
A Complete Divisor Class Halving Algorithm for

Hyperelliptic Curve Cryptosystems of Genus Two

Izuru Kitamura1, Masanobu Katagi1, and Tsuyoshi Takagi ⋆2

1 Sony Corporation, 6-7-35 Kitashinagawa Shinagawa-ku, Tokyo, 141-0001 Japan
{Izuru.Kitamura, Masanobu.Katagi}@jp.sony.com

2 Future University - Hakodate, 116-2 Kamedanakano-cho Hakodate, 041-8655, Japan
takagi@fun.ac.jp

Abstract. We deal with a divisor class halving algorithm on hyperelliptic
curve cryptosystems (HECC), which can be used for scalar multiplication,
instead of a doubling algorithm. It is not obvious how to construct a halving
algorithm, due to the complicated addition formula of hyperelliptic curves. In
this paper, we propose the first halving algorithm used for HECC of genus
2, which is as efficient as the previously known doubling algorithm. From the
explicit formula of the doubling algorithm, we can generate some equations
whose common solutions contain the halved value. From these equations we
derive four specific equations and show an algorithm that selects the proper
halved value using two trace computations in the worst case. If a base point
is fixed, we can reduce these extra field operations by using a pre-computed
table which shows the correct halving divisor class — the improvement over the
previously known fastest doubling algorithm is up to about 10%. This halving
algorithm is applicable to DSA and DH scheme based on HECC. Finally, we
present the divisor class halving algorithms for not only the most frequent case
but also other exceptional cases.

Keywords. hyperelliptic curve cryptosystems, scalar multiplication, divisor
class halving, efficient computation

1 Introduction

We know from recent research that hyperelliptic curve cryptosystems (HECC) of
small genus are competing with elliptic curve cryptosystems (ECC) [Ava04,Lan02a-c,
PWG+03]. With an eye to further improvement of HECC we utilize its abundant al-
gebraic structure to make HECC faster in scalar multiplication than ECC. Lange and
Duquesne independently showed that Montgomery scalar multiplication is applicable
to HECC [Lan04a,Duq04]. We expect other fast algorithms used for ECC can also be
efficiently implemented in HECC.

⋆ This work was carried out when the author was in Technische Universität Darmstadt,
Fachbereich Informatik, Hochschulstr.10, D-64289 Darmstadt, Germany



A point halving algorithm is one of the effective algorithms on ECC and the al-
gorithm tries to find a point P such that 2P = Q for a given point Q. Knudsen and
Schroeppel independently proposed a point halving algorithm for ECC over binary
fields F2n [Knu99,Sch00]. Their algorithm is faster than a doubling algorithm. More-
over, there has been growing consideration of the point halving algorithm, showing, for
instance, a fast implementation [FHL+03], an application for Koblitz curve [ACF04],
and an improvement of curves with cofactor 4 [KR04]. The explicit doubling formula
of HECC (denote by HECDBL) is more complicated than that of ECC. It is not
obvious how the algorithm of Knudsen and Schroeppel can extend to HECC.

In this paper, we propose a divisor class halving algorithm applied to HECC with
genus 2 over binary fields. Let D = (U, V ) be a reduced divisor, where U = x2 +u1x+
u0 and V = v1x+v0. The doubled divisor class 2D can be represented as polynomials
over F2n with coefficients u1, u0, v1, v0 s and curve parameters y2 + h(x)y = f(x).
We report two crucial quadratic equations which compute some candidates of the
halved values. These equations are derived from the property: an equation of degree
6 appeared in the doubling algorithm can be divided by x4 +u2

1x
2 +u2

0. We also show
a criterion and an algorithm selecting the correct divisor class from two candidates.
The correct divisor class can be efficiently found if the polynomial h(x) is irreducible.
In order to select the correct halved value, we perform some test calculations, and
notice that the number of operations can be reduced if the correct halving value is
first found. We developed a divisor class halving algorithm used for not only the most
frequent case but also exceptional cases, e.g. the weight of input divisor class is 1.
The proposed algorithm can be optimized with careful considerations of the basic
operations.

This paper is organized as follows: in Section 2 we review the algorithms of a hy-
perelliptic curve. In Section 3 we present our proposed divisor class halving algorithm
for HECC, and compare it with existing doubling formulae. In Section 4 a complete
divisor class halving algorithm is shown. In Section 5 we consider a halving algorithm
for a special curve, deg h = 1. In Section 6 is our conclusion.

2 Hyperelliptic Curve

We review the hyperelliptic curve used in this work.
Let F2n be a binary finite field with 2n elements. A hyperelliptic curve C of

genus g over F2n with one point at infinity is defined by C : y2 +h(x)y = f(x), where
f(x) ∈ F2n [x] is a monic polynomial of degree 2g+1 and h(x) ∈ F2n [x] is a polynomial
of degree at most g, and curve C has no singular point. Let Pi = (xi, yi) ∈ F2n × F2n

be a point on curve C and P∞ be a point at infinity, where F2n is the algebraic
closure of F2n . The inverse of Pi = (xi, yi) is the point −Pi = (xi, yi + h(xi)). P is
called a ramification point if P = −P holds. A divisor is a formal sum of points:
D =

∑

miPi, mi ∈ Z. A semi-reduced divisor is given by D =
∑

miPi − (
∑

mi)P∞,
where mi ≥ 0 and Pi 6= −Pj for i 6= j, and semi-reduced divisor D is called reduced

2



if
∑

mi ≤ g holds. The weight of a reduced divisor D is defined as
∑

mi, and
we denote it by w(D). Jacobian J is isomorphic to the divisor class group which
forms an additive group. Each divisor class can be represented uniquely by a reduced
divisor and so we can identify the set of points on the Jacobian with the set of
reduced divisors and assume this identification from now on. The reduced and the
semi-reduced divisors are expressed by a pair of polynomials (u, v), which satisfies the
following conditions [Mum84]:

u(x) =
∏

(x + xi)
mi , v(xi) = yi, deg v < deg u, v2 + hv + f ≡ 0 mod u.

A divisor class is defined over F2n if the representing polynomials u, v are defined over
this field and the set of F2n -rational points of the Jacobian is denoted by J(F2n). Note
that even if u, v ∈ F2n [x], the coordinates xi and yi may be in extension field of F2n .
The degree of u equals the weight of the reduced divisor and we represent the zero
element by O = (1, 0). To compute the additive group law of J(F2n), Cantor gave an
addition algorithm as follows:

Algorithm 1 Cantor Algorithm
Input: D1 = (U1, V1) and D2 = (U2, V2)
Output: D3 = (U3, V3) = D1 + D2

Ui = ui2x
2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2 and ui2 ∈ F2

1. d← gcd(U1, U2, V1 + V2 + h) = s1U1 + s2U2 + s3(V1 + V2 + h)
2. U ← U1U2/d2, V ← (s1U1V2 + s2U2V1 + s3(V1V2 + f))/d mod U
3. while deg U > g

U ← (f + v + V 2)/U, V ← h + V mod U
4. U3 ← MakeMonic(U), V3 ← V
5. return (U3, V3)

Step 1 and Step 2 are called the composition part and Step 3 is called the reduction
part. The composition part computes the semi-reduced divisor D = (U, V ) that is
equivalent to D3. The reduction part computes the reduced divisor D3 = (U3, V3).

