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Abstrat

A new, vetorial approah to fast orrelation attaks on binary memoryless ombin-

ers is proposed. Instead of individual input sequenes or their linear ombinations, the

new attak is targeting subsets of input sequenes as a whole, thus exploiting the full

orrelation between the hosen subset and the output sequene. In partiular, all the

input sequenes an be targeted simultaneously. The attak is based on a novel itera-

tive probabilisti algorithm whih is also appliable to general memoryless ombiners

over �nite �elds or �nite rings. Experimental results obtained for randomly hosen

binary ombiners with balaned ombining funtions show that the vetorial approah

yields a onsiderable improvement in omparison with the lassial, salar approah.

Key words Vetorial orrelation attak, sequential linear ryptanalysis, iterative

probabilisti deoding, memoryless ombiners.

1 Introdution

Fast orrelation attaks on binary linear feedbak shift registers (LFSR's) in keystream

generators for stream ipher appliations are important ryptanalyti tehniques whih are

introdued in [9℄ and [13℄, and are based on an earlier work [12℄ on divide-and-onquer orre-

lation attaks. The attaks exploit the bitwise orrelation between the keystream sequene
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and linear ombinations of the LFSR sequenes. As suh, they are diretly appliable to

memoryless ombiners, but an be also extended to ombiners with memory. A binary mem-

oryless ombiner is a well-known type of keystream generators whih onsists of a number of

LFSR's whose output sequenes are bitwise transformed by a nonlinear ombining funtion

into the keystream sequene. The orrelation an be represented by a binary symmetri

hannel whose apaity is typially very small. The goal is to reonstrut the ombined

LFSR sequene from an observed segment of the keystream sequene in the known-plaintext

senario. The problem is equivalent to one of deoding a trunated yli linear (N; k) blok

ode, where k is the ombined LFSR length and N is the observed keystream segment length.

In this problem, k is large and the rate k=N is very small in order for the orrelation attak

to be suessful. Consequently, the optimum deoding minimizing the blok-error rate (e.g.,

the minimum distane deoding [12℄ for a time-invariant binary symmetri hannel) is not

feasible.

The deoding tehniques used in fast orrelation attaks are based on the linear rela-

tions satis�ed by the odeword bits whih are alled the parity heks. The parity heks

orrespond to polynomial multiples of the ombined LFSR feedbak polynomial. For the

attaks to be e�etive, the parity heks should have a relatively low weight, i.e., should

involve a small number of odeword bits. The tehniques essentially redue to (iterative)

error-orretion deoding algorithms for binary symmetri hannels. They may be feasible

for large k and N � k. For example, an iterative hard-deision deoding tehnique [13℄ is

based on the majority deision rule and originates from [3℄, where a similar tehnique is

based on a more sophistiated iteration priniple, later alled the belief propagation prini-

ple. An iterative soft-deision deoding tehnique �rst proposed in [9℄ and later improved in

[10℄ essentially originates from [1℄ and [3℄, and is based on the posterior probability symbol-

by-symbol deoding introdued in [8℄ for orthogonal parity heks. In addition, there have

been more reent ontributions in this area suh as [7℄, [11℄, and [5℄.

Naturally, tehniques based on soft-deision deoding are more e�etive than tehniques

based on hard-deision deoding, whereas iterative deoding tehniques are more powerful

than one-step deoding tehniques. The required output sequene length and the omplexity

of suh attaks mainly depend on the absolute value(s) of the exploited orrelation oeÆ-

ient(s) and on the degrees and numbers of low-weight polynomial multiples of the involved

LFSR feedbak polynomials.

One motivation for this paper is to generalize the binary fast orrelation attaks to q-ary

fast orrelation attaks that an be applied to q-ary memoryless ombiners, in whih the

LFSR sequenes are de�ned over a �nite �eld F

q

or over a �nite ring of integers Z

q

. Suh

attaks are important for analyzing the keystream generators suitable for software applia-

tions, whih typially utilize linear reurreness involving a small number of terms over F

q

or Z

q

, where q = 2

m

. However, our main objetive to show that 2

m

-ary fast orrelation

attaks an be applied to binary memoryless ombiners, suh as nonlinear �lter generators,

thus simultaneously utilizing the orrelations to di�erent linear funtions of m inputs in a

vetorial manner. Experimental results obtained by omputer simulations demonstrate that

the vetorial attaks are more powerful than the ordinary binary (salar) orrelation attaks.

