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Abstract. By considering a new metric, we generalize cryptographic
properties of Boolean functions such as resiliency and propagation char-
acteristics. These new definitions result in a better understanding of the
properties of Boolean functions and provide a better insight in the space
defined by this metric. This approach leads to the construction of “hand-
made” Boolean functions, i.e., functions for which the security with re-
spect to some specific monotone sets of inputs is considered, instead of
the security with respect to all possible monotone sets with the same
cardinality, as in the usual definitions. This approach has the advantage
that some trade-offs between important properties of Boolean functions
can be relaxed.
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1 Introduction

For any two binary vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn
2 ,

define the sets δ(x, y) = {i : xi 6= yi} and sup(x) = {i : xi 6= 0}. Denote
the size of a set A with |A|. Then the Hamming distance between the binary
vectors x and y is equal to d(x, y) = |δ(x, y)| and the Hamming weight of x is
wt(x) = | sup(x)|. It was noted that δ(x, y) has properties similar to metric and
sup(x) has properties similar to norm [FM02,NN03].

Our goal is to use δ(x, y) instead of the Hamming distance and sup(x) instead
of the Hamming weight and to explore the properties of this new space. For this
purpose we consider monotone increasing and monotone decreasing sets. A set
∆ is called monotone decreasing if for each set in ∆, its subsets belong to ∆.
Similarly, a set Γ is said to be monotone increasing if for each set in Γ its
supersets belong to Γ .
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As it has already been shown in [NN03], this new space with monotone
sets can be used to generalize notions such as codes, minimum distance of a
code, minimal codewords, generator and parity check matrices of a code, packing
and covering, error-correcting capabilities, etc. In addition, monotone sets are
widely used in Secret Sharing Schemes (SSS) to describe the sets of players which
are allowed (disallowed) to reconstruct a secret. It has been recently pointed
out [FM02,NN03] that the security of (verifiable) SSS can be derived from the
properties of this space.

This paper focuses on Boolean functions. In particular, we generalize the def-
inition of t-resilient functions to functions which are resilient with respect to a
monotone decreasing set ∆. Analogously, the parameters for defining the prop-
agation characteristics (PC) of functions are replaced by monotone decreasing
sets. Our aim is to provide a new insight to the previous results and to give a
better understanding of which structural properties contribute in which way to
known results.

1.1 Motivation

Very often the properties of resiliency and PC imply strong requirements to
the rest of the parameters of a Boolean function. This leads to some trade-offs
between them, since all relevant properties cannot be satisfied simultaneously.
For example, Siegenthaler’s inequality [S84] states that d ≤ n − t − 1, where d
is the algebraic degree, n is the dimension and t is the order of resiliency. By
exactly defining which components need to satisfy a certain order of resiliency
or PC, we can strengthen the weaker components by using other constructions
and achieve in this way an optimal design.

By means of example, we present a modified version of the combination
generator (see Section 3.6 for concrete examples). Let ∆ be the set consisting
of all subsets of LFSRs for which the sum of the lengths is shorter than the
security parameter for the (fast) correlation attack [S85,MS92,JJ99]. It is known
that the feedback polynomials of the combining LFSRs should be primitive with
distinct degrees, not necessary co-prime, in order to obtain maximum linear
complexity [RS87]. Using t-resilient functions the degrees of LFSRs’ polynomials
are uniformly chosen. But considering ∆-resilient functions instead, allows us to
choose the degrees non-uniformly as well as to relax the requirements to the
rest of the function parameters like nonlinearity, algebraic degree, etc. Using a
∆-resilient function as combiner f , the (fast) correlation attack can be avoided.
Moreover, the degree of the function f should be high in order to counter the
linear synthesis by Berlekamp-Massey [M69] and algebraic attacks [CM03]. Note
that in this model the trade-off defined by the Siegenthaler’s inequality can be
relaxed to another form as shown in Section 3.2.

In order to preclude more recent algebraic attacks, we should also require that
the function has no low degree multiples [CM03]. To get even better security, but
a small trade-off in speed, one can replace some linear feedback shift registers
by nonlinear feedback shift registers or clock controlled linear feedback shift
registers, since the algebraic attacks of [CM03] do not apply on this model. The
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set ∆ for defining the resiliency contains again the subsets of LFSRs for which
the sum of the lengths is smaller than the security parameter for the (fast)
correlation attack.

1.2 Previous Work

The first steps in considering generalizations of classical t-resiliency and func-
tions satisfying PC properties has been made in [CCCF00]. The authors extended
the properties of resiliency and propagation characteristics with respect to sub-
spaces. So, our definitions can be seen as natural extensions of the definitions
by Canteaut et al., instead of subspaces, to collections of subspaces.

We also refer to the research on almost resilient functions and functions sat-
isfying almost PC properties [KJS01,K99,DSS01]. There, the concept is different
and is based on probabilities but it is also introduced for relaxing the parameters
and for avoiding (or relaxing) the trade-offs.

1.3 Organization of the Paper

The paper is organized as follows. In Sect. 2, we give some background and
preliminaries. Sect. 3 deals with ∆-resilient functions. We first investigate the
notions algebraic and numerical degree, nonlinearity and divisibility results for
the Walsh coefficients. Then different constructions are identified amongst the
other we mention the constructions of Siegenthaler, Camion et al., Maiorana-
MacFarland, the Direct sum and the Partial-Spread constructions. Next we es-
tablish a connection between ∆-resilient functions and ∆-orthogonal arrays. We
also give two concrete examples of ∆-resilient functions that have better trade-off
between degree/nonlinearity and resiliency compared with the classical theory.
In Sect. 4 we generalize functions which satisfy SAC and PC of some mono-
tone decreasing sets. Then a relation between them and ∆-resilient functions
is proven. In this setting we also investigate the question when a function may
possess linear structures. Finally we investigate the algebraic degree and show
a generalization of Kurosawa and Satoh’s construction of PC functions using a
relation between monotone span programs and linear codes.

2 Background

Define the set P = {1, . . . , n} and denote the power set of P by P (P). The set
Γ (Γ ⊆ P (P)) is called monotone increasing if for each set A in Γ , each set
containing A is also in Γ . Similarly, the set ∆ (∆ ⊆ P (P)) is called monotone
decreasing, if for each set B in ∆ each subset of B is also in ∆. A monotone
increasing set Γ can be described efficiently by the set Γ− consisting of the
minimal elements (sets) in Γ , i.e., the elements in Γ for which no proper subset
is also in Γ . Similarly, the set ∆+ consists of the maximal elements (sets) in
∆, i.e., the elements in ∆ for which no proper superset is also in ∆. We set
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Γ = ∆c (∆c = P (P) \ ∆). Note that Γ is monotone increasing if and only if ∆
is monotone decreasing.

The dual sets ∆⊥ and Γ⊥ to Γ and ∆, respectively, are defined by Γ⊥ =
{A : Ac ∈ ∆} and ∆⊥ = {A : Ac ∈ Γ}. It is easy to see that ∆⊥ is monotone
decreasing and Γ⊥ is monotone increasing. For two monotone decreasing sets
∆1 and ∆2 define ∆1 ⊎ ∆2 = {A = A1 ∪ A2;A1 ∈ ∆1, A2 ∈ ∆2}. Note that
∆1 ⊎ ∆2 is again a monotone decreasing set.

As it has been pointed out in [FM02,NN03], δ(x, y) has similar properties as
a metric and sup(x) has similar properties as a norm. Notice that sup(x) and
δ(x, y) = sup(x− y) are subsets of P and that P is partially ordered (i.e., x ¹ y
if and only if sup(x) ⊆ sup(y)). For a vector u ∈ Fn

2 , let u = u ⊕ 1 (where 1
denotes the all-1 vector), i.e., sup(u) = sup(u)c. The dot product w · x is equal
to the component-wise inner product.

For an element A ∈ ∆\{0}, the subspace defined by A is given by UA = {u :
sup(u) ⊆ A}. The dual U⊥

A of the subspace UA is the subspace consisting of the
elements x such that x · y = 0 for all y ∈ UA. Consequently, U⊥

A is defined by
Ac, i.e., U⊥

A = UAc = {u : sup(u) ⊆ Ac}.
Let f(x) = f(x1, . . . , xn) be a Boolean function on Fn

2 . The Walsh transform
Wf of a Boolean function f(x) plays an important role in our work. It is a
real-valued function, which is defined as follows

Wf (w) =
∑

x∈Fn
2

(−1)f(x)+w·x .

A function with equally distributed outputs is called a balanced function. It is
clear that for balanced functions Wf (0) = 0. A Boolean function f(x) on Fn

2 is
said to be a plateaued function [CaPr03,ZZ99b] if its Walsh transform Wf takes
only three values 0 and ±λ, where λ is a positive integer, called the amplitude
of the plateaued function.

The nonlinearity Nf of a Boolean function f , which is defined by the min-
imum distance of the function to the set of affine functions A, i.e., Nf =
ming∈A d(f, g), can be expressed using its Walsh transform as follows: Nf =
2n−1 − 1

2 maxw∈Fn
2
|Wf (w)|.

Other representations of a Boolean function f(x) are the algebraic normal
form (ANF)

f(x) =
⊕

u∈Fn
2

auxu, au ∈ F2 ,

and the numerical normal form (NNF)

f(x) =
∑

u∈Fn
2

λuxu, λu ∈ C .

The degree of the ANF is called the algebraic degree or shortly degree (denoted
by deg(f)), the degree of the NNF is called the numerical degree of the Boolean
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function. The autocorrelation rf of a Boolean function f on Fn
2 is a real-valued

transformation, defined by

rf (u) = 2−n
∑

x∈Fn
2

(−1)f(x)+f(x+u) .

We will also need an important property of the sum of characters (see e.g., [J92,
p. 263]).

Lemma 1. For any subspace V ⊆ Fn
2 , we have

∑

x∈V

(−1)w·x =

{
|V | if w ∈ V ⊥;
0 otherwise.

3 ∆-Resilient Functions

3.1 Definition and Relation with the Classical Definition of
Resiliency

In this section we generalize the definitions of resilient and correlation-immune
(CI) functions with respect to a monotone decreasing set ∆. We assume that the
set ∆ is the maximal possible monotone decreasing set for which the function sat-
isfies the corresponding property. The monotone increasing set Γ corresponding
with ∆ is defined by Γ = ∆c.

Definition 1. Let f(x) = f(x1, . . . , xn) be a Boolean function on Fn
2 and ∆ be

a monotone decreasing set. Then f(x) is called ∆-resilient iff f(x)⊕w · x is a
balanced function for all w such that sup(w) ∈ ∆. Furthermore, f(x) is called
∆-CI iff f(x)⊕w ·x is a balanced function for all w such that sup(w) ∈ ∆\{∅}.

When ∆ = {A : |A| ≤ t} the definitions of ∆-resilient function and t-resilient
function, (resp. ∆-CI function and t-CI function) coincide. The property bal-
ancedness of f(x) ⊕ w · x can be translated in terms of Walsh spectrum into
Wf (w) = 0. Denote the set of vectors which have zero Walsh value by ZWf ,
then ∆ ⊆ {sup(u) : u ∈ ZWf}. Note that ZWf ∩ Γ is not necessarily empty.

Example 1. Consider the sets ∆+ and Γ− in the set F4
2: ∆+ = {{1, 2}, {3, 4}}

and Γ− = {{1, 4}, {2, 4}, {1, 3}, {2, 3}}. It is easy to verify that Γ = ∆c and
Γ ∩ ∆ = ∅. A function which is ∆-resilient has zero Walsh coefficients for the
inputs w, where sup(w) ∈ {∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}, i.e., for the vectors
w ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1)}.

Next we establish the relationship with the classical definition of resiliency. For
the monotone sets Γ and ∆ define the parameters

t1 = min{|A| : A ∈ Γ−} and t2 = max{|A| : A ∈ ∆+} .

From the definition of t1 and the fact that Γ is a monotone increasing set, each
subset of size t1−1 belongs to ∆, which implies that a ∆-resilient function is also



6

(t1 − 1)-resilient. Analogously, a ∆-CI function is (t1 − 1)-CI. The parameter t2
defines the maximum dimension of a subspace in which the ∆-resilient function
is resilient.

The following theorem shows a necessary and sufficient condition for ∆-
resilient functions concerning its balancedness properties on affine subspaces.

Theorem 1. A Boolean function f on Fn
2 is ∆-resilient if and only if f is

balanced when restricted to any of the affine subspaces a + UA, where A ∈ ∆⊥.

Proof. It suffices to show that a Boolean function f on Fn
2 is resilient on the

subspace V if and only if f is balanced on the affine subspaces a + V ⊥, for all
a ∈ Fn

2 . Assume f is resilient on the subspace V , or equivalently Wf (v) = 0
for all v ∈ V . Now ∀a ∈ Fn

2 using the equation (1) the following equations are
equivalent

∑

v∈V

(−1)a·vWf (v) = 0

∑

v∈V

(−1)a·v
∑

x∈Fn
2

(−1)f(x)+v·x = 0

∑

x∈a+V ⊥

(−1)f(x)
∑

v∈V

(−1)(a+x)·v +
∑

x/∈a+V ⊥

(−1)f(x)
∑

v∈V

(−1)(a+x)·v = 0

|V |
∑

x∈a+V ⊥

(−1)f(x) = 0.

The proof of the converse part of the theorem follows from the equivalence of
the above equations. ⊓⊔

Remark 1. From the definition of resiliency, we deduce that if at most t compo-
nents of a t-resilient function are fixed (this defines a subspace V of dimension
n − t), the output is balanced. The previous theorem generalizes this property
by proving that the function is also balanced on all affine subspaces of V ⊥.

Example 2. A possible truth table of the ∆-resilient function defined by Exam-
ple 1 is given by the vector (0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0). This function
is exactly 1-resilient. Moreover the function is resilient with respect to two sub-
spaces of dimension 2 whose basis is given by < e1, e2 > and < e3, e4 >, where
ei is the all zero vector except for position i. One can check that the conditions
of Theorem 1 are satisfied.

3.2 Algebraic and Numerical Degree

Theorem 2. For a ∆-resilient function f on Fn
2 all ANF coefficients au of f

with sup(u) ∈ Γ⊥ and wt(u) > 1 are equal to zero. If sup(u) ∈ Γ⊥ and wt(u) = 1
then au = 1.



7

Proof. The Siegenthaler’s inequality deg(f) ≤ n − t − 1 for t-resilient functions
on Fn

2 relies on the observation that the coefficient au of the term xu in the ANF
of f satisfies the following relation [XM88]

au = 2wt(u)−1 − 2−wt(u)−1
∑

w¹u

Wf (w) mod 2 . (1)

Consider now u with sup(u) ∈ Γ⊥: then sup(u) ∈ ∆ and hence sup(w) ⊆
sup(u) ∈ ∆ for all w ¹ u. By definition of ∆-resilient functions Wf (w) = 0 for
sup(w) ∈ ∆. Therefore au = 0 for all u such that sup(u) ∈ Γ⊥ and wt(u) > 1,
but when sup(u) ∈ Γ⊥ and wt(u) = 1 we obtain au = 1. Note that this is
a generalization of the Siegenthaler’s inequality for t-resilient functions since if
∆ = {A : |A| ≤ t} we have Γ⊥ = {B : |B| ≥ n − t}. ⊓⊔

Remark 2. For a ∆-CI function f on Fn
2 all coefficients au from the ANF of f

with sup(u) ∈ Γ⊥, wt(u) > 1 and Wf (0) 6= 2n ± 2n−wt(u)−1 are equal to zero.
If sup(u) ∈ Γ⊥, wt(u) = 1 and Wf (0) 6= 2n − 2n−2 then au = 1. The proof for
∆-CI functions is analogous to the previous proof. This result generalizes the
Siegenthaler’s inequality for t-CI functions of degree d, i.e., t ≤ n − d.

Remark 3. Notice that because of the factor mod 2 in (1) the coefficient au is
1 for u such that sup(u) ⊆ [∆⊥]+ and Wf (u) = ±2n−wt(u)+1. The maximum
weight of such u defines the normal algebraic degree of the Boolean function.
Knowledge of the coefficients of the ANF of f enables us to derive bounds (upper
and lower) on the nonlinearity as shown in [ZZI99, Theorem 18 and Theorem
30].

We now generalize the definition of degree to this new setting.

Definition 2. Define a monotone decreasing set Deg = {A : A ⊆ sup(u), au 6=
0}. We call the set Deg+ the “degree-set” of f .

Remark 4. The “degree-set” of f satisfies the following relation Deg ⊆ ∆⊥∪{A :
A ∈ Γ⊥, |A| = 1}. Moreover, the equality does not always hold; it is even possible
that Deg+ ∩ [∆⊥]+ = ∅.

Example 3. Applying Theorem 2 to the function of Example 1, we obtain that
all coefficients au for u such that sup(u) ∈ Γ⊥ are zero, which gives addi-
tional information compared to the Siegenthaler’s inequality. Note that [Γ⊥]− =
{{3, 4}, {1, 2}} and [∆⊥]+ = {{2, 4}, {2, 3}, {1, 4}, {1, 3}}. Because the ANF of
f is given by x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x1 ⊕ x3, the equality Deg+ = [∆⊥]+

holds in this example.

Theorem 3. For a ∆-resilient function f(x) on Fn
2 all coefficients λu from NNF

of g(x) = f(x)⊕x1 ⊕ · · ·⊕xn with sup(u) ∈ Γ⊥ are equal to zero. Moreover, all
coefficients λu from NNF of g with sup(u) ∈ [∆⊥]+ are non-zero.
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Proof. In [CG01] the authors characterize a t-resilient function f by the nu-
merical degree of the function g(x) = f(x) ⊕ x1 ⊕ · · · ⊕ xn. Analogous to the
Siegenthaler’s inequality the numerical degree of function g(x) is less than or
equal to n − t − 1. The proof uses the connection between Walsh coefficients,
i.e., Wf (w) = Wg(w) and the observation that the coefficient λu of the term xu

in the NNF of g satisfies the following relation

λu = 2−n(−2)wt(u)−1
∑

u¹w

Wg(w) . (2)

Consider now u with sup(u) ∈ Γ⊥: then sup(u) ∈ ∆ and hence sup(v) ⊆
sup(u) ∈ ∆ for all v ¹ u. By rewriting (2) into

λu = 2−n(−2)n−wt(u)−1
∑

v¹u

Wf (v) (3)

and by using the definition of ∆-resilient functions, we obtain that λu = 0 for
all u such that sup(u) ∈ Γ⊥.

Note that there is one-to-one mapping between the coefficients λu equal to
zero and the resiliency (see (3)). Namely let f be ∆-resilient and assume that
there exists a zero coefficient λu from the NNF of g with sup(u) ∈ [∆⊥]+ then f
is (∆∪ sup(u))-resilient. As a consequence, the numerical degree of the function
is equal to max{|A| : A ∈ [∆⊥]+}. ⊓⊔

Remark 5. From the previous proof, it is easy to derive that for ∆-CI functions
f the coefficients λu of the NNF of g are nonzero if sup(u) ∈ Γ⊥ and also if
sup(u) ∈ [∆⊥]+ when Wf (0) 6= −Wf (u).

3.3 Nonlinearity

In this section we improve the divisibility results on the Walsh coefficients of
resilient functions which leads to an upper bound on the nonlinearity. Let fv

be the (n − wt(v))-variable function formed from f for which xj = 0 if vj = 1.
The divisibility result by Sarkar and Maitra [SM00] can be generalized in the
following way:

Theorem 4. Let f be a ∆-resilient function on Fn
2 . Then the Walsh coefficients

of f satisfy the following divisibility conditions:

Wf (v) = 0 mod 2t3(v)+1, where sup(v) ∈ Γ and

t3(v) = min{wt(w) : w ¹ v, sup(w) ∈ Γ−} .

Proof. In [CS02] the following relation has been proven:

∑

u¹v

Wf (u) = 2wt(v)Wfv
(0) = 2n − 2wt(v)+1wt(fv). (4)
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Choose v ∈ Γ−, hence for any u ¹ v we have u ∈ ∆ thus Wf (u) = 0. Then the
relation (4) reduces to Wf (v) = 2n − 2wt(v)+1wt(fv), which proves the result for
v ∈ Γ− because wt(v) = t3(v).

We will not consider the trivial case when Γ− = {P}. We proceed further
by induction on the weight of v. Let v ∈ Γ \ Γ−. Then from relation (4) we
have Wf (v) = 2n−2wt(v)+1wt(fv)−

∑
u¹v Wf (u). By the hypothesis Wf (u) = 0

mod 2t3(u)+1 for any u ¹ v and u ∈ Γ . Because t3(v) is increasing for decreasing
weight of v, it follows that t3(u) > t3(v) for all u ¹ v, u ∈ Γ , which completes
the induction step and the proof. ⊓⊔

Remark 6. Note that t3(v) ≥ t1 = t + 1 for v with sup(v) ∈ Γ , therefore we
have a stronger result comparing to the divisibility of 2t+2 proven in [SM00] for
t-resilient functions, since some of the coefficients are divisible by a higher power
of 2.

Now we extend the result of Carlet and Sarkar in [CS02], namely Wf (v) = 0

mod 2t+2+⌊n−t−2
deg(f) ⌋.

Theorem 5. Let f be a ∆-resilient function on Fn
2 . Then the Walsh coefficients

of f satisfy the following divisibility conditions:

Wf (v) = 0 mod 2
t3(v)+1+

⌊
n−t3(v)−1

t4(v)

⌋

,

where sup(v) ∈ Γ and with parameters t3(v) (as defined in Theorem 4) and
t4(v) = max{|A| : A ∈ Deg+, A ⊆ sup(u) with u ¹ v, sup(u) ∈ Γ−}.

Proof. In [CS02], the following relation has been proven
∑

u¹v

Wf (u) = 2wt(v)Wfv
(0) = 2n − 2wt(v)+1wt(fv) . (5)

Let f be a ∆-resilient function. If sup(v) ∈ Γ−, then for any u ¹ v we have
u ∈ ∆ thus Wf (u) = 0. Hence (5) reduces to Wf (v) = 2n − 2wt(v)+1wt(fv).
Applying McEliece’s [MS] theorem for cyclic codes on fv we obtain that wt(fv) =

0 mod 2

⌊
n−t3(v)−1

t4(v)

⌋

, since t3(v) = wt(v) and t4(v) = deg(fv). This proves the
result for v with sup(v) ∈ Γ−.

Let sup(v) ∈ Γ \Γ−. By the hypothesis Wf (u) = 0 mod 2
t3(u)+1+

⌊
n−t3(u)−1

t4(u)

⌋

for any u ¹ v and sup(u) ∈ Γ . Since t4(u) is increasing with respect to wt(u) we

obtain that Wf (u) = 0 mod 2
t3(u)+1+

⌊
n−t3(u)−1

t4(v)

⌋

for any u ¹ v and sup(u) ∈ Γ .
Note that by Remark 4 the degree of fv is less or equal to t4(v). Rewrite (5) in
the form Wf (v) = 2n − 2wt(v)+1wt(fv) −

∑
u¹v Wf (u). To conclude the proof

note that t3(u) is decreasing with respect to wt(u) and that t4(v) ≥ deg(fv). ⊓⊔

Remark 7. The parameters t3(v) and t4(v) satisfy an inequality similar to the
Siegenthaler’s inequality.

t3(v) + t4(v) ≤ n.

Thus Theorem 5 improves the result from Theorem 4 when t3(v) and/or t4(v)
are smaller.
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Example 4. Consider again the function of Example 1. By definition of Γ− and
Deg+ (see Example 3), the parameters t3(v) = 2 and t4(v) = 1 for all v ∈ Γ .
Consequently, the Walsh values of the function are divisible by 8.

The divisibility results of the Walsh coefficients for ∆-resilient functions result
in bounds on the nonlinearity of these functions. Since the proof is similar to
the one of [CS02], we only state the theorem.

Theorem 6. Let f be a ∆-resilient function on Fn
2 . Denote

L1 = maxsup(v)∈Γ

{
t3(v) + 1 +

⌊
n−t3(v)−1

t4(v)

⌋}
,

L2 = minsup(v)∈Γ

{
t3(v) + 1 +

⌊
n−t3(v)−1

t4(v)

⌋}
and let nlmax(n) be the maximum

possible nonlinearity for n-variable functions. Then

1. If n is even and L1 > n
2 − 1, then Nf ≤ 2n−1 − 2L1 .

2. If n is even and L1 ≤ n
2 − 1, then Nf ≤ 2n−1 − 2

n
2 −1 − 2L2 .

3. If n is odd and 2n−1 − 2L1 ≤ nlmax(n), then Nf ≤ 2n−1 − 2L1 .
4. If n is odd and 2n−1 − 2L1 > nlmax(n), then Nf is less than or equal to the

highest multiple of 2L2 which is not greater than nlmax(n).

3.4 Constructions of ∆-Resilient Functions

Lemma 2. If f is a ∆-resilient function on Fn
2 , then g(x) = f(x) ⊕ 1 and

h(x) = f(x1 ⊕ c1, . . . , xn ⊕ cn) where c ∈ Fn
2 are ∆-resilient.

Proof. The theorem follows immediately from the definition of ∆-resiliency and
the fact that Wf (w) = Wh(w) = −Wg(w) for all w ∈ Fn

2 . ⊓⊔

The Constructions of Siegenthaler and Camion et al.

Theorem 7. Let f1 and f2 be two ∆-resilient functions on Fn
2 . The function f

on Fn+1
2 defined by

f(x1, . . . , xn+1) = xn+1f1(x1, . . . , xn) ⊕ (1 ⊕ xn+1)f2(x1, . . . , xn)

is ∆̃-resilient, where ∆̃ = ∆ ⊎ P ({n + 1}). Furthermore, if w ∈ Γ and for
any u ¹ w it holds that Wf1

(u) + Wf2
(u) = 0 then f is ∆̂-resilient, where

∆̂ = ∆̃ ∪ P (sup(w)).

Proof. Let λ̃ = (λ1, . . . , λn) and λ = (λ̃, λn+1). The Walsh coefficients of f
satisfy the following relation:

Wf (λ) = Wf2
(λ̃) + (−1)λn+1Wf1

(λ̃) . (6)

If λ satisfies sup(λ) ∈ ∆̃, then sup(λ̃) ∈ ∆. Since f1 and f2 are ∆-resilient
functions it follows (from (6)) that Wf (λ) = 0.

If λ satisfies sup(λ) ∈ ∆̂ we have the following two cases:
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– sup(λ) ∈ ∆ ⊎ P ({n + 1}), for which it is already proven that Wf (λ) = 0.

– sup(λ) ∈ P (sup(w)) for some w ∈ Γ . We have now that λn+1 = 0 and thus
Wf (λ) = Wf1

(λ) + Wf2
(λ) = 0 since λ ¹ w.

⊓⊔

Remark 8. We extend Siegenthaler’s result [S84] that states “if f1 and f2 are t-
resilient then f is t-resilient” by showing that if f1 and f2 are ∆-resilient, then f
is ∆̃-resilient. Similarly, we generalize the result of Camion et al. [CCCS92] which
states “if also for all v such that wt(v) = t + 1 holds that Wf1

(v) + Wf2
(v) = 0,

f is (t + 1)-resilient”, because we show that if f1 and f2 are ∆-resilient then f
is ∆̂-resilient.

The following construction can be seen as a special case of the previous one.

Lemma 3. Let f1 be a ∆-resilient function on Fn
2 . Then the functions

f(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ 0.xn+1

g(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ xn+1(f1(x1, . . . , xn) ⊕ f1(x1 ⊕ 1, . . . , xn ⊕ 1))

are ∆ ⊎ P ({n + 1})-resilient functions on Fn+1
2 , and the function

h(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ xn+1

is a (∆ ⊎ P ({n + 1})) ∪ P ({1, . . . , n})-resilient function on Fn+1
2 .

Proof. First rewrite the functions in the form

f(x1, . . . , xn+1) = f1(x1, . . . , xn)(xn+1 ⊕ 1) ⊕ f1(x1, . . . , xn)xn+1

g(x1, . . . , xn+1) = f1(x1, . . . , xn)(xn+1 ⊕ 1) ⊕ f1(x1 ⊕ 1, . . . , xn ⊕ 1)xn+1

h(x1, . . . , xn+1) = f1(x1, . . . , xn)(xn+1 ⊕ 1) ⊕ (f1(x1, . . . , xn) ⊕ 1)xn+1.

Now applying Theorems 2 and 7 the results follow. ⊓⊔

The following corollary can be derived from Theorem 3.

Corollary 1. Let f(x) = w · x be a linear function on Fn
2 and wt(w) = d, i.e.,

without lost of generality we can suppose that f(x) = x1 ⊕ . . . ⊕ xd. Then f(x)
is (∪d

i=1P ({1, . . . , n} \ {i}))-resilient function.

Proof. Note that ∆ = (∪d
i=1P ({1, . . . , n} \ {i})) could be rewritten as ∆ =

P ({d+1, . . . , n})⊎{A : A ⊂ {1, . . . , d}}. It is easy to see now that {1, . . . , d} /∈ ∆
and hence f is (d − 1)-resilient. Also in accordance with Theorem 2 we have
{i} ∈ Γ⊥ for i = 1, . . . , d. ⊓⊔
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Direct Sum and Secondary Constructions.

Theorem 8. Let f1 be a ∆1-resilient function on Fn1
2 and f2 be a ∆2-resilient

function on Fn2
2 then the direct sum

f : Fn1
2 × Fn2

2 : (x, y) 7→ f(x, y) = f1(x) ⊕ f2(y)

is a (∆̃ = ∆1⊎∆2⊎S)-resilient function on Fn1+n2
2 where S = {∅, {1}, · · · , {n1},

{n1 + 1}, · · · , {n2 + n1}}.

Proof. For λ = (λ1, λ2), where λ1 ∈ Fn1
2 and λ2 ∈ Fn2

2 , the Walsh coefficient

equals to Wf (λ1, λ2) = Wf1
(λ1)Wf2

(λ2). For each λ = (λ1, λ2) with sup(λ) ∈ ∆̃,
at least one of λi satisfies sup(λi) ∈ ∆i, since all elements of S have weight
maximum one. ⊓⊔

Remark 9. The classical theorem says that for the direct sum of a t1-resilient
function and t2-resilient function yields a (t1 + t2 + 1)-resilient function [ZZ97],

which is reflected here by the set ∆̃.

The following lemma shows how to construct new ∆′-resilient functions from
a given ∆-resilient function where ∆′ ⊆ ∆. This theorem is an extension of
Theorem 3 from [C97a].

Lemma 4. Consider a Boolean function f on Fn
2 which is ∆-resilient. If there

exists a subspace W and a subset ∆′ ⊆ ∆ such that UA ∩ W = ∅ for all A ∈ ∆′

and the restriction of f to W⊥ is equal to the constant c, then the function f ′

obtained from f by replacing the constant c by the constant c⊕1 for all elements
of W⊥ is ∆′-resilient.

Proof. Recall that by equation (1) for v ∈ UA we have
∑

x∈W⊥(−1)1+v·x = 0.
Thus the Walsh value of v ∈ UA can be computed as follows:

Wf (v) =
∑

x∈Fn
2

(−1)f(x)+v·x

=
∑

x∈W⊥

(−1)f(x)+v·x +
∑

x/∈W⊥

(−1)f(x)+v·x

=
∑

x/∈W⊥

(−1)f(x)+v·x

=
∑

x/∈W⊥

(−1)f ′(x)+v·x

=
∑

x∈W⊥

(−1)f ′(x)+v·x +
∑

x/∈W⊥

(−1)f ′(x)+v·x

= Wf ′(v).

⊓⊔

The following construction is a generalization of the change of basis construc-
tion.
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Lemma 5. Let ∆ be a set containing less than n elements. Then any Boolean
function f on Fn

2 which has at least n linearly independent vectors w ∈ Fn
2 such

that Wf (w) = 0 can be transformed into a ∆-resilient function.

Proof. For a nonsingular matrix D, it holds that g(x) = f(D−1x) if and only
if Wg(w) = Wf (Dw). Taking n linearly independent vectors which have zero
Walsh value as rows of D, leads to the construction of a ∆-resilient function. ⊓⊔

The Maiorana-MacFarland and Partial-Spread Constructions.

Theorem 9. Let φ be a function from Fn−r
2 into Fr

2 and let g be an arbitrary
Boolean function on Fn−r

2 , then the function f defined by

Fr
2 × Fn−r

2 → F2 : (x, y) 7→ f(x, y) = x · φ(y) ⊕ g(y)

is ∆-resilient with ∆ = {A : ∃y ∈ Fn−r
2 , such that sup(φ(y)) ⊆ A}c. Moreover,

if φ is injective (resp. takes each value exactly 2 times), the function is plateaued
with amplitude 2r (resp. 2r+1).

Proof. Calculate the Walsh spectrum of the function (see [C97a])

Wf (u, v) =
∑

x∈Fr
2, y∈Fn−r

2

(−1)x·φ(y)+g(y)+x·u+y·v = 2r
∑

y∈φ−1(u)

(−1)g(y)+y·v ,

where u ∈ Fr
2 and v ∈ Fn−r

2 . As a consequence, Wf (u, v) = 0 if there exists no y
such that φ(y) = u. ⊓⊔

Remark 10. This construction always leads to P ({r + 1, . . . , n}) ⊆ ∆ because
φ is a mapping from Fn−r

2 into Fr
2. It is clear that the higher the weight of the

elements in the image of φ are, the higher the values t2 and |∆| are.

In [C97a], Carlet showed how to construct resilient functions using the construc-
tion of bent functions in the class PSap (a subclass of the Partial-Spreads class
introduced in [D74]). We generalize this construction for ∆-resilient functions.

In this construction, the field Fn
2 is identified with the field F2n . The dot

product via this identification is equal to TrF2n (xy), where TrF2n is the trace
map from F2n to F2. The notion of resiliency depends on the choice of the dot
product on F2n . For an even characteristic, there exists a dual basis {α1, . . . , αn}
such that TrF2n (xy) =

∑n
i=1 xiyi = x · y. Recall that for each linear mapping

φ : F2n → F2m there exists a mapping φ∗ : F2m → F2n (called the adjoint) such
that for every x ∈ F2m , y ∈ F2n one has that TrF2m (xφ(y)) = TrF2n (yφ∗(x)) or
in other words x · φ(y) = y · φ∗(x).

Theorem 10. Let g be a Boolean function on F2m , φ a linear mapping from
F2n into F2m and a ∈ F2m such that a + φ(y) 6= 0,∀y ∈ F2n . Then the Boolean
function f which is defined by

F2m × F2n → F2 : (x, y) 7→ f(x, y) = g

(
x

a + φ(y)

)
+ b · y ,
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with b ∈ F2n is ∆-resilient with

∆ = {A : ∃z ∈ F2m , such that sup(φ∗(z) + b) ⊆ A}c.

Proof. We refer to [C97a] for the computation of the Walsh transform for f in
(u, v) ∈ F2m × F2n :

Wf (u, v) =
∑

z∈F2m , y∈F2n

(−1)g(z)+(b+v)·y+z(a+φ(y))·u

=
∑

z∈F2m , y∈F2n

(−1)g(z)+(b+v)·y+(za)·u+φ∗(uz)·y

=
∑

z∈F2m

(−1)g(z)+(za)·u
∑

y∈F2n

(−1)(b+v+φ∗(uz))·y

= 2n
∑

z∈F2m

φ∗(uz)+v+b=0

(−1)g(z)+u·(az).

If (u, v) ∈ ∆, then the set {z ∈ F2m : φ∗(uz)+v + b = 0} is empty. Consequently
Wf (u, v) is equal to 0 for all (u, v) ∈ ∆. ⊓⊔

Remark 11. Note that P ({1, · · · ,m}) ⊆ ∆. The higher the weight of the ele-
ments of D is, the higher t2 (corresponding to the order of resiliency) and |∆|
are.

3.5 Relations with Codes and Orthogonal Arrays

The following construction shows a relation between ∆-resilient functions and
linear [n, k, d]-codes, which is a generalization of a result from [WD97].

Lemma 6. Let G be a generator matrix of an [n, k, d]-code C and let f be a
balanced function on Fn

2 . Define ∆u = P ({1, . . . , n}\ sup(u))⊎{A : A ⊂ sup(u)}
for u ∈ C. Then f(xGT ) is a (∩u∈C ∆u)-resilient function.

Proof. Denote F : Fn
2 → Fk

2 as the function x 7→ xGT . We use the relation,
derived in [DGV94,GS02], between the Walsh coefficients of f ◦F and the Walsh
coefficients of f and lw ◦ F , where lw ◦ F denotes the linear combination of the
components of F defined by w:

Wf◦F (v) = 2−k
∑

w∈Fk
2

Wf (w)Wlw◦F (v), ∀v ∈ Fn
2 . (7)

Note that the function lw◦F = w ·xGT = wG·x is linear and thus by Corollary 1
lw ◦ F is a ∆u-resilient function, where u = wG is a codeword of C. Now (7)
concludes the proof. ⊓⊔

Remark 12. Because {A : |A| ≤ d − 1} ⊆ ∩u∈C ∆u, Lemma 6, generalizes
the property that the function f(xGT ) is at least (d − 1)-resilient as proven in
[WD97].



15

Based on a connection between k-CI functions and (M,n, 2, k) orthogonal arrays
we show an analogous relation between ∆-CI functions, (M,n, 2,∆)-orthogonal
arrays. We first introduce a generalization of the definition of orthogonal array
in the new metric:

Definition 3. An orthogonal (M,n, q,∆) array is an M × n matrix V with
entries from a set of q elements, strength ∆ which is a decreasing monotone set
and index µ. Any set A ∈ ∆+ of columns of V contains all q|A| possible row
vectors exactly µ = Mq−|A| times.

For ∆ = {A : |A| ≤ k}, this definition coincides with the definition of (M,n, q, k)
orthogonal array. As shown in [CCCS92], the extended truth table of a k-CI
function f on Fn

2 forms an (M,n, 2, k) orthogonal array, where the extended
truth table is defined as the wt(f)×n table with rows determined by the elements
x for which f(x) = 1. A natural generalization in the new metric is given in the
next theorem.

Theorem 11. A Boolean function f on Fn
2 is ∆-CI if and only if its extended

truth table is an orthogonal (M,n, 2,∆) array.

3.6 Example of Modified Combination Generator

We give some concrete examples of the modified combination generator as ex-
plained in the introduction.

1. Suppose the generator consists of 5 LFSRs of lengths 61, 63, 21, 31, and 33
respectively. Let the security parameter for the (fast) correlation attack be
equal to 60. Consequently in order to be secure against the (fast) correlation
attack, we need a combination function which is resilient with respect to the
3rd, 4th, 5th and also the 3rd+4th, 3rd+5th LFSR, i.e. a ∆ resilient function
with ∆ = {{3, 4}, {3, 5}}. The function f(x1, . . . , x5) = x2x3x4x5⊕x1x2x3⊕
x1x4 ⊕ x3x5 ⊕ x1 ⊕ x2 satisfies this property. Remark that this function
has degree 4 and nonlinearity 10. High degree and high nonlinearity are
important properties for resisting other attacks like for instance Berlekamp-
Massey attack [M69], algebraic attack [CM03] and best affine approximation
attack [DXS91].

2. The function f(x1, . . . , x5) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3 is a ∆-resilient
function with ∆ = {{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}. Moreover, the
function has degree 3 and maximum nonlinearity 12. The LFSRs of the
corresponding modified combination generator with security parameter 60
should have for instance lengths 21, 23, 61, 25, and 27 respectively.

When we consider the same models of combination generators in the classical
theory, the combination function should be in both cases 2-resilient in order
to resist (fast) correlation attacks. Following Siegenthaler’s inequality, the cor-
responding function has degree less than or equal to 2. Note that now using
∆-resilient functions the choice of the lengths of the LFSRs may not be uniform,
which is the case when we use t-resilient functions. This also allows to relax the
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requirements to the rest of the parameters like nonlinearity, algebraic degree, etc.
Moreover, by Carlet-Sarkar’s result on the divisibility of the Walsh coefficients,
the maximum Walsh value is greater or equal than 16, resulting in a nonlinearity
less than or equal to 8.

These examples are just illustrative and need to be scaled up in order to be
used in reality. However, it already shows the advantages of considering resiliency
with respect to specified monotone sets since the strong trade-offs between re-
siliency and degree, resiliency and nonlinearity can be avoided.

4 Functions Satisfying Propagation Characteristics with

Respect to ∆-sets

Analogously to the definitions of ∆-resilient and ∆-correlation immune (CI)
function, we define functions which satisfy the propagation characteristic of de-
gree ∆1 and of order ∆2 (PC(∆1) of order ∆2), the propagation characteristic of
degree ∆1 (PC(∆1)), and the strict avalanche criteria of order ∆2 (SAC(∆2)),
where ∆,∆1,∆2 are monotone decreasing sets.

Definition 4. For two monotone decreasing sets ∆1 and ∆2 the function f
satisfies PC(∆1) of order ∆2 iff for every w, such that sup(w) ∈ ∆1 \ {∅}
the function f(x) ⊕ f(x ⊕ w) is ∆2-CI. If ∆2 = ∅, the function f is said to be
PC(∆1). If ∆1 = {A : |A| = 1}, the function f satisfies SAC(∆2).

Again if ∆1 = {A : |A| ≤ ℓ} and ∆2 = {B : |B| ≤ k} the definitions of PC(∆1)
function of order ∆2 and PC(ℓ) function of order k, PC(∆1) function and PC(ℓ)
function; SAC(∆2) function and SAC(k) function coincide. The property bal-
ancedness of f(x) ⊕ f(x ⊕ w) implies for the autocorrelation rf (w) = 0.

4.1 A Relation with ∆-Resilient Functions

We generalize the well-known relation p+t ≤ n−1 between the order of resiliency
t and the degree of propagation p of a Boolean function on Fn

2 as proven in
[ZZ00,ChPa02].

Theorem 12. For a ∆1-resilient function on Fn
2 which satisfies PC of degree

∆2 holds that ∆2 ∩ Γ⊥
1 = ∅ and ∆1 ∩ Γ⊥

2 = ∅.

Proof. The Wiener-Khintchine theorem establishes a relation between the squared
Walsh and autocorrelation coefficients of a function in Fn

2 [PVV+91]:

rf (u) = 2−n
∑

x∈Fn
2

Wf (x)2(−1)x·u .

Based on it, the following relation, with respect to any linear subspace V , was
derived in [CCCF01]:

∑

u∈V

rf (u) =
1

|V ⊥|

∑

x∈V ⊥

Wf (x)2 . (8)
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Let A be an arbitrary element of ∆2\{0}. Note that the coefficient rf (0) is equal
to 2n. Now applying the definition of PC of degree ∆2 we obtain

∑

u∈UA

rf (u) = rf (0) = 2n =
1

|U⊥
A |

∑

x∈U⊥
A

Wf (x)2 .

Thus
|U⊥

A | 2n =
∑

x∈U⊥
A

Wf (x)2 =
∑

x∈UAc

Wf (x)2.

As a consequence Ac /∈ ∆1 or also A /∈ Γ⊥
1 because otherwise the right side of the

equation above would be zero. This holds for all A ∈ ∆2 and thus ∆2 ∩ Γ⊥
1 =

∅, which is equivalent to ∆2 ⊆ ∆⊥
1 . This in turn is equivalent to Γ⊥

2 ⊆ Γ1,
equivalent to ∆1 ⊆ ∆⊥

2 and finally equivalent to ∆1 ∩ Γ⊥
2 = ∅. ⊓⊔

4.2 Linear Structures

Next we derive a condition for the existence of linear structures for a ∆1-resilient
function which satisfies PC(∆2). A linear structure of a function is an element
a ∈ Fn

2 for which f(x) ⊕ f(x ⊕ a) is a constant. Linear structures should be
avoided, for example, in order to resist differential attacks [B93].

Theorem 13. Let f be a ∆1-resilient function on Fn
2 that satisfies PC(∆2). If

there exists a non-empty element A ∈ ∆+
2 ∩ [∆⊥

1 ]+, then all b with sup(b) = B,
B ∈ Γ−

2 and A ⊂ B are linear structures of f .

Proof. Let A ∈ ∆+
2 ∩ [∆⊥

1 ]+. From (8) for V = UA and the assumption, we
deduce that there exists x, such that sup(x) = Ac ∈ Γ−

1 and Wf (x)2 = 2n|U⊥
A |

since Wf (y) = 0 ∀y ∈ U⊥
A , y 6= x (sup(y) ∈ ∆1). Next we apply (8) for V = UB ,

where B ∈ Γ−
2 and A ⊂ B:

rf (0) + rf (b) =
2

|U⊥
A |

∑

x∈U⊥
B

Wf (x)2 .

Because U⊥
B ⊆ U⊥

A , there are two possibilities:

1. sup(x) ⊆ U⊥
B , which leads to rf (b) = 2n;

2. sup(x) * U⊥
B , which leads to rf (b) = −2n.

The fact that |rf (b)| = 2n implies that b is linear structure of f . ⊓⊔

The following theorem gives a condition on the existence of linear structures for
functions which satisfy PC(∆). The proof is similar to the one of Theorem 13.

Theorem 14. Let f be a Boolean function on Fn
2 that satisfies PC(∆). If there

exists an element x ∈ Fn
2 \{0} such that sup(x) ∈ A⊥ for A ∈ ∆+ which satisfies

Wf (x) = 2n−
|UA|

2 , then all b with sup(b) = B and B ∈ Γ−, A ⊆ B are linear
structures of f .
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4.3 Algebraic Degree

First note that the functions satisfying PC(P(P )) are the perfect nonlinear
functions (bent functions of characteristic two). From the definition of resiliency,
we deduce that for a Boolean function on Fn

2 which satisfies PC(∆1) of order
∆2, the functions f(x) ⊕ f(x ⊕ w) are ∆2-resilient for all w ∈ ∆1 \ {0}. By
Theorem 1, the functions f(x) ⊕ f(x ⊕ w) are balanced for all w ∈ ∆1 \ {0} on
any of the subspaces a + UA, where A ∈ ∆⊥

2 .
The following theorem generalizes the bound on the degree d of a function

on Fn
2 satisfying the SAC(k) property [PVV+91], namely d ≤ n − k − 1.

Theorem 15. If f satisfies SAC of order ∆ then all coefficients au from the
ANF of f with sup(u) ∈ Γ⊥ are equal to zero. Moreover, for all sets A ∈ Γ⊥ :
|A| > 1.

Proof. Assume that au = 1 for u such that sup(u) ∈ Γ⊥ or equivalently sup(u) ∈
∆. The function fu will have maximum degree wt(u) which contradicts the
PC(1) property. Note that a function of maximum degree has a non-zero auto-
correlation spectrum [PVV+91].

The condition |A| > 1 for all A ∈ Γ⊥ comes from the fact that a linear
function does not satisfy PC(1). ⊓⊔

Corollary 2. For functions satisfying PC(∆1) of order ∆2, where ∀ A ∈ Γ⊥
2 :

|A| > 1, the ANF coefficients au of f with sup(u) ∈ Γ⊥
2 are equal to zero.

4.4 Constructions

The set of functions which satisfy PC(∆1) of order ∆2 are globally invariant
under the complementation of any of its coordinates, composition with any per-
mutation on {1, . . . , n} which keeps ∆1,∆2 invariant, and the addition of any
affine function. We first generalize the change of basis construction.

Theorem 16. Let ∆ be a set containing less than n elements. Then any Boolean
function f on Fn

2 which has at least n linearly independent vectors w such that
rf (w) = 0 can be transformed into a function that satisfies the PC criterion of
degree ∆.

In [NN03], many coding theoretic notions are generalized in this new setting. A
generalization of the linear [n, k, d]-code is called an error-set correcting code. We

slightly change the original notation here and call an ∆-code C̃ a code of length
n and for which codewords x satisfy sup(x) ∈ Γ , where Γ = ∆c. The generator

matrix of the code C̃ can be defined by using the matrix M of a Monotone Span
Program.

Definition 5. [KW93] A Monotone Span Program (MSP) M is defined by the
quadruple (F,M, ǫ, ψ), where F is a finite field, M is a matrix (with m rows and
d ≤ m columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective functions
and ǫ = (1, 0, . . . , 0) is a fixed non-zero vector, called target vector. The size of
M is the number of rows and is denoted as size(M).
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The properties that matrix M (from the MSP M) posses are in one-to-one
correspondence with a monotone increasing set Γ . In this case it is said that M
computes Γ .

Definition 6. [NN03] An MSP is called ∆-non-redundant (denoted by ∆-rMSP)
when v ∈ ker(MT ) ⇐⇒ v 6= 0 and sup(v) ∈ Γ (Γ = ∆c).

It is shown in [NN03] how the generator matrix of an ∆-code can be deduced
from the results in [V97].

Theorem 17. Let M be a ∆-rMSP computing Γ and let M⊥ be the matrix of
the dual M⊥ MSP computing Γ⊥. Then a generator matrix G of an ∆-code is
given by G = (M⊥)T .

The best known and general construction for PC(ℓ) functions of order k is due
to Kurosawa and Satoh [KS97]. This construction uses linear codes. It was later
generalized by Carlet [C97b] who also takes nonlinear codes into account. We
present a further generalization.

Theorem 18. Let g be an arbitrary function on Fs
2 and Q be an s × t-matrix.

Define ∆1 on {1, . . . , t} and ∆2 on {t + 1, . . . , t + s}. Let M1 be a matrix in
∆1-rMSP computing Γ1 and M⊥

1 be the matrix in ∆⊥
1 -rMSP computing Γ⊥

1 . Let
M2 be a matrix in ∆2-rMSP computing Γ2 and M⊥

2 be the matrix in ∆⊥
2 -rMSP

computing Γ⊥
2 . Let G1 = (M⊥

1 )T be the generator matrix of a ∆1-code and let
G2 = (M⊥

2 )T be the generator matrix of a ∆2-code. Define the function f on
Fs+t

2 as follows:

f(x1, . . . , xs, y1, . . . , yt) = [x1, . . . , xs]Q[y1, . . . , yt]
T ⊕ g(x1, . . . , xs) .

Set Q = GT
2 G1 then the function f satisfies PC(∆ℓ) of order ∆k, where ∆ℓ =

∆⊥
1 ⊎ ∆⊥

2 and ∆k = ∆1 ⊎ ∆2.

Proof. Analogous to the proof in [KS97] it is easy to see that if the matrix Q
satisfies the following two conditions then f satisfies PC(∆ℓ) of order ∆k:

– sup(Qa) /∈ ∆k for any a ∈ Ft
2, a 6= 0 and sup(a) ∈ ∆ℓ,

– sup(bQ) /∈ ∆k for any b ∈ Fs
2, b 6= 0 and sup(b) ∈ ∆ℓ.

Next we verify that Q = GT
2 G1 satisfies both conditions. Indeed by Definition 6

G1a = (M⊥
1 )T a 6= 0 if sup(a) ∈ ∆⊥

1 and thus by Theorem 17 sup(Qa) =
sup(GT

2 (G1a)) /∈ ∆1. Analogous bGT
2 = bM⊥

2 6= 0 if sup(b) ∈ ∆⊥
2 and thus

sup(bQ) = sup((bGT
2 )G1) /∈ ∆2. These checks conclude the proof. ⊓⊔

Remark 13. Let ∆k = {A : |A| ≤ k} and ∆ℓ = {B : |B| ≤ ℓ}, then ∆⊥
ℓ = {B :

|B| ≤ n−1− ℓ}. So, it is easy to verify that ∆k ⊆ ∆⊥
ℓ (in this case) corresponds

to k + ℓ ≤ n − 1.

Constructions of functions satisfying propagation characteristics that are not
based on codes have been proposed by Gouget [G04]. We now give two examples
of them.



20

Theorem 19. Let f be a Boolean function on F2n+1
2 defined by

f : Fn
2 × Fn

2 × F2 → F2 :

(x, y, z) 7→ z(g(x) ⊕ y1 ⊕ · · · ⊕ yn) ⊕ x · y,

where g is an arbitrary function on Fn
2 . If g(1) = 1, then f is balanced. The

function f satisfies the properties:

1. PC(∆) with ∆ =
{
{1, · · · , 2n}, A1, . . . , An

}
, where Ai = {1, . . . , 2n+1}\{i}.

2. PC(∆1) of order ∆2 with the property that ∆1 ⊎ ∆2 = ∆.

Proof. We refer to [G04] for the proof of the balancedness of f . In order to proof
the first part of the theorem, we compute the derivative of f with respect to
(a, b, c) ∈ Fn

2 × Fn
2 × F2:

Da,b,cf(x, y, z) = z(g(x) ⊕ g(x ⊕ a)) ⊕ c(g(x ⊕ a) ⊕ y1 ⊕ · · · ⊕ yn ⊕ b1 ⊕ · · · ⊕ bn)

⊕z(b1 ⊕ · · · ⊕ bn) ⊕ a · y ⊕ b · x ⊕ a · b.

It is easy to check that if sup(a, b, c) ⊆ ∆, the derivative Da,b,cf(x, y, z) becomes
a linear function in the y-variables. This also means that Da,b,cf(x, y, z) is a
balanced function.

For the second part of the proof, let A ∈ ∆1 and B ∈ ∆2 such that A∪B ∈ ∆.
Then the derivative with respect to B of the function obtained by fixing the
variables corresponding to A is again a function which will linearly depend on
y. ⊓⊔

The next construction from [G04] is a generalization of the construction of Honda
et al. and can reach a high degree [HSIK97].

Theorem 20. Let f be a Boolean function on Fn
2 defined by

f : Fs
2 × Fn−s−1

2 × F2 → F2 :

(x, y, z) 7→ f1(x) ⊕ f2(y) ⊕ f3(z) ⊕ x · φ(y) ⊕ z(x1 ⊕ · · · ⊕ xn),

where f1, f2, f3 are functions on Fs
2, F

n−s−1
2 and F2 respectively. The function φ

is a mapping from Fn−s−1
2 into Fs

2. Then f satisfies the propagation criterion of
order

∆ =
{{

∅, {1}, {2}, . . . , {s}
}
⊎ ∆2 ⊎

{
∅, {n}

}}
∪

{
∆1 ⊎

{
∅, {n}

}}
,

where ∆1 and ∆2 are defined on {1, . . . , s} and {s + 1, . . . , n − 1} respectively,
if and only if φ satisfies the properties:

1. the function x · φ(y) is balanced if and only if sup(x) ∈ ∆1;
2. the function φ(y) ⊕ φ(y ⊕ x) is different from the all-zero and the all-one

function for all x such that sup(x) ∈ ∆2.
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Proof. Let compute the derivative of f with respect to the triple (a, b, c) ∈
Fs

2 × Fn−s−1
2 × F2:

D(a,b,c)f(x, y, z) = Daf1(x) ⊕ Dbf2(y) ⊕ Dcf3(z) ⊕ x · (φ(y) ⊕ φ(y ⊕ b)) ⊕

a · φ(y ⊕ b) ⊕ z(a1 ⊕ · · · ⊕ as) ⊕ c(x1 ⊕ · · · ⊕ xs ⊕ a1 ⊕ · · · ⊕ as).

Note first that when wt(a) = 1 the derivative is a linear function in z, hence{
{1}, {2}, . . . , {s}

}
⊎ P ({s + 1, . . . , n − 1}) ⊎

{
∅, {n}

}
∈ ∆.

On the other hand, when wt(a) = 0 and sup(b) ∈ ∆2 the second con-
dition ensures that the derivative is balanced independently of wt(c). Thus
∆2⊎

{
∅, {n}

}
∈ ∆2. Therefore combining both observations (and taking into ac-

count the monotone decreasing property) we derive that
{{

∅, {1}, {2}, . . . , {s}
}
⊎

∆2 ⊎
{
∅, {n}

}}
∈ ∆. Last notice that when wt(b) = 0 and sup(a) ∈ ∆1 the

first condition ensures that the derivative is balanced. So, we have also that
∆1 ⊎

{
∅, {n}

}
∈ ∆ which completes the proof. ⊓⊔

5 Conclusions and Open Problems

In this paper we have shown that many classical notions, constructions and
results from the theory of cryptographic properties of Boolean functions can
be extended to a more general setting: t-resiliency and PC properties can be
represented as ∆-resiliency or PC properties with respect to ∆, where ∆ = {A :
|A| ≤ t}. Instead of working with numbers, we work with sets, which give us
more flexibility in satisfying incompatible requirements as shown in Sect. 3.6. We
have also defined analogous notions for the algebraic and the numerical degree
of a Boolean function. Then we have proven equivalent results to most of the
known inequalities in this new setting. It is much easier to adjust the parameters
of a function, when one works with sets compared to numbers. When a trade-off
needs to be achieved between parameters of a function, we can easily reduce a set
(e.g., ∆) