular polynomial is by far the most time-consuming step.

Now, under Assumption C, after expected 2v random-walk steps in C(E)
an elliptic curve E ′ ∈ W is encountered that is isogenous to E. Thus,
altogether it takes something on the order of

(9) RW = N2v+15

operations in K to find a curve in W isogenous to a given curve, along with
an ideal a that represents the isogeny between the two curves. We note that
this step can be efficiently parallelized.

The remaining steps to compute the explicit isogeny between E and E ′

are identical with Stages 2 and 3 of [6]: index-calculus techniques are used
to represent a as a product of just a few ideals of small norm, and finally
Vélu’s formulae are applied. This can be accomplished in time O(2N/4+ε).
Since this time is less than the expected running time of the random walk for
the scenarios in this paper, the time to compute the isogeny will be ignored.

Remark 7. (further speed-up of the random walk) The analysis above is
generous since, for example, for more than half of all randomly chosen dis-
criminants, only primes ≤ 157 were needed to generate a set P of 16 split
primes. Working with max{p ∈ P} = 157 yields a gain of a factor 3.6. In
case P contains primes larger than 157, one might want to choose not to
use those primes as often as the smaller primes, or not to use them at all.
This may require slightly more random walk steps to find a curve E ′ ∈ W,
but the steps are cheaper on average. Also, using Karatsuba arithmetic to
compute the roots of Φp(j,X) may accelerate this step by another factor of
10 for the larger primes.

5. The case n = 7

Suppose now that n = 7, N = 7l, K = F27l , q = 2l, and k = Fq. The
factorization of X7 + 1 over F2 is:

X7 + 1 = (X + 1)(X3 +X + 1)(X3 +X2 + 1).

We argue that the fields F27l are potentially partially weak for elliptic curve
cryptography by showing that the set X of all non-subfield curves in E0 are
(potentially) vulnerable to the generalized GHS attack.
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5.1. Elliptic curves over F27l with Tr(a) = 0. LetW0 be the set of elliptic
curves Ea,b ∈ E0 with b = (γ1γ2)

2, where either Ordγ1 = Ordγ2 = X3+X+1
or Ordγ1 = Ordγ2 = X3+X2+1. For each E ∈ W0 we have s1 = s2 = t = 3,
and hence the generalized GHS reduction with n = 7 yields a curve C of
genus g = 7 over F2l . Note that #JC(F2l) ≈ #E(F27l).

Our strategy for solving an instance of the ECDLP on a given elliptic
curve Ea,b ∈ X is the following:

(1) Use Kohel’s algorithm to compute a chain of isogenies defined over
K to an elliptic curve E ′ ∈ E0 with End(E′) = O.

(2) Perform a random walk in the set of elliptic curves isogenous to E ′

until an elliptic curve E ′′ ∈ W0 is found, and compute the corre-
sponding isogeny between E ′ and E′′.

(3) Use the isogenies to map the ECDLP instance in E to an ECDLP
instance in E′′.

(4) Perform the GHS reduction on E ′′ to obtain a curve C and an in-
stance of the DLP in JC(k).

(5) Solve the instance of the DLP in JC(k).

Steps 1, 2 and 3 were outlined in §4, while steps 4 and 5 were considered in
§2. To complete the description and analysis of step 2, we need to provide
an algorithm for deciding whether an elliptic curve is inW0, and to estimate
the expected number of random walk steps.

5.1.1. Decomposition algorithm.

Algorithm 8. (Finding a decomposition of b)
Input : b ∈ F∗

q7 .

Output : γ1, γ2 ∈ F∗

q7 such that b = (γ1γ2)
2 and either Ordγ1 = Ordγ2 =

X3 +X + 1 or Ordγ1 = Ordγ2 = X3 +X2 + 1; or “failure”.

(1) Let β = b1/2 and q = 2l.
(2) {Check for a decomposition with Ordγ1 = Ordγ2 = X3 +X + 1.}

(a) Let w(u) = u2 + (βq
3
−1 + βq−1 + 1)u+ βq−1 ∈ Fq7 [u].

(b) {Find the roots of w(u) in Fq7 , if any.}
If gcd(w(u), uq

7 − u) 6= 1 then find u0, u1 ∈ Fq7 such that
w(u0) = w(u1) = 0; else go to step 3.

(c) Let S ⊂ {u0, u1} be the set of the ui that satisfy uq
2+q+1
i +ui+

1 = 0. If S = ∅ then go to step 3.

(d) For ui ∈ S, check if u
(q7−1)/(q−1)
i = 1. If no ui satisfies this

condition, then go to step 3; otherwise, assume u0 passed the
test.

(e) Compute some γ1 ∈ F∗

q7 such that γq−11 = u0 (cf. Lemma 9).

