
Design Principles for Iterated Hash Functions
e-print (September 29, 2004)

Stefan Lucks

University of Mannheim, Germany
http://th.informatik.uni-mannheim.de/people/lucks/

Abstract. This paper deals with the security of iterated hash functions
against generic attacks, such as, e.g., Joux’ multicollision attacks from
Crypto 04 [6]. The core idea is to increase the size of the internal state of
an n-bit hash function to w > n bit. Variations of this core idea allow the
use of a compression function with n output bits, even if the compression
function itself is based on a block cipher.

In a formal model, it is shown that these modifications quantifiably im-
prove the security of iterated hash functions against generic attacks.

Keywords: hash function, Joux attack, provable security, black-box model

1 Introduction

Recently, Joux [6] surprised the cryptographic community with a generic
multi-collision attack against iterated hash functions, able to find K-
Collisions in time O(log(K)∗2(n/2)), instead of time Ω(2(K−1)n/K), as we
would expect from an ideal hash function. This and other recent results
constitute a great deal of progress in hash function cryptanalysis. As
suggested in [11], it may be time for the cryptographic community to
design new and more secure hash algorithms. The current paper studies
improved hash function design principles.

A hash function H : {0, 1}∗ → {0, 1}n is used to compute an n-bit finger-
print from an arbitrarily-sized input. Informally, cryptographers require
a good hash function to behave like a random oracle. More formal secu-
rity requirements are, e.g., collision resistance and preimage resistance.
In practice, cryptographic hash functions for inputs of (almost) arbitrary
input sizes are realised by splitting the message into m-bit chunks and
iterating a compression function C : {0, 1}n × {0, 1}m → {0, 1}n.

In their landmark papers, Merkle and Damg̊ard [8, 3] showed that a col-
lision resistant compression function implies a collision resistant iterated
hash function. On the other hand, if the adversary is powerful enough
to find collisions (this takes time Ω(2n/2) for a random oracle), many
interesting attacks against iterated hash functions become possible, far
beyond plain collision-finding.

Using the abovely mentioned multi-collision attack as a tool, Joux [6]
shows that the (parallel) cascade of several hash functions is not as secure
as expected. In a similar spirit, Kelsey [7] describes additional attacks
against iterated hash functions. All these attacks are generic, i.e., are
applicable if we replace the compression function by some abstract oracle.

In the current paper, we propose and analyse modifications of the Merkle-
Damg̊ard design for iterated n-bit hash functions. The core idea is to use
more than n bit for the internal hash values. We formally prove that
these modifications improve security against generic attacks.

1.1 Notions and Abstractions

Iterated Hash Functions. Cryptographic hash functions take a mes-
sage M ∈ {0, 1}∗ of any length, to compute an n-bit output H(M).
(In practice, “any length” may be actually be bounded by some huge
constant, larger than any message we ever would want to hash.) For an
iterated hash, we split the message M into fixed-sized chunks M1, M2,
. . . , ML ∈ {0, 1}m, which gives the expanded message (M1, . . .ML). An
iterated hash H iterates an underlying “compression function” C, and the
final hash depends on C(C(. . . C(C(H0, M1), M2) . . .), ML), where H0 is
some constant “initial value”.

The one or two last chunks of the expanded message are padded, and the
last chunk ML may contain additional information, such as the length |M |
of the non-expanded message M . Thus, L ∈ {d|M |/me, d|M |/me+1}. In
any case, the message expansion is deterministic, and if the first mi bits
of two messages M and M ′ are identical, then M1 = M ′

1, . . . , Mi = M ′
i .

Random Oracles. A fixed-size random oracle is a function f : {0, 1}a →
{0, 1}b, chosen uniformly at random from the set of all such functions. For
interesting sizes a and b, it is infeasible to implement such a function, or
to store its truth table. Thus, we assume a public oracle which, given
x ∈ {0, 1}a, computes y = f(x) ∈ {0, 1}b.

2

A variably-sized random oracle is a random function g : {0, 1}∗ → {0, 1}b,
accessible by a public oracle. Equivalently, it can be viewed as an infinite
set of fixed-size random oracles, one oracle ga : {0, 1}a → {0, 1}b for each
a ∈

�
0.

We view a fixed-size random oracle as an ideal compression function, and
a variably-sized random oracle as an ideal hash function.

Shannon Cipher (ideal block cipher). A Shannon cipher is the in-
vertible counterpart of a random oracle. Consider a function E : {0, 1}n×
{0, 1}m → {0, 1}n, such that for each M ∈ {0, 1}m, the function E(·, M) =
EM (·) is a permutation, i.e., an inverse function E−1(·, M) exists. A
Shannon (block) cipher E is uniformly chosen at random from all such
functions. Again, we can’t implement a Shannon cipher, but we assume
a “Shannon oracle”: Given x and M , one can ask the oracle for y =
E(x, M), and, given y and M , one can ask the oracle for x = E−1(y, M).

Adversary. As usual in the context of the Shannon and random oracle
models, we consider a a computationally unbounded adversary with ac-
cess to some Shannon or random oracle. The adversaries “running time”
is determined by her number of oracle queries.

