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Abstract. Since Boneh and Franklin published their seminal paper on
identity based encryption (IBE) using the Weil pairing , there has been a
great deal of interest in cryptographic primitives based on elliptic-curve
pairings. One particularly interesting application has been to control ac-
cess to data, via possibly complex policies. In this paper we continue
the research in this vein. We present an encryption scheme such that
the receiver of an encrypted message can only decrypt if it satisfies a
particular policy chosen by the sender at the time of encryption. Unlike
standard IBE, our encryption scheme is escrow free in that no key-issuing
authority (or colluding set of key-issuing authorities) is able to decrypt
ciphertexts itself. In addition we describe a security model for the sce-
nario in question and provide proofs of security for our scheme (in the
random oracle model). 1

1 Introduction

Suppose that Alice wants to send a message to Bob. She wants to be able to
encrypt the message in such a way that Bob can only decrypt if he has a par-
ticular set of authorisation credentials (or simply credentials). Alice specifies the
credentials that Bob should have in a policy that she decides before encrypting.

1 The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability



Alice should be able to perform this encryption without knowing what creden-
tials Bob actually has. The possession of credentials is validated by authorisation
authorities. If validation is successful then these authorities issue authorisation
certificates that act as (partial) decryption keys. Alice wants to be sure that no
colluding set of these authorisation authorities is able to decrypt and recover the
message that she intended for Bob. In other words, the system should be escrow
free.

In this paper we describe a framework in which to solve the problem outlined
above and we give a corresponding security model. We present a solution to the
problem and provide proofs of security. Our solution uses ideas originating from
Boneh and Franklin identity based encryption (IBE) scheme [4]. One of the
main benefits of IBE is that encryption can occur at any time, even before the
private key of the recipient has been created. This temporal difference in the
possible order of encryption and key generation lead Paterson to coin the phrase
cryptographic workflow [12]. The expression workflow is used to describe a system
in which actions must be performed in a particular order: you must do X before
you are able to do Y . Or, as a more concrete example, A could encrypt a cheque
to B but only give B the decryption key once B has performed some task.
Our system supports this concept of workflow in that recipients of encrypted
messages do not have to have access to the requisite credentials for decryption
at the time of encryption. This means that authorisation authorities can ensure
that some action has been performed, or that some event has occurred, before
issuing credentials.

Several related questions have already been considered in the literature.
In [11] the problem of obtaining public key certificates as part of an automated
trust negotiation is considered. In this scenario one wishes to exchange certifi-
cates with someone, but only if they already hold a given set of other certificates.
However, the possession of certificates may be confidential information, hence
a method needs to be found to break the possible deadlock that could occur
in such negotiations. A solution to this problem called oblivious signature-based
envelope (OSBE) as described in [11]. This idea was extended to other hidden
credentials (other than possession of certificates) in [6, 10].

The problem that we wish to solve here is a form of access control: access
to a message contained in a ciphertext. In [7, 16] access control mechanisms are
considered based on elliptic–curve pairings. The motivation is to minimise the
number of pairing computations needed to evaluate the credentials in an access-
policy. This leads to complicated schemes that do not allow the expression of
all possible policies. In addition, the resulting schemes come with no proof of
security.

In the system that we propose, and all those that we have mentioned above,
there are authorities that issue some form of certificate or key necessary for
decryption – subject to possession of some credential. The principal shortcoming
with all the systems proposed to date is that, unless a secure channel is already
available, they suffer from an escrow property: it is not only the legitimate holder
of the credentials specified in an encryptor’s policy that can decrypt, but also



any collusion of authorities who are able to issue sufficient credentials needed to
satisfy the policy. In addition any adversary that is able to obtain such, can also
decrypt. In some applications, such as disaster recovery, this escrow facility may
be useful. However, for most other applications this escrow facility is undesirable.

Key escrow is an inherent property of IBE since it is necessary to have
a trusted authority to compute private keys. It is from IBE that the existing
schemes in the literature inherit the escrow property [6, 7, 10, 11, 16]. In [2] Al-
Riyami and Paterson describe a modification of the Boneh–Franklin IBE scheme
which avoids the problem of key escrow in standard IBE. This method, called
certificateless public key cryptography (CL-PKC), requires each user to have a
(possibly unauthenticated) public key. Messages are then encrypted using a com-
bination of a user’s public key and its identity based key. Our system uses a
similar idea to that of CL-PKC to avoid key escrow.

2 Cryptographic Workflow and Privacy Protection

In this section we give a more concrete description of the various entities involved
in our solution.

Certification Authorities : Each user who wishes to receive encrypted mes-
sages must have a public key. There is a certification authority, or possibly more
than one, which issues standard public key certificates. The certificates issued
by this authority binds the identity of a user with the user’s public key. The cer-
tification authority validates public keys and may ensure that parties actually
know the private key corresponding to their public key via a proof of possession.

Authorisation Authorities : These are authorities which issue authorisa-
tion certificates that act as partial decryption keys for users receiving encrypted
messages. These certificates are issued subject to possession of a particular cre-
dential.

A credential is described by a string, say s. In our scheme authorisation
certificates take the form of digital signatures. For example the authorisation
certificate issued by authority i for credential described by string s is the signa-
ture of the authority on s. We denote this Ci(s). To avoid a very cumbersome
description, henceforth we refer to authorisation certificates Ci(s) as credentials.

Let us consider some example credentials. Suppose that the string s contains
a copy of user Bob’s public key, denoted by PK. In this case credential Ci(s)
binds the remainder of string s to PK, like an authorisation certificate in SPKI.
In this case one does not need to transfer the credential from the authorisation
authority to Bob in a confidential manner. See [1] or [2] for more details on this
latter point.

On the other hand the string s may not need to be bound to a public key
(or identity) and could simply be publicly broadcast. Since s is not unique for
a specific decryptor or ciphertext, Ci(s) can be used by any decryptor. Such a
situation can be envisaged when the authority i is a time-stamping authority



and the string s is simply a time value, the single credential being issued at the
time point given by the string s. Hence, possession of such a credential Ci(s)
implies that the current time is greater than the time given by s. This allows
encryption to an arbitrary point in the future.

Encryption/Decryption : In our framework anyone can encrypt a message
to a user with a certified public key. At encryption time the encryptor can choose
an arbitrary access structure that depends on possession of certain authorisation
credentials Ci(s). Such a structure will be described in a policy. The policy can
be different for each message. This encryption and the associated decryption
satisfies the following properties:

1. The encryption can be performed before the credentials Ci(s) are computed.
(At the time of encryption credential Ci(s) can be specified by (i, s) where
i is an authority and s is a string.) This property enables workflow.

2. No entity (including any colluding set of authorisation authorities) bar the
recipient can learn anything about the encrypted message. This property
guarantees the escrow free nature of the system. In addition if the encryp-
tor does not require the escrow-free property, for example he may wish to
broadcast the data to a number of recipients and not just a single entity,
then our system can easily accomodate this feature, see Appendix A.2 for a
further discussion of this feature.

3. The recipient cannot learn anything about the received message until it has
obtained an appropriate set of authorisation credentials – as specified by the
policy used for encryption. Such a set will be referred to as a qualifying set
henceforth.