(f) Let γ2 = β/γ1 and return (γ1, γ2).
(3) {Check for a decomposition with Ordγ1 = Ordγ2 = X3 +X2 + 1.}

(a) Let w(u) = u2 + (βq
3
−1 + βq

2
−1 + 1)u+ βq

2
−1 ∈ Fq7 [u].
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(b) {Find the roots of w(u) in Fq7 , if any.}
If gcd(w(u), uq

7 − u) 6= 1 then find u0, u1 ∈ Fq7 such that
w(u0) = w(u1) = 0; else return(“failure”).

(c) Compute s = (q + 1)−1 mod q7 − 1.

(d) Let S ⊂ {u0, u1} be the set of the ui that satisfy uq+si +ui+1 =
0. If S = ∅ then return(“failure”).

(e) For ui ∈ S, check if u
s(q7−1)/(q−1)
i = 1. If no ui satisfies this

condition, then return(“failure”); otherwise, assume u0 passed
the test.

(f) Compute some γ1 ∈ F∗

q7 such that γq−11 = us0 (cf. Lemma 9).

(g) Let γ2 = β/γ1 and return (γ1, γ2).

Lemma 9. Let u ∈ F∗

q7 such that u
(q7−1)/(q−1) = 1. Then we can compute

γ ∈ F∗

q7 such that u = γq−1 in subexponential time.

Proof. Let α be a generator of F∗

q7 . By solving an instance of the DLP in

F∗

q7 we can find an integer d such that u = αd. Since u(q
7
−1)/(q−1) = 1, it

follows that (q − 1)|d. Then γ = αd/(q−1) satisfies γq−1 = u. ¤

Note that step 2e or step 3f in Algorithm 8 will be executed exactly once
in the random walk (see §4). Thus the time to solve the DLP instance
in F∗

q7 will not be a bottleneck in the generalized GHS attack. Moreover,

Algorithm 8 with the exclusion of steps 2e and 3f takes less time than a
random walk step. Thus, we will ignore the cost of Algorithm 8 in our
analysis.

Theorem 10. Algorithm 8 outputs γ1, γ2 ∈ F∗

q7 such that b = (γ1γ2)
2 and

either Ordγ1 = Ordγ2 = X3 + X + 1 or Ordγ1 = Ordγ2 = X3 + X2 + 1 if
and only if such γ1, γ2 exist.

Proof. Let β = b1/2. Let us first assume that there exist γ1, γ2 ∈ F∗

q7 such

that β = γ1γ2 and Ordγ1 = Ordγ2 = X3 +X + 1. Then

γq
3

1 + γq1 + γ1 = 0 and (β/γ1)
q3 + (β/γ1)

q + β/γ1 = 0,

or, equivalently,

(10) γq
3
−1

1 + γq−11 + 1 = 0 and βq
3
−1 +

γq
3
−1

1

γq−11

βq−1 + γq
3
−1

1 = 0.

Let v = γq−11 . Then γq
3
−1

1 = 1+v, γq
3
−1

1 /γq−11 = (1+v)/v, and (10) becomes

(11) vq
2+q+1 + v + 1 = 0 and v2 + (1 + βq−1 + βq

3
−1)v + βq−1 = 0.

The quadratic equation in (11) is the equation w(v) = 0, where w(u) ∈ Fq7 [u]
is as in step 2a in Algorithm 8. Thus v is a root of w(u) and also satisfies

vq
2+q+1 + v + 1 = 0. Furthermore, v is a (q − 1)-th power and therefore

ord(v)|(q7 − 1)/(q − 1). Consequently, Algorithm 8 terminates in step 2f
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with output (γ1, γ2) that satisfies the requisite conditions. Conversely if
Algorithm 8 terminates in step 2f with output (γ1, γ2), then b = (γ1γ2)

2.

Let u = γq−11 . Then, by construction, u satisfies (11) which implies that

γq
3

i + γqi + γi = 0 for i = 1, 2. Since γi 6= 0, we have Ordγi = X3 +X + 1.
To complete the proof, we have to prove the analogue results for step 3.

Note that if there exist γ1, γ2 ∈ F∗

q7 such that β = γ1γ2 and Ordγ1 = Ordγ2 =

X3 +X2 + 1, then

(12) γq
3
−1

1 + γq
2
−1

1 + 1 = 0 and βq
3
−1 +

γq
3
−1

1

γq
2
−1

1

βq
2
−1 + γq

3
−1

1 = 0.

Let v = γq
2
−1

1 , and let s = (q + 1)−1 mod q7 − 1. Then γq
3
−1

1 = vq+s,

γq
3
−1

1 /γq
2
−1

1 = (1 + v)/v, and (12) becomes

vq+s + v + 1 = 0 and v2 + (1 + βq
2
−1 + βq

3
−1)v + βq

2
−1 = 0.

The rest of the proof is similar to that for step 2. ¤

5.1.2. Expected number of random walk steps. Let

A = {γ1 ∈ Fq7 : Ordγ1 = X3 +X + 1} ,
B = {γ1γ2 : γ1, γ2 ∈ A} .