In the current paper, adversaries are probabilistic algorithms, and we
concentrate on the expected running time (i.e., the expected number of
oracle queries). We will describe the running time asymptotically, but
omit asymptotic notation when possible. In a formal context, though, we
are using the symbols O (“big-Oh”, for “the expected running time is
asymptotically at most”) and Ω (“big-Omega”, “the expected running
time is asymptotically not less than”). 1

1.2 Types of Attacks for Hash Functions

Informally, a real hash function H should behave like an ideal one (i.e.,
like a random oracle). This would not be useful for a formal definition,
though (see [2]). Instead, one considers somewhat simpler security goals.

Let a hash function H : {0, 1}∗ → {0, 1}n be given. Some “classical” types
of attack are

1 Recall f = O(g), if a constant c exists, such that for all large enough n f(n) ≤ cg(n)
holds. Similarly, f = Ω(g), if a constant c exists such that for all large enough n

f(n) ≥ cg(n).

3

Collision attack: Find two messages M 6= M ′ with H(M) = H(M ′).

Preimage attack: Given a random value Y ∈ {0, 1}n, find a message
M with H(M) = Y .

2nd preimage attack: Given a message M , find a message M ′ 6= M
with H(M) = H(M ′).

Additionally, the following natural extensions have been studied:

K-collision attack for K ≥ 2: Find K different messages M i, with
H(M1) = · · · = H(MK).

K-way (2nd) preimage attack for K ≥ 1: Given Y (or M with H(M) =
Y), find K different messages M i, with H(M i) = Y (and M i 6= M).

If the adversary is powerful enough, then the attacks are obviously pos-
sible. To measure the security of a hash function H, one compares the
resistance of H against these attacks with the amount of resistance, a
random oracle would provide:

Fact 1 Model H : {0, 1}∗ → {0, 1}n as a random oracle. Finding a K-
collision for H takes time Ω(2(K−1)n/K), and finding a K-way preimage
or a K-way 2nd preimage for H takes time Ω(K2n).

A part of our security analysis depends on idealised building blocks for
iterated hash functions. The above attacks against hash functions (i.e.,
variably-sized random oracles) generalise for compression functions (fixed-
size random oracles). The following two facts describe the basic security
properties of fixed-size random oracles against multiple collision and (2nd)
preimage attacks, and the security of an idealised block cipher, with fixed
plaintexts.

Fact 2 Model C : {0, 1}n+m → {0, 1}n as a random oracle. Finding a K-
collision for C takes time Ω(2(K−1)n/K), and finding a K-way preimage
or a K-way 2nd preimage for C takes time Ω(K2n).

Fact 3 Model E : {0, 1}n ×{0, 1}m → {0, 1}n as a Shannon oracle. Con-
sider a fixed random value S ∈ {0, 1}n. Regarding collision and (2nd)
preimage attacks, the function f : {0, 1}m → {0, 1}n, f(M) = EM (S)
behaves like a random oracle with m input and n output bits.

4

2 Weaknesses of Current Iterated Hashes

2.1 Iterated Hashing: the Merkle-Damg̊ard Hash

Recall that we have a fixed-size compression function C : {0, 1}n ×
{0, 1}m → {0, 1}n, and our goal is to implement a hash function H :
{0, 1}∗ → {0, 1}n. Given a (randomly chosen) fixed initial value H0 and
a message M ∈ {0, 1}∗, the Merkle-Damg̊ard (MD) hash H(M) is com-
puted as follows:

– Expand M to (M1, . . . , ML) ∈ {0, 1}mL.
MD strengthening: The last block ML takes the length |M | in bits.2

– For i in 1, . . . , L: compute Hi := C(Hi−1, Mi).

– Finally: set H(M) = HL.

H[0] H[1] H[2]

M[2]M[0]

CC
H[L]H[L−1]

M[L]

C

Fig. 1. The Merkle-Damg̊ard Hash

2.2 Length Extension

This is a well-known weakness of the MD hash (see e.g. [4, Section 6.3.1]):
given H = H(M), it is straightforward to compute M ′ and H ′, such that
H ′ = H(M ||M ′) – even for unknown M (but for known length |M |).
The attack is based on using H(M) as an internal hash for computing
H(M ||M ′).

2.3 Joux’ Attacks

At Crypto 04, Antoine Joux described an attack to find 2k-Collisions for
a MD hash H in time O(k2n/2), instead of Ω(2n(2k−1)/2k

):

2 Thus, if |M | 6= |M ′|, then ML 6= M ′

L′ .

5

– For i in 1 . . . , k: find a local collision M 0
i 6= M1

i with Hi = C(Hi−1, M
0
i) =

C(Hi−1, M
1
i). All the 2k messages (M0

1 , . . . , M0
k), (M0

1 , . . . , M0
k−1, M

1
k),

. . . , (M1
1 , . . . , M1

k) hash to the same value Hk.

Note that all messages are of the same (not too large) size of k blocks.

As Joux pointed out, this technique can be used to attack cascaded hash
functions. Let a hash H : {0, 1}∗ → {0, 1}n be defined as H(M) =
H(H1(M)||H2(M)) with two independent n-bit hashes H1 and H2. If
both H1 and H2 are independently defined as random oracles, then find-
ing collisions for H takes time 2n. If, however, either is constructed as
a MD hash, finding a collision for H only takes time O((n/2) ∗ 2n/2).
W.l.o.g., let H1 be the MD hash:

– Find 2(n/2)-collisions for H1 (in (n/2) ∗ 2n/2 units of time).
Statistically, one such collision also collides for H2 (and thus H).

