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Abstra
t

A new, ve
torial approa
h to fast 
orrelation atta
ks on binary memoryless 
ombin-

ers is proposed. Instead of individual input sequen
es or their linear 
ombinations, the

new atta
k is targeting subsets of input sequen
es as a whole, thus exploiting the full


orrelation between the 
hosen subset and the output sequen
e. In parti
ular, all the

input sequen
es 
an be targeted simultaneously. The atta
k is based on a novel itera-

tive probabilisti
 algorithm whi
h is also appli
able to general memoryless 
ombiners

over �nite �elds or �nite rings. Experimental results obtained for randomly 
hosen

binary 
ombiners with balan
ed 
ombining fun
tions show that the ve
torial approa
h

yields a 
onsiderable improvement in 
omparison with the 
lassi
al, s
alar approa
h.

Key words Ve
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orrelation atta
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1 Introdu
tion

Fast 
orrelation atta
ks on binary linear feedba
k shift registers (LFSR's) in keystream

generators for stream 
ipher appli
ations are important 
ryptanalyti
 te
hniques whi
h are

introdu
ed in [9℄ and [13℄, and are based on an earlier work [12℄ on divide-and-
onquer 
orre-

lation atta
ks. The atta
ks exploit the bitwise 
orrelation between the keystream sequen
e
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and linear 
ombinations of the LFSR sequen
es. As su
h, they are dire
tly appli
able to

memoryless 
ombiners, but 
an be also extended to 
ombiners with memory. A binary mem-

oryless 
ombiner is a well-known type of keystream generators whi
h 
onsists of a number of

LFSR's whose output sequen
es are bitwise transformed by a nonlinear 
ombining fun
tion

into the keystream sequen
e. The 
orrelation 
an be represented by a binary symmetri



hannel whose 
apa
ity is typi
ally very small. The goal is to re
onstru
t the 
ombined

LFSR sequen
e from an observed segment of the keystream sequen
e in the known-plaintext

s
enario. The problem is equivalent to one of de
oding a trun
ated 
y
li
 linear (N; k) blo
k


ode, where k is the 
ombined LFSR length and N is the observed keystream segment length.

In this problem, k is large and the rate k=N is very small in order for the 
orrelation atta
k

to be su

essful. Consequently, the optimum de
oding minimizing the blo
k-error rate (e.g.,

the minimum distan
e de
oding [12℄ for a time-invariant binary symmetri
 
hannel) is not

feasible.

The de
oding te
hniques used in fast 
orrelation atta
ks are based on the linear rela-

tions satis�ed by the 
odeword bits whi
h are 
alled the parity 
he
ks. The parity 
he
ks


orrespond to polynomial multiples of the 
ombined LFSR feedba
k polynomial. For the

atta
ks to be e�e
tive, the parity 
he
ks should have a relatively low weight, i.e., should

involve a small number of 
odeword bits. The te
hniques essentially redu
e to (iterative)

error-
orre
tion de
oding algorithms for binary symmetri
 
hannels. They may be feasible

for large k and N � k. For example, an iterative hard-de
ision de
oding te
hnique [13℄ is

based on the majority de
ision rule and originates from [3℄, where a similar te
hnique is

based on a more sophisti
ated iteration prin
iple, later 
alled the belief propagation prin
i-

ple. An iterative soft-de
ision de
oding te
hnique �rst proposed in [9℄ and later improved in

[10℄ essentially originates from [1℄ and [3℄, and is based on the posterior probability symbol-

by-symbol de
oding introdu
ed in [8℄ for orthogonal parity 
he
ks. In addition, there have

been more re
ent 
ontributions in this area su
h as [7℄, [11℄, and [5℄.

Naturally, te
hniques based on soft-de
ision de
oding are more e�e
tive than te
hniques

based on hard-de
ision de
oding, whereas iterative de
oding te
hniques are more powerful

than one-step de
oding te
hniques. The required output sequen
e length and the 
omplexity

of su
h atta
ks mainly depend on the absolute value(s) of the exploited 
orrelation 
oeÆ-


ient(s) and on the degrees and numbers of low-weight polynomial multiples of the involved

LFSR feedba
k polynomials.

One motivation for this paper is to generalize the binary fast 
orrelation atta
ks to q-ary

fast 
orrelation atta
ks that 
an be applied to q-ary memoryless 
ombiners, in whi
h the

LFSR sequen
es are de�ned over a �nite �eld F

q

or over a �nite ring of integers Z

q

. Su
h

atta
ks are important for analyzing the keystream generators suitable for software appli
a-

tions, whi
h typi
ally utilize linear re
urren
ess involving a small number of terms over F

q

or Z

q

, where q = 2

m

. However, our main obje
tive to show that 2

m

-ary fast 
orrelation

atta
ks 
an be applied to binary memoryless 
ombiners, su
h as nonlinear �lter generators,

thus simultaneously utilizing the 
orrelations to di�erent linear fun
tions of m inputs in a

ve
torial manner. Experimental results obtained by 
omputer simulations demonstrate that

the ve
torial atta
ks are more powerful than the ordinary binary (s
alar) 
orrelation atta
ks.