We now provide an example to demonstrate the powerful versatility of our
scheme to combine access structures with cryptographic workflow.

A service provider (Alice) provides users (a particular user Bob in this case)
with credentials that can be redeemed by any licensed online benefits agency.
For example we consider the case of Bob being a pensioner claiming, possibly
means-tested, benefits. A credential will confirm that Bob is allowed to obtain
a particular benefit and that he is eligible for an extra payment since he lies
within a particular social group (say D). For example, one valid set of credentials
that Bob can satisfy before obtaining a credential could contain the strings:
s1 = Group.D‖PK‖2004, s2 = over.65.years.old‖PK, s3 = pension.X‖nonce.
Alternatively, Bob can satisfy the singular credential that contains a string s4 =
benefits.clerk‖PK‖2004. One can imagine a situation in which Bob can obtain
his pension if he holds either the set of credentials {C1(s1), C1(s2), C2(s3)} or the
single credential C3(s4), where the first authority is the benefits agency and the
second one is an online benefits website whilst the third authority is a physical
benefits clark.

The string PK denotes Bob’s public key and nonce is a random string of
suitable length. Bob could already have the appropriate credential C1(s1) docu-
menting his membership of social group D and C1(s2) stating that he is over 65
years old. Unlike the above two credentials, C2(s3) can only be obtained after



the ciphertext is produced (due to the nonce), this credential can be provided
by an online benefit clerk say.

Credentials obtained from Alice can regulate the conduct of payment offices
and allow citizens to qualify for extra payments etc. If a patient’s representative
is allowed to redeem the credential (as with U.K. pensions), additional privacy
can be provided to the citizen since the payment agency will not deal directly
with the citizen. This is particularly relevant since some people consider there to
be a stigma associated with claiming means-tested benefits, especially amongst
the older population.

Now let us examine these credentials. The nonce in s3 allows Alice to ensure
that pension.X is fresh and can be obtained at any time after the ciphertext
is produced. Here s3 is unique for each ciphertext or transaction. Additionally,
the credential encrypted using the string pension.X will have a one-time use,
provided that payment offices share a list of redeemed credentials. Furthermore,
even if C2(s3) is somehow revealed, it cannot be used (except by Alice due to the
nonce) to provide or infer any information (e.g. whether Bob is a member of a
particular social group), since it is anonymous and does not contain identifying
information. Anonymous credentials can also be un-linkable by Alice if nonces are
not used. Notice that both C1(s1) and C1(s2) are unique for the decryptor and
could be publicly disclosed (due to the certified PK). Of course both credentials
could be confidentially kept if disclosure is unnecessary or if they are considered
sensitive. The credential Ci(s1) can be updated to Ci(Group.D‖PK‖2005) using
only public channels and s2 does not need to be updated or revoked. To make
the policy less exclusive credentials such as C3(s4) are included.

The trust established between Alice and Bob is easy to deploy without vi-
olating Bob’s privacy. Assuming credentials (under very exclusive policies) are
not revealed, the single round nature of the interaction allows Alice to gather
no information on Bob. The above example can be further refined to preserve
more of the Bob’s privacy if the certificate from the certification authority uses
a pseudonym as an identity and/or it is possible to obtain Ci(s) totally anony-
mously from the authorisations authorities (here s cannot contain PK). Now
even a collusion of authorisation authorities cannot construct any information
for any entity.

3 Building Blocks

3.1 Groups With Pairings

We assume three finite abelian groups G1, G2, GT , all of order divisible by some
large prime q and such that the discrete logarithm problem in each of the three
groups is intractable. We assume that G1 and G2 are isomorphic as groups with
a computable (but not necessarily invertible) isomorphism given by

φ : G2 −→ G1.

We also assume that there is a computable bilinear pairing

t̂ : G1 ×G2 −→ GT .



In practise G1 and G2 will be related to the (additive) group of points on an
elliptic curve and GT will be a subgroup of the (multiplicative) group of a finite
field. Hence, we use additive notation for G1 and G2 and multiplicative notation
for GT . Note, in [2] it is assumed that G1 = G2, the generalisation to the case
where G1 6= G2 requires some additional complications below which the reader
will be able to ascertain without further comment.

Not only do we wish the discrete logarithm problem in the three groups to
be intractable, but we also require the following problem to also be intractable.

Definition 1 (Bilinear-Diffie–Hellman problem (BDHP)). Given G1, G2

and GT as above, with P ′ and P = φ(P ′) the generators of G2 and G1 respec-
tively, the BDHP problem is as follows. Given {[x]P, [y]P ′, [z]P}, for x, y, z ∈ F∗

q

chosen uniformly at random, compute t̂(P, P ′)xyz.
The advantage of a polynomially bounded adversary A in solving the BDHP

is defined by

AdvBDHP(A) = Pr
[

A([x]P, [y]P ′, [z]P ) = t̂(P, P ′)xyz
]

.

We let P ′ ∈ G2 denote a fixed base point in G2 of order q, and P = φ(P ′) ∈
G1 a fixed base point of order q in G1.

3.2 Secret Sharing Scheme

Given m terms, an access structure, or policy, is a boolean expression involving
only conjunction and disjunction of the m terms. We denote this policy P . In our
final scheme each term will represent possession of some credential. For example
one may wish to allow access to the data on possession of the credential C1 or
possession of both C2 and C3, in which case the policy is given by

C1 ∨ (C2 ∧ C3).

We assume a secret sharing scheme generating algorithm Sm which, on input of
an access structure/policy P involving at most m terms and a message/secret
M ∈ {0, 1}ls, will output a set of shares K = {bj}

m
j=1, with bj ∈ {0, 1}l and

public auxiliary information A,

(K, A)←− Sm(P , M).

We insist that there is one share bj for each of the m terms/participants in the
access structure P . In addition we assume a combining algorithm which on input
of a subset of shares K′ ⊂ K will output

S
−1
m (K′, A) =

{

M If K′ is a qualifying subset of K,
⊥ Otherwise.

Note, we do not assume that the inverse algorithm requires as input the policy
P ; however, if in a particular instance it does, we assume that P is part of the
auxiliary information A.

The usual definition of security for a secret sharing scheme is Definition 2.



Definition 2. A secret sharing scheme generator Sm is called perfect if for all
access structures/policies P

1. Given a qualifying subset K′, one can recover the whole secret.
2. Given only a non-qualifying subset K′, one can recover no information about

the shared secret.

However, we can restrict to a computationally bounded notion of security. Such
a scheme we shall call semantically secure if no polynomially bounded adversary
can win the following game with non-negligible probability in the security pa-
rameter l. We let m be fixed. In the first part of the game the adversary chooses
a non-trivial access structure/policy P on m symbols and two messages M0 and
M1. The adversary A passes (P , M0, M1) to the challenger who picks a bit b and
runs the secret sharing scheme generator

(K, A)←− Sm(P , Mb).

The challenger passes A back to the adversary, who then eventually terminates
with his guess b′ as to the hidden bit b. During the second stage of the game
the adversary is allowed to adaptively ask the challenger for shares bj ∈ K of
its choice. This is subject to the condition that the adversary must not ask for
a subset of shares which is a qualifying set.