Joux also demonstrated the applicability of the multi-collision attack as
a tool to find multiple (2nd) preimages very efficiently. Given a target
Y ∈ {0, 1}n, the attack proceeds as follows:

– Generate 2k colliding k-block messages M 1, . . . , M2k

with Hk =
H(M1) = · · · = H(M2k

).

– Find a message chunk Mk+1, such that C(Hk, Mk+1) = Y .

This provides a 2k-way preimage. The first step takes time k ∗2n/2, which
is marginal, compared to the second step. This takes about the time for
a single preimage attack, i.e., O(2n). For a 2nd preimage message attack
with the target message M , just set Y := H(M).

2.4 The Davies-Meyer Hash and Kelsey’s Attack

Joux’ attack is applicable for any compression function C. Often, com-
pression functions are designed according to the “Davies-Meyer” princi-
ple: given a block cipher like E, the function C is defined by

C(Hi−1, Mi) = EMi
(Hi−1) + Hi−1.

6

H[i]E

M[i]

H[i−1]

Fig. 2. The Davies-Meyer Construction

Here “+” is any group operation over {0, 1}n, and we write 0n for the
neutral element. EMi

is invertible for all Mi (like any n-bit block cipher).
This allows the adversary to compute (random) fixed points for C:

– Select a message Mi and compute Hi−1 := E−1
Mi

(0n).

This is a fixed point, since Hi = C(Hi−1, Mi) = EMi
(Hi−1) + Hi−1 =

0n + Hi−1. Finding such a fixed point takes one “decryption” E−1. Note
that the fixed point Hi−1 = Hi depends on the choice of Mi, but for any
Mi such a fixed point exists.

Let a message M be given, and let the expansion (M1, . . . , ML) of M be L
chunks long. Using the fixed point finder as a tool, Kelsey [7] describes an
algorithm to compute a 2nd preimage for M in time O(max{2n/2, 2n/L}).
In an extreme case, i.e., for T ≈ 2n/2, the entire attack asymptotically
takes time 2n/2 to compute a 2nd preimage – instead of time 2n, as would
be expected for a random oracle.

2.5 Security against Generic Attacks

The above attacks are generically applicable against a wide class of hash
functions. Joux’ attack is applicable against all MD hashes, and the com-
pression function C can be realised by a random oracle. Further, the
attack can be made to work even if the adversary only has oracle access
to the hash function H, but not to the compression function C. So Joux’
attack is generic in a very strong sense.

Kelsey’s attack requires the compression function C(H, M) = EM (H)+H
to be a Davies-Meyer compression function. 3 In contrast to Joux’ attack,
Kelsey’s would not work with oracle access to H only – the adversary
needs oracle access to E−1. But Kelsey’s attack is still generic, since it

3 In [7], Kelsey generalises this to some other constructions.

7

does not assume any specific weakness for E – E can be as strong as a
Shannon cipher.

The target of the current paper is a modified MD design for hash func-
tions, provably secure against all generic attacks, including, but not lim-
ited to Joux’ and Kelsey’s.

3 The Wide-Pipe Hash: A Modified MD Hash

Since both Joux’ and Kelsey’s attacks are based on finding internal colli-
sions, it appears to be an obvious idea to “widen” the internal pipe from
n bit to w > n bit to improve protection against finding internal colli-
sions.4 Let H0 ∈ {0, 1}w be a (randomly chosen) initial value. Using two
compression functions

– C ′ : {0, 1}w × {0, 1}m → {0, 1}w and
– C ′′ : {0, 1}w → {0, 1}n,

we compute the wide-pipe iterated hash H:

– For i in 1, . . . , L: compute Hi := C ′(Hi−1, Mi).
– Finally: set H(M) = C ′′(HL).

We call HL the “intermediate hash”.

H[1]

M[2]

C’C’

H[2]

M[0]

H[L]

M[L]

C’’C’

H[L−1]H[0]

Fig. 3. The Wide-Pipe Hash

3.1 K-Collision Attacks

As an upper bound on the security of H, observe that Joux’ attack finds
2k-collisions in time min{k ∗ 2w, 2n(2k−1)/2k

}. As it turns out, this bound

4 This has independently been proposed by Finney in a mailing list [5].

8

is tight, up to the (logarithmic) factor k. If we write T ′ for the time to
find an internal collision, i.e., a collision for C ′, and T ′′(K) for the time to
find a K-collision for C ′′, we get the following lower bound on the security
of H:

Lemma 4 Finding a K-collision for the wide-pipe iterated hash H re-
quires at least time Ω(min{T ′, T ′′(K)}).

Proof. Consider a collision M 6= N with H(M) = H(N). M and N are
expanded to sequences (M1, . . . , ML) 6= (N1, . . . , NL′). Denote HM

i and
HN

j for the internal hash values when computing H(M) and H(N). We
distinguish three different types of collisions:

Final collision: HM
L 6= HN

L′ , and C ′′(HM
L) = C ′′(HN

L′).
Different length: L 6= L′ implies ML 6= NL′ (cf. Footnote 2). Thus,

either HM
L = HN

L′ implies an internal collision (see below), or HM
L 6=

HN
L′ , implies a final collision (see above).