A probabilisti
 model for the sequential linear 
ryptanalysis over �nite �elds and the ba-
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si
 one-step algorithm for updating the underlying probability distributions are introdu
ed

in Se
tion 2. The 
orresponding iterative probabilisti
 algorithms for fast 
orrelation atta
ks

over �nite �elds F

2

m

are developed in Se
tion 3. Their ve
torial appli
ation to binary mem-

oryless 
ombiners is explained in Se
tion 4. Experimental results 
omparing the ve
torial

and s
alar fast 
orrelation atta
ks on binary memoryless 
ombiners are presented in Se
tion

5, and 
on
lusions are given in Se
tion 6.

2 Sequential Linear Cryptanalysis over Finite Fields

In this se
tion, a probabilisti
 model for fast 
orrelation atta
ks over �nite �elds is identi�ed

and a symbol-by-symbol approa
h for solving the underlying problem is proposed. The

approa
h 
an also deal with linear 
ongruential relations instead of linear relations over

�nite �elds.

2.1 Probabilisti
 Problem

Let X = (X

i

)

N

i=1

be a sequen
e of independent variables over a �nite �eld F

q

with the prior

probability distributions PrfX

i

= xg = P

i

(x), x 2 F

q

, 1 � i � N . Let L denote an

(N � k)-tuple of linearly independent linear fun
tions de�ned on F

N

q

, let Y = L(X), and

let L

�1

(0) = fX 2 F

N

q

jL(X) = 0g, where jL

�1

(0)j = q

k

. Then the posterior probability

distribution of X 
onditioned on the event that the linear relations among the variables

indu
ed by L are satis�ed is for any X 2 L

�1

(0) given as

PrfX j L(X) = 0g =

PrfXg

PrfL(X) = 0g

=

Q

N

i=1

PrfX

i

g

PrfL(X) = 0g

(1)

where PrfL(X) = 0g =

P

X2L

�1

(0)

Q

N

i=1

PrfX

i

g. Our obje
tive is to �nd the most likely

solution to the system of linear equations L(X) = 0, that is, an X 2 L

�1

(0) that maximizes

this 
onditional probability. However, q

k

steps are required to �nd su
h a solution, and

this is infeasible if q

k

is large. The problem is related to one of de
oding the linear 
ode

(ve
tor subspa
e) L

�1

(0) where instead of spe
ifying the 
ommuni
ation 
hannel, the prior

probability distributions of individual variables are given dire
tly.

2.2 Symbol-by-Symbol Approa
h

Another approa
h would be to �nd a solution that maximizes ea
h of the posterior probability

distributions for individual variables in X when 
onditioned on L(X) = 0, that is, PrfX

i

=

xjL(X) = 0g, x 2 F

q

, 1 � i � N . Then only qN steps are required, provided that these

probability distributions are already 
omputed. Their exa
t 
omputation 
an be a
hieved in

q

N�k

steps by adapting the Hartmann-Rudolph algorithm [6℄. The 
omputation utilizes the

set L of all q

N�k

linear relations, 
alled parity 
he
ks, satis�ed by every X 2 L

�1

(0), namely,

all the linear 
ombinations of N � k linear fun
tions in L. For linear 
odes, this algorithm

minimizes the de
oding error probability for individual symbols rather than for blo
ks of
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symbols. This 
omputation is infeasible if q

N�k

is large, but in 
ertain 
ases approximations


an be e�e
tive. For example, it would be interesting to investigate if it is possible to extend

the approximation to the Hartmann-Rudolph algorithm developed for q = 2 in [5℄.

In this paper, we provide an approximation that generalizes a well-known expression used

for bit-by-bit probabilisti
 de
oding of binary linear 
odes based on orthogonal parity 
he
ks

(e.g., see [8℄, [3℄, and [1℄). That expression is used in binary fast 
orrelation atta
ks (e.g., see

[9℄ and [10℄). Let L

i

denote a set of linear relations from L involving the i-th variable X

i

, for

ea
h 1 � i � N . Ea
h relation should preferrably have a low weight, de�ned as the number

of involved variables minus 1. It is also desirable, but not ne
essary, that the relations in

ea
h L

i

be orthogonal on X

i

, i.e., that X

i

be the only variable they share in 
ommon. Let

a generi
 linear relation l 2 L

i

of weight w be put into the form

X

i

=

w

X

j=1

a

j

X

i

j

def

= X

l

i

(2)

where a

j

6= 0, 1 � j � w.

The approximation

^

P

i

(x) for PrfX

i

= xjL(X) = 0g 
an then be obtained in two stages.