A probabilisti model for the sequential linear ryptanalysis over �nite �elds and the ba-
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si one-step algorithm for updating the underlying probability distributions are introdued

in Setion 2. The orresponding iterative probabilisti algorithms for fast orrelation attaks

over �nite �elds F

2

m

are developed in Setion 3. Their vetorial appliation to binary mem-

oryless ombiners is explained in Setion 4. Experimental results omparing the vetorial

and salar fast orrelation attaks on binary memoryless ombiners are presented in Setion

5, and onlusions are given in Setion 6.

2 Sequential Linear Cryptanalysis over Finite Fields

In this setion, a probabilisti model for fast orrelation attaks over �nite �elds is identi�ed

and a symbol-by-symbol approah for solving the underlying problem is proposed. The

approah an also deal with linear ongruential relations instead of linear relations over

�nite �elds.

2.1 Probabilisti Problem

Let X = (X

i

)

N

i=1

be a sequene of independent variables over a �nite �eld F

q

with the prior

probability distributions PrfX

i

= xg = P

i

(x), x 2 F

q

, 1 � i � N . Let L denote an

(N � k)-tuple of linearly independent linear funtions de�ned on F

N

q

, let Y = L(X), and

let L

�1

(0) = fX 2 F

N

q

jL(X) = 0g, where jL

�1

(0)j = q

k

. Then the posterior probability

distribution of X onditioned on the event that the linear relations among the variables

indued by L are satis�ed is for any X 2 L

�1

(0) given as

PrfX j L(X) = 0g =

PrfXg

PrfL(X) = 0g

=

Q

N

i=1

PrfX

i

g

PrfL(X) = 0g

(1)

where PrfL(X) = 0g =

P

X2L

�1

(0)

Q

N

i=1

PrfX

i

g. Our objetive is to �nd the most likely

solution to the system of linear equations L(X) = 0, that is, an X 2 L

�1

(0) that maximizes

this onditional probability. However, q

k

steps are required to �nd suh a solution, and

this is infeasible if q

k

is large. The problem is related to one of deoding the linear ode

(vetor subspae) L

�1

(0) where instead of speifying the ommuniation hannel, the prior

probability distributions of individual variables are given diretly.

2.2 Symbol-by-Symbol Approah

Another approah would be to �nd a solution that maximizes eah of the posterior probability

distributions for individual variables in X when onditioned on L(X) = 0, that is, PrfX

i

=

xjL(X) = 0g, x 2 F

q

, 1 � i � N . Then only qN steps are required, provided that these

probability distributions are already omputed. Their exat omputation an be ahieved in

q

N�k

steps by adapting the Hartmann-Rudolph algorithm [6℄. The omputation utilizes the

set L of all q

N�k

linear relations, alled parity heks, satis�ed by every X 2 L

�1

(0), namely,

all the linear ombinations of N � k linear funtions in L. For linear odes, this algorithm

minimizes the deoding error probability for individual symbols rather than for bloks of
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symbols. This omputation is infeasible if q

N�k

is large, but in ertain ases approximations

an be e�etive. For example, it would be interesting to investigate if it is possible to extend

the approximation to the Hartmann-Rudolph algorithm developed for q = 2 in [5℄.

In this paper, we provide an approximation that generalizes a well-known expression used

for bit-by-bit probabilisti deoding of binary linear odes based on orthogonal parity heks

(e.g., see [8℄, [3℄, and [1℄). That expression is used in binary fast orrelation attaks (e.g., see

[9℄ and [10℄). Let L

i

denote a set of linear relations from L involving the i-th variable X

i

, for

eah 1 � i � N . Eah relation should preferrably have a low weight, de�ned as the number

of involved variables minus 1. It is also desirable, but not neessary, that the relations in

eah L

i

be orthogonal on X

i

, i.e., that X

i

be the only variable they share in ommon. Let

a generi linear relation l 2 L

i

of weight w be put into the form

X

i

=

w

X

j=1

a

j

X

i

j

def

= X

l

i

(2)

where a

j

6= 0, 1 � j � w.

The approximation

^

P

i

(x) for PrfX

i

= xjL(X) = 0g an then be obtained in two stages.