Internal collision: (HM
L , ML) = (HN

L′ , NL′), and thus L = L′. Since
(M1, . . . , ML) 6= (N1, . . . , NL′), there exists a collision for C ′, i.e., val-
ues (HM

i , Mi) 6= (HN
i , Ni) with C ′(HM

i , Mi) = C ′(HN
i , Ni).

A K-collision for H reduces to either a K-collision for the final compres-
sion function C ′′, or to at least one (“internal”) collision for C ′. ut

As an immediate consequence, we get the following theorem.

Theorem 5. If we model the compression functions C ′ and C ′′ as in-
dependent random oracles, finding K-collisions for the wide-pipe iterated
hash H takes time Ω(min{2w/2, 2n(K−1)/K}).

To ensure that H is (asymptotically) as secure against multi-collision
attacks as an ideal hash, w ≥ 2n is thus sufficient in the random oracle
model.

3.2 K-way (2nd) Preimage Attacks

Joux (2nd) preimage attack also works for the wide-pipe hash. Finding
2k-way (2nd) preimages takes time O(k ∗ 2w/2 + 2n). As will be shown

9

below, this bound is tight, except for the (logarithmic) factor k. Let T ′

denote the time to find a collision for C ′ (as in the previous section) and
P ′′(K) the time to find a K-way preimage for C ′′. Our lower bound on
the security of H is now:

Lemma 6 Consider the wide-pipe hash H:

1. Finding a single preimage for H takes time Ω(P ′′(1)).
2. Finding K-way preimages for H takes time Ω(min{T ′, P ′′(K)}).

Proof. First bound: observe that finding a preimage for H (some M with
H(M) = Y) implies finding a preimage HL for C ′′, since C ′′(HL) = Y .

Second bound: finding K different preimages M 1, . . . , MK for H either
implies finding at least one collision for C ′, or implies finding K different
inputs H1

L1 , . . .HK
LK with C ′′(H1

L1) = · · · = C ′′(HK
LK) = Y , i.e., a K-way

preimage for C ′′. ut

Why don’t we prove the security of H against (multiple) 2nd preimage
attacks, similarly to the second bound? A 2nd preimage attack against
C ′′ means that, given X ∈ {0, 1}w, the adversary has to find X ′ ∈ {0, 1}w

with X ′ 6= X and C ′′(X) = C ′′(X ′). To reproduce the reduction from the
2nd bound of the above proof, we would have to find a message M with
HL = X for the intermediate hash HL of M . This is (or should be) hard.
In the random oracle model, a little trick allows us to show that finding
2nd preimages is as infeasible as finding plain preimages.

Theorem 7. Consider the wide-pipe hash function H. If we model the
compression functions C ′ and C ′′ as independent random oracles, then

– finding a single preimage takes time Ω(2n),
– finding a K-way preimage takes time Ω(min{2w/2, K2n}), and
– finding a K-way 2nd preimage takes time Ω(min{2w/2, K2n}), as well.

Proof. The first two bounds are direct consequences of Lemma 6 For the
thrird bound, we choose an arbitrary message M with the expansion M1,
. . . , ML, query the C ′-oracle for the internal hash values H1, . . . , HL,
and define

C ′′′ : {0, 1}w → {0, 1}n :

C ′′′(HL) = C ′′(X),
C ′′′(X) = C ′′(HL),
C ′′′(Z) = C ′′(Z) if Z 6∈ {X, HL}.

10

Note that if X = HL, then C ′′ = C ′′′. Now we run the adversary to find
single or multiple 2nd preimages for M , replacing C ′′ by C ′′′. Observe that
X is a random value, and, since C ′ is a random oracle, HL is random,
too. Thus, C ′′′ is uniformly distributed random function, just like C ′′ – the
adversary can’t distinguish between C ′′ and C ′′′. Our little manipulation
(replacing C ′′ by C ′′′ for the adversary) does not affect her probability
of success or running time. We write H ′′′ for the wide-pipe hash function
using C ′ and C ′′′.

If the adversary succeeds, she finds 2nd preimage(s) M i with H ′′′(M) =
H ′′′(M i). Consider the corresponding inputs H i

Li for C ′′′. If H i
Li = HL,

we have found a collision for C ′. Else, H i
Li is a 2nd preimage for C ′′. ut

Note that increasing w improves the security of H against multiple (2nd)
preimage attacks, but an unlimited adversary can always benefit from
the structure of any iterated hash by applying Joux’ multiple preimage
attack.

4 The Double-Pipe Hash (Two Twined Pipes)

The wide-pipe design in Section 3 suffers from one serious drawback: To
achieve the amount of security an n-bit hash function should have, we
need an internal building block with an extremely high level of security.
Namely, any collision attack for the w-bit compression function C ′′ has
to take at least time 2n (w ≥ 2n is necessary, but not sufficient).

Can we design iterated hashes and prove their security without making
the assumption that some internal building block is much stronger than
the hash function itself? 5

Using one single narrow-pipe compression function

– C : {0, 1}n × {0, 1}n+m → {0, 1}n,

with m ≥ n and three distinct (random) initial values H ′
0, H

′′
0 , H∗ ∈

{0, 1}w, we compute the double-pipe hash H:

– For i in 1, . . . , L: compute

5 E.g., if we assume the internal compression function of SHA1 to be as secure as we
would expect from a 160-bit compression function, can we show that some “double-
pipe” SHA1 significantly improves on the security of “normal” SHA1?