First, iteratively 
ompute the probability distribution of every variable X

l

i

by using the 
on-

volution expression for the probability distribution of the sum of two independent variables

X and Y over F

q

PrfX + Y = zg =

X

x2F

q

PrfX = xgPrfY = z � xg; z 2 F

q

: (3)

Se
ond, for ea
h 1 � i � N , in view of

PrfX

i

= xjL

i

(X) = 0g = PrfX

i

= xg

PrfL

i

(X) = 0jX

i

= xg

PrfL

i

(X) = 0g

; (4)


ompute

^

P

i

(x) = P

i

(x)

Q

l2L

i

PrfX

l

i

= xg

P

y2F

q

P

i

(y)

Q

l2L

i

PrfX

l

i

= yg

; x 2 F

q

: (5)

The expression (5) is obtained by using the fa
t that the variables X

l

i

, l 2 L

i

, are mutually

independent if the linear relations in L

i

are orthogonal on X

i

, but 
an also be used if they

are not orthogonal. Note that this expression is not exa
t even if the linear relations in L

i

are orthogonal, be
ause it does not make use of their linear 
ombinations.

The 
onvolution of a number of probability distributions tends to be uniform if this

number in
reases, and uniform distributions e�e
tively do not 
ontribute to (5). This is why

it is important that the weight of the employed linear relations be not too high.

2.3 Complexity

In order to 
ompute (5) for every 1 � i � N , it is required to 
ompute the probability

distribution ofX

l

i

for every used linear relation l and for every X

i

involved in l. If l has weight
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w, then the dire
t appli
ation of (3) would require the 
omputation of w+1 
onvolutions of w

probability distributions, i.e., altogether w

2

�1 
onvolutions of two probability distributions.

However, it is simple to see that the same 
an be a
hieved by 
omputing only 3(w � 1)


onvolutions of two probability distributions. The 
onvolution itself takes (q � 1)q real

multipli
ations when 
omputed by (3).

The 
omplexity 
an be redu
ed by using the Fourier transform of the probability dis-

tributions. The transform 
an be de�ned for any F

q

(or Z

q

), but, for simpli
ity, assume

that q = 2

m

. Using a ve
torial representation of the �eld elements, let x = (x

1

; � � � ; x

m

)

and ! = (!

1

; � � � ; !

m

). A generi
 linear fun
tion of x parametrized by !, F

m

2

! F

2

, 
an

be expressed as the inner produ
t ! � x =

P

m

j=1

!

j

x

j

mod 2 = !

1

x

1

� � � � � !

m

x

m

. Then a

probability distribution P and its Fourier transform P are related by

P(!) =

X

x2F

q

P (x)(�1)

!�x

; P (x) =

1

q

X

!2F

q

P(!)(�1)

!�x

: (6)

Alternatively, the generi
 linear fun
tion 
an also be expressed as Tr(!x), where Tr : F

q

! F

2

(Tr(�) = �+�

2

+�

2

2

� � �+�

2

m�1

) is the tra
e fun
tion with respe
t to F

2

. The two Fourier

transforms are equivalent up to an invertible linear fun
tion of ! and redu
e to the well-

known Walsh-Hadamard transform. Both transforms 
an be 
omputed by a fast Fourier

transform algorithm in O(q log

2

q) steps.

As the Fourier transform of the 
onvolution of two probability distributions is the produ
t

of their Fourier transforms, the 
onvolution of two probability distributions 
an thus be


omputed in O(q log

2

q) instead of O(q

2

) steps. In addition, with respe
t to the tra
e fun
tion

representation, if a variable with a probability distribution P is multiplied by a 
onstant a,

then the Fourier transform for the new variable is simply P(a!). If a 2 F

2

, that is, if the

multipli
ation is 
omponentwise, ax = (ax

1

; � � � ; ax

m

), then the same holds for the Fourier

transform (6), with respe
t to the inner produ
t representation. The latter is then more


onvenient than the former if the multipli
ative 
onstants in the linear relations (2) all

belong to the ground �eld F

2

.

Let � denote the average number of the used linear relations per variable and let w

av

denote their average weight. The total 
omplexity of 
omputing the posterior probability

distributions of all N variables is then O(w

av

�N q log

2

q). The required spa
e is O(Nq).

2.4 Correlation CoeÆ
ients

The Walsh-Hadamard transform of a probability distribution P as de�ned by (6) 
an be

interpreted in terms of the 
orrelation 
oeÆ
ients of linear fun
tions. Namely, P(!) is the

expe
ted value of (�1)

!�X

with respe
t to the probability distribution P whi
h itself is equal

to the 
orrelation 
oeÆ
ient between the linear fun
tion ! �X and the 
onstant zero if the

ve
tor X is randomly 
hosen a

ording to P , that is,

P(!) = 
(!) = Prf! �X = 0g � Prf! �X = 1g: (7)

Thus, P(!) 
ompletely spe
i�es the probability distribution of ! �X and is in fa
t equal to

the Walsh-Hadamard transform 
oeÆ
ient of this distribution. The inverse Walsh-Hadamard

5



transform is then simply determined by

Prf! �X = 0g =

1

2

(1 + 
(!)): (8)

The minimal absolute value, zero, of P(!) is a
hieved if and only if P is su
h that ! � X

is uniformly distributed (balan
ed), and its maximal absolute value, 1, is a
hieved if and

only if P is su
h that ! �X has a single value with probability 1. In parti
ular, P(0) = 1.