The advantage of the adversary is defined to be

AdvSm
(A) = 2 ·

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

As an example, let us consider how the above model fits the security of a
threshold scheme with threshold value t. In this case we are saying that an
adversary cannot determine, given the appropriate auxiliary information and up
to t− 1 shares, which of two secrete has been shared.

Note, introducing a computational notion of security for secret sharing schemes
and using it in our security proofs instead of the more traditional information
theoretic definition means our security proofs are stronger, as they rely on weaker
assumptions. However, we envisage that one would in fact use one of the infor-
mation theoretically secure secret sharing schemes such as that by Shamir [14]
(in the case of threshold schemes) or Benaloh and Leichter [3] (in the case of
general access structures).

3.3 Symmetric Encryption Function

Let Enc denote a symmetric encryption function with key space {0, 1}le. We
adopt the security notion of find-guess [9] for such schemes in this paper and
assume that all symmetric encryption functions are secure in the following sense.
We denote find-guess security by FG security henceforth.

Let A be an polynomially bounded adversary against Enc in the sense of FG.
The algorithm A runs in two stages. In the first stage the adversary selects two



distinct messages M0 and M1 of equal length. These messages are passed to a
challenger who selects a bit b and a symmetric key k ∈ {0, 1}le. The challenger
computes C∗ = Encκ(Mb) and passes this back to the adversary A. The second
stage the adversary completes by A returning its guess b′ as to the hidden bit b.
The advantage of A is defined to be

AdvEnc(A) = 2 ·

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

We say that Enc is secure in the sense of FG if no such adversary exists with
advantage greater than a negligible function of le. Note, the adversary has no
oracle access to an encryption or decryption oracle in this definition.

3.4 Hash Functions

Define the following hash functions, which we assume are modelled by random
oracles,

H1 : {0, 1}∗ −→ G2,

H2 : GT −→ {0, 1}l,

H3 : {0, 1}∗ −→ F
∗
q , and

H4 : {0, 1}ls −→ {0, 1}le.

where l ≈ log2 q, le is the key size of the symmetric encryption function and ls
is the size of the input to the secret sharing scheme.

4 Scheme Definition

In this section we describe how our scheme is constructed from the building
blocks introduced in Section 3.

Authorisation Authority Setup :

Each authority i ∈ {1, . . . , n}, generates it own private key by choosing ai ∈ F∗
q

uniformly at random. It computes its public key as

Ri = [ai]P.

A certified version of Ri ∈ G1 is given to all users. Note that this is the same
way that keys are generated for the BLS signature scheme [5].

User Setup :

Each user (say Bob) generates its own private key by choosing u ∈ F∗
q uniformly

at random. It computes its public key as

PK = (X, Q) ∈ G1 ×G2,



where X = [u]P ∈ G1, and Q = H1(X) ∈ G2, where to apply the hash function
we interpret X as a bit string with some given convention.

The public keys of users are made available to other users in a certified man-
ner, via a certificate issued by a certification authority (as discussed in Section 2).

Credential Issuing (by Authorisation Authority i):

Suppose Bob wishes to obtain the credential Ci(s). Bob obtains the element of
G2 given by

Ci(s) = [ai]Qs,

where Qs = H1(s) ∈ G2 from the ith authorisation authority.
Of course, before issuing Ci(s), authority i verifies that Bob satisfies the

requirements described by the string s.
Note, in CL-PKC [2] and IBE [4] this corresponds to the identity based par-

tial private key extraction phase. In the language of OSBE [11] we are simply
obtaining the credential Ci(s) of authority i on the string s. It is this latter termi-
nology which we shall adopt, since one can see that the authorisation authority
is simply providing Bob with a BLS signature [5] on the string s.

Encryption :

First, the encryptor (Alice) decides what credentials the decryptor (Bob) should
have. Let us denote these {Cij

(sj)}
m
j=1 where m ≤ n and n is the number of

authorisation authorities and ij ∈ {1, . . . , n}. For j = 1, . . . , m, these correspond
to credentials Cij

(sj) issued by authorisation authority ij for string sj . The string
sj describes what conditions should be satisfied before the credential

Cij
(sj) = [aij

]Qsj
= [aij

]H1(sj)

is issued by authority ij . The set {(ij , sj)}
m
j=1 is included in the policy P along

with a conjunction and disjunction of m terms to describe the qualifying sets for
decryption.

The encryptor then performs the following steps,

1. Generate b ∈ {0, 1}ls at random.
2. Perform the secret sharing to obtain

(K, A) =
(

{bj}
m
j=1, A

)

= Sm(P , b).

3. Set E = EncH4(b)(M).
4. Set r = H3(b‖P‖M).
5. Compute U = [r]P .
6. Compute g = t̂([r]X, Q).
7. For all 1 ≤ j ≤ m

(a) Compute Qsj
= H1(sj) ∈ G2.

(b) Compute gj = t̂([r]Rij
, Qsj

).



(c) Compute cj = bj ⊕H2(gj)⊕H2(g).

8. Return (U, {cj}
m
j=1, A,P , E).

Informally, this provides us with an encryption E of the message M , under a
symmetric key derived from b using H4, plus a set of shares K = {bj}

m
j=1. There is

one share bj ∈ {0, 1}l corresponding to each (ij , sj) in the policy P . There is also
a mechanism to recover b given the shares in K. The shares required by the secret
sharing scheme are then encrypted using an analogue of the ElGamal encryption
mechanism. Chosen ciphertext security is provided by r being a function of b,
P and the message M .

The escrow free nature of the encryption is provided by the generation of an
“identity” Q depending on the recipients public key, which is decrypted by the
user acting as their own trust authority.

Decryption :

Let BC denote the set of credentials possessed by Bob on and let PC denote the
set of credentials implied by the policy P .

1. Compute g′ = t̂([u]U, Q).
2. For each such credential Ci(sj) ∈ BC ∩ PC do:

(a) Set g′j = t̂(U, Ci(sj)).
(b) Set b

′
j = cj ⊕H2(g

′
j)⊕H2(g

′).
3. Let K′ be the resulting set of b

′
j after step 1.

4. Compute b = S
−1
m (K′, A). If b = ⊥ then return ⊥.

5. Compute M = Enc−1
H4(b)(E).

6. Compute r′ = H3(b‖P‖M).
7. If U = [r′]P then return M , otherwise return ⊥.

Note that decryption works, and can only be performed by the user holding his
private key u since

g′j = t̂(U, Cij
(sj)) = t̂([r]P, [aij

]Qsj
)

= t̂([r][aij
]P, Qsj

) = t̂([r]Rij
, Qsj

)

= gj

and

g′ = t̂([u]U, Q) = t̂([r][u]P, Q)

= t̂([r]X, Q)

= g.

In addition the encryption is escrow free since only the intended participant
knows the private key u.



5 Security Models and Results

We require two definitions of security for our scheme: one to guarantee the escrow
freeness of the encryption scheme and one to ensure that a recipient cannot
break the semantic security of the scheme without obtaining a qualifying subset
of the credentials in a policy. We call these two properties external security and
recipient security respectively.

The situation is somewhat similar to that in [2], but the details of the model
are slightly different. In [2] two types of adversary are also defined: A Type I
adversary does not have access to the private keys of the authority but is able
to alter participants public keys, a Type II adversary does have access to the
private keys of the authority but is unable to mount such a key substitution
attack.

5.1 External Security: Definition and Result

In this scenario, what we would like to show is that no adversary is able to learn
anything about an encrypted message, even when it knows the private keys of
all the authorisation authorities. This models the escrow-free property that we
aim to achieve. Following the convention that security against adaptive chosen
ciphertext attack [13] is the correct notion of security for encryption schemes, we
also grant an adversary access to a decryption oracle that it may call adaptively.

Our security definition is presented by the following game played by an ad-
versary A against a challenger. The adversary takes as input the certified public
key of a user Bob, plus the private keys of all n authorisation authorities. The
adversary is assumed to run in the random oracle model and is therefore given
oracle access only to the hash functions H1, H2, H3 and H4. The adversary also
has access to a decryption oracle D (see Section A.1 for a discussion of this or-
acle). The adversary is assumed to be parametrised by a value m ∈ N.

Stage 1: The adversary can adaptively query the decryption oracle D with
ciphertexts of its choosing. The decryption oracle responds as it would if it was
using Bob’s private key.

At the end of Stage 1 the adversary outputs two equal length messages M0

and M1, a non-trivial access policy P∗ on m terms and a state S.

Challenge: The simulator chooses a bit b and, using the encryption algorithm
above, it encrypts Mb under Bob’s public key and the policy P∗. The resulting ci-
phertext C∗ and the state S are passed back to the second stage of the adversary.

Stage 2: The adversary can adaptively query the decryption oracle D on ci-
phertexts C of his choosing subject to the restriction that it does not make a
query on ciphertext C∗ (or a related ciphertext as discussed in Appendix A.1).



Guess: At the end of Stage 2 the adversary outputs a bit b′: its guess at b.
The adversary is said to win the game if b = b′. We define the advantage of the
adversary as

AdvExt(A) = 2 ·

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

Theorem 1. Suppose that there is an adversary A of our scheme that makes at
most qi calls to random oracle i and that it makes at most qd calls to DA, then
we have algorithms B1, B2 and B3 that are of similar efficiency and such that

AdvExt(A) ≤ 2 · q2 · AdvBDHP(B1) + 2 ·AdvSm
(B2) + 2 · AdvEnc(B3)

+
q3(q3 − 1) + 2qd

q − 1
+

q3 + q4

2ls−2
.

Proof. The proof can be found in Appendix B.

5.2 Recipient Security: Definition and Result

In this scenario, what we would like to show is that no adversary is able to
learn anything about encrypted messages, even when it knows the private key
of the recipient and is able to obtain all credentials in the target policy P∗ (the
policy chosen by the adversary for the generation of the challenge ciphertext in
the game described below), subject to the restriction it is unable to obtain all
credentials from any qualifying set in P∗. We also grant an adversary additional
power via oracle queries that we describe in the attack game below.

Our security definition is presented by the following game played by an ad-
versary A against a challenger. The adversary takes as input the private key of
a user Bob. The adversary is assumed to run in the random oracle model and
is therefore given oracle access only to the hash functions H1, H2, H3 and H4.
The adversary also has access to a certification oracle O that will supply it with
authorisation credentials: given (i, s) for authority i and string s the oracle will
respond with Ci(s). Since the adversary is given access to the private key of the
recipient we have no need to provide a decryption oracle D in this game. The
adversary is assumed to be parameterised by a value m ∈ N.

Stage 1: The adversary can adaptively query O on (i, s) pairs of its choosing.
At the end of Stage 1 the adversary outputs two equal length messages M0 and
M1, a policy P∗ on m terms and a state S. We insist that for all qualifying sets
in P∗ there is at least one pair (i, s) for which the adversary has not queried O
(otherwise its task is trivial).

Challenge: The simulator chooses a bit b. The the simulator, using the encryp-
tion algorithm above, encrypts Mb under Bob’s public key and the policy P∗.
The resulting ciphertext C∗ and the state S are passed back to the second stage
of the adversary.



Stage 2: The adversary continues to query O on (i, s) pairs of its choosing,
subject to the restriction that it cannot obtain from O credentials making up a
qualifying set in P∗.

Guess: At the end of Stage 2 the adversary outputs a bit b′: its guess at b.
The adversary is said to win the game if b = b′. We define the advantage of the
adversary as

AdvRec(A) = 2 ·

∣

∣

∣

∣

Pr[b′ = b]−
1

2

∣

∣

∣

∣

= |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| .

Theorem 2. Suppose that there is an adversary A of our scheme that makes at
most qi calls to random oracle i, that it makes at most qo calls to OA, then we
have algorithms B1, B2 and B3 that are of similar efficiency and such that

AdvRec(A) ≤ 2 ·AdvEnc(B3) + 2 · AdvSm
(B2) + 2 · n · q1 · q2 ·AdvBDHP(B1)

+
q3 + q4

2ls−2
.

Proof. The proof can be found in Appendix C.
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A Miscellany

Here we collect some comments and background which are not required to un-
derstand the scheme or its security definition, but which maybe required to
understand either the security definition, the security proof, or how one should
go about implementing our scheme efficiently.

A.1 The Decryption Oracle

The decryption oracle D above in both security definitions is assumed to only
decrypt ciphertexts which are valid, irrespective of which authorising set of cre-
dentials they are decrypted with. This avoids a trivial malleability property,
which we now explain. Suppose the challenge ciphertext C∗ has the policy P∗

with two terms given by

a ∨ b.

Hence, the challenge ciphertext is given by

C∗ = (U∗, c∗1, c
∗
2, A

∗,P∗, E∗).

The adversary could replace the value of c∗2 with a random bit string of length
l, forming a ciphertext C. This ciphertext C is clearly different from C∗ and
when decrypted, using the credential corresponding to the term a in the policy
P∗, will result in the same message as that encrypted by C∗. However, when
decrypted with the credential corresponding to the b term in the policy P∗ the



ciphertext is determined to be invalid. In our security model we assume that the
decryption oracle will always return that C is invalid in such a situation.

Clearly the security model could be extended to allow the adversary to query
a decryption oracle and specify which qualifying subset of credentials from the
policy he would like to be used for the decryption. We feel this added security is
perhaps too strong, and would require a far more complicated scheme than that
explored in this paper. We therefore leave consideration of this case to future
work.

A.2 The Security Model

We now discuss two issues which are raised by our wish to have escrow free
workflow. It would appear that an escrow free workflow scheme must make use
of a user private key, and so would appear to require the existance of user public
keys to which one encrypts messages.

However, this escrow-free requirement restricts some of the applications of
cryptographic workflow. One example is the broadcasting of data secured under
a timelock, as considered in [7]. We note that, our system can be modified and
then used as an escrowed system, and thereby enabling such examples as the
broadcast timelock, by removing the computation of g and H2(g) (resp. g′ and
H2(g

′)) in encryption (resp. decryption).
A security model for such a scheme can be obtained by keeping the same

notion of recipient security, but alterring the notion of external security to a
model in which the adversary does not know the private keys of the authorization
authorities. Our security proofs then go over to this new situation with only
minor changes. We note that the resulting escrowed scheme is very similar to the
hybrid secret-sharing/OSBE system mentioned in [11]. However, our escrowed
scheme has a rigourous security model and proof unlike the hybrid scheme of
[11].

Our second issue related to the use of public keys is that the public keys in
our scheme need to contain data corresponding to the authorization authorities
which will be used to encrypt data. This means the encryptor is unable to choose
the authorization authorities completely at will. Hence, it would be of some
interest to construct a system which has a simpler public key structure. Indeed
it would be interesting to devise an escrow-free workflow scheme which could be
used with any existing deployed public keys. Such a generic construction is the
topic of ongoing research.

A.3 Efficient Implementation

Encryption : We need to compute

gj = t̂([r]Ri, Qsj
).

Note, if t̂(Ri, Qsj
) is already computed then it is more efficient to compute

t̂(Ri, Qsj
)r. Also note that computations in G2 are usually more expensive than



those in G1 for various groups, hence one should not compute gj via

gj = t̂(Ri, [r]Qsj
).

Decryption : We need to compute multiple

t̂(U, Ci(sj))

for all credentials Ci(sj) owned by the decryptor. Note, since U is a fixed first
coordinate of all the Tate pairing computations, we can perform the Tate pairings
in parallel to obtain increased efficiency improvements. However, this benefit is
not so pronounced for the Duursma–Lee algorithm [8] in characteristic three,
but is more noticeable for “standard” Miller-like algorithms for the Tate pairing
in other characteristics.

Combining : Just as in [7] and [16] we can achieve a reduced number of pairings
by adding together credentials which share a term in common and which are to
form a conjunction in the policy, as the following illustrates:

Suppose our policy is in disjunctive normal form and that one of the in-
ner terms (i.e. a conjunction) requires the decryptor to posses two credentials
Ci(s1) and Ci(s2), i.e. credentials from the same authorisation authority but on
different strings. The encryptor can in such a situation reduce the number of
pairing computations by combining the two credentials together into a “virtual”
credential by computing

gj = t̂([r]Ri, Qs1
+ Qs2

).

The decryptor can achieve the same saving by computing

gj = t̂(U, Ci(s1) + Ci(s2)).

A similar saving can be made when the same string is signed by different
authorities within a conjunctive term. For example the decryptor holds the cre-
dentials Ci(s) and Ci′(s). Encryption is then simplified by using a “virtual”
credential by computing

gj = t̂([r](Ri + Ri′), Qs).

The decryptor can again achieve the same efficiency improvement by computing

gj = t̂(U, Ci(s) + Ci′ (s)).

A.4 One-More Oracle BDH Problem

In one of our security proofs, for the Recipient Security case, we will make use
of a modified form of the BDH problem. This new definition implies that no



matter how many solutions to the BDH problem one determines there are still
problems which one cannot solve.

We define this notion via the following game: An adversary against what we
shall call the One-More Oracle BDH Problem is given as input the following data

{P, P ′, {[xi]P}
n
i=1, {[yj]P

′}mj=1, [z]P},

where xi, yj, z ∈ F∗
q . The adversary is also given access to a Diffie–Hellman

oracle ODH which input of [xi]P and [yj ]P
′, where [xi]P and [yj]P

′ are part
of the input data, will output [xiyj ]P

′. At the end of the game the adversary
should output a value of

t̂(P, P ′)zxiyj ,

subject to the constraint that [xi]P and [yj ]P
′ form part of the input data and

the query ODH([xi]P, [yj ]P
′) has not been made. To denote the dependence on

n and m we denote the above problem by OMBDH(n, m). The advantage of
such an adversary is defined in the standard way.

We have the following lemma relating security for the standard BDH problem
and the One-More Oracle BDH problem.

Lemma 1. Suppose that there is an adversary A against OMBDH(n, m) with
advantage AdvOMBDH(A) making qo calls to its ODH oracle, we can construct
an adversary A′ against the standard BDH problem, just as efficient as A, with
advantage AdvBDHP(A′) such that

AdvBDHP(A′) ≥
1

nm
AdvOMBDH(A). (1)

Proof. Suppose that A is such an adversary against OMBDH(n, m) exists. We
construct A′ as follows: The algorithm A′ takes as input {P, P, [x]P, [y]P ′, [z]P}
we then select i0 ∈ {1, . . . , n} and j0 ∈ {1, . . . , m} at random and define xi

and yj for i = 1, . . . , n and j = 1, . . . , m to be random elements of F∗
q . We set

Pi = [xi]P , except when i = i0 in which case we set Pi = [x]P , we also set
P ′

j = [yj ]P
′ except when j = j0 in which case we set P ′

j = [y]P .
We run A on input {P, P ′, {Pi}

n
i=1, {P

′
j}

m
j=1, [z]P}. We use the known values

xi and yi to answer the oracle queries ODH(Pi, P
′
j) except when (i, j) = (i0, j0)

in which case we abort A. When A outputs a value, we output the same value.
In the worst case we can assume that A makes nm − 1 such queries, and

since i0 and j0 are out of the view of the adversary A we have

AdvBDHP(A′) ≥
1

nm
AdvOMBDH(A).

A.5 A Preliminary Lemma

In our security proofs, in the following appendices, we will make frequent of the
following useful lemma from [15].

Lemma 2. Let E, F and G be events defined on a probability space such that
Pr[E ∧ ¬G] = Pr[F ∧ ¬G]. We have

|Pr[E]− Pr[F ]| ≤ Pr[G].



B Proof of Theorem 1

Our proof strategy is as follows. We define a sequence G0, . . . ,G3 of modified
attack games. The only difference between games is how the simulated envi-
ronment responds to A’s oracle queries. For any 0 ≤ i ≤ 4, we let Si be the
probability that b′ = b in Gi. In certain games the simulator will use an instance
of the BDH problem

{P, P ′, [x]P, [y]P ′, [z]P}. (2)

Game G0

This is the real attack game and so

Pr[S0] =
1

2
AdvExt(A) +

1

2
. (3)

Game G1

In this game we modify the environment so thatA now interacts with a simulator
B. First of all B runs the various key generation algorithms, it then passes A the
public key (X, Q), plus the set of public/private key pairs of the authorisation
authorities {Ri, ai}

n
i=1.

We define how our simulators B responds to the various oracle calls of A be-
low. Note that algorithm B uses [y]P ′ from the BDH instance (2) in responding
to the H1 queries.

H1 Oracle Queries: Algorithm B maintains a list H1 of triples (sk, H1,k, bk) ∈
{0, 1}∗ × G2 × F

∗
q which is initially empty. If a query s is made to H1, then B

checks whether s occurs as a first component sk in the list, if so the output of
H1 is the corresponding value H1,k. Otherwise bs is chosen uniformly at random
from F∗

q and Qs = [bs]([y]P ′) is computed. The triple (s, Qs, bs) is then added
to H1 and Qs is returned to A.

H2 Oracle Queries: Algorithm B maintains a list H2 of pairs (gk, H2,k) ∈
GT ×{0, 1}l. If a query g is made to H2, then B checks whether g occurs as the
first component gk in the list, if so the output of H2 is the corresponding value
H2,k. Otherwise, H is chosen uniformly at random from {0, 1}l, (g, H) is placed
on the list and H is returned to A.

H3 Oracle Queries: Algorithm B maintains a list H3 of pairs (sk, H3,k) ∈
{0, 1}∗ × F∗

q . If a query s = b‖P‖M is made to H3, then B checks whether s
occurs as the first component sk in the list, if so the output of H3 is the cor-
responding value H3,k. Otherwise, H is chosen uniformly at random from F∗

q ,
(s, H) is placed on the list and H is returned to A.



H4 Oracle Queries: Algorithm B maintains a list H4 of pairs (sk, H4,k) ∈
{0, 1}ls × {0, 1}le. If a query s is made to H4, then B checks whether s occurs
as the first component sk in the list, if so the output of H4 is the corresponding
value H4,k. Otherwise, H is chosen uniformly at random from {0, 1}le, (s, H) is
placed on the list and H is returned to A.

D Oracle Queries: Algorithm B can answer these using the genuine decryp-
tion algorithm since at this point it knows all the necessary private keys. When
doing so it replaces hash function calls with calls to the oracles described above.

When A outputs P∗, M0 and M1 on which it wishes to be challenged, B chooses
a bit b and encrypts Mb under P∗, replacing hash function calls with calls to
the oracles above. Let (U∗, {c∗j}

m
j=1, A

∗,P∗, E∗) be the resulting ciphertext; B
returns this to A.

These simulators are clearly consistent and so, in the random oracle model we
have

Pr[S1] = Pr[S0]. (4)

Game G2

In this game we are going to embed more of the BDH problem instance (2) into
our simulation.

To begin with we define the public key given to the adversary as follows.

– Select ai ∈ F∗
q at random and set Ri = [ai]P , for 1 ≤ i ≤ n.

– Set X = [x]P .

Since we no longer know the private key of the user (x in our updated simulation),
it is now necessary to modify our decryption oracle. In this game we use the
following oracle to decrypt a ciphertext (U, {cj}

m′

j=1, A,P , E), where P is a policy

on m′ terms {(ij, sj)}
m′

j=1

1. Search the H3 until a pair (s3k
, H3,k) is found such that [H3,k]P = U or

until the end of the list is reached. If no such entry exists, return ⊥, else let
r = H3,k.

2. For j = 1, . . . , m′ let Qj = H1(sj) where the values sj are from policy P and
H1 represents the simulator above.

3. Set g = t̂([r]X, Q).
4. For j = 1, . . . , m′ let gj = t̂([r]Ri, Qj).
5. For j = 1, . . . , m′ let bj = cj ⊕H2(gj)⊕H2(g) where H2 is the simulator for

H2.
6. Let K′ = {bj}

m′

j=1, compute b = S−1
m (K, A), if b = ⊥ return ⊥.

7. Compute M = Enc−1
H4(b)(E).

8. If the pair (b‖P‖M, r) does not appear in the H3 list return ⊥, else return
M .



It is easy to verify that G2 proceeds exactly as G1 until one of two events occurs:
(1) there is a collision in the H3 oracle , or (2) the decryption simulator rejects a
valid ciphertext. We denote these events Coll2 and Reject2 respectively. We have

Pr[Coll2] ≤ q3(q3 − 1)/2(q − 1).

Also, the only valid ciphertexts that are rejected are those that verify without
the requisite H3 query being made. Therefore

Pr[Reject2] ≤ qd/(q − 1).

Putting this together using Lemma 2 we have

|Pr[S2]− Pr[S1]| ≤
q3(q3 − 1)

2(q − 1)
+

qd

q − 1
. (5)

Game G3

This game proceeds in very much the same way as game G2, the difference is in
how the challenge ciphertext is created. At the beginning of this game B chooses
b
∗ at random from {0, 1}ls as it would do when creating the challenge ciphertext.

Again using the BDH instance (2), the challenge ciphertext for (P∗, M0, M1)
output by A is now created as follows.

1. Choose b at random from {0, 1}.
2. Compute (K∗, A∗) = Sm(P∗, b∗).
3. Choose κ∗ at random from {0, 1}le (where le is the output length of H4)
4. Set E∗ = Encκ∗(Mb).
5. Set U∗ = [z]P .
6. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
7. Return (U∗, {c∗j}

m
j=1, A

∗,P∗, E∗).

For the {(ij, sj)}
m
j=1 contained in policy P∗, let

Qj = H1(sj) = [bsj
y]P ′

and Q = [b′y]P ′ for the integers b′ and bsj
generated by the simulation for H1.

Also, let K∗ = {b′j}
m
j=1.

For the challenge ciphertext to be consistent with the rest of the simulation
we should have, for j = 1, . . . , m

b
′
j = c∗j ⊕H2

(

t̂([z]Rij
, Qj)

)

⊕H2

(

t̂([z]X, Q
)

= c∗j ⊕H2

(

t̂(P, P ′)yzaij
bsj

)

⊕H2

(

t̂(P, P ′)xyzb′
)

. (6)

Let us denote the event that the query

H2

(

t̂(P, P ′)xyzb′
)

(7)



is made by AskBDH3. This event will go undetected by our simulator and so the
response of the H2 oracle will be incorrect if it occurs. From (6) above we see
that it should be equal to

b
′
j ⊕ c∗j ⊕H2

(

t̂(P, P ′)yzaij
bsj

)

for all values of j ∈ {1, . . . , m}.

The other consistency constraints imposed by the creation of the challenge
ciphertext is that we should have

z = H3(b
∗||P∗||Mb) and κ∗ = H4(b

∗)

However, as it is constructed B will not respond in this way.

Let us denote the event that A makes a query b
∗||str to the H3 oracle for

some string str, or it makes the query b
∗ to H4, by AskBS3. Let AskBS1

3 be the
event that AskBS3 occurs before the challenge ciphertext is given to A and let
AskBS2

3 be the event that AskBS3 occurs after the challenge ciphertext is given
to A.

Examining our simulation, we see G3 proceeds exactly as G2 until AskBDH3

or AskBS3 occurs. Therefore, by Lemma 2 we have

|Pr[S3]− Pr[S2]|

≤ Pr[AskBDH3 ∨ AskBS3]

= Pr[AskBDH3] + Pr[AskBS3 ∧ ¬AskBDH3]

≤ Pr[AskBDH3] + Pr[AskBS3|¬AskBDH3]

= Pr[AskBDH3] + Pr[AskBS1
3|¬AskBDH3] + Pr[AskBS2

3|¬AskBDH3]

≤ (q3 + q4)/2ls + Pr[AskBDH3] + Pr[AskBS2
3|¬AskBDH3]. (8)

The last inequality follows from the fact that, before the challenge ciphertext is
given to A, it has no information about b

∗.

Now, let B1 be the algorithm that begins by running A exactly as it is run
in G3. Once the simulation terminates it retrieves (X, Q, b′) from the H1 list.
Next it chooses a random input g∗ from the H2 list and computes

(g∗)1/b′ mod q.

In the event that AskBDH3 (as defined in (7) above) has occurred, this is the
solution to the BDH instance {P, P ′, [x]P, [y]P ′, [z]P} with probability 1/q2. We
conclude that

Pr[AskBDH3] ≤ q2 ·AdvBDH(B1). (9)

To bound Pr[AskBS2
3|¬AskBDH3] we construct an adversary B2 of the secret

sharing scheme Sm. We do this describing a modified version of the game G3.