We will argue heuristically that #B = (q3 − 1)(q2 + q + 2)/2. For this, let
T = #A = q3 − 1. Then #B ≤ #{(γ1, γ2) ∈ A×A} = T 2.

Now, if γ1, γ2 ∈ A, then λγ1, λ−1γ2 ∈ A for each λ ∈ F∗

q , and (γ1, γ2) and

(λγ1, λ
−1γ2) represent the same β ∈ B. Thus, #B ≤ T 2/(q − 1).

Further, (γ1, γ2) and (γ2, γ1) always represent the same β ∈ B. Now
assume γ1γ2 = δ1δ2 with γ1, γ2, δ1, δ2 ∈ A and γ1 6= λδ1, λδ2 for all λ ∈ F∗

q .

Let λ ∈ Fq7 \ Fq such that δ1 = λγ1. For a given γ1, there are q3 − q values
λ′ ∈ Fq7 \ Fq such that λ′γ1 ∈ A. But then for the particular λ, it is highly

unlikely that λ−1γ2 is also in A, given that the proportion q3/q7 is extremely
small. Thus, heuristically, the only repeated representations of β = γ1γ2 for
(γ1, γ2) ∈ A×A are of the form β = (λγ1)(λ

−1γ2) or β = γ2γ1.
To estimate the effect on #B caused by symmetries, we call two pairs

(γ1, γ2), (δ1, δ2) ∈ A×A equivalent if there exists λ ∈ F∗

q such that γ1 = λδ1
and γ2 = λ−1δ2. This is an equivalence relation, and there are T 2/(q − 1)
equivalence classes. Let G be such an equivalence class. Now, if (γ, γ) ∈ G
for some γ ∈ A, then for any (γ1, γ2) ∈ G we have (γ1, γ2) ∼ (γ2, γ1). There
are T such classes, which altogether make up T distinct values b ∈ B. On
the other hand, if G does not contain a pair (γ, γ), then, if (γ1, γ2) ∈ G
necessarily (γ2, γ1) ∈ G′ 6= G. This is because #G = q − 1, which is
odd. Furthermore, if (δ1, δ2) ∼ (γ1, γ2) ∈ G then (δ2, δ1) ∼ (γ2, γ1) ∈ G′.
Consequently, the T 2/(q − 1)− T equivalence classes that do not contain a
pair (γ, γ) account for (T 2/(q − 1)− T )/2 distinct values β ∈ B.
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Along with the heuristic explanation above, this yields #B = T+(T 2/(q−
1)−T )/2 = (q3−1)(q2+ q+2)/2. (This has been confirmed experimentally
for N = 7, 14, 21.)

The same holds for the case Ordγ = X3 +X2 + 1. However, there may
or may not be a significant overlap for the two corresponding sets B. We
therefore simply estimate #W0 ≈ q5/2.

Consequently, under Assumption C, expected 2q2 random walk steps in
the endomorphism class of an elliptic curve E ′ ∈ X need to be executed
until a curve E′′ ∈ W0 is found.

5.1.3. Analysis. For selected values of N , Table 1 compares the expected
running time Rρ (see equation (6)) for solving the ECDLP in an elliptic
curve in X with the running times RRG, RLA, RW (see equations (7), (8),
(9)) of the dominant stages of the generalized GHS attack. The values RRG,
RLA are for hyperelliptic curves, so Assumptions A and B are under effect.
The value for RW relies on Assumption C. Since RW ¿ Rρ, we conclude

N l log2Rρ log2RRG log2RLA log2RW
161 23 83 43 47 69
210 30 108 51 61 84
301 43 153 64 87 110
399 57 202 79 115 139
497 71 251 93 143 167
595 85 300 107 171 195

Table 1. Time estimates for the generalized GHS attack
with n = 7 (under Assumptions A, B and C). An ECDLP
instance in Ea,b(F27l) where Tr(a) = 0 is reduced to a DLP
instance in JC(F2l) where C is a genus 7 curve.

that the fields F27l are potentially partially weak. Note that RRG ¿ RW, so
the veracity of our conclusion remains unchanged even if DLP algorithms for
the non-hyperelliptic curve C are significantly slower than their hyperelliptic
curve counterparts.

5.2. Elliptic curves over F27l with Tr(a) = 1. Let W1 be the set of
elliptic curves Ea,b ∈ E1 with b = (γ1γ2)

2, where either2 Ordγ1 = X3+X+1
and Ordγ2 = (X3 +X + 1)(X + 1), or Ordγ1 = X3 +X2 + 1 and Ordγ2 =
(X3 + X2 + 1)(X + 1). Thus TrK/k(γ2) 6= 0. For each E ∈ W1 we have
s1 = 3, s2 = 4, t = 4, and hence the generalized GHS reduction with n = 7
yields a curve C of genus g = 14 over F2l . Under assumptions A and B, the
DLP in JC(F2l) can be solved significantly faster than Pollard’s rho method.