A

ordingly, jP(!)j is a measure of nonuniformity of the probability distribution of ! �X and

signP(!) indi
ates the more likely value of ! �X, whi
h enables one to make hard de
isions

on ! � X. More generally, in view of the orthogonality of the Walsh-Hadamard transform,

the index

I =

X

x

P

2

(x) =

1

q

(1 +

X

! 6=0

jP(!)j

2

) (9)

is a measure of nonuniformity of P . Its minimal value, 1=q, is a
hieved if and only if P is

uniform, and its maximal value, 1, is a
hieved if and only if there exists a single value x su
h

that P (x) = 1.

3 Iterative Probabilisti
 Algorithms

In this se
tion, several types of iterative probabilisti
 algorithms based on the symbol-by-

symbol update of the probability distributions are presented. Typi
ally, we assume that

q = 2

m

, so that the symbols are then represented as binary ve
tors.

3.1 Ve
torial Re
y
ling

Instead of 
omputing the posterior probability distributions of individual variables only on
e,

we 
an pro
eed iteratively, in ea
h iteration substituting the 
omputed posterior probability

distributions for the prior probability distributions in the next iteration. Apart from this

dire
t re
y
ling, we 
an also use the re
y
ling based on the belief propagation prin
iple by

generalizing the binary approa
h from [3℄ (see also [2℄ and [5℄). The iterations are useful

be
ause (5) is only an approximate expression and be
ause the hard de
isions, maximizing

the posterior probability distributions of individual variables, generally do not result in

sequen
es belonging to L

�1

(0), i.e., satisfying all the linear relations from L. However, in

the re
y
ling, the denominator in (5) may be
ome equal to zero, whi
h means that it is not

possible to satisfy all the linear relations from L

i

for ea
h value of X

i

. For ea
h su
h i,

^

P

i

(x)

is then reset to the initial probability distribution P

i

(x).

To enhan
e the intera
tion between di�erent variables during the iterations, the expres-

sion (5) 
an be re
y
led in su
h a way that expli
itly present terms for the prior probability

distributions are kept at their initial values in every iteration, so that the probability distri-

butions are updated through the linear 
ombination variablesX

l

i

only. This is 
alledmodi�ed

dire
t re
y
ling. In this way, we also over
ome the problem present in the dire
t re
y
ling

6



that if

^

P

i

(x) (wrongly) be
omes equal to zero in some iteration, for some i and some x, then

it remains equal to zero in all the subsequent iterations.

Experimental results indi
ate that the ve
torial re
y
ling algorithm typi
ally 
onverges

after a 
ertain number of iterations, and, in the 
ase of dire
t re
y
ling, the limit probability

distributions are the �xed points of the underlying nonlinear operator. The modi�ed dire
t

re
y
ling is generally slower, but results in the limit probability distributions 
loser to a

ve
torial sequen
e from L

�1

(0). Note that any ve
torial sequen
e 
an be represented as a

sequen
e of the probability distributions ea
h of whi
h has value 1 for a single ve
torial value.

In the �nal stage, ve
torial hard de
isions 
an be taken a

ording to the limit probability

distributions. In the 
ase of su

ess, the obtained sequen
e

�

X will be at a small Hamming

distan
e from a sequen
e from L

�1

(0), whi
h 
an then be re
overed by a q-ary information

set de
oding algorithm. More pre
isely, in the error-free information set de
oding approa
h,

one randomly 
hooses a subset of k variables (positions) in

�

X (possibly with a relatively

high nonuniformity index I), assumes that they are free of errors, and then re
overs X by

solving the system of linear equations L(X) = 0. The unique solution will exist if and only

if the 
hosen variables are linearly independent when restri
ted to L

�1

(0), that is, if and

only if there are no linear relations in L involving only the 
hosen variables. Among the

found 
andidate solutions, the one with the largest

Q

N

i=1

PrfX

i

g is identi�ed as the most

likely solution.

However, it is likely that the limit probability distributions do not result in a ve
torial

sequen
e 
lose to a sequen
e from L

�1

(0), with respe
t to the Hamming distan
e, and yet

the algorithm 
an be made su

essful be
ause of the obtained limit probability distributions

being 
loser to a sequen
e from L

�1

(0) than the initial probability distributions. This 
an

possibly be a
hieved by applying the s
alar re
y
ling and/or resetting algorithms des
ribed

in Se
tions 3.2 and 3.3, respe
tively. They are espe
ially interesting if the linear fun
tions

from L involve only (bitwise) multipli
ation by 
onstants from F

2

. Then, for q = 2

m

, ea
h

linear fun
tion from L 
an be de
omposed into m identi
al linear fun
tions over the binary


omponents of q-ary variables and the 
orresponding binary linear relations 
an be used for

re
overing the 
omponent binary sequen
es.

In this 
ase, it may also suÆ
e to apply a binary information set de
oding algorithm

dire
tly to the 2

m

�1 linear 
ombination binary sequen
es ! �X = (! �X

i

)

N

i=1

, for nonzero !.

Let Q

i

, 1 � i � N , be the limit probability distributions of the ve
torial re
y
ling algorithm.