Game G′

3

In this game we describe how A can be used to construct an adversary B2 of
Sm. At the beginning of this game B2 chooses b

∗
0 and b

∗
1 at random from {0, 1}l.

It runs A in a very similar manner to how A is run in G3 except that, once it
has givenA the challenge ciphertext, it modifies the H3 and H4 oracles as follows.

H3 Oracle Queries: If queried with s such that s = b
∗
0‖str0 for some str0,

return 0 and terminate the simulation. If queried with s such that s = b
∗
1‖str1

for some str1, return 1 and terminate the simulation. Otherwise, respond as in
G3.

H4 Oracle Queries: If queried with b
∗
0, return 0 and terminate the simulation.

If queried with b
∗
1, return 1 and terminate the simulation. Otherwise, respond

as in G3.

Using the BDHP problem instance {P, P ′, [x]P, [y]P ′, [z]P}, the challenge cipher-
text for (P∗, M0, M1) output by A is now generated as follows.

1. Choose b at random from {0, 1}.
2. Call B2’s challenge oracle with (P∗, b∗0, b

∗
1) to obtain A∗.

3. Set E∗ = Encκ∗(Mb).
4. Set U∗ = [z]P .
5. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
6. Return (U∗, {c∗j}

m
j=1, A

∗,P∗, E∗).

Let d be the hidden bit of B2’s challenge oracle and let d′ be the output of B2.
By definition we have

AdvSm
(B2) = |Pr[d′ = 1|d = 1]− Pr[d′ = 1|d = 0]|.

Our construction gives us

Pr[d′ = 1|d = 1] = Pr[AskBS2
3|¬AskBDH3].

Also, since bb̄ is hidden from A’s view we have

Pr[d′ = 1|d = 0] ≤ (q3 + q4)/2ls

It follows that

Pr[AskBS2
3|¬AskBDH3] ≤ AdvSm

(B2) + (q3 + q4)/2ls . (10)

To complete the proof we show that there is an algorithm B3 to break the
FG security of Enc such that

AdvEnc(B3)

2
+

1

2
= Pr[S3]. (11)

This algorithm runs A as it would be run in game G3 except that the challenge
ciphertext is now generated as follows.



1. Choose b
∗ at random from {0, 1}ls.

2. Compute (K∗, A∗) = Sm(P∗, b∗).
3. Call the challenge oracle the for FG attack game with (M0, M1) and receive

ciphertext E∗ in response.
4. Set U∗ = [z]P .
5. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
6. Return (U∗, {c∗j}

m
j=1, A

∗,P∗, E∗).

Let d be the hidden bit of B3’s challenge oracle. By construction we have the
following.

Pr[d′ = 1|d = 1] = Pr[S3]

By definition this gives us

AdvEnc(B3)

2
+

1

2
= Pr[S3]

as required.
The result now follows from (3), (4), (5), (8), (9), (10) and (11).

C Proof of Theorem 2

The philosophy behind this proof is similar to that of the previous proof, but
now in certain games the simulator will use an instance of the OMBDH(n, q1)
problem

{P, P ′, {[xi]P}
n
i=1, {[yj]P

′}q1

j=1, [z]P}.

Game G0

This is the real attack game and so

Pr[S0] =
1

2
AdvRec(A) +

1

2
. (12)

Game G1

In this game we modify the environment so thatA now interacts with a simulator
B. First of all B runs the various key generation algorithms, it then passes A the
public key (X, Q) and the corresponding private key u, plus the public keys of
the authorisation authorities {Ri}

n
i=1.

We define how our simulators B responds to the various oracle calls of A
below.

H1 Oracle Queries: Algorithm B maintains a list H1 of triples (sk, H1,k, bk) ∈
{0, 1}∗ × G2 × F∗

q which is initially empty. If a query s is made to H1, then B



checks whether s occurs as a first component sk in the list, if so the output of
H1 is the corresponding value H1,k. Otherwise bs is chosen uniformly at random
from F

∗
q and Qs = [bs]P

′ is computed. The triple (s, Qs, bs) is then added to H1

and Qs is returned to A.

H2 Oracle Queries: Algorithm B maintains a list H2 of pairs (gk, H2,k) ∈
GT ×{0, 1}l. If a query g is made to H2, then B checks whether g occurs as the
first component gk in the list, if so the output of H2 is the value H2,k. Otherwise,
H is chosen uniformly at random from {0, 1}l, (g, H) is placed on the list and
H is returned to A.

H3 Oracle Queries: Algorithm B maintains a list H3 of pairs (sk, H3,k) ∈
{0, 1}∗ × F

∗
q . If a query s = b‖P‖M is made to H3, then B checks whether s

occurs as the first component sk in the list, if so the output of H3 is the value
H3,k. Otherwise, H is chosen uniformly at random from F∗

q , (s, H) is placed on
the list and H is returned to A.

H4 Oracle Queries: Algorithm B maintains a list H4 of pairs (sk, H4,k) ∈
{0, 1}ls × {0, 1}le. If a query s is made to H4, then B checks whether s occurs
as the first component sk in the list, if so the output of H4 is the value H4,k.
Otherwise, H is chosen uniformly at random from {0, 1}le, (s, H) is placed on
the list and H is returned to A.

O Oracle Queries: Suppose B is responding to the query (i, s) where i denotes
the ith authorization authority. We can assume that before the adversary makes
such a query it has already made the query H1(s), otherwise B can make this
query itself.

The first thing that B does is to recover the entry (s, Qs, bs) from H1. It then
computes Ci(s) = [aibs]P

′. It records (i, s, Ci(s)) in a list C and returns Ci(s) to
A.

When A outputs P∗, M0 and M1 on which it wishes to be challenged, B chooses
a bit b and encrypts Mb under P∗, replacing hash function calls with calls to
the oracles above. Let (U∗, {c∗j}

m
j=1, A

∗,P∗, E∗) be the resulting ciphertext; B
returns this to A.

These simulators are clearly consistent and so, in the random oracle model we
have

Pr[S1] = Pr[S0]. (13)

Game G2

The only changes between this game and G1 are (1) how the challenge ciphertext
is generated and (2) how B deals with the O oracle.



Suppose that A outputs (P∗, M0, M1), using [z]P for z chosen at random
from F∗

p and unknown to B, the challenge ciphertext is generated as follows.

1. Choose b at random from {0, 1}.
2. Chooses b

∗ at random from {0, 1}ls .
3. Compute (K∗, A∗) = Sm(P∗, b∗), and store K∗ = {b′1, . . . , b

′
n}.

4. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
5. Set U∗ = [z]P .
6. Set g = t̂([u]U∗, Q).
7. Choose b

′ at random from {0, 1}l and add (g, b′) to H2.
8. For every (i, s) ∈ P∗ ∩ C (where C is the list maintained by the O oracle),

compute gi = t̂(U∗, Ci(s)) and add (gi, c
∗
i ⊕ b

′
i ⊕ b

′) to H2.
9. Choose κ∗ at random from {0, 1}le.

10. Set E∗ = Encκ∗(Mb).
11. Return (U∗, {c∗j}

m
i=1, A

∗,P∗, E∗).

O Oracle Queries: If the query (i, s) is being made before the challenge
ciphertext is issued, respond exactly as in G1.