First, iteratively ompute the probability distribution of every variable X

l

i

by using the on-

volution expression for the probability distribution of the sum of two independent variables

X and Y over F

q

PrfX + Y = zg =

X

x2F

q

PrfX = xgPrfY = z � xg; z 2 F

q

: (3)

Seond, for eah 1 � i � N , in view of

PrfX

i

= xjL

i

(X) = 0g = PrfX

i

= xg

PrfL

i

(X) = 0jX

i

= xg

PrfL

i

(X) = 0g

; (4)

ompute

^

P

i

(x) = P

i

(x)

Q

l2L

i

PrfX

l

i

= xg

P

y2F

q

P

i

(y)

Q

l2L

i

PrfX

l

i

= yg

; x 2 F

q

: (5)

The expression (5) is obtained by using the fat that the variables X

l

i

, l 2 L

i

, are mutually

independent if the linear relations in L

i

are orthogonal on X

i

, but an also be used if they

are not orthogonal. Note that this expression is not exat even if the linear relations in L

i

are orthogonal, beause it does not make use of their linear ombinations.

The onvolution of a number of probability distributions tends to be uniform if this

number inreases, and uniform distributions e�etively do not ontribute to (5). This is why

it is important that the weight of the employed linear relations be not too high.

2.3 Complexity

In order to ompute (5) for every 1 � i � N , it is required to ompute the probability

distribution ofX

l

i

for every used linear relation l and for every X

i

involved in l. If l has weight
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w, then the diret appliation of (3) would require the omputation of w+1 onvolutions of w

probability distributions, i.e., altogether w

2

�1 onvolutions of two probability distributions.

However, it is simple to see that the same an be ahieved by omputing only 3(w � 1)

onvolutions of two probability distributions. The onvolution itself takes (q � 1)q real

multipliations when omputed by (3).

The omplexity an be redued by using the Fourier transform of the probability dis-

tributions. The transform an be de�ned for any F

q

(or Z

q

), but, for simpliity, assume

that q = 2

m

. Using a vetorial representation of the �eld elements, let x = (x

1

; � � � ; x

m

)

and ! = (!

1

; � � � ; !

m

). A generi linear funtion of x parametrized by !, F

m

2

! F

2

, an

be expressed as the inner produt ! � x =

P

m

j=1

!

j

x

j

mod 2 = !

1

x

1

� � � � � !

m

x

m

. Then a

probability distribution P and its Fourier transform P are related by

P(!) =

X

x2F

q

P (x)(�1)

!�x

; P (x) =

1

q

X

!2F

q

P(!)(�1)

!�x

: (6)

Alternatively, the generi linear funtion an also be expressed as Tr(!x), where Tr : F

q

! F

2

(Tr(�) = �+�

2

+�

2

2

� � �+�

2

m�1

) is the trae funtion with respet to F

2

. The two Fourier

transforms are equivalent up to an invertible linear funtion of ! and redue to the well-

known Walsh-Hadamard transform. Both transforms an be omputed by a fast Fourier

transform algorithm in O(q log

2

q) steps.

As the Fourier transform of the onvolution of two probability distributions is the produt

of their Fourier transforms, the onvolution of two probability distributions an thus be

omputed in O(q log

2

q) instead of O(q

2

) steps. In addition, with respet to the trae funtion

representation, if a variable with a probability distribution P is multiplied by a onstant a,

then the Fourier transform for the new variable is simply P(a!). If a 2 F

2

, that is, if the

multipliation is omponentwise, ax = (ax

1

; � � � ; ax

m

), then the same holds for the Fourier

transform (6), with respet to the inner produt representation. The latter is then more

onvenient than the former if the multipliative onstants in the linear relations (2) all

belong to the ground �eld F

2

.

Let � denote the average number of the used linear relations per variable and let w

av

denote their average weight. The total omplexity of omputing the posterior probability

distributions of all N variables is then O(w

av

�N q log

2

q). The required spae is O(Nq).

2.4 Correlation CoeÆients

The Walsh-Hadamard transform of a probability distribution P as de�ned by (6) an be

interpreted in terms of the orrelation oeÆients of linear funtions. Namely, P(!) is the

expeted value of (�1)

!�X

with respet to the probability distribution P whih itself is equal

to the orrelation oeÆient between the linear funtion ! �X and the onstant zero if the

vetor X is randomly hosen aording to P , that is,

P(!) = (!) = Prf! �X = 0g � Prf! �X = 1g: (7)

Thus, P(!) ompletely spei�es the probability distribution of ! �X and is in fat equal to

the Walsh-Hadamard transform oeÆient of this distribution. The inverse Walsh-Hadamard
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transform is then simply determined by

Prf! �X = 0g =

1

2

(1 + (!)): (8)

The minimal absolute value, zero, of P(!) is ahieved if and only if P is suh that ! � X

is uniformly distributed (balaned), and its maximal absolute value, 1, is ahieved if and

only if P is suh that ! �X has a single value with probability 1. In partiular, P(0) = 1.