We �rst �nd all i and all ! su
h that j


i

(!) = Q

i

(!)j � a, for some high threshold su
h as

a = 0:9. Then we produ
e a system of linear equations by making hard de
isions on the

linear fun
tions ! �X

i

a

ording to the rule: if 


i

(!) � 0, then ! �X

i

= 0, and if 


i

(!) < 0,

then ! �X

i

= 1. The error-free information set de
oding is then applied to this system.

3.2 S
alar Re
y
ling

Starting from some initial probability distributions Q

i

, 1 � i � N , possibly obtained as the

limit of the ve
torial re
y
ling algorithm, the obje
tive of the s
alar re
y
ling algorithm is to

re
over some of the 2

m

�1 binary sequen
es !�X, for nonzero !. Ea
h of the binary sequen
es

is treated individually by using the binary version of the ve
torial re
y
ling algorithm. More

7



pre
isely, the s
alar re
y
ling algorithm starts from the 
orrelation (Walsh-Hadamard trans-

form) 
oeÆ
ients 


i

(!) and then, for ea
h ! separately, keeps updating these 
orrelation


oeÆ
ients, or the 
orresponding probabilities, by using the binary (q = 2) versions of (2),

(3), and (5). For ea
h !, the s
alar (binary) re
y
ling algorithm is a
tually the same as

iterative probabilisti
 algorithm used in binary fast 
orrelation atta
ks (e.g., see [5℄). The


onvergen
e of the binary algorithm is mu
h faster than if q is relatively large.

In the 
ase of su

ess for a given !, the 
orresponding binary sequen
e satisfying all the

linear relations from L 
an then be re
overed by taking hard de
isions and by applying a

low-
omplexity binary information set de
oding algorithm. If the algorithm is su

essful for

at least m linearly independent values of !, then the q-ary sequen
e is re
overed dire
tly

by solving the 
orresponding linear equations. If the algorithm is su

essful for at least one

value of !, then the initial probability distributions 
an be re
omputed and the whole atta
k

(ve
torial and s
alar) repeated, with more 
han
es on su

ess, to re
over other ! �X and so

on until the whole ve
torial sequen
e X is re
onstru
ted.

3.3 Resetting

Let Q

i

, 1 � i � N , be the probability distributions obtained in some iteration of the

ve
torial re
y
ling algorithm. The resetting algorithm is applied to their Walsh-Hadamard

transforms in su
h a way that the signs are preserved while the absolute values are reset to

the values 
orresponding to the initial probability distributions. Namely, Q

i

(!) is modi�ed

into signQ

i

(!) � jP

i

(!)j. If Q

i

(!) = 0, then the sign of P

i

(!) is taken instead.

A justi�
ation for this de�nition of resetting is that the information about the signs of the


orrelation 
oeÆ
ients, or, equivalently, about the hard de
isions on the linear 
ombination

sequen
es ! �X is mu
h more important than the absolute values themselves. In parti
ular,

suppose that all the signs are 
orre
t, that is, signQ

i

(!) = (�1)

!�X

�

i

, for some X

�

2 L

�1

(0).

In other words, suppose that the binary hard de
isions dire
tly yield a solution. Then,

regardless of the absolute values, one 
an theoreti
ally show that the binary (dire
t) re
y
ling

algorithm 
onverges to ! �X

�

i

(e.g., see [5℄). We also experimentally found that the ve
torial

re
y
ling algorithm always 
onverged to X

�

, whi
h shows that the algorithm is sound.

The resetting algorithm 
an be applied to the limit probability distributions of the ve
-

torial re
y
ling algorithm, before starting the s
alar re
y
ling algorithm. Experiments show

that better results 
an be obtained by the so-
alled fast resetting when the resetting is

periodi
ally performed after a spe
i�ed number of iterations during the ve
torial re
y
ling

algorithm. The same holds for the s
alar re
y
ling algorithm.

3.4 Stopping Criteria

It is natural to expe
t that the updated probability distributions be
ome more and more


on
entrated with every iteration of the ve
torial re
y
ling algorithm. This is 
on�rmed

by experiments whi
h show that the nonuniformity index I (9), averaged over the sequen
e

length, in
reases with every iteration until the limit is rea
hed, espe
ially so if the algorithm

is su

essful. So, the stopping 
riterion for the ve
torial re
y
ling algorithm is when I

8



rea
hes 1 or when the ratio of the values of I in the 
urrent and the pre
eding iteration

drops below a threshold 
lose to 1, su
h as 1.001, whi
h was used in the experiments. If

this ratio gets smaller than 1, then the output probability distributions are taken from the

pre
eding iteration. With fast resetting, I is 
omputed after ea
h update and after ea
h

resetting, but the algorithm 
an stop only after the update of probability distributions, not

after resetting. A spe
i�ed maximal number of iterations is needed as an additional stopping


riterion, espe
ially with fast resetting, when the 
onvergen
e is slower.