11

• H ′
i := C(H ′

i−1, H
′′
i−1||Mi) and

• H ′′
i := C(H ′′

i−1, H
′
i−1||Mi)

– Finally: set H(M) = C(H∗, H ′
L||H

′′
L||0

m−n).

H’[L−1]

H’’[2]H’’[0]

H’[L]H’[2]

H’’[1]

HashH*

M[1]

H’’[L−1] H’’[L]

H’[1]H’[0]

M[2] M[L]

Fig. 4. The Double-Pipe Hash

4.1 K-Collision Attacks

Similarly to the wide-pipe design, we distinguish internal collisions (cor-
responding to collisions for C ′) and final collisions (corresponding to C ′′):

Final collision: (H ′, H ′′) 6= (G′, G′′) with

C(H∗, H ′||H ′′||0m−n) = C(H∗, G′||G′′||0m−n)).

Internal collision: (H ′, H ′′, M) 6= (G′, G′′, N) with

C(H ′′, H ′||M) = C(G′′, G′||N) and C(H ′, H ′′||M) = C(G′, G′′||N).

The improved security of the wide-pipe hash over the plain MD hash
depends on internal collision resistance being much stronger than final
collision resistance. Unfortunately, this reasoning does not hold for the
double-pipe construction. Finding internal collisions with H ′ = H ′′ and
G′ = G′′ may be as “easy” as finding collisions for C, i.e., as finding
final collisions. To deal with this, we define two special cases of internal
collisions:

Strict internal collision: internal collision with

H ′ 6= H ′′ and G′ 6= G′′.

12

Internal cross collision: H ′
i−1 6= H ′′

i−1, Mi with

C(H ′
i−1, H

′′
i−1||Mi) = H ′

i = H ′′
i = C(H ′′

i−1, H
′
i−1||Mi).

Write Ts for the time to find a strict internal collision, Tx for an internal
cross collision, and T (K) for the time to find a final K-collision.

Lemma 8 Consider the double-pipe iterated hash H:

1. Any internal collision either reduces to a strict or to a cross collision.
2. Finding a K-collision requires time Ω(min{Ts, Tx, T (K)}).

Proof. For the first claim, observe that the initial values H ′
0 and H ′′

0 are
different. Any non-strict internal collision implies a triple (H ′

i−1, H ′′
i−1,

Mi) with H ′
i−1 = H ′′

i−1. This implies the existence of a cross-colliding
triple (H ′

j , H ′′
j , Mj+1), with j ≤ i − 2, H ′

j 6= H ′′
j , and

H ′
j+1 = C(H ′

j , H
′′
j ||Mj+1) = C(H ′′

j , H ′
j ||Mj+1) = H ′′

j+1.

For the second claim, we argue similarly to the proof of Lemma 4. A
K-collision for H reduces to either a final K-collision (which takes time
T (K)), or to an internal collision. Due to the first claim, an internal
collision is either strict (and needs time Ts), or is a cross collision (time
Tx). ut

Theorem 9. Consider the double-pipe hash H. If we model the compres-
sion function C as a random oracle, then

1. Tx = Ω(2n), Ts = Ω(2n), and
2. finding K-collisions for H takes time Ω(2n(K−1)/K).

Proof. Consider finding internal cross collisions. Each time we choose
H ′ 6= H ′′ and M , there is a 2−n-chance for a collision C(H ′, H ′′||M) =
C(H ′′, H ′||M). Thus, a cross collision needs Ω(2n) oracle queries, i.e.,
Tx = Ω(2n).

Now consider finding strict internal collisions. For any triple (G′, G′′, M)
with G′ 6= G′′, the pair (H ′, H ′′) ∈ {0, 1}2n with

H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M)

13

is a uniformly distributed 2n-bit random value, independently from all
the other C(·)-values. If the adversary chooses q such triples (G′, G′′, M)
and makes q queries to the C-oracle, then her probability of success is
∑

0≤j<q j/22n = Ω(q2/22n). Again, we expect to make q = Ω(2n) oracle
queries, before the first strict internal collision. Hence, Ts = Ω(2n).

The second claim follows from the first claim, Lemma 8, and Fact 2. ut

4.2 K-way (2nd) Preimage Attacks

Our treatment of K-way preimage and 2nd preimage attacks is quite
similar to Section 3.2. Recall the notions of strict internal collisions and
internal cross collisions. Finding such collisions requires time Ts for strict
and time Tx for cross collisions. Write P (K) for the time to find a preim-
age for C. Very similar to Section 4.2 we get the following results:

Lemma 10 Consider the double-pipe hash H:

1. Finding a single preimage for H takes time Ω(P (1)).
2. Finding K-way preimages for H takes time Ω(min{Ts, Tx, P (K)}).

Proof. First claim: See proof of Lemma 6. Second claim: Follows from
claim 1 of Lemma 8. ut

Theorem 11. Consider the double-pipe hash function H. If we model
the compression functions C as a random oracle, then finding a single or
K-way preimage or a single or K-way 2nd preimage takes time Ω(2n).