The Cantor Algorithm is applicable to a hyperelliptic curve of any genus. How-
ever, this algorithm is relatively slow due to its generality. Harley then proposed an
efficient addition and doubling algorithm for a hyperelliptic curve of genus 2 over
Fp [GH00,Har00a,Har00b]. This algorithm achieved speeding up by detailed classi-
fication into the most frequent case and some exceptional cases. This classification
allows us to avoid extra field operations. Sugizaki et al. expanded the Harley algo-
rithm to HECC over F2n [SMC+02], and around the same time Lange expanded the
Harley algorithm to HECC over general finite field [Lan02a]. The most frequent case
of doubling algorithm HECDBL is defined as follows:

HECDBL: w(D1) = w(D2) = 2, D2 = 2D1, and D1 has no ramification points.

3



Algorithm 2 HECDBL
Input: D1 = (U1, V1)
Output: D2 = (U2, V2) = 2D1

Ui = x2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2

1. U ′

1 ← U2
1

2. S ← (f + hV1 + V 2
1 )/U1, S ← Sh−1 mod U1

3. V ′

1 ← SU1 + V1

4. U ′

2 ← (f + hV ′

1 + V ′

1

2
)/U ′

1

5. U2 ← MakeMonic (U ′

2)
6. V2 ← V ′

1 + h mod U2

7. return (U2, V2)

In HECDBL, from Step 1 to Step 3 is the composition part and from Step 4 to Step
6 is the reduction part. The composition part computes the semi-reduced divisor
D = (U ′1, V

′
1) equivalent to D2. In Step 2 and Step 3, we compute V ′1 such that

f + hV ′1 + V ′1
2 ≡ 0 mod U ′1, which can be obtained by V ′1 ≡ V1 mod U1 via Newton

iteration. The reduction part computes the reduced divisor D2 = (U2, V2) = 2D1.
From Algorithm 2, it is clear that the number of field operations depends on the
curve parameters. To reduce the number of field operations, in previous works, a
transformed curve y2 + (x2 + h′1x + h′0)y = x5 + f ′3x

3 + · · · + f ′0, via isomorphic
transformations: y → h5

2y and x→ h2
2x+ f4, are used. We call this transformed curve

a general curve. In this paper, our aim is to present the divisor class halving algorithm
for the general curve and to prove the correctness of this algorithm. Additionally, we
consider a simple polynomial h(x) = h1x + h0 and we call this curve a special curve.

In a cryptographic application, we are only interested in a curve whose order of
J(F2n) is 2 × r, i.e. whose cofactor is two, where r is a large prime number. Note
that the cofactor is always divisible by 2 (See Appendix A). Moreover, as inputs and
outputs for the halving and doubling algorithm we use the divisor classes whose order
is r.

3 Proposed Halving Algorithm for General Curve

In this section we propose a divisor class halving algorithm (HECHLV) on hyperel-
liptic curve cryptosystems of genus two. We derive HECHLV by inverse computing of
HECDBL. For HECHLV, the significance problem is to find the missing polynomial k
such that V ′1 + h = kU2 + V2 in Algorithm 2. First, we compute k by a reverse opera-
tion of the reduction part, then the semi-reduced divisor via k, at last D1 = 1

2D2 by
a reverse operation of the composition part.

3.1 Main Idea

We follow the opposite path to HECDBL. From Step 6 of HECDBL, there is a unique
polynomial k = k1x + k0 such that V ′1 + h = (k1x + k0)U2 + V2. Substituting V ′1 to

4



equation (f + hV ′1 + V ′1
2
) appeared in Step 4, the following relationship yields:

U ′2U
′
1 = f + h(kU2 + V2) + k2U2

2 + V 2
2 . (1)

Because the doubled divisor class (U2, V2) is known, we can obtain the relationship
between k and U ′1. Note that U ′2 = k2

1U2 from the highest term of equation (1). Recall
that U ′1 = U2

1 from Step 1, namely, we know

U ′1 = x4 + u2
11x

2 + u2
10. (2)

In other words, the coefficients of degree 3 and 1 are zero. From this observation,
there are polynomials whose solutions includes k0 and k1. In our algorithm we try
to find k0 and k1 by solving the polynomials. Once k0 and k1 are calculated, we can
easily compute the halved divisor class D1 = (U1, V1) from equation (1). We describe
the sketch of the proposed algorithm in the following.

Algorithm 3 Sketch HECHLV
Input: D2 = (U2, V2)
Output: D1 = (U1, V1) = 1

2
D2

Ui = x2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2

1. determine k = k1x + k0 by the reverse operation of the reduction part

1.1 V ′

1 ← V2 + h + kU2, k = k1x + k0

1.2 U ′

1 ← (f + hV ′

1 + V ′

1

2
)/(k2

1U2)
1.3 derive k0, k1 from two equations coeff(U ′

1, 3) = 0 and coeff(U ′

1, 1) = 0
2. compute U ′

1 = x4 + u2
11x

2 + u2
10 in the semi-reduced divisor by using k0, k1

2.1 compute u2
11 by substituting k0, k1 in coeff(U ′

1, 2)
2.2 compute u2

10 by substituting k0, k1 in coeff(U ′

1, 0)
3. compute D1 = (U1, V1) = 1

2
D2 by the reverse operation of the composition part

3.1 U1 ←
√

U ′

1 = x2 + u11x + u10

3.2 V1 ← V2 + h + kU2 mod U1

4. return (U1, V1)

In the following, we explain Algorithm 3 in detail. The coeff(U , i) is the coefficient
of xi in polynomial U . In Step 1.2, we compute polynomial U ′1 in equation (1):

coeff(U ′1, 3) = (k1h2 + k2
1u21 + 1)/k2

1

coeff(U ′1, 2) = (k1h1 + k0h2 + k2
1u20 + k2

0 + c2)/k2
1

coeff(U ′1, 1) = (k1h0 + k0h1 + k2
0u21 + c1)/k2

1

coeff(U ′1, 0) = (k0h0 + k2
0u20 + c0)/k2

1 ,

where

c2 = f4 + u21, c1 = f3 + h2v21 + u20 + c2u21,

c0 = f2 + h2v20 + h1v21 + v2
21 + c2u20 + c1u21.