For the s
alar re
y
ling algorithm, the 
onvergen
e is typi
ally very fast, so that the

nonuniformity index stopping 
riterion is not very useful. If this algorithm is applied after

the ve
torial re
y
ling algorithm, then only the �nal stopping 
riterion is needed. For the

version with fast resetting, this is either a rea
hed maximal number of iterations (failure) or

when, for at least one !, the estimated 
orrelation 
oeÆ
ient between the linear 
ombination

sequen
e re
onstru
ted by hard de
isions and a binary sequen
e satisfying all the linear

relations from L, is suÆ
iently high, say at least 0:9 (estimated su

ess). More pre
isely, the

algorithm is stopped if for 10 iterations the number of estimated su

esses is not 
hanged.

For ea
h !, the 
orrelation 
oeÆ
ient estimate 
an be obtained from the total number of

satis�ed linear relations. For example, if ea
h used linear relation involves exa
tly 3 terms,

then the estimate 
an be obtained as the 
ubi
 root of the relative di�eren
e between the

total number of satis�ed and unsatis�ed linear relations.

4 Appli
ation to Memoryless Combiners

A memoryless 
ombiner is a 
ommon type of keystream generators for stream 
iphers whi
h


onsists of a number of LFSR's whose output sequen
es are symbol-wise transformed by a

nonlinear 
ombining fun
tion into the keystream sequen
e. For pra
ti
al reasons, we will

restri
t ourselves to binary 
ombiners, in whi
h the LFSR sequen
es are de�ned over F

2

.

One 
an then use the bitwise 
orrelation between the output sequen
e and linear 
om-

binations of input LFSR sequen
es in order to re
onstru
t the initial states of the involved

LFSR's by applying the well-known binary (fast) 
orrelation atta
ks introdu
ed in [12℄,

[9℄, and [13℄. An iterative probabilisti
 algorithm for this s
alar atta
k is explained in

Se
tion 3.2. The 
orrelation 
oeÆ
ients between a 
ombining n-bit Boolean fun
tion f

and all linear n-bit fun
tions 
an be 
omputed in n2

n

steps by the fast Walsh-Hadamard

transform algorithm. Namely, use (6) with q = 2

n

and (�1)

f

=2

n

instead of P , to obtain

F(!) = 2

�n

P

x2F

n

2

(�1)

f(x)+!�x

. Here F(!) is the 
orrelation 
oeÆ
ient between f(x) and

! � x. The required output sequen
e length and the 
omplexity of su
h an atta
k mainly

depend on the absolute value(s) of the exploited 
orrelation 
oeÆ
ient(s) and on the degrees

and numbers of low-weight polynomial multiples of the involved LFSR feedba
k polynomials

whi
h de�ne the parity 
he
ks. (The weight of a polynomial is the number of its nonzero


oeÆ
ients.)

The iterative probabilisti
 algorithms introdu
ed in Se
tion 3 enable us to introdu
e

another, more general and more e�e
tive approa
h. In this, so-
alled ve
torial approa
h,

we utilize the symbol-wise 
orrelation between the output binary sequen
e and a subset

9



of m input binary LFSR sequen
es as a whole. This subset is an m-dimensional ve
torial

binary sequen
e, whi
h satis�es the linear re
urren
e de�ned by the least 
ommon multiple,

h, of the involved LFSR feedba
k polynomials. Therefore, the ve
torial sequen
e is a 2

m

-ary

sequen
e satisfying a binary linear re
urren
e, so that the probabilisti
 model from Se
tion

2.1 is appli
able. The prior probability distributions of the 
orresponding 2

m

-ary random

variables are then de�ned as the 
onditional probability distributions PrfX

0

= xjf(X) = yg,

where X

0

is the 
orresponding m-dimensional subve
tor of the n-dimensional binary ve
tor

X, and the output values y are obtained from a given output sequen
e. If m = n, then we

have

P (xjy) = PrfX = x j f(X) = yg =

1

jX

y

j

; x 2 X

y

= fx 2 F

n

2

jf(x) = yg; (10)

whose Walsh-Hadamard transform is given as P(!jy) =

P

x2X

y

(�1)

!�x

=jX

y

j. For ! 6= 0, we

further have P(!jy) = (�1)

y

(2

n�1

=jX

y

j)F(!). Note that F(0) = 2

�n

(jX

0

j � jX

1

j).

A

ordingly, given a known segment (y

i

)

N

i=1

of the output sequen
e, the 
orresponding

prior probability distributions are P

i

(x) = P (xjy

i

), and their Walsh-Hadamard transforms

are then P

i

(!) = P(!jy

i

). In the �rst iteration of the ve
torial re
y
ling algorithm, the

posterior probability distributions

^

P

i

(x) are then given by (5), where, for a generi
 linear

relation l of the form X

i

=

P

w

j=1

X

i

j

, the probability distribution of X

l

i

=

P

w

j=1

X

i

j

is

determined by

PrfX

l

i

= xg =

1

2

n

0

�

1 + (�1)

w

1

2

w(n�1)

jX

0

j

w�w

1

jX

1

j

w

1

X

! 6=0

F(!)

w

(�1)