The proof of Theorem 11 is straightforward and omitted here. The result
may appear rather unimpressive – but it is tight, except for the factor
k = log(K). Joux’ preimage attack allows to find 2k-way preimages in
time Ω(k2n).

5 Double-Pipe Hash with Davies-Meyer (DM)

So far, we did treat the compression function like a random oracle (with
fixed input size). For most practical hash functions, the compression func-
tion is, by itself, based on some block cipher-like building block, often ac-
cording to the DM construction. This provides the adversary with some

14

additional handles. If we use such a compression function for the Double-
Pipe Hash (as motivated in Footnote 5), we must re-examine the security
of the double-pipe hash.

In this section, we consider the double-pipe hash H, using a DM-based
compression function

C : {0, 1}n × {0, 1}m → {0, 1}n, C(Hi−1, Ei) = EMi
(Hi−1) + Hi−1.

For each M ∈ {0, 1}m, the function EM is a permutation over {0, 1}n.

5.1 Conventions

For our formal treatment, we consider an adversary A with access to a
Shannon oracle for E and E−1. Similarly to [1], we assume:

– The adversary A never asks a query in which the response is already
known. Namely, if A asks for Ek(x) and receives y, she neither asks for
E−1

k (y), nor for Ek(x) again. Similarly, if she has asked for for E−1
k (y)

and received x.
– Recall that for the type of attacks we consider, a successful adversary

always outputs one or more messages M i, which either collide or con-
stitute some (2nd) preimages. Before finishing, the adversary makes
all the oracle calls to compute all hash values H(M i).

– We define a simulator, to respond to A’s oracle queries:
• Initially:

∗ set i := 0; clear the logbook;
∗ for all (k, x): mark Ek(x) as undefined;

• Responding to an oracle query Ek(x):
∗ set i := i + 1
∗ randomly choose y from range(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond y;

• Responding to an oracle query E−1
k (y):

∗ set i := i + 1
∗ randomly choose x from domain(Ek)
∗ append (xi, ki, yi) := (x, k, y) to the logbook;
∗ respond x;

Here, domain(Ek) is the set of points x where Ek(x) is still unde-
fined. Similarly, range(Ek) is the set of points y where E−1

k (y) is still
undefined.
For our proofs, we will discuss the logbook entries (xi, ki, yi).

15

This is without loss of generality: any adversary not following the first
two conventions can easily be transformed into an equivalent one fol-
lowing them. And an adversary following the first two conventions can’t
distinguish the simulator from a “true” random oracle.

5.2 Internal Collisions

Note that Lemma 8 is still valid in the current context. Recall the defini-
tions of Ts and Tx .

Theorem 12. Consider the DM-based double-pipe hash H. If we model
E by a Shannon oracle, then Tx = Ω(2n) and Ts = Ω(2n).

Proof. For the proof, we assume that the adversary does not make more
than q ≤ 2n−1 queries. This is technically correct, since 2n−1 = Ω(2n).

Time Tx to find internal cross collisions: a cross collision is described by
H ′

i−1 6= H ′′
i−1, Mi with

C(H ′
i−1, H

′′
i−1||Mi) = H ′

i = H ′′
i = C(H ′′

i−1, H
′
i−1||Mi). (1)

In time q, we can check at most q/2 such triples (H ′
i−1, H ′′

i−1, Mi) for
cross collisions. Now we argue that for q ≤ 2n−1, for each such triple the
probability px to satisfy Equation 1 is at most 1/2n−1. This implies that
the expected number of oracle queries we need to make before we get the
first cross collision is Tx = Ω(2n), as claimed.

We still have to show px ≤ 2n−1. Observe that if the adversary’s answer
involves a cross collision, then, by the above conventions, the simulator’s
logbook contains two triples (xa, ka, ya) and (xb, kb, yb) with a 6= b,

xa = H ′
i−1, ka = (H ′′

i−1||Mi), ya = Eka
(xa),

xb = H ′′
i−1, kb = (H ′

i−1||Mi), and yb = Ekb
(xb).

Thus, we can rewrite Equation 1 by

ya

︷ ︸︸ ︷

Eka
(xa) +xa =

yb

︷ ︸︸ ︷

Ekb
(xb) +xb,

which corresponds to
ya + xa = yb + xb. (2)

If (w.l.o.g.) a < b, then either yb or xb is a uniformly distributed random
value from a huge subset of {0, 1}n:

16

– If the b-th oracle query has been Ekb
(xb), then yb is a random value

from range(Ekb
).

– Else xb is a random value from domain(Ekb
).

Since |range(Ekb
)| = |domain(Ekb

)| = 2n − b + 1 ≥ 2n − q, and due to
q ≤ 2n−1, we get px ≤ 1/2n−1, as claimed.

Time Ts to find strict internal collisions: for triples (G′, G′′, M) with H ′ 6=
H ′′, we consider pairs (H ′, H ′′) ∈ {0, 1}2n, where

H ′ = C(G′, G′′||M) and H ′′ = C(G′′, G′||M). (3)

A strict internal collision are two different triples, where the corresponding
H ′ and H ′′ values both collide. When making q oracle queries, there are
Ω(q2) such pairs. We claim that for q ≤ 2n−1, the probability ps to
satisfy Equation 3 is ps ≤ 1/22(n−1). Hence, the expected number of
oracle queries to get a strict collision is Ts = Ω(2n).