2We cannot take Ordγ1 = Ordγ2 = X3 +X +1 or Ordγ1 = Ordγ2 = X3 +X2 +1 as in
the case of Ea,b ∈ E0 because then TrK/k(γ1) = TrK/k(γ2) = 0, in violation of condition

(3).
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Now, we expect that #W1 ≈ q6. Hence to attack a given non-subfield
elliptic curve in E1, one expects to perform about q random walk steps in
an isogeny class before a curve in W1 is encountered. Unfortunately, we
were unable to devise an efficient algorithm for deciding whether an element
b ∈ F27l admits a decomposition b = (γ1γ2)

2 with γ1, γ2 satisfying the above
conditions (and to find such a decomposition if it exists). The running time
of such an algorithm would have to be significantly less than q2.5, otherwise
the random walk would be slower than Pollard’s rho method for solving the
original ECDLP instance.

Thus we do not have any arguments to support the weakness of all elliptic
curves in E1 under the generalized GHS attack with n = 7.

6. The case n = 6

Suppose now that n = 6, N = 6l, K = F26l , K1 = F23l , q = 2l, and
k = Fq. We give two arguments for the potential weakness of the fields F26l .

The factorization of X6 + 1 over F2 is:

X6 + 1 = (X + 1)2(X2 +X + 1)2.

LetW be the set of elliptic curves Ea,b ∈ E over Fq6 with b = (γ1γ2)
2, where

Ordγ1 = X3 + 1 and Ordγ2 = (X + 1)(X3 + 1). For each E ∈ W we have
s1 = 3 and s2 = t = 4, and so the generalized GHS reduction with n = 6
yields a curve C of genus 14 over Fq. Note also that TrK/K1

(b) 6= 0. This

is because γ1 ∈ F∗

q3 , so TrK/K1
(b) = (TrK/K1

(γ1γ2))
2 = (γ1TrK/K1

(γ2))
2. If

TrK/K1
(b) = 0, then TrK/K1

(γ2) = 0, and hence Ordγ2 |(X3+1) which is not
possible.

Theorem 11. Let E = Ea,b ∈ E with TrK/K1
(b) 6= 0. Let β = b1/2, γ1 =

TrK/K1
(β), and γ2 = β/γ1. We have E ∈ W if and only if Ordγ1 = X3 + 1

and Ordγ2 6= X2 + 1. Moreover #W = 2q(q − 1)(q2 − 1)2 ≈ 2q6.

Proof. Let

A1 = {δ1 ∈ Fq6 : Ordδ1 = X3 + 1} ,
A2 = {δ2 ∈ Fq6 : Ordδ2 = (X + 1)(X3 + 1)} ,
B = {δ1δ2 : δ1 ∈ A1, δ2 ∈ A2} .

Note that Ea,b ∈ W if and only if b1/2 ∈ B. Also, #A1 = (q − 1)(q2 − 1)
and #A2 = (q2− q)(q2−1). It follows from Theorem 1(iv) with n1 = 3 that
#W = 2#B = (#A1)(#A2)/(q − 1) = 2q(q − 1)(q2 − 1)2.

By Theorem 1(ii) with n1 = 3, we have Ordγ1 |X3 + 1 and Ordγ2 |(X +
1)(X3 + 1). Suppose first that E ∈ W. Then we can write β = δ1δ2 with
Ordδ1 = X3 + 1 and Ordδ2 = (X + 1)(X3 + 1). Let λ ∈ F∗

q3 with δ1 = λγ1,
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whence δ2 = λ−1γ2. Then

0 = TrK/K1
(γ2 + γq2)

= TrK/K1
(λδ2 + λqδq2) + 2TrK/K1

(λδq2)

= λTrK/K1
(δ2 + δq2) + (λ+ λq)TrK/K1

(δq2)

= (λ+ λq)TrK/K1
(δq2).

But TrK/K1
(δ2) 6= 0 since Ordδ2 - (X3 + 1). Hence λ ∈ F∗

q . If follows that

Ordγ1 = Ordδ1 = (X3+1) and Ordγ2 = Ordδ2 = (X +1)(X3+1) 6= X2+1.
Suppose now that Ordγ1 = X3+1 and Ordγ2 6= X2+1. Then TrK/K1

(γ2) =

TrK/K1
(β/γ1) = TrK/K1

(β)/γ1 = 1. Hence Ordγ2 - (X3 + 1). And, (σ +

1)(σ3 + 1)(γ2) = (σ + 1)(γq
3

2 + γ2) = (σ + 1)(1) = 0. Hence Ordγ2 |(X +
1)(X3 +1). Since Ordγ2 6= X2 +1, it follows that Ordγ2 = (X +1)(X3 +1)
and so E ∈ W. ¤

Given a non-subfield curve E ∈ E , Theorem 11 can be used to efficiently
decide whether E ∈ W in which case the generalized GHS reduction can be
applied. In the rare event that E 6∈ W, proceeding just as outlined in §5.1
yields an isogenous curve E ′′ ∈ W in just a few random walk steps. Table 2
gives the time estimates for solving the DLP in JC(F2l) under Assumptions A
and B, leading to our conclusion that the fields F26l are potentially weak.

N l log2Rρ log2RRG log2RLA
162 27 84 74 56
210 35 108 82 72
300 50 153 98 102
402 67 204 115 136
498 83 252 131 168
600 100 303 149 202

Table 2. Time estimates for the generalized GHS attack
with n = 6 (under Assumptions A and B). An ECDLP in-
stance in Ea,b(F26l) is reduced to a DLP instance in JC(F2l)
where C is a genus 14 curve.

Now letW be the set of elliptic curves Ea,b ∈ E for which b can be written
as b = (γ1γ2)

2 with Ordγ1 = X2+X+1 and Ordγ2 = (X+1)2(X2+X+1).
Then b 6∈ Fq3 and TrK/K1

(b) 6= 0. Since there exist q2−1 such values γ1 and

(q2−q)(q2−1) such values γ2, Theorem 1(iv) gives #W = 2q(q2−1)2 ≈ 2q5.
For E ∈ W, a corresponding decomposition of b can be easily obtained by

putting β = b1/2, γ1 = βq
3
+ β, and γ2 = β/γ1. Then, by Theorem 1(ii)

with n1 = 3 we have Ordγ1 |(X3 + 1) and Ordγ2 |(X + 1)2(X2 + X + 1).
Since b 6∈ Fq3 , Ordγ2 - (X3 + 1) and thus Ordγ2 = (X + 1)2(X2 + X + 1).

Further, it is easily verified that Ordβ |(X5+X4+X3+X2+X +1). Thus,
Ordγ1 |(X2 +X + 1), and hence Ordγ1 = X2 +X + 1.
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On the other hand, Ordβ |(X5 + X4 + X3 + X2 + X + 1) implies that
TrK/k(b) = 0 and thus TrK/F2

(b) = 0. By Lemma 7 of [18], this implies that
#E(Fq6) ≡ 0 (mod 8) if Tr(a) = 0. So let X be the set of all non-subfield
elliptic curves E ∈ E over Fq6 with #E(Fq6) ≡ 0 or 2 (mod 8). Then

#X ≈ q6.
Using the above decomposition, for E ∈ W we have s1 = 2, s2 = t = 4,

so that the generalized GHS reduction with n = 6 yields a curve C of genus
12. Combined with random walks in isogeny classes (under Assumption C,

with #W/#X ≈ 2−(l−1)), we obtain that the curves in X are particularly
(potentially) vulnerable to the generalized GHS attack, which further sup-
ports the conclusion that the fields F26l are potentially weak (cf. Table 3).

N l log2Rρ log2RRG log2RLA log2RW
162 27 84 66 56 48
210 35 108 72 72 57
300 50 153 90 102 72
402 67 204 107 136 90
498 83 252 123 168 106
600 100 303 141 202 123

Table 3. Time estimates for the generalized GHS attack
with n = 6 (under Assumptions A, B and C). An ECDLP
instance in E(F26l) is reduced to a DLP instance in JC(F2l)
where C is a genus 12 curve.

7. The case n = 3

Suppose now that n = 3, N = 3l, K = F23l , q = 2l, and k = Fq. We show
that the fields F23l are partially weak.

We have X3 + 1 = (X + 1)(X2 + X + 1). Let W be the set of elliptic
curves Ea,b ∈ E over F23l with b = (γ1γ2)

2, where Ordγ1 = X + 1 and
Ordγ2 = X2 +X + 1. For each E ∈ W we have s1 = 1, s2 = 2 and t = 3, so
that the generalized GHS reduction with n = 3 produces a curve C of genus
g = 3 over Fq. In fact, in this case the generalized GHS reduction and the
GHS reduction coincide: Among the q − 1 representations b = (γ1γ2)

2 with
Ordγ1 = X + 1 and Ordγ2 = X2 + X + 1, one particular choice is γ1 = 1

and γ2 = b1/2. Thus, Ea,b ∈ W if and only if Ordb = X2 +X + 1, there are
q2 − 1 such b ∈ Fq3 , and thus ≈ 2(q2 − 1) such Ea,b ∈ W, and the resulting
curve of genus 3 over Fq is hyperelliptic.

However, for E = Ea,b ∈ W we have TrK/k(b) = 0 and thus TrK/F2
(b) = 0.