!�x

1

A

; (11)

where w

1

denotes the Hamming weight of (y

i

1

; � � � ; y

i

w

). If f is balan
ed, then jX

0

j = jX

1

j =

2

n�1

and F(0) = 0, so that (11) redu
es to

PrfX

l

i

= xg =

1

2

n

0

�

1 + (�1)

y

i

1

�����y

i

w

X

!2F

n

2

F(!)

w

(�1)

!�x

1

A

: (12)

The ve
torial approa
h is more powerful than the s
alar approa
h, be
ause it simultane-

ously makes use of the total 
orrelation between the output sequen
e and a 
hosen subset of

input LFSR sequen
es instead of using the 
orrelation to individual linear 
ombinations of

these sequen
es separately. This means that for a given segment of the output sequen
e, the

ve
torial 
orrelation atta
k may be able to re
onstru
t the initial states of the input LFSR's

in the 
ases when the s
alar 
orrelation atta
k is not su

essful. The required output se-

quen
e length and the 
omplexity of the ve
torial atta
k depend on the used 
onditional

probability distributions and on the degrees and numbers of low-weight polynomial multi-

ples of h, similarly as for the s
alar atta
k.

The most interesting 
ase is when m = n, that is, when the target of the atta
k are all

the input LFSR sequen
es 
ombined. In this 
ase, the ve
torial 
orrelation atta
k exploits

the full 
orrelation between the binary output and the n-dimensional binary input to a

given binary 
ombining fun
tion f . For balan
ed f , the nonuniformity index of the initial

10



probability distributions is then equal to 2

�(n�1)

. Given n, the su

ess of the atta
k is

therefore expe
ted to be less dependent on f itself. Both ve
torial and s
alar atta
ks are

espe
ially e�e
tive if all the input LFSR's have the same feedba
k polynomial, preferably of

low weight, be
ause the least 
ommon multiple polynomial h is then always equal to this

feedba
k polynomial, regardless of the subset of inputs 
hosen. Nonlinear �lter generators

represent a 
ommon type of su
h memoryless 
ombiners.

5 Experimental Results

The obje
tive of the experiments performed by 
omputer simulations was to 
he
k the 
on-

vergen
e properties of the ve
torial re
y
ling algorithm (VRA) from Se
tion 3.1 and to


ompare the performan
e of an iterative probabilisti
 algorithm based on the VRA with the

performan
e of the s
alar re
y
ling algorithm (SRA) from Se
tion 3.2.

For 
omparison purposes, the experiments were 
ondu
ted on binary memoryless 
om-

biners 
onsisting of a variable number, n, of LFSR's with the same feedba
k polynomial of

degree r and of �xed weight 3. We used balan
ed 
ombining fun
tions f with a 
ontrol-

lable range of the maximal absolute value, j
j

max

, of the 
orrelation 
oeÆ
ients to linear

fun
tions. The used parity 
he
ks, of weight 2, were obtained by repeatedly squaring the

LFSR feedba
k polynomial. The output sequen
e length was of the form N = r2

j

, in whi
h


ase the average number of parity 
he
ks per input ve
tor is given as �

j

= 3(j � 1 + 2

�j

).

The performan
e of the atta
k for a �xed f then predominantly depends on the parameter

j, and not on r. A

ordingly, to maximize the number of experiments, as the time and

spa
e 
omplexities of the 
onsidered algorithms linearly in
rease with r, we pi
ked r = 20.

Also, note that 
hoosing a larger weight of the LFSR feedba
k polynomial would require a

larger N , whereas 
hoosing di�erent LFSR feedba
k polynomials would generally require a

mu
h larger N , be
ause the parity 
he
ks should then be obtained from their least 
ommon

multiple, whi
h is unlikely to have weight 3 (e.g., by using the method from [4℄).

The 
hosen ve
torial atta
k uses the total 
orrelation to all the input LFSR sequen
es


ombined. It 
onsists of running the VRA until 
onvergen
e and then of running the SRA.

The s
alar atta
k 
onsists of running the SRA only. Both VRA and SRA use periodi
 fast

resetting after every 3 iterations, and the resetting is also applied after the VRA before

starting the SRA. The VRA is based on the modi�ed dire
t re
y
ling, while the SRA uses

the dire
t re
y
ling. The maximal number of iterations in both VRA and SRA was set to 99

in the experiments. For ea
h n, ea
h j, and a given range of j
j

max

(low, medium, and high,

a

ording to Table 1), the experiment 
onsists �rst of randomly 
hoosing the 
ombining

fun
tion and the LFSR initial states and then of running the ve
torial and s
alar atta
ks

separately. The number of experiments was 100 for n = 4; 5; 6 and 50 for n = 7. In this

setting, the advantage to be expe
ted from the ve
torial atta
k over the s
alar atta
k is in the

improved initial probability distributions for the SRA. In fa
t, in many 
ases it also happens

that the VRA itself already re
overs the original ve
torial input sequen
e.