Aordingly, jP(!)j is a measure of nonuniformity of the probability distribution of ! �X and

signP(!) indiates the more likely value of ! �X, whih enables one to make hard deisions

on ! � X. More generally, in view of the orthogonality of the Walsh-Hadamard transform,

the index

I =

X

x

P

2

(x) =

1

q

(1 +

X

! 6=0

jP(!)j

2

) (9)

is a measure of nonuniformity of P . Its minimal value, 1=q, is ahieved if and only if P is

uniform, and its maximal value, 1, is ahieved if and only if there exists a single value x suh

that P (x) = 1.

3 Iterative Probabilisti Algorithms

In this setion, several types of iterative probabilisti algorithms based on the symbol-by-

symbol update of the probability distributions are presented. Typially, we assume that

q = 2

m

, so that the symbols are then represented as binary vetors.

3.1 Vetorial Reyling

Instead of omputing the posterior probability distributions of individual variables only one,

we an proeed iteratively, in eah iteration substituting the omputed posterior probability

distributions for the prior probability distributions in the next iteration. Apart from this

diret reyling, we an also use the reyling based on the belief propagation priniple by

generalizing the binary approah from [3℄ (see also [2℄ and [5℄). The iterations are useful

beause (5) is only an approximate expression and beause the hard deisions, maximizing

the posterior probability distributions of individual variables, generally do not result in

sequenes belonging to L

�1

(0), i.e., satisfying all the linear relations from L. However, in

the reyling, the denominator in (5) may beome equal to zero, whih means that it is not

possible to satisfy all the linear relations from L

i

for eah value of X

i

. For eah suh i,

^

P

i

(x)

is then reset to the initial probability distribution P

i

(x).

To enhane the interation between di�erent variables during the iterations, the expres-

sion (5) an be reyled in suh a way that expliitly present terms for the prior probability

distributions are kept at their initial values in every iteration, so that the probability distri-

butions are updated through the linear ombination variablesX

l

i

only. This is alledmodi�ed

diret reyling. In this way, we also overome the problem present in the diret reyling
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that if

^

P

i

(x) (wrongly) beomes equal to zero in some iteration, for some i and some x, then

it remains equal to zero in all the subsequent iterations.

Experimental results indiate that the vetorial reyling algorithm typially onverges

after a ertain number of iterations, and, in the ase of diret reyling, the limit probability

distributions are the �xed points of the underlying nonlinear operator. The modi�ed diret

reyling is generally slower, but results in the limit probability distributions loser to a

vetorial sequene from L

�1

(0). Note that any vetorial sequene an be represented as a

sequene of the probability distributions eah of whih has value 1 for a single vetorial value.

In the �nal stage, vetorial hard deisions an be taken aording to the limit probability

distributions. In the ase of suess, the obtained sequene

�

X will be at a small Hamming

distane from a sequene from L

�1

(0), whih an then be reovered by a q-ary information

set deoding algorithm. More preisely, in the error-free information set deoding approah,

one randomly hooses a subset of k variables (positions) in

�

X (possibly with a relatively

high nonuniformity index I), assumes that they are free of errors, and then reovers X by

solving the system of linear equations L(X) = 0. The unique solution will exist if and only

if the hosen variables are linearly independent when restrited to L

�1

(0), that is, if and

only if there are no linear relations in L involving only the hosen variables. Among the

found andidate solutions, the one with the largest

Q

N

i=1

PrfX

i

g is identi�ed as the most

likely solution.

However, it is likely that the limit probability distributions do not result in a vetorial

sequene lose to a sequene from L

�1

(0), with respet to the Hamming distane, and yet

the algorithm an be made suessful beause of the obtained limit probability distributions

being loser to a sequene from L

�1

(0) than the initial probability distributions. This an

possibly be ahieved by applying the salar reyling and/or resetting algorithms desribed

in Setions 3.2 and 3.3, respetively. They are espeially interesting if the linear funtions

from L involve only (bitwise) multipliation by onstants from F

2

. Then, for q = 2

m

, eah

linear funtion from L an be deomposed into m idential linear funtions over the binary

omponents of q-ary variables and the orresponding binary linear relations an be used for

reovering the omponent binary sequenes.