It remains to prove ps ≤ 1/22(n−1). Consider a triple (xa, ka, ya) with
xa = G′, ka = (G′′||M), and ya = Eka

(xa) from the simulator’s logfile.
We only have a chance for a strict collision, if the logfile contains another
triple (xb, kb, yb) with xb = G′′, kb = (G′||M), and yb = Ekb

(xb). Note
that xb and kb are uniquely determined by xa and ka, and vice versa.
Equation 3 can then be rewritten as

H ′ = Eka
(xa) + xa = ya + xa and H ′′ = Ekb

(xb) + xb = yb + xb.

A strict collision implies the adversary to handle a colliding triple (F ′, F ′′, N),
i.e., H ′ = C(F ′, F ′′||N) and H ′′ = C(F ′′, F ′||N). This information cor-
responds to two more triples (xc, kc, yc) and (xd, kd, yd) on the server’s
logfile with

H ′ = ya + xa = yc + xc (4)

H ′′ = yb + xb = yd + xd. (5)

Each of these two equations is of the same type as Equation 2. As in
that context, we argue that due to q ≤ 2n−1 the probability for Eq. 4 to
hold is no more than 1/2n−1; similarly for Eq. 5. More importantly, the
conditional probability to satisfy Eq. 5, assuming Eq. 4 is at most 1/2n−1.
Thus, the joint probability ps for both Eq. 4 and Eq. 5 is ps ≤ 1/22(n−1).

ut

17

5.3 K-Collisions

Theorem 13. Consider the DM-based double-pipe hash H. If we model
E by a Shannon oracle, then finding K-collisions for H takes time Ω(2n(K−1)/K).

Proof. Due to the first claim of Lemma 8 and Theorem 12, we know that
an internal collision would take time Ω(2n). Thus, in time Ω(2(n−1)(K−1)/K)
we don’t find any such collision. In order to find a K-collision faster
than in time Ω(2n), we must find a final K-collision. In the remainder
of this proof, we will show that finding a final K-collision takes time
Ω(2n(K−1)/K).

A final K-collision consists of K different pairs (Gi, H i) ∈ ({0, 1}n)2 with

C(H∗, G1||H1||0m−n) = · · · = C(H∗, GK ||HK ||0m−n).

Hence, after a possible permutation of triples, we have to find K triples
(H∗, k1, y1), . . . , (H∗, kK , yK) in the simulator’s logbook with different ki

but
y1

︷ ︸︸ ︷

Ek1
(H∗) +H∗ = · · · =

yK

︷ ︸︸ ︷

EkK
(H∗) +H∗,

or equivalently
y1

︷ ︸︸ ︷

Ek1
(H∗) = · · · =

yK

︷ ︸︸ ︷

EkK
(H∗) .

By fixing the input H∗ for E, we turn the Shannon-oracle into an ordinary
random oracle, see Fact 2. According to Fact 2, finding a K-collision takes
time Ω(2(K−1)n/K). ut

5.4 K-way (2nd) Preimages

Theorem 14. Consider the DM-based double-pipe hash H. If we model
E by a Shannon oracle, then finding a single or K-way preimage or a
single or K-way 2nd preimage takes time Ω(2n).

Proof. Finding K-way (2nd) preimages isn’t faster than finding single
(2nd) preimages. Thus, we concentrate on single ones. Due to Lemma 10,
finding a single preimage for H takes time Ω(P (1)). P (1) = Ω(2n) follows
from Facts 3 and 2.

18

Now assume an algorithm exists to find 2nd preimages for H. Con-
sider we are given X ∈ {0, 1}n+m, and searching for some 2nd preim-
age key Y 6= X with EY (H∗) = EX(H∗) for E. The proof is quite
similarly to the proof of Theorem 7. We choose some message M and
compute the internal hashes H ′

1, H ′′
1 , . . . , H ′

L, . . . , H ′′
L. Assume X 6∈

{(H ′
i||H

′′
i ||Mi), (H

′′
i ||H

′
i||Mi) | 1 ≤ i ≤ L} (this holds with overwhelming

probability). Set HL := (H ′
L||H

′′
L||0

n−m). We define the function

E′ : {0, 1}n → {0, 1}n+m → {0, 1}n :

E′
X(·) = EHL

(·)
E′

HL
(·) = EX(·)

E′
Z(·) = EZ(·) for Z 6∈ {X, HL}

Now we run the adversary, replacing the (Shannon-) oracle for E and
E−1 by an oracle for E ′ and its inverse. Both E and E ′ are random
permutations over {0, 1}n. If the adversary succeeds in finding a 2nd
preimage for M , she either has found an internal collision (which would
take time Ω(2n)), or Y := HL 6= X is a solution to the 2nd preimage
problem for E. By Facts 2 and 3, this would take time Ω(2n). In any
case, finding a 2nd preimage for M reduces to solving a problem we know
to take time Ω(2n). ut

6 Discussion

6.1 Lessons to be Learned

The main lecture from [6, 7] and the current paper is that the size w of the
internal hash values is a security parameter of its own right, with w ≥ n,
but otherwise independent from the final hash size n.

Any security architect, choosing a cryptographic hash, should choose both
w and n according to her specific security requirements (also considering,
of course, efficiency concerns, compatibility issues, . . .). For some appli-
cations, the Merkle-Damg̊ard setting with w = n may be appropriate,
while others may require w > n.