5



Equation (2) yields the explicit relationship related to variables k0, k1, u11, and u10:

k1h2 + k2
1u21 + 1 = 0 (3)

k1h0 + k0h1 + k2
0u21 + c1 = 0 (4)

u11 =
√

k1h1 + k0h2 + k2
1u20 + k2

0 + c2/k1 (5)

u10 =
√

k0h0 + k2
0u20 + c0/k1 (6)

In the algorithm we used the following lemma in order to uniquely find k0, k1.
The proof of this lemma is in Appendix B.

Lemma 1. Let h(x) be an irreducible polynomial of degree 2. There is only one value
k1 which satisfies both equations (3) and (4). Equation (4) has a solution only for
the correct k1. There is only one value k0 which yields the halved divisor class D1 in
algorithm 3. Equation xh2 + x2u11 + 1 = 0 has a solution only for the correct k0.

After calculating k0, k1, we can easily compute u11, u10, v11, and v10 via equations
(5), (6), and V1 ← V2 + h + (k1x + k0)U2 mod U1.

3.2 Proposed Algorithm

We make the assumption that the polynomial h has degree two and is irreducible. We
present the proposed algorithm in Algorithm 4.

The proposed algorithm requires to solve quadratic equations. It is well known
that equation ax2 + bx + c = 0 has roots if and only if Tr(ac/b2) = 0. Let one root
of ax2 + bx + c = 0 be x0, then the other root be x0 + b/a. If this equation has
roots, i.e. Tr(ac/b2) = 0, then we can solve this equation by using half trace, namely
x0 = H(ac/b2), x′0 = x0 + b/a. This equation has no root if Tr(ac/b2) = 1.

We explain the proposed algorithm as follows. The correctness of this algorithm
is shown in Lemma 1. In Step 1, we solve two solutions k1 and k′1 of equation (3).
In Step 2, the correct k1 is selected by checking the trace of equation (4). Then we
obtain two solutions k0 and k′0 of equation (4). In Step 3, the correct k0 is selected
by checking trace of xh2 + x2u11 + 1 = 0. In Steps 4 and 5 we compute the halved
divisor class.

6



Algorithm 4 HECHLV
Input: D2 = (U2, V2)
Output: D1 = (U1, V1) = 1

2
D2

Ui = x2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2, h2 6= 0

step procedure

1. Solve k1h2 + k2
1u21 + 1 = 0

α← h2/u21, γ ← u21/h2
2, k1 ← H(γ)α, k′

1 ← k1 + α
2. Select correct k1 by solving k1h0 + k0h1 + k2

0u21 + c1 = 0
c2 ← f4 + u21, c1 ← f3 + h2v21 + u20 + c2u21,

c0 ← f2 + h2v20 + h1v21 + v2
21 + c2u20 + c1u21, α← h1/u21,

w← u21/h2
1, γ ← (c1 + k1h0)w

if Tr(γ) = 1 then k1 ← k′

1, γ ← (c1 + k1h0)w
k0 ← H(γ)α, k′

0 ← k0 + α
3. Select correct k0 by checking trace of xh2 + x2u11 + 1 = 0

u11 ←
√

k1h1 + k0h2 + k2
1u20 + k2

0 + c2/k1, γ ← u11/h2
2

if Tr(γ) = 1 then k0 ← k′

0, u11 ←
√

k1h1 + k0h2 + k2
1u20 + k2

0 + c2/k1

4. Compute U1

u10 ←
√

k0h0 + k2
0u20 + c0/k1

5. Compute V1 = V2 + h + kU2 mod U1

w← h2 + k1u21 + k0 + k1u11

v11 ← v21 + h1 + k1u20 + k0u21 + u10k1 + u11w, v10 ← v20 + h0 + k0u20 + u10w
6. D1 ← (x2 + u11x + u10, v11x + v10), return D1

3.3 Complexity and Improvement

In order to estimate the complexity of HECHLV shown in Algorithm 4, we consider
four cases with respect to the selection of k1 and k0. When we get incorrect k1 and
k0 (k′1 and k′0 are correct) in Steps 1 and 2, respectively, we have to replace k1 ← k′1,
k0 ← k′0 and compute γ, u11 again in Steps 2 and 3, respectively. In the worst case
this requires 4M +1SR as additional field operations compared to the best case, and
we have another two cases: one is k0 and k′1 are correct and the other is k′0 and k1 are
correct. Note that a multiplication by M for short and other operations are expressed
as follows: a squaring (S), an inversion (I), a square root (SR), a half trace (H), and
a trace (T ). Our experimental observations found that these four cases occur with
almost the same probability. Therefore, we employ the average of these four cases as
the average case.

Now we consider how to optimize the field operations in Algorithm 4. We will
discuss the optimization under the two topics: choices of the curve parameter and
scalar multiplication using a fixed base point.

Choices of the curve parameter. The complexity of HECHLV depends on the coeffi-
cients of the curve. If the coefficients are small, one, or zero, we reduce some field opera-
tions. Firstly, we reduce some inversion operations to one. If 1/h2

1 and 1/h2
2 are allowed

as inputs, we reduce two inversion operations and we compute 1/k1 = h2+k1u21 from

7



equation (3), then Algorithm 4 requires only one inversion operation 1/u21. Secondly,
we use the general curve. When f4 = 0 we reduce 3M to 1M + 1S by c2u21 = u2

21

and c2u20 + c1u21 = u21(u20 + c1). When h2 = 1 two multiplications by h2 and two
multiplications by 1/h2

2 are omitted. Thirdly, we use the general curve when h1 = 1.
In this case, we change 1M to 1S by v21(h1 + v21) = v21 + v2

21, where 1S is faster
than 1M , and two multiplications by h1 and one multiplication by 1/h2

1 are reduced.
Finally, we use the general curve when h1 = h0 = 1 then we skip one multiplication
k1h0. We summarize these improvements in Algorithm 5.