In this ase, it may also suÆe to apply a binary information set deoding algorithm

diretly to the 2

m

�1 linear ombination binary sequenes ! �X = (! �X

i

)

N

i=1

, for nonzero !.

Let Q

i

, 1 � i � N , be the limit probability distributions of the vetorial reyling algorithm.

We �rst �nd all i and all ! suh that j

i

(!) = Q

i

(!)j � a, for some high threshold suh as

a = 0:9. Then we produe a system of linear equations by making hard deisions on the

linear funtions ! �X

i

aording to the rule: if 

i

(!) � 0, then ! �X

i

= 0, and if 

i

(!) < 0,

then ! �X

i

= 1. The error-free information set deoding is then applied to this system.

3.2 Salar Reyling

Starting from some initial probability distributions Q

i

, 1 � i � N , possibly obtained as the

limit of the vetorial reyling algorithm, the objetive of the salar reyling algorithm is to

reover some of the 2

m

�1 binary sequenes !�X, for nonzero !. Eah of the binary sequenes

is treated individually by using the binary version of the vetorial reyling algorithm. More

7



preisely, the salar reyling algorithm starts from the orrelation (Walsh-Hadamard trans-

form) oeÆients 

i

(!) and then, for eah ! separately, keeps updating these orrelation

oeÆients, or the orresponding probabilities, by using the binary (q = 2) versions of (2),

(3), and (5). For eah !, the salar (binary) reyling algorithm is atually the same as

iterative probabilisti algorithm used in binary fast orrelation attaks (e.g., see [5℄). The

onvergene of the binary algorithm is muh faster than if q is relatively large.

In the ase of suess for a given !, the orresponding binary sequene satisfying all the

linear relations from L an then be reovered by taking hard deisions and by applying a

low-omplexity binary information set deoding algorithm. If the algorithm is suessful for

at least m linearly independent values of !, then the q-ary sequene is reovered diretly

by solving the orresponding linear equations. If the algorithm is suessful for at least one

value of !, then the initial probability distributions an be reomputed and the whole attak

(vetorial and salar) repeated, with more hanes on suess, to reover other ! �X and so

on until the whole vetorial sequene X is reonstruted.

3.3 Resetting

Let Q

i

, 1 � i � N , be the probability distributions obtained in some iteration of the

vetorial reyling algorithm. The resetting algorithm is applied to their Walsh-Hadamard

transforms in suh a way that the signs are preserved while the absolute values are reset to

the values orresponding to the initial probability distributions. Namely, Q

i

(!) is modi�ed

into signQ

i

(!) � jP

i

(!)j. If Q

i

(!) = 0, then the sign of P

i

(!) is taken instead.

A justi�ation for this de�nition of resetting is that the information about the signs of the

orrelation oeÆients, or, equivalently, about the hard deisions on the linear ombination

sequenes ! �X is muh more important than the absolute values themselves. In partiular,

suppose that all the signs are orret, that is, signQ

i

(!) = (�1)

!�X

�

i

, for some X

�

2 L

�1

(0).

In other words, suppose that the binary hard deisions diretly yield a solution. Then,

regardless of the absolute values, one an theoretially show that the binary (diret) reyling

algorithm onverges to ! �X

�

i

(e.g., see [5℄). We also experimentally found that the vetorial

reyling algorithm always onverged to X

�

, whih shows that the algorithm is sound.

The resetting algorithm an be applied to the limit probability distributions of the ve-

torial reyling algorithm, before starting the salar reyling algorithm. Experiments show

that better results an be obtained by the so-alled fast resetting when the resetting is

periodially performed after a spei�ed number of iterations during the vetorial reyling

algorithm. The same holds for the salar reyling algorithm.

3.4 Stopping Criteria

It is natural to expet that the updated probability distributions beome more and more

onentrated with every iteration of the vetorial reyling algorithm. This is on�rmed

by experiments whih show that the nonuniformity index I (9), averaged over the sequene

length, inreases with every iteration until the limit is reahed, espeially so if the algorithm

is suessful. So, the stopping riterion for the vetorial reyling algorithm is when I
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reahes 1 or when the ratio of the values of I in the urrent and the preeding iteration

drops below a threshold lose to 1, suh as 1.001, whih was used in the experiments. If

this ratio gets smaller than 1, then the output probability distributions are taken from the

preeding iteration. With fast resetting, I is omputed after eah update and after eah

resetting, but the algorithm an stop only after the update of probability distributions, not

after resetting. A spei�ed maximal number of iterations is needed as an additional stopping

riterion, espeially with fast resetting, when the onvergene is slower.