Otherwise, proceed exactly as in G1, but before responding to A, check to
see if (i, s) ∈ P∗. If so, compute gi = t̂(U∗, Ci(s)) and add (gi, c

∗
i ⊕b

′
i⊕b

′) to H2.

Let us denote by AskH22 the event that H2 is called for a value of gj and
subsequently in the generation of the challenge ciphertext or in responding to
an O query we have gj = t̂(U∗, Ci(s)). Examining the simulations above we see
that in the event AskH22 we get we get an inconsistency in H2.

The other constraints imposed by the creation of the challenge ciphertext is
that we should have

z = H3(b
∗||P∗||Mb) and κ∗ = H4(b

∗)

However, as it is constructed B will not respond in this way.
Let us denote the event that A makes a query b

∗||str to the H2 oracle for
some string str, or it makes the query b

∗ to H4, by AskBS2. Let AskBS1
2 be the

event that AskBS2 occurs before the challenge ciphertext is given to A and let
AskBS2

2 be the event that AskBS2 occurs after the challenge ciphertext is given
to A.

Examining our simulation, we see G2 proceeds exactly as G2 until AskH22

or AskBS2 occurs. Therefore, by Lemma 2 we have

|Pr[S2]− Pr[S1]|

≤ Pr[AskH22 ∨ AskBS2]

= Pr[AskH22] + Pr[AskBS2 ∧ ¬AskH22]

≤ Pr[AskH22] + Pr[AskBS2|¬AskH22]

= Pr[AskH22] + Pr[AskBS1
2|¬AskH22] + Pr[AskBS2

2|¬AskH22]

≤ (q2 + q4)/2ls + Pr[AskH22] + Pr[AskBS2
2|¬AskH22]. (14)



The last inequality follows from the fact that, before the challenge ciphertext is
given to A, it has no information about b

∗.
We now bound Pr[AskH22] by constructing an algorithm B1 to solve an in-

stance {P, P ′, {[xi]P}
n
i=1, {[yj]P

′}q1

j=1, [z]P} of the OMBDH problem. Algorithm
B1 simulates A in a very similar manner to the way B simulates A in game G2.
The differences are as follows.

– B1 replaces Ri = [ui]P with Ri = [xi]P for the authorisation authority public
keys.

– B1 responds to the j-th query to H1 with [yj]P
′ and does the appropriate

bookkeeping.
– B1 responds to the O queries using its DH oracle for the OMBDH problem

by computing Ci(s) = ODH([xi]P, [yj ]P
′) where [yj ]P

′ = H1(s).
– B1 chooses j∗ at random from {1, . . . , q2} and when it receives gj∗ , the j∗-th

query to H2, it stops the simulation and outputs gj∗ .

Now, A’s view when simulated by B in game G2 and when simulated by B1 here
is identical up to the point when A makes the j∗-th query to H2. Moreover, in
the event AskH22, B1 succeeds in solving the OMBDH problem with probability
1/q2. We conclude that

Pr[AskH22] ≤ q2AdvOMBDH(B1). (15)

To bound Pr[AskBS2
2|¬AskH22] we construct an adversary B2 of the secret shar-

ing scheme Sm. We do this describing a modified version of the game G2.

Game G′

2

In this game we describe how A can be used to construct an adversary B2 of
Sm. At the beginning of this game B2 chooses b

∗
0 and b

∗
1 at random from {0, 1}l.

It runs A in a very similar manner to how A is run in G2 except that, once it
has givenA the challenge ciphertext, it modifies the H3 and H4 oracles as follows.

H3 Oracle Queries: If queried with s such that s = b
∗
0‖str0 for some str0,

return 0 and terminate the simulation. If queried with s such that s = b
∗
1‖str1

for some str1, return 1 and terminate the simulation. Otherwise, respond as in
G3.

H4 Oracle Queries: If queried with b
∗
0, return 0 and terminate the simulation.

If queried with b
∗
1, return 1 and terminate the simulation. Otherwise, respond

as in G3.

The challenge ciphertext for (P∗, M0, M1) output by A is now generated as
follows by B2.

1. Choose b at random from {0, 1}.
2. Call B2’s challenge oracle with (P∗, b∗0, b

∗
1) to obtain A∗.



3. Choose κ∗ at random from {0, 1}le (where le is the output length of H4).
4. Set E∗ = Encκ∗(Mb).
5. Set U∗ = [z]P .
6. Set g = t̂([u]U∗, Q).
7. Choose b

′ at random from {0, 1}l and add (g, b′) to H2.
8. For every (i, s) ∈ P∗∩C (where C is the list maintained by the O oracle), call
B2’s oracle to obtain b

′
i, compute gi = t̂(U∗, Ci(s)) and add (gi, c

∗
i ⊕ b

′
i⊕ b

′)
to H2.

9. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
10. Return (U∗, {c∗j}

m
i=1, A

∗,P∗, E∗).

O Oracle Queries: If the query (i, s) is being made before the challenge
ciphertext is issued, respond exactly as in G2.

Otherwise, proceed exactly as in G2, but before responding to A, check to
see if (i, s) ∈ P∗. If so, call B2’s oracle to obtain b

′
i, compute gi = t̂(U∗, Ci(s))

and add (gi, c
∗
i ⊕ b

′
i ⊕ b

′) to H2.

Let d be the hidden bit of B2’s challenge oracle and let d′ be the output of
B2. By definition we have

AdvSm
(B2) = |Pr[d′ = 1|d = 1]− Pr[d′ = 1|d = 0]|

Our construction gives us

Pr[d′ = 1|d = 1] = Pr[AskBS2
2|¬AskH22].

Also, since bb̄ is hidden from A’s view we have

Pr[d′ = 1|d = 0] ≤ (q3 + q4)/2ls

It follows that

Pr[AskBS2
2|¬AskH22] ≤ AdvSm

(B2) + (q3 + q4)/2ls . (16)

To complete the proof we bound Pr[S2]. To do this we construct an adversary
B3 of Enc by simulating A as B does in G2. The only difference being how we
create the challenge ciphertext. This is done as follows.

1. Chooses b
∗ at random from {0, 1}ls .

2. Compute (K∗, A∗) = Sm(P∗, b∗), and store K∗ = {b′1, . . . , b
′
m}.

3. For j = 1, . . . , m, choose c∗j at random from {0, 1}l.
4. Set U∗ = [z]P .
5. Set g = t̂([u]U∗, Q).
6. Choose b

′ at random from {0, 1}l and add (g, b′) to H2.
7. For every (i, s) ∈ P∗ ∩ C (where C is the list maintained by the O oracle),

compute gi = t̂(U∗, Ci(s)) and add (gi, c
∗
i ⊕ b

′
i ⊕ b

′) to H2.
8. Call B3’s challenge oracle with (M0, M1) to obtain E∗.
9. Return (U∗, {c∗j}

m
i=1, A

∗,P∗, E∗).



Let d be the hidden bit of B3’s challenge oracle. By construction we have the
following.

Pr[d′ = 1|d = 1] = Pr[S2]

By definition this gives us

AdvEnc(B3)

2
+

1

2
= Pr[S2]. (17)

The result now follows from (12), (13), (14), (15), (16) and (17).