Algorithm 5 HECHLV (h2 = 1, f4 = 0)
Input: D2 = (U2, V2), 1/h2

1

Output: D1 = (U1, V1) = 1

2
D2

Ui = x2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2

step procedure cost

1. Solve k1 + k2

1
u21 + 1 = 0 1M + 1I + 1H

α← 1/u21, k1 ← H(u21)α, k′

1
← k1 + α

2. Select correct k1 by solving k1h0 + k0h1 + k2

0
u21 + c1 = 0 9M + 1S + 1H + 1T

c1 ← f3 + v21 + u20 + u2

21

c0 ← f2 + v20 + v21(h1 + v21) + u21(u20 + c1) (h1 = 1 : v21(h1 + v21) = v21 + v2

21
)

w0 ← u21/h2

1
, α← h1α, γ ← (c1 + k1h0)w0

if Tr(γ) = 1 then k1 ← k′

1
, γ ← (c1 + k1h0)w0 (h1 = 1 : γ ← γ + h0)

k0 ← H(γ)α, k′

0
← k0 + α

3. Select correct k0 by solving x + x2u11 + 1 = 0 5M + 1S + 2SR + 1T
w0 ← k2

1
, w1 ← w0u20 + k1h1 + u21

w2 ← k0 +
√

w1 + k0, w4 ← k1u21 + 1, u11 ← w2w4

if Tr(u11) = 1 then
k0 ← k′

0
, w2 ← k0 +

√
w1 + k0, u11 ← w2w4

4. Compute U1 4M + 1SR
w1 ← k0u20, w5 ← w4 + 1, w6 ← (k0 + k1)(u20 + u21)

u10 ← w4

√

k0(w1 + h0) + c0

5. Compute V1 = V2 + h + kU2 mod U1 2M
w4 ← w5 + k0 + 1, w5 ← w1 + w5 + w6 + v21 + h1

w6 ← w1 + v20 + h0, w7 ← w2 + w4

w1 ← w7u10, w3 ← (k1 + w7)(u10 + u11)
v11 ← w1 + w2 + w3 + w5, v10 ← w1 + w6

6. D1 ← (x2 + u11x + u10, v11x + v10), return D1

total (k1, k0) is correct 18M + 2S + 1I + 2SR + 2H + 2T
(k1, k′

0
) is correct 19M + 2S + 1I + 3SR + 2H + 2T

(k′

1
, k0) is correct 20M + 2S + 1I + 2SR + 2H + 2T

(k′

1
, k′

0
) is correct 21M + 2S + 1I + 3SR + 2H + 2T

h1 = 1
(k1, k0) or (k′

1
, k0) is correct 14M + 3S + 1I + 2SR + 2H + 2T

(k1, k′

0
) or (k′

1
, k′

0
) is correct 15M + 3S + 1I + 3SR + 2H + 2T

h1 = h0 = 1
(k1, k0) or (k′

1
, k0) is correct 13M + 3S + 1I + 2SR + 2H + 2T

(k1, k′

0
) or (k′

1
, k′

0
) is correct 14M + 3S + 1I + 3SR + 2H + 2T

Scalar multiplication with a fixed base point. We describe the scalar multiplication
using divisor class halvings. Knudsen and Schroeppel proposed the ECC scalar mul-
tiplication algorithm, halve-and-add binary method, which replaces point doublings
in double-and-add binary methods with point halvings. Similarly, the halve-and-add
binary method can be applied to HECC via the divisor class halving proposed in Al-
gorithm 5. In order to compute the halve-and-add binary method, we have to convert

8



a scalar value from binary representation to half representation. Let r be the order of
the underlying base point and m = ⌊log2 r⌋. For a given integer d we can represent

d ≡
∑m

i=0 d̂i2
i−m (mod r) and

∑m
i=0

di

2i ←
∑m

i=0 d̂i2
i−m, where di, d̂i ∈ {0, 1}. This

representation di is used for the halve-and-add binary method.
In the case of scalar multiplication with a fixed base point D, we improve a com-

putation method of 1
2i D via pre-computed tables. When we know the correct k1 and

k0 in advance, we reduce three multiplications, two traces, and one square root in
Algorithm 5. We can take the pre-computed tables t1 = (t1,mt1,m−1 · · · t1,0)2 and
t0 = (t0,mt0,m−1 · · · t0,0)2 which show whether k1(k0) or k′1(k

′
0) is the correct value

in each halving — t1,i = 0(t0,i = 0) means k1(k0) is correct and t1,i = 1(t0,i = 1)
means k′1(k

′
0) is correct, since whether k1(k0) is correct or not depends on D. This

improvement can be applied to a right-to-left binary method by adding 1
2i D. The

divisor class halve-and-add binary method is as follows:

Algorithm 6 Halve-and-add binary (right-to-left) method.
Input: d ∈ Z, D ∈ J(F2n), r : order of D, m = ⌊log2 r⌋, t1, t0
Output: dD: scalar multiplication with a fixed base point

step procedure

1.
∑m

i=0 d̂i2
i ← 2md (mod r), d̂i ∈ {0, 1}

2.
∑m

i=0
di

2i ←
∑m

i=0 d̂i2
i−m, di ∈ {0, 1}

3. Q← O, R← D
4. for i from 0 to m do:

if di = 1 then Q← Q + R.
5. R← HECHLV(R, t1,i, t0,i).
6. return Q.

These tables require only the same bit length as D since D needs 4n bits while
m has length 2n and we need two bits to encode the right choices of k1 and k0. We
adopt this table-lookup method to the general curve and show this in Algorithm 10,
which then requires only 18M + 2S + 1I + 2SR + 2H .

3.4 Comparison of doubling and halving

We compare field operations cost of doubling algorithms to halving algorithms. Table 1
provides a comparison of HECDBL and the above halving algorithms in the average
case.

By using the normal basis, we can neglect the computation time of a squaring,
a square root, a half trace, and a trace compared to that of a field multiplication or
an inversion [Knu99]. Menezes [Men93] showed that an inversion operation requires
⌊log2(n−1)⌋+#(n−1)−1 multiplications, where #(n−1) is the number of 1’s in the
binary representation of n− 1. By neglecting these operations, for the general curve,
HECHLV and HECDBL require 19.5MN + 1I and 21MN + 1I, respectively, where MN

9



Table 1. Comparison of Halving and Doubling

Scheme HECHLV HECDBL [LS04]

h2 = 1, f4 = 0 19.5M + 2S + 1I + 2.5SR + 2H + 2T 21M + 5S + 1I
random base point (27.5MN , 29.95MP ) (29MN , 29.5MP )

h2 = 1, f4 = 0 18M + 2S + 1I + 2SR + 2H —
fixed base point (26MN , 28.2MP ) —

h2 = h1 = 1, f4 = 0 14.5M + 3S + 1I + 2.5SR + 2H + 2T 18M + 7S + 1I
random base point (22.5MN , 25.05MP ) (26MN , 26.7MP )

h2 = h1 = 1, f4 = 0 14M + 3S + 1I + 2SR + 2H —
fixed base point (22MN , 24.3MP ) —

h2 = h1 = h0 = 1, f4 = 0 13.5M + 3S + 1I + 2.5SR + 2H + 2T 15M + 7S + 1I
random base point (21.5MN , 24.05MP ) (23MN , 23.7MP )

h1 = h1 = h0 = 1, f4 = 0 13M + 3S + 1I + 2SR + 2H —
fixed base point (21MN , 23.3MP ) —

is a multiplication over the normal basis. When we assume 1I = 8MN HECHLV and
HECDBL require 27.5MN and 29MN , respectively.

On the other hand, by using the polynomial basis, we cannot ignore the computa-
tion time of a squaring, a square root, and a half trace. Assuming that 1S = 0.1MP ,
1SR = 0.5MP , 1H = 0.5MP , and 1I = 8MP , where MP is a multiplication over the
polynomial basis. For the general curve, HECHLV and HECDBL require 29.95MP and
29.5MP , respectively. By selecting the polynomial basis, however, we can compute
these arithmetic faster than half the time of multiplication, and there is a possibility
to reduce the cost of these operations.

Table 1 shows that when we use the normal basis HECHLV is faster than HECDBL

for all the cases. On the contrary by using the polynomial basis, HECHLV is faster
than HECDBL when h2 = h1 = 1 and f4 = 0, especially the improvement by using a
fixed base point over HECDBL is up to about 10%.

4 Complete Procedures for Divisor Class Halving Algorithm

In the previous sections, we proposed the halving algorithm, which corresponds to
the most frequent case in the doubling algorithm. However, we also have to consider
several exceptional procedures for giving complete procedures of the halving algo-
rithm. These cases appear with very low probability, but we cannot ignore them.
Therefore, we have to implement these procedures in order to perform the scalar mul-
tiplication correctly. In this paper we only deal with a divisor class whose order is r
(not order 2× r), and thus the divisor class does not include any ramification points.
Therefore, we have to consider four inverse operations of HECDBL2→1, HECDBL1→2,
HECDBL2→2, and HECDBL as follows:

10



HECDBL2→1: w(D1) = 2, w(D2) = 1, D2 = 2D1.
HECDBL1→2: w(D1) = 1, w(D2) = 2, u21 = 0, D2 = 2D1.

HECDBL2→2: w(D1) = 2, w(D2) = 2, u21 = 0, D2 = 2D1.

Note that HECDBL2→2 is computed via HECDBL. In the halving algorithm, however,
we have to care HECDBL2→2 because the inverse map of HECDBL2→2 is indistinguish-
able from the inverse map of HECDBL1→2. Therefore, the halving algorithms can be
classified into four cases: HECHLV, HECHLV1→2, HECHLV2→2, and HECHLV2→1. These
cases are inverse maps of HECDBL, HECDBL2→1, HECDBL2→2, and HECDBL1→2, re-
spectively. The Complete HECHLV is as follows:

Algorithm 7 Complete HECHLV
Input: D2 = (U2, V2)
Output: D1 = (U1, V1) = 1

2
D2

Ui = ui2x
2 + ui1x + ui0, Vi = vi1x + vi0, ui2 ∈ F2, where i = 1, 2, h2 6= 0

step procedure

1. HECHLV
1→2: w(D2) = 1, w(D1) = 2

if deg U2 = 1 then D1 ← HECHLV
1→2(D2), return D1

2. HECHLV
2→1: w(D2) = 2, w(D1) = 1, u21 = 0 or

HECHLV
2→2: w(D2) = 2, w(D1) = 2, u21 = 0

if deg U2 = 2 and u21 = 0 then D1 ← HECHLV
2→2(D2), return D1

3. HECHLV: w(D2) = w(D1) = 2, u21 6= 0
if deg U2 = 2 and u21 6= 0 then D1 ← HECHLV(D2), return D1

In the following subsection we present explicit algorithms for each exceptional
procedure.

4.1 HECHLV1→2

A divisor class halving algorithm HECHLV1→2 is similar to HECHLV. The main dif-
ference between HECHLV1→2 and HECHLV is weight of input D2. For example, in
HECHLV1→2, f+hV ′1+V ′1

2
is a monic polynomial with degree five because of deg(V ′1 ) =

2 and U2 is a monic polynomial, so U ′1 ← (f + hV ′1 + V ′1
2
)/U2 not divided by k2

1 like
HECHLV.

We present the proposed algorithm in Algorithm 8. This algorithm is the analogy
of HECHLV and the correctness of this algorithm is shown similarly to Lemma 1. Note
that, in Step 3, the correct k0 is selected by checking trace of xh2 +x2u11 +1 = 0 not
xh2 + x2u11 + (f4 + u10) = 0 because the weight of D1 is always two and the method
to select the correct k0 is checking whether 1

2D1 ∈ J(F2n) or not, see Appendix B.

11



Algorithm 8 HECHLV1→2

Input: D2 = (U2, V2) = (x + u20, v20)
Output: D1 = (U1, V1) = (x2 + u11x + u10, v11x + v10) = 1

2
D2, h2 6= 0

step procedure

1. Solve k1h2 + k2
1u21 + c3 = 0

c3 ← f4 + u20, α← h2, γ ← c3/h2
2, k1 ← H(γ)α, k′

1 ← k1 + α
2. Select correct k1 by solving k1h0 + k0h1 + k2

0 + c1 = 0
c2 ← f3 + c3u20, c1 ← f2 + h2v20 + c2u20, c0 ← f1 + h1v20 + c1u20

α← h1, γ ← (c1 + k1h0)/α2

if Tr(γ) = 1 then k1 ← k′

1, γ ← (c1 + k1h0)/α2

k0 ← H(γ)α, k′

0 ← k0 + α
3. Select correct k0 by checking trace of xh2 + x2u11 + 1 = 0

u11 ←
√

k1h1 + k0h2 + k2
1u20 + c2, γ ← u11/h2

2

if Tr(γ) = 1 then k0 ← k′

0, u11 ←
√

k1h1 + k0h2 + k2
1u20 + c2

4. Compute U1

u10 ←
√

k0h0 + k2
0u20 + c0

5. Compute V1 = V2 + h + kU2 mod U1

w← h2 + k1, v11 ← h1 + k1u20 + k0 + u11w, v10 ← v20 + h0 + k0u20 + u10w
6. D1 ← (x2 + u11x + u10, v11x + v10), return D1

4.2 HECHLV2→1

In this case, D1 = (x + u10, v10) is computed by reverse operation of HECDBL1→2.
D2 = (x2 + u20, v21x + v20) = 2D1 is computed as follows: x2 + u20 = (x + u10)

2,
v21 = (u4

10 + f3u
2
10 + f1 + h1v10)/h(u10), and v20 = v10 + v21u10. Then we can

easily express u10, v10 by u20, v21, v20 and curve parameters by u10 =
√

u20, v10 =
(v21h(u10) + u4

10 + f3u
2
10 + f1)/h1.

4.3 HECHLV2→2

The case of u21 = 0, there are two candidate of 1
2D2: D1 = (x +

√
u20, v2(

√
u20))

and D′1 = (x2 + u11x + u10, v11x + v10). If D1 is a correct divisor class, we use
HECHLV2→1. On the other hand, if D′1 is a correct one, we use HECHLV2→2. We
need to select a correct algorithm HECHLV2→1 or HECHLV2→2 as follows: First, we
assume that D′1 is a correct divisor class, second compute u11, then check the trace
of xh2 + x2u11 + 1 = 0. If Tr(u11/h2

2) = 0, D′1 is correct, then select the algorithm
HECHLV2→2. If Tr(u11/h2

2) = 1, D1 is correct, then select the algorithm HECHLV2→1.
The algorithm HECHLV2→2 is as follows:

12



Algorithm 9 HECHLV2→2

Input: D2 = (U2, V2) = (x2 + u20, v21x + v20)
Output: D1 = (U1, V1) = (x2 + u11x + u10, v11x + v10) = 1

2
D2, h2 6= 0

step procedure

1. Solve k1h2 + 1 = 0
k1 = 1/h2

2. Solve k1h0 + k0h1 + c1 = 0
c2 ← f4, c1 ← f3 + h2v21 + u20 + c2u21

c0 ← f2 + h2v20 + (h1 + v21)v21 + c2u20 + c1u21

k0 = (k1h0 + c1)/h1

3. Select correct algorithm by checking trace of xh2 + x2u11 + 1 = 0

u11 ←
√

k1h1 + k0h2 + k2
1u20 + k2

0 + c2/k1, γ ← u11/h2
2

if Tr(γ) = 1 then D1 ← HECHLV
2→1(D2), return D1

3. Compute U1

u10 ←
√

k0h0 + k2
0u20 + c0/k1

4. Compute V1 = V2 + h + kU2 mod U1

w← h2 + k1, v11 ← h1 + k1u20 + k0 + u11w, v10 ← v20 + h0 + k0u20 + u10w
5. D1 ← (x2 + u11x + u10, v11x + v10), return D1

5 Halving Algorithm for Other Curves

In this section, we focus on other curves: (1) h(x) is reducible in F2n with deg h = 2,
and (2)the special curve with deg h = 1, i.e. h2 = 0.

Let h(x) be a reducible polynomial of degree 2, namely h(x) = (x + x1)(x + x2)
where x1, x2 ∈ F2n . Assume that x1 6= x2, then there are three different divisor
classes of order 2, say D1, D2, and D3 (See Appendix A). In this case, Lemma 1
is no longer true, and there are four different candidates of the halved value arisen
from equation (3) and equation (4). They are equal to 1

2D, 1
2D + D1,

1
2D + D2, and

1
2D+D3. In order to determine the proper divisor class, we have to check the trace of
both equation (3) and (4). Therefore the halving algorithm for this case requires more
number of field operations than that required for the general curve. If x1 = x2 holds,
we know h1 = 0 and there is only one divisor class of degree 2. In this case, equation
(4) has a unique root for each solution k1 of equation (3), namely we have only
two candidates of the halved value. It can be distinguished by the trace of equation
xh2 + x2h11 + 1 = 0 as we discussed in Lemma 1.

For the special curve of deg h = 1, we have only one value k1 not two, recall for
the general curve, there are two value k1 and k′1 and we need to select correct one.
This is the main difference between the general curve and the special curve. For the
special curve, we obtain a system of equations related to variables k0, k1, u11, and u10

by the same method for the general curve.

k2
1u21 + 1 = 0 (7)

k1h0 + k0h1 + k2
0u21 + c1 = 0 (8)

13



In the case of the general curve, we select correct k0 by checking trace of the degree
two equation of k1 in next halving. If this equation has roots (no roots) i.e. trace is
zero, k0 is correct (not correct). In the case of the special curve, on the other hand,
we have only one value k1 from equation (7), so we select correct k0 by checking a
degree two equation (8) of k0 in next halving, instead of the equation of k1. If the
equation of k0 in next halving has roots (no roots), k0 is correct (not correct). We
show an example of the algorithm for the special curve h(x) = x in Appendix D.

6 Conclusion

In this paper, we presented the first divisor class halving algorithm for HECC of
genus 2, which is as efficient as the previously known doubling algorithm. The pro-
posed formula is an extension of the halving formula for elliptic curves reported by
Knudsen [Knu99] and Schroeppel [Sch00], in which the halved divisor classes are
computed by solving some special equations that represent the doubled divisor class.
Because the doubling formula for HECC is relatively complicated, the underlying
halving algorithm is in general less efficient than that for elliptic curves. However, we
specified two crucial equations whose common solutions contain the proper halved
values, then an algorithm for distinguishing a proper value was presented. Our al-
gorithm’s improvement over the previously known fastest doubling algorithm is up
to about 10%. Moreover, the proposed algorithm is complete — we investigated the
exceptional procedures appeared in the divisor class halving algorithm, for example,
operations with divisor classes whose weight is one. The presented algorithm has not
been optimized yet, and there is a possibility to enhance its efficiency.

References

[Ava04] R. Avanzi, “Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations,” CHES 2004, LNCS 3156, pp.148-162, 2004.

[ACF04] R. Avanzi, M. Ciet, and F. Sica, “Faster Scalar Multiplication on Koblitz Curves
Combining Point Halving with the Frobenius Endomorphism,” PKC 2004, LNCS 2947,
pp.28-40, 2004.

[Can87] D. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve,” Mathematics of
Computation, 48, 177, pp.95-101, 1987.

[Duq04] S. Duquesne, “Montgomery Scalar Multiplication for Genus 2 Curves,” ANTS 2004,
LNCS 3076, pp.153-168, 2004.

[FHL+03] K. Fong, D. Hankerson, J. López, and A. Menezes, “Field in-
version and point halving revised,” Technical Report CORR2003-18,
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-18.pdf

[GH00] P. Gaudry and R. Harley, “Counting Points on Hyperelliptic Curves over Finite
Fields,” ANTS 2000, LNCS 1838, pp.313-332, 2000.

[HHM00] D. Hankerson, J. Hernandez, A. Menezes, “Software Implementation of Elliptic
Curve Cryptography over Binary Fields,” CHES 2000, LNCS 1965, pp.1-24, 2000.

14



[Har00a] R. Harley, “Adding.txt,” 2000. http://cristal.inria.fr/˜harley/hyper/
[Har00b] R. Harley, “Doubling.c,” 2000. http://cristal.inria.fr/˜harley/hyper/
[KR04] B. King and B. Rubin, “Improvements to the Point Halving Algorithm,” ACISP

2004, LNCS 3108, pp.262-276, 2004.
[Kob89] N. Koblitz, “Hyperelliptic Cryptosystems,” Journal of Cryptology, Vol.1, pp.139-

150, 1989.
[Knu99] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,” ASIACRYPT

’99, LNCS 1716, pp.135-149, 1999.
[Lan02a] T. Lange, “Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields

via Explicit Formulae,” Cryptology ePrint Archive, 2002/121, IACR, 2002.
[Lan02b] T. Lange, “Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves,” Cryptol-

ogy ePrint Archive, 2002/147, IACR, 2002.
[Lan02c] T. Lange, “Weighed Coordinate on Genus 2 Hyperelliptic Curve,” Cryptology

ePrint Archive, 2002/153, IACR, 2002.
[Lan04a] T. Lange, “Montgomery Addition for Genus Two Curves,” ANTS 2004, LNCS