For the salar reyling algorithm, the onvergene is typially very fast, so that the

nonuniformity index stopping riterion is not very useful. If this algorithm is applied after

the vetorial reyling algorithm, then only the �nal stopping riterion is needed. For the

version with fast resetting, this is either a reahed maximal number of iterations (failure) or

when, for at least one !, the estimated orrelation oeÆient between the linear ombination

sequene reonstruted by hard deisions and a binary sequene satisfying all the linear

relations from L, is suÆiently high, say at least 0:9 (estimated suess). More preisely, the

algorithm is stopped if for 10 iterations the number of estimated suesses is not hanged.

For eah !, the orrelation oeÆient estimate an be obtained from the total number of

satis�ed linear relations. For example, if eah used linear relation involves exatly 3 terms,

then the estimate an be obtained as the ubi root of the relative di�erene between the

total number of satis�ed and unsatis�ed linear relations.

4 Appliation to Memoryless Combiners

A memoryless ombiner is a ommon type of keystream generators for stream iphers whih

onsists of a number of LFSR's whose output sequenes are symbol-wise transformed by a

nonlinear ombining funtion into the keystream sequene. For pratial reasons, we will

restrit ourselves to binary ombiners, in whih the LFSR sequenes are de�ned over F

2

.

One an then use the bitwise orrelation between the output sequene and linear om-

binations of input LFSR sequenes in order to reonstrut the initial states of the involved

LFSR's by applying the well-known binary (fast) orrelation attaks introdued in [12℄,

[9℄, and [13℄. An iterative probabilisti algorithm for this salar attak is explained in

Setion 3.2. The orrelation oeÆients between a ombining n-bit Boolean funtion f

and all linear n-bit funtions an be omputed in n2

n

steps by the fast Walsh-Hadamard

transform algorithm. Namely, use (6) with q = 2

n

and (�1)

f

=2

n

instead of P , to obtain

F(!) = 2

�n

P

x2F

n

2

(�1)

f(x)+!�x

. Here F(!) is the orrelation oeÆient between f(x) and

! � x. The required output sequene length and the omplexity of suh an attak mainly

depend on the absolute value(s) of the exploited orrelation oeÆient(s) and on the degrees

and numbers of low-weight polynomial multiples of the involved LFSR feedbak polynomials

whih de�ne the parity heks. (The weight of a polynomial is the number of its nonzero

oeÆients.)

The iterative probabilisti algorithms introdued in Setion 3 enable us to introdue

another, more general and more e�etive approah. In this, so-alled vetorial approah,

we utilize the symbol-wise orrelation between the output binary sequene and a subset

9



of m input binary LFSR sequenes as a whole. This subset is an m-dimensional vetorial

binary sequene, whih satis�es the linear reurrene de�ned by the least ommon multiple,

h, of the involved LFSR feedbak polynomials. Therefore, the vetorial sequene is a 2

m

-ary

sequene satisfying a binary linear reurrene, so that the probabilisti model from Setion

2.1 is appliable. The prior probability distributions of the orresponding 2

m

-ary random

variables are then de�ned as the onditional probability distributions PrfX

0

= xjf(X) = yg,

where X

0

is the orresponding m-dimensional subvetor of the n-dimensional binary vetor

X, and the output values y are obtained from a given output sequene. If m = n, then we

have

P (xjy) = PrfX = x j f(X) = yg =

1

jX

y

j

; x 2 X

y

= fx 2 F

n

2

jf(x) = yg; (10)

whose Walsh-Hadamard transform is given as P(!jy) =

P

x2X

y

(�1)

!�x

=jX

y

j. For ! 6= 0, we

further have P(!jy) = (�1)

y

(2

n�1

=jX

y

j)F(!). Note that F(0) = 2

�n

(jX

0

j � jX

1

j).