Hence, by Lemma 7 of [18] #E(Fq3) ≡ 0 (mod 8) if Tr(a) = 0. Let X be
the set of all non-subfield elliptic curves E ∈ E over Fq3 with #E(Fq3) ≡ 0

(mod 8) or 2 (mod 8). Then #X ≈ q3.
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Now, given an instance of the ECDLP on a given curve Ea,b ∈ X , we
proceed just as outlined in §5.1, where the algorithm for deciding whether

an elliptic curve is in W is replaced by the check for bq
2
+ bq + b = 0.

Under Assumption C, for a given curve E ∈ X \W it takes expected q/2
random walk steps in the isogeny class of E to find a curve in W.

Gaudry and Thomé’s [10] double-large prime variant of the index-calculus
algorithm for computing the logarithms in a genus 3 hyperelliptic curve C
over Fq has running time O(q4/3+ε). Their experiments confirm that the
algorithm is indeed faster in practice than Pollard’s rho method (which has
a running time of O(q1.5)) even for rather small jacobian sizes (about 281).
Thus, finite fields F23l should be considered partially weak.

8. The field F2210

The field K = F2210 is interesting for ECC implementations because its
arithmetic can be efficiently implemented by successive extensions, e.g.,
F22 ⊆ F26 ⊆ F230 ⊆ F2210 . In [18], the following evidence was given for
the weakness of F2210 for ECC. For this field, we have Rρ ≈ 2108.

(1) For (essentially) all elliptic curves over F2210 , the GHS reduction with
n = 5 yields a hyperelliptic curve of genus 15 or 16 over F242 . This
gives RRG ≈ 298 and RLA ≈ 286.

(2) For about 2175 isomorphism classes of elliptic curves over F2210 , the
GHS reduction with n = 6 yields a hyperelliptic curve of genus 15
or 16 over F235 for which RRG ≈ 290 and RLA ≈ 275. Random walks
in isogeny classes [6] can then be used to solve the ECDLP in a
quarter of all elliptic curves Ea,b over F2210 , namely those satisfying
Tr(a) = Tr(b) = 0, in the same time (RRG ≈ 290, RLA ≈ 272).

The results of §§5.1, 6 and 7 provide further evidence for the weakness of
F2210 .

(3) For about 2149 curves in E0, the generalized GHS reduction with
n = 7 gives a genus 7 (non-hyperelliptic) curve C over F230 . Under
Assumptions A and B, we have RRG ≈ 253 and RLA ≈ 261. Random
walks in isogeny classes can then be used so solve the ECDLP in all
non-subfield elliptic curves in E0 in approximately 284 operations in
F2210 .

(4) For almost all curves in E , the generalized GHS reduction with n =
6 gives a genus 14 (non-hyperelliptic) curve C over F235 . Under
Assumptions A and B, we have RRG ≈ 282 and RLA ≈ 272. With a
few random walk steps in the appropriate isogeny class the ECDLP
in any non-subfield elliptic curve in E can be solved in the same time
(RRG ≈ 282, RLA ≈ 272).

(5) For about 2176 curves in E , the generalized GHS reduction with
n = 6 gives a genus 12 (non-hyperelliptic) curve C over F235 . Under
Assumptions A and B, we have RRG ≈ 272 and RLA ≈ 272. Random
walks in isogeny classes can then be used so solve the ECDLP in all
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non-subfield elliptic curves in E with #E(F2210) ≡ 0 or 2 (mod 8)
in the same time (RRG ≈ 272, RLA ≈ 272).

(6) For about 2140 of all curves in E , the GHS reduction with n = 3
produces a genus 3 hyperelliptic curve C over F270 . Random walks
in isogeny classes can then be used to reduce the ECDLP in all
elliptic curves E ∈ E with #E(F2210) ≡ 0 or 2 (mod 8) to the DLP
in a genus 3 hyperelliptic curve. The Gaudry-Thomé index-calculus
algorithm can solve the latter problem in time significantly less than
Rρ.

9. The case n 6= 3, 6, 7

In this section we examine the weakness of fields Fqn with n 6= 3, 6, 7
under the generalized GHS attack.

First observe that just as with the GHS attack, for each field Fqn the
set of possible genera of the curves over Fq produced by the generalized
GHS reduction is completely determined by the factorization of the polyno-
mial Xn + 1 over F2. Consequently, for most fields Fqn one would expect
that the smallest (useful) genera that can be obtained by both attacks are
approximately the same.

For each n, we search for a class W of vulnerable elliptic curves. Note
#W/#E cannot be negligibly small because otherwise the random walk in
an isogeny class will be infeasible.