In ea
h experiment and for ea
h !, the measure of su

ess is the true 
orrelation 
oeÆ
ient

between the linear 
ombination sequen
e ! �X re
onstru
ted by hard de
isions and the linear

11



n 4 5 6 7

2

n

j
j

max

� 8, � 12 � 8, [12; 20℄, � 24 � 12, [16; 36℄, � 40 � 20, [24; 48℄, � 52

Table 1: Ranges of maximal absolute values of 
orrelation 
oeÆ
ients.


ombination sequen
e ! �X

�

, where X

�

is the original ve
torial input sequen
e. Re
all that

the estimated 
orrelation 
oeÆ
ient, 
omputed from the number of satis�ed parity 
he
ks, is

used for stopping the SRA. If for some ! both the 
orrelation 
oeÆ
ients are at least 0:9, we

then say that a solution is found, be
ause ! �X

�


an then easily be re
onstru
ted by a simple

error-free information set de
oding algorithm. For ea
h experiment, the number of obtained

solutions is re
orded and if this number is 1 or more, then the experiment is 
onsidered to be

su

essful. The more the solutions, the easier the further re
onstru
tion, and if the number

of the solutions, for linearly independent !, is n or larger, then the whole input sequen
e


an immediately be re
onstru
ted. For a nonlinear �lter generator, as the LFSR sequen
es

are phase shifts of ea
h other, only one solution is enough. The main obtained results are

summarized in Fig. 1 and Fig. 2.

Fig. 1 displays the su

ess rates of the ve
torial and s
alar atta
ks as fun
tions of the

average number of parity 
he
ks per bit, �

j

, for n = 5; 6; 7 and for the low and medium

ranges of j
j

max

. Similar results are obtained for n = 4. There is a 
onsiderable improvement

a
hieved by the ve
torial atta
ks. The main advantage is to be expe
ted for the low range of

j
j

max

, be
ause the SRA is then less likely to be su

essful, while the VRA 
an be su

essful

as it exploits the 
ombined 
orrelation to all the linear 
ombinations of the input sequen
es

simultaneously. For the high range of j
j

max

, the di�eren
e between the ve
torial and s
alar

atta
ks is less signi�
ant as both the atta
ks approa
h the 100% su

ess rate faster. We

also performed a number of su

essful ve
torial atta
ks for n = 8, for the low range of j
j

max

(2

n

j
j

max

� 36), and for j � 7 (N � 2560).

In order to in
rease the improvement for larger n, instead of a simple periodi
 fast reset-

ting with period 3, an adaptive fast resetting 
an be utilized for the VRA. Other optimiza-

tions of the ve
torial atta
k in
luding intertwined ve
torial and s
alar re
y
ling algorithms

may also be possible. An interesting observation regarding the SRA is that in many 
ases it

was su

essful only after a relatively large number of iterations, namely, 50 or more, due to

the periodi
 fast resetting. In any 
ase, the fast resetting improved the performan
e of both

the VRA and SRA.

Fig. 2 shows the average number of solutions obtained by the ve
torial atta
k as a

fun
tion of �

j

, for n = 5; 6; 7 and for low, medium, and high ranges of j
j

max

. There is a

signi�
ant improvement a
hieved by the ve
torial atta
ks, be
ause for the s
alar atta
ks,

this number is only 1 or very 
lose to 1 in all the 
ases. We observed that the number of

solutions may depend on the 
hosen parameters for the VRA, for example, on the period of

the fast resetting.
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Figure 1: Su

ess rates for ve
torial and s
alar atta
ks for low and medium ranges of the


orrelation 
oeÆ
ient, for n = 5; 6; 7.
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Figure 2: Average number of solutions for ve
torial atta
k in 
ase of su

ess, for n = 5; 6; 7.

For s
alar atta
k, only the average value over j is presented, as it is very 
lose to 1.

6 Con
lusion

The developed ve
torial fast 
orrelation atta
ks are more powerful than the 
lassi
al s
alar

fast 
orrelation atta
ks be
ause they make use of the total 
orrelation between the output

sequen
e and a targeted subset of input LFSR sequen
es in a memoryless 
ombiner. The

atta
ks are based on a novel iterative probabilisti
 algorithm whi
h utilizes the Fourier

transforms of the underlying 
onditional probability distributions. The new atta
ks, when

applied to all the input sequen
es simultaneously, are less dependent on the 
ombining

fun
tion than the 
lassi
al atta
ks. Experiments show that, for a given set of parity 
he
ks

used, the ve
torial approa
h 
an be su

essful when the s
alar approa
h is not as well as that

the number of re
onstru
ted linear 
ombinations of input sequen
es is signi�
antly larger.

In parti
ular, the ve
torial atta
k 
an be su

essful even for very short output sequen
es.

Further algorithmi
 optimizations of the ve
torial atta
k are possible. Another problem

interesting for future investigations is a theoreti
al analysis of the 
onditions for its su

essful


onvergen
e, but is expe
ted to be very diÆ
ult.

The ve
torial fast 
orrelation atta
ks are also appli
able to 
ombiners over arbitrary �nite

�elds or �nite rings of integers. These 
ombiners are suitable for software appli
ations and
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typi
ally involve linear re
urren
es 
ontaining a small number of terms whi
h makes the

atta
ks more e�e
tive.
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