3076, pp.309-317, 2004.
[Lan04b] T. Lange, “Foumulae for Arithmetic on Genus 2 Hyperelliptic Curves,” J.AAECC

Volume 15, Number 5, pp.295-328, 2005.
[LS04] T. Lange, M. Stevens, “Efficient Doubling on Genus Two Curves over Binary Fields,”

SAC 2004, pre-proceedings, pp.189-202, 2004.
[Men93] A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,

1993.
[Mum84] D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser,

1984.
[MCT01] K. Matsuo, J. Chao and S. Tsujii, “Fast Genus Two Hyperelliptic Curve Cryp-

tosystems,” Technical Report ISEC2001-31, IEICE Japan, pp.89-96, 2001.
[PWP03] J. Pelzl, T. Wollinger, and C. Paar, “High Performance Arithmetic for Hyperellip-

tic Curve Cryptosystems of Genus Two,” Cryptology ePrint Archive, 2003/212, IACR,
2003.

[PWG+03] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar, “Hyperelliptic Curve Cryp-
tosystems: Closing the Performance Gap to Elliptic Curves,” CHES 2003, LNCS 2779,
pp.351-365, 2003.

[Sch00] R. Schroeppel, “Elliptic curve point halving wins big. 2nd Midwest Arithmetic Ge-
ometry in Cryptography Workshop, Urbana, Illinois, November 2000.

[SMC+02] T. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii, “An Extension of Harley Addition
Algorithm for Hyperelliptic Curves over Finite Fields of Characteristic Two,” Technical
Report ISEC2002-9, IEICE Japan, pp.49-56, 2002.

A The Divisor Class of Order 2

We show that the order of Jacobian J over F2n of genus 2 is always divisible by 2.
Let T2 be the divisor represented by T2 = (g, vT ), where g is a divisor of MakeMonic(h)

with deg g > 0 and vT is uniquely determined from h due to Mumford representation.
It is easy to check 2T2 = O via Cantor Algorithm. Indeed, we know d = MakeMonic(h)
in Step 1, and thus (U3, V3) = (1, 0) holds in Step 4.

15



Next, we prove that T2 is always in J(F2n). First assume that h is degree 1, namely
h(x) = h1x + h0. Then vT is y1 such that y2

1 = f(h0/h1) due to h|(v2
T + f).

If h is reducible of degree 2, we can represent MakeMonic(h(x)) = (x+x1)(x+x2),
where x1, x2 ∈ F2n are x-coordinate of points on the definition curve. The correspond-
ing y-coordinate can be computed by solving y2

i = f(xi) for i = 1, 2, respectively. From
Mumford representation, we obtain vT = v1x + v0 ∈ F2n [x] as follows:

v0 =
y1x2 + y2x1

x1 + x2
, v1 =

y1 + y2

x1 + x2
, (9)

except the case of x1 = x2. Consequently, we can calculate vT ∈ F2n [x]. Set D3 =
((x + x2)(x + x2), v1x + v0). Similarly, Di = (x + xi, yi) is a divisor of order 2, where
yi = f(x1) for i = 1, 2. We notice that {O, D1, D2, D3} is a quaternion group of Klein
with multiplication rules D1+D2 = D3, D2+D3 = D1, and D3+D1 = D2. If x1 = x2

holds, the order of the divisor (x + x1, y1) with y2
1 = f(x1) is divisible by 2.

In the following we assume that h is irreducible of degree 2. Set h(x) = h2x
2+h1x+

h0. The solutions x1, x2 of h(x) = 0 is not in F2n , and we can not apply the algorithm
used for the reducible h of degree 2. We show how to construct vT = v1x+v0 ∈ F2n [x]
explicitly. We have

h1

h2
= x1 + x2,

h0

h2
= x1x2, yi =

√

x5
i + f4x4

i + f3x3
i + f2x2

i + f1xi + f0, (10)

where i = 1, 2 for the definition polynomial f of the underlying curve. From these
equations we can explicitly write down v0, v1 in the following.

y1x2 + y2x1 =
√

x5
1x2 +

√

f4x4
1x2 +

√

f3x3
1x2 +

√

f2x2
1x2 +

√

f1x1x2 +
√

f0x2

+
√

x5
2x1 +

√

f4x4
2x1 +

√

f3x3
2x1 +

√

f2x2
2x1 +

√

f1x2x1 +
√

f0x1

= x1x2

√

x3
1 + x3

2 + x1x2

√

f4(x1 + x2) + x1x2

√

f3

√
x1 + x2 + 2x1x2

√

f2

+
√

f1
√

x1x2

√
x1 + x2 +

√

f0(x1 + x2)

=
h0

h2

√

(

h1

h2

)3

+
h0h1

h2
2

+
√

f4
h0h1

h2
2

+
√

f3
h0

h2

√

h1

h2
+

√

f1

√

h0h1

h2
2

+
√

f0
h1

h2

This equation contains only coefficients of h and f . In the transformation above
we used the relationship:

x3
1 + x3

2 = (x1 + x2)
3 + x1x2(x1 + x2) =

(

h1

h2

)3

+
h0h1

h2
2

Therefore we have obtained the explicit formula for calculating v0 ∈ F2n .

16



v0 =
y1x2 + y2x1

x1 + x2
=

h0

h1

√

(

h1

h2

)3

+
h0h1

h2
2

+
√

f4
h0

h2
+

√

f3
h0

h1

√

h1

h2
+

√

f1

√

h0

h1
+

√

f0

Similarly v1 ∈ F2n can be calculated as follows:

v1 =
y1 + y2

x1 + x2
=

√

(

h1

h2

)3

+
h0

h2

(

h1

h2
+

h0

h1

)

+
√

f4
h1

h2
+

√

f3

√

h1

h2
+

h0

h1
+

√

f2+
√

f1

√

h2

h1

B Proof of Lemma

Lemma 1. Let h(x) be an irreducible polynomial of degree 2. There is only one value
k1 which satisfies both equations (3) and (4). Equation (4) has a solution only for the
correct k1. There is only one value k0 which yields the halved divisor D1 in algorithm
HECHLV. Equation xh2 + x2u11 + 1 = 0 has a solution only for the correct k0.

Proof. In this paper we assume that the order of J(F2n) is 2 × r, where r is a large
prime number. For a given divisor D2, there are two points whose doubled reduced
divisor is equal to D2. The halved divisor equals either 1

2D2 or 1
2D2 + T2, where T2

is an element in the kernel of the multiplication-by-two in J(F2n). We call 1
2D2 the

proper halved divisor.
From the condition of coeff(U ′, 3) = 0, equation (3) is always solvable. For each

solution of equation (3), there exist two solutions of equation (4) due to coeff(U ′, 1) =
0. From these values we obtain four different divisors using equations (5),(6), and one
of them is the proper halved value 1

2D. In the following, we discuss how to select the
proper divisor.