9.1. The case N prime. Let N ∈ [160, 600] be prime. Then the factoriza-
tion of XN +1 over F2 is XN +1 = (X+1)f1f2 · · · fs with deg fi = d, where
d is the multiplicative order of 2 modulo N . For an elliptic curve E = Ea,b

over F2N , the best possible choice for the decomposition of b is such that
Ordγ1 = fi for some 1 ≤ i ≤ s and Ordγ2 = X + 1 (in which case s1 = d,
s2 = 1 and t = d+ 1), or Ordγ1 = Ordγ2 = fi for some 1 ≤ i ≤ s (in which
case s1 = s2 = t = d if Tr(a) = 0). In either case, the generalized GHS
reduction with n = N produces a curve C over F2 of genus g = 2d−1. Since
d ≥ 16 for prime N ∈ [160, 600], the DLP in JC(F2) will take longer than
Pollard’s rho method for E(F2N ) (even if the curve C were hyperelliptic).
Thus the generalized GHS attack fails for all instances of the ECDLP for
all elliptic curves over finite fields of prime extension degree.

9.2. The case n = 8. Now let n = 8, N = 8l, K = F28l , K1 = F24l ,
q = 2l, and k = Fq. We argue that for sufficiently large N , the set X of
all non-subfield elliptic curves E over F28l with #E(F28l) ≡ 0 (mod 8) are
vulnerable to the GHS attack and potentially vulnerable to the generalized
GHS attack.

Over F2, we have X8 + 1 = (X + 1)8. Let W be the set of elliptic
curves Ea,b ∈ E0 over Fq8 with b = (γ1γ2)

2, where Ordγ1 = X2 + 1 and

Ordγ2 = (X +1)5 = X5+X4+X +1. For each E ∈ W we have s1 = 2 and
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s2 = t = 5, and the generalized GHS reduction with n = 8 yields a curve C
of genus 24 over Fq.

Theorem 12. Let E = Ea,b ∈ E0. We have E ∈ W if and only if Ordb =
(X + 1)6 = X6 +X4 +X2 + 1.

Proof. Let

A1 = {γ1 ∈ Fq8 : Ordγ1 = X2 + 1} = Fq2 \ Fq ,

A2 = {γ2 ∈ Fq8 : Ordγ2 = (X + 1)5} ,
B = {γ1γ2 : γ1 ∈ A1, γ2 ∈ A2} .

Note that Ea,b ∈ W if and only if b1/2 ∈ B. Also, #A1 = q2 − q and
#A2 = q5 − q4. By Theorem 1(iv) with n1 = 4, we have #B = q6 − q5.

Now assume that β = b1/2 ∈ B. Let γ1 ∈ A1 and γ2 ∈ A2 such that β =

γ1γ2. An easy calculation shows that (γ1γ2)
q6+(γ1γ2)

q4+(γ1γ2)
q2+γ1γ2 = 0.

Thus Ordb|(X + 1)6. Now, if Ordb divided (X + 1)5, then

0 = (γ1γ2)
q5 + (γ1γ2)

q4 + (γ1γ2)
q + γ1γ2

= γq1(γ
q4

2 + γq2 + γ2) + γ1γ
q4

2 + γq1γ
q
2 + γ1γ2

= (γq1 + γ1)(γ
q4

2 + γ2).

Since γ1 6∈ Fq, we have γq
4

2 + γ2 = 0, so Ordγ2 |(X + 1)4 which is a contra-
diction. Therefore, Ordb = (X + 1)6.

To show the converse, simply observe that there are q6 − q5 elements
b ∈ Fq8 with Ordb = (X + 1)6. Thus, any such b must be in B. ¤

For Ea,b ∈ W we thus have TrK/k(b) = 0 and hence Tr(b) = 0. By
Lemma 7 of [18], this implies that #E(F28l) ≡ 0 (mod 8).

If b ∈ F∗

q8 with Ordb = (X + 1)6, a decomposition b = (γ1γ2)
2 with

Ordγ1 = X2 + 1 and Ordγ2 = (X + 1)5 can be obtained as follows. Let

β = b1/2, γ1 = βq
4
+β, and γ2 = β/γ1. Then, by Theorem 1(ii) with n1 = 4,

we have Ordγ1 |(X + 1)4 and Ordγ2 |(X + 1)5. Since Ordb = (X + 1)6, we
have that Ordγ1 |(X2 + 1) and Ordγ1 6= X + 1, and thus Ordγ1 = X2 + 1.
Further, γ2 6∈ Fq4 (since b 6∈ Fq4) and thus Ordγ2 = (X + 1)5.

Observe that for each curve inW, the GHS reduction yields a hyperelliptic
curve over Fq of genus 32.

Using random walks in isogeny classes, both the generalized GHS attack
and the GHS attack can be extended fromW to all elliptic curves Ea,b ∈ X .
For selected values of N , Table 4 compares the time estimates for Rρ with
the estimates for RRG, RLA, RW for both cases3. For the genus 24 case,
Assumptions A and B are under effect. In either case, the estimate for RW
relies on Assumption C (with #W/#X ≈ 2−(2l−1)).