The design of hash functions is not only about appropriate choices of the
security parameters w and n, though. If n is sufficiently large to prohibit
all attacks with 2n/2 running time, then w = n (i.e., the plain MD design)
appears to be fine. But assume a feasible collision attack. This implies a
cryptanalytic weakness in the compression function, namely a feasible at-
tack A against the underlying compression function. Assume there is no

19

variant of A to feasibly find multi-collisions. Nevertheless, Joux’ attack
allows to feasibly find large multi-collisions for the plain MD hash. I.e.,
finding 2k-collisions takes time k ∗ time(A). Observe that the speed-up
over attacking an ideal hash quickly grows with k. If we use the same com-
pression for a double-pipe hash, the failure of the compression function
would be less catastrophic. The speed-up for finding K-collisions for the
double-pipe hash (in comparison to an ideal hash) would be 2n/2/time(A).
This does not depend on K at all.

Note that the hash functions proposed here do not suffer from the straight-
forward length extension attack, in contrast to the plain MD hash.

6.2 Examples

As a concrete example, consider an AES-based MD hash Hmd
aes

, using the
AES block cipher in Davies-Meyer mode. Since the AES block size is 128
bit, Hmd

aes
is a 128-bit hash. For applications which do not require collision

resistance, it may be fine to use a 128-bit hash. But resistance against
multi-collision attacks or 2nd preimage attacks could be a concern for
these applications – and from Joux’ and Kelsey’s attacks, we know that
Hmd

aes
is much less resistant against these attacks than we would expect

from a 128-bit hash. For a reasonably funded and motivated adversary,
it is possible to find, say, a 216-collision for Hmd

aes
.

In contrast to Hmd
aes

, its double-pipe counterpart provides a greatly im-
proved protection against these attacks (assuming the AES does not suf-
fer from some still unknown cryptanalytic weaknesses). Even finding a
3-collision for a double-pipe 128-bit hash would take more than 280 units
of running time and therefor seems to be infeasible, today.

Interestingly, two of the five hash functions from the SHA standard [9],
namely SHA-224 and SHA-348, have already been designed according
to this paper’s “wide-pipe” paradigm, see Table 1. This may have been
motivated by the intention to re-use compression functions,6 but one could
as well imagine the immediate truncation of the internal hash values after
each iteration. In the light of this paper, the designers of SHA-224 and
SHA-348 did choose well.

6 SHA-224 uses the compression function from SHA-256, and SHA-384 uses the com-
pression function from SHA-512.

20

n w

SHA-1 160 160
SHA-224 224 256
SHA-256 256 256
SHA-384 384 512
SHA-512 512 512

Table 1. SHA standard hash functions: final hash size n and internal hash size w [9].

6.3 Cascading

The idea to improve the security of hash functions by cascading has been
discussed for a long time, see, e.g., [10]. Cascading looks like an obvious
technique to improve the security of hash functions – but due to Joux’
attack, cascading iterated hash functions is not such useful. On the other
hand, the double-pipe construction can be seen as a cascade of compres-
sion functions. As our results indicate, cascading compression functions
can greatly improve the security. Indeed, one could extend the double-
pipe hash and define some “t-tuple hash”, to provide improved resistance
against K-way (2nd) preimage attacks.

Thus, in the context of cascading and iterated hash functions, we argue
that cascading compression function(s) is more desirable than cascading
hash function(s).

6.4 Summary

In the current paper, we took a rather abstract and proof-centric look at
the design of hash functions. Similarly to others, the current author con-
siders this style a “feasible and useful step for understanding the security”
[1] of iterated hash functions, thereby complementing the attack-centric
approach [6, 7], though not replacing it.

Given “good” compression functions, this paper shows how to compose
“good” hashes. Though the random oracle model is quite useless to de-
fine what it means to be a “good” compression function [2], our lemmas
provide some specific requirements for the compression functions.

Acknowledgement

The author thanks Frederik Armknecht and John Kelsey.

21

References

1. Black, Rogaway, Shrimpton. Black-box analysis of the block-cipher based hash-
function construction from PGV. Crypto 02.

2. R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited. 30th
STOC 1998, pp. 209–218.

3. I. Damg̊ard. A design principle for hash functions. Crypto 89, LNCS 435, pp. 416–
427.

4. N. Ferguson, B. Schneier. Practical Cryptography. Wiley Publishing, 2003.
5. H. Finney. More problems with hash functions. The cryptography mailing list. 24

Aug 2004. http://lists.virus.org/cryptography-0408/msg00124.html
6. A. Joux. Multicollisions in iterated hash functions, application to cascaded con-

structions. Crypto 04, LNCS 3152, pp. 306–316.
7. J. Kelsey. A long-message attack on SHAx, MDx, Tiger, N-Hash, Whirlpool, and

Snefru. Draft. Unpublished Manuscript.
8. R. Merkle. One-way hash functions and DES. Crypto 89, LNCS 435, pp. 428–446.
9. National Institute of Standards and Technology (NIST). Secure hash standard. FIPS

180-2. August 2002.
10. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.
11. B. Schneier. Cryptanalysis of MD5 and SHA. Crypto-Gram Newsletter, September

2004. http://www.schneier.com/crypto-gram-0409.html#3

22