Aordingly, given a known segment (y

i

)

N

i=1

of the output sequene, the orresponding

prior probability distributions are P

i

(x) = P (xjy

i

), and their Walsh-Hadamard transforms

are then P

i

(!) = P(!jy

i

). In the �rst iteration of the vetorial reyling algorithm, the

posterior probability distributions

^

P

i

(x) are then given by (5), where, for a generi linear

relation l of the form X

i

=

P

w

j=1

X

i

j

, the probability distribution of X

l

i

=

P

w

j=1

X

i

j

is

determined by

PrfX

l

i

= xg =

1

2

n

0

�

1 + (�1)

w

1

2

w(n�1)

jX

0

j

w�w

1

jX

1

j

w

1

X

! 6=0

F(!)

w

(�1)

!�x

1

A

; (11)

where w

1

denotes the Hamming weight of (y

i

1

; � � � ; y

i

w

). If f is balaned, then jX

0

j = jX

1

j =

2

n�1

and F(0) = 0, so that (11) redues to

PrfX

l

i

= xg =

1

2

n

0

�

1 + (�1)

y

i

1

�����y

i

w

X

!2F

n

2

F(!)

w

(�1)

!�x

1

A

: (12)

The vetorial approah is more powerful than the salar approah, beause it simultane-

ously makes use of the total orrelation between the output sequene and a hosen subset of

input LFSR sequenes instead of using the orrelation to individual linear ombinations of

these sequenes separately. This means that for a given segment of the output sequene, the

vetorial orrelation attak may be able to reonstrut the initial states of the input LFSR's

in the ases when the salar orrelation attak is not suessful. The required output se-

quene length and the omplexity of the vetorial attak depend on the used onditional

probability distributions and on the degrees and numbers of low-weight polynomial multi-

ples of h, similarly as for the salar attak.

The most interesting ase is when m = n, that is, when the target of the attak are all

the input LFSR sequenes ombined. In this ase, the vetorial orrelation attak exploits

the full orrelation between the binary output and the n-dimensional binary input to a

given binary ombining funtion f . For balaned f , the nonuniformity index of the initial

10



probability distributions is then equal to 2

�(n�1)

. Given n, the suess of the attak is

therefore expeted to be less dependent on f itself. Both vetorial and salar attaks are

espeially e�etive if all the input LFSR's have the same feedbak polynomial, preferably of

low weight, beause the least ommon multiple polynomial h is then always equal to this

feedbak polynomial, regardless of the subset of inputs hosen. Nonlinear �lter generators

represent a ommon type of suh memoryless ombiners.

5 Experimental Results

The objetive of the experiments performed by omputer simulations was to hek the on-

vergene properties of the vetorial reyling algorithm (VRA) from Setion 3.1 and to

ompare the performane of an iterative probabilisti algorithm based on the VRA with the

performane of the salar reyling algorithm (SRA) from Setion 3.2.

For omparison purposes, the experiments were onduted on binary memoryless om-

biners onsisting of a variable number, n, of LFSR's with the same feedbak polynomial of

degree r and of �xed weight 3. We used balaned ombining funtions f with a ontrol-

lable range of the maximal absolute value, jj

max

, of the orrelation oeÆients to linear

funtions. The used parity heks, of weight 2, were obtained by repeatedly squaring the

LFSR feedbak polynomial. The output sequene length was of the form N = r2

j

, in whih

ase the average number of parity heks per input vetor is given as �

j

= 3(j � 1 + 2

�j

).

The performane of the attak for a �xed f then predominantly depends on the parameter

j, and not on r. Aordingly, to maximize the number of experiments, as the time and

spae omplexities of the onsidered algorithms linearly inrease with r, we piked r = 20.

Also, note that hoosing a larger weight of the LFSR feedbak polynomial would require a

larger N , whereas hoosing di�erent LFSR feedbak polynomials would generally require a

muh larger N , beause the parity heks should then be obtained from their least ommon

multiple, whih is unlikely to have weight 3 (e.g., by using the method from [4℄).

The hosen vetorial attak uses the total orrelation to all the input LFSR sequenes

ombined. It onsists of running the VRA until onvergene and then of running the SRA.

The salar attak onsists of running the SRA only. Both VRA and SRA use periodi fast

resetting after every 3 iterations, and the resetting is also applied after the VRA before

starting the SRA. The VRA is based on the modi�ed diret reyling, while the SRA uses

the diret reyling. The maximal number of iterations in both VRA and SRA was set to 99

in the experiments. For eah n, eah j, and a given range of jj

max

(low, medium, and high,

aording to Table 1), the experiment onsists �rst of randomly hoosing the ombining

funtion and the LFSR initial states and then of running the vetorial and salar attaks

separately. The number of experiments was 100 for n = 4; 5; 6 and 50 for n = 7. In this

setting, the advantage to be expeted from the vetorial attak over the salar attak is in the

improved initial probability distributions for the SRA. In fat, in many ases it also happens

that the VRA itself already reovers the original vetorial input sequene.

In eah experiment and for eah !, the measure of suess is the true orrelation oeÆient

between the linear ombination sequene ! �X reonstruted by hard deisions and the linear

11



n 4 5 6 7

2

n

jj

max

� 8, � 12 � 8, [12; 20℄, � 24 � 12, [16; 36℄, � 40 � 20, [24; 48℄, � 52

Table 1: Ranges of maximal absolute values of orrelation oeÆients.

ombination sequene ! �X

�

, where X

�

is the original vetorial input sequene. Reall that

the estimated orrelation oeÆient, omputed from the number of satis�ed parity heks, is

used for stopping the SRA. If for some ! both the orrelation oeÆients are at least 0:9, we

then say that a solution is found, beause ! �X

�

an then easily be reonstruted by a simple

error-free information set deoding algorithm. For eah experiment, the number of obtained

solutions is reorded and if this number is 1 or more, then the experiment is onsidered to be

suessful. The more the solutions, the easier the further reonstrution, and if the number

of the solutions, for linearly independent !, is n or larger, then the whole input sequene

an immediately be reonstruted. For a nonlinear �lter generator, as the LFSR sequenes

are phase shifts of eah other, only one solution is enough. The main obtained results are

summarized in Fig. 1 and Fig. 2.

Fig. 1 displays the suess rates of the vetorial and salar attaks as funtions of the

average number of parity heks per bit, �

j

, for n = 5; 6; 7 and for the low and medium

ranges of jj

max

. Similar results are obtained for n = 4. There is a onsiderable improvement

ahieved by the vetorial attaks. The main advantage is to be expeted for the low range of

jj

max

, beause the SRA is then less likely to be suessful, while the VRA an be suessful

as it exploits the ombined orrelation to all the linear ombinations of the input sequenes

simultaneously. For the high range of jj

max

, the di�erene between the vetorial and salar

attaks is less signi�ant as both the attaks approah the 100% suess rate faster. We

also performed a number of suessful vetorial attaks for n = 8, for the low range of jj

max

(2

n

jj

max

� 36), and for j � 7 (N � 2560).

In order to inrease the improvement for larger n, instead of a simple periodi fast reset-

ting with period 3, an adaptive fast resetting an be utilized for the VRA. Other optimiza-

tions of the vetorial attak inluding intertwined vetorial and salar reyling algorithms

may also be possible. An interesting observation regarding the SRA is that in many ases it

was suessful only after a relatively large number of iterations, namely, 50 or more, due to

the periodi fast resetting. In any ase, the fast resetting improved the performane of both

the VRA and SRA.

Fig. 2 shows the average number of solutions obtained by the vetorial attak as a

funtion of �

j

, for n = 5; 6; 7 and for low, medium, and high ranges of jj

max

. There is a

signi�ant improvement ahieved by the vetorial attaks, beause for the salar attaks,

this number is only 1 or very lose to 1 in all the ases. We observed that the number of

solutions may depend on the hosen parameters for the VRA, for example, on the period of

the fast resetting.
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Figure 1: Suess rates for vetorial and salar attaks for low and medium ranges of the

orrelation oeÆient, for n = 5; 6; 7.
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Figure 2: Average number of solutions for vetorial attak in ase of suess, for n = 5; 6; 7.

For salar attak, only the average value over j is presented, as it is very lose to 1.

6 Conlusion

The developed vetorial fast orrelation attaks are more powerful than the lassial salar

fast orrelation attaks beause they make use of the total orrelation between the output

sequene and a targeted subset of input LFSR sequenes in a memoryless ombiner. The

attaks are based on a novel iterative probabilisti algorithm whih utilizes the Fourier

transforms of the underlying onditional probability distributions. The new attaks, when

applied to all the input sequenes simultaneously, are less dependent on the ombining

funtion than the lassial attaks. Experiments show that, for a given set of parity heks

used, the vetorial approah an be suessful when the salar approah is not as well as that

the number of reonstruted linear ombinations of input sequenes is signi�antly larger.

In partiular, the vetorial attak an be suessful even for very short output sequenes.

Further algorithmi optimizations of the vetorial attak are possible. Another problem

interesting for future investigations is a theoretial analysis of the onditions for its suessful

onvergene, but is expeted to be very diÆult.

The vetorial fast orrelation attaks are also appliable to ombiners over arbitrary �nite

�elds or �nite rings of integers. These ombiners are suitable for software appliations and
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typially involve linear reurrenes ontaining a small number of terms whih makes the

attaks more e�etive.
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