3If g = 24 and N ∈ {160, 208}, and if g = 32 and N ∈ {160, 208, 304}, the running
times RRG and RLA take into account that the Enge-Gaudry index calculus algorithm
performs best if the factor base contains both degree one and degree two divisors.
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N l log2Rρ log2RRG log2RLA log2RRG log2RLA log2RW
(g = 24) (g = 24) (g = 32) (g = 32)

160 20 83 86 81 104 81 61
200 25 103 96 101 114 101 72
304 38 155 129 79 140 153 98
400 50 203 142 103 181 103 123
504 63 255 155 129 195 129 149
600 75 303 167 153 207 153 173

Table 4. Time estimates for the generalized GHS attack
with n = 8 (under Assumptions A, B and C for g = 24, and
under Assumption C for g = 32). An ECDLP instance in
E(F28l) is reduced to a DLP instance in JC(F2l) where C is
a genus 24 curve, or a genus 32 hyperelliptic curve.

9.3. Other small n.

9.3.1. n = 2. For non-subfield curves Ea,b defined over F22l , the only pos-
sibility for applying the generalized GHS attack with n = 2 has Ordγ1 =
(X + 1) and Ordγ2 = (X + 1)2. This yields a genus 2 curve over F2l . Since
no DLP solvers for the DLP in genus 2 curves are known that are faster
than Pollard’s rho method, the generalized GHS attack fails.

9.3.2. n = 4. In [18] it was shown that for a majority of elliptic curves over
F24l , the GHS reduction yields a genus 8 hyperelliptic curve over F2l . The
DLP in the latter is slightly easier to solve than the original ECDLP, which
led to the conclusion that fields F24l are only slightly weak.

Let b ∈ F24l with TrF
24l

/F
2l
(b) 6= 0, and let β = b1/2. Let γ1 = βq

2
+β and

γ2 = β/γ1. Then b = (γ1γ2)
2, Ordγ1 = X2 + 1, Ordγ2 = (X + 1)3, and the

generalized GHS yields a curve C of genus 6 over F2l . If C were hyperelliptic,
then the Enge-Gaudry algorithm for solving the DLP in JC(F2l) would still
only be slightly faster than Pollard’s rho method for E(F24l). Since in fact
C is not hyperelliptic, we conclude that fields F24l are not further weakened
by the generalized GHS attack with n = 4.

9.3.3. n = 5. We have X5+1 = (X +1)(X4+X3+X2+X +1). The best
possible choice for the decomposition of b is such that Ordγ1 = X4 +X3 +
X2 + X + 1 and Ordγ2 = X + 1 (in which case s1 = 4, s2 = 1, t = 5), or
Ordγ1 = Ordγ2 = X4 + X3 + X2 + X + 1 (in which case s1 = s2 = t = 4
if Tr(a) = 0). In either case, the generalized GHS reduction with n = 5
produces curves of genus g = 15. Thus the generalized GHS attack does not
further weaken the fields F25l over the GHS attack for which any non-subfield
elliptic curve over F25l can be reduced to a genus 15 or 16 hyperelliptic curve
over F2l [18].
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9.3.4. n = 9. For any non-subfield elliptic curve defined over F29l , the small-
est possible genus obtained by the generalized GHS reduction with n = 9
is g = 63; this can be achieved by taking Ordγ1 = X6 + X3 + 1 and
Ordγ2 = X + 1. The smallest genus obtained by the GHS reduction with
n = 9 is also g = 63. In either case, this does not yield an ECDLP solver
that is faster than Pollard’s rho method.

9.3.5. n = 10. For any non-subfield elliptic curve defined over F210l , the
smallest achievable genus for the generalized GHS reduction with n = 10 is
g = 32 (by taking Ordγ1 = (X5 + 1)(X + 1) and Ordγ2 = X + 1). This is
no improvement over the GHS reduction with n = 10.

9.3.6. 11 ≤ n ≤ 300. Continuing in this way, we checked all remaining val-
ues upto n = 300. We found that for all fields Fqn with 9 ≤ n ≤ 300 only at
most a small proportion of elliptic curves over F2nl succumb to the general-
ized GHS attack with descent degree n. For some n, these proportions are
slightly larger than for the GHS attack, but they are still negligibly small
(and also the curves are not hyperelliptic).

10. Conclusions

We examined the weakness of characteristic two finite fields under Hess’
generalized GHS attack. The only new fields found to exhibit any weak-
nesses are the fields F23l which are partially weak, the fields F26l which are
potentially weak, and the fields F27l and F28l which are potentially partially
weak. These results strongly suggest that finite fields F2N where N is di-
visible by 3, 5, 6, 7 or 8, should not be used to implement elliptic curve
cryptographic protocols.

An outstanding task is to characterize the curves produced by the general-
ized GHS reduction, and to exactly analyze their best DLP solvers. Another
open problem is to determine whether the elliptic curves Ea,b over F27l with
Tr(a) = 1 are (potentially) weak.
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