At first we prove that if h(x) is an irreducible polynomial, equation (4) is solvable
only for one solution of equation (3). It is well known that equation ax2 + bx + c = 0
has roots if and only if Tr(ac/b2) = 0. Let one root of ax2 + bx + c = 0 be x0 and
the other be x0 + b/a. Let the two roots of equation (3) be k1 and k′1 = k1 + h2/u21.
Equation (4) with k′1 substituted is as follows:

(k1 + h2/u21)h0 + k0h1 + k2
0u21 + c1 = 0. (11)

Now we compute Tr(ac/b2) of the equation (11):

Tr(((k1 + h2/u21)h0 + c1)u21/h2
1) = Tr((k1h0 + c1)u21/h2

1) + Tr((h0h2)/h2
1) (12)

Because Tr(ac/b2) of the equation (4) is Tr((k1h0 + c1)u21/h2
1), if Tr((h0h2)/h2

1) = 1
i.e. h(x) = h2x

2 + h1x + h0 is irreducible, one equation has two roots and the other
equation has no roots. This leads to the uniqueness of k1. Therefore, we can select a
proper value from {k1, k

′
1} by checking the trace of equation (4).

17



Next we show how to choose the proper k0. Equation (4) has two roots k0 and k′0 for
the proper k1 described above. Two different halved divisor 1

2D2 and 1
2D2 +T2 can be

obtained by k0 and k′0. We will distinguish the proper divisor by applying the above
halving algorithm again. Let D1 = 1

2D2. The halving algorithm for D1 yields two
divisors 1

2D1 ∈ J(F2n) and 1
2D1+T2 ∈ J(F2n). On the other hand, for D′1 = 1

2D2+T2,
there are two halved divisors: 1

2D′1 + T4 and 1
2D′1 + 3T4, where T4 and 3T4 are two

divisors of order four in J not in J(F2n), namely 1
2D′1 +T4 6∈ J(F2n) and 1

2D′1 +3T4 6∈
J(F2n). Therefore, the proper k0 should satisfy halved D1 in J(F2n). In the other
words, if and only if k0 (or k′0) is proper, equation xh2 + x2u11 + 1 = 0 has two roots
over F2n , where u11 is computed from k0 (or k′0) using equation (5). Consequently,
we can select the proper k0 by checking the trace of equation xh2 + x2u11 + 1 = 0
for u11 6= 0. The case of u11 = 0 occurs with negligible probability, but we can select
the proper k0 as follows: Let u11 and u′11 be the coefficient of equation (5) for two
candidates k0 and k′0, respectively. Note that if u11 = 0 holds, then u′11 6= 0 for
h1/h2 6= u21. Therefore, the proper one can be selected by checking Tr(u′11/h2

2) = 1.
If h1/h2 = u21 holds, we can use the formula HECHLV2→2 described in Section 5. ⊓⊔

C Improved Algorithm with fixed base point

Algorithm 10 HECHLV(h2 = 1, f4 = 0, fixed base point)
Input: D2 = (U2, V2), 1/h2

1
, t0, t1

Output: D1 = (U1, V1) = 1

2
D2

Ui = x2 + ui1x + ui0, Vi = vi1x + vi0, where i = 1, 2

step procedure cost

1. Solve k1 + k2

1
u21 + 1 = 0 1M + 1I + 1H

α← 1/u21

if (t1 = 0) then k1 ← H(u21)α else k1 ← (H(u21) + 1)α
2. Solve k1h0 + k0h1 + k2

0
u21 + c1 = 0 7M + 1S + 1H

c1 ← f3 + v21 + u20 + u2

21

c0 ← f2 + v20 + v21(h1 + v21) + u21(u20 + c1) (h1 = 1 : v21(h1 + v21) = v21 + v2

21
)

w0 ← u21/h2

1
, α← h1α, γ ← (c1 + k1h0)w0

if (t0 = 0) then k0 ← H(γ)α else k0 ← (H(γ) + 1)α
3. Compute U1 8M + 1S + 2SR

w0 ← k2

1
, w1 ← w0u20 + k1h1 + u21, w2 ← k0 +

√
w1 + k0

w4 ← k1u21 + 1, u11 ← w2w4

w1 ← k0u20, w5 ← w4 + 1, w6 ← (k0 + k1)(u20 + u21)

u10 ← w4

√

k0(w1 + h0) + c0

4. Compute V1 = V2 + h + kU2 mod U1 2M
w4 ← w5 + k0 + 1, w5 ← w1 + w5 + w6 + v21 + h1

w6 ← w1 + v20 + h0, w7 ← w2 + w4

w1 ← w7u10 w3 ← (k1 + w7)(u10 + u11)
v11 ← w1 + w2 + w3 + w5, v10 ← w1 + w6

5. D1 ← (x2 + u11x + u10, v11x + v10), return D1

total 18M + 2S + 1I + 2SR + 2H

h1 = 1 14M + 3S + 1I + 2SR + 2H

h1 = h0 = 1 13M + 3S + 1I + 2SR + 2H

18



D Halving Algorithm for the Special Curve: h(x) = x

Algorithm 11 HEC HLV(y2 + xy = x5 + f1x + f0)
Input: D2 = (U2, V2)
Output: D1 = (U1, V1), Ui(x) = x2 + ui1x + ui0, Vi = vi1x + vi0, gcd(Ui, h) = 1

step procedure cost

1. Solve k2

1
u21 + 1 = 0 1I + 1SR

w0 ← 1/u21, k1 ←
√

w0

2. Solve k0 + k2

0
u21 + c1 = 0 3M + 2S + 1SR + 1H

c1 ← u20 + u2

21
, w1 ← c1u21, c0 ← v21 + v2

21
+ u21u20 + w1

invk1 ←
√

u21, w2 ← H(w1), w3 ← w2 + 1
k0 ← w0w2, k′

0
← k0 + w0

3. Compute U1 4M + 3SR + 1T

u11 ←
√

invk1 + k0, u10 ←
√

(k0 + c1)u20 + c0u21

if Tr(u11(u10 + invk1 + k0)) = 1 then

k0 ← k′

0
, w2 ← w3, u11 ← u11 + k1, u10 ← u10 +

√
w0u20

5. Compute V1 = V2 + h + kU2 mod U1 5M
w1 ← k1(u21 + u11) + k0

v11 ← k1(u20 + u10) + w2 + v21 + 1 + u11w1

v10 ← k0u20 + v20 + u10w1

total k0 is correct 11M + 2S + 1I + 4SR + 1H + 1T
k′

0
is correct 12M + 2S + 1I + 5SR + 1H + 1T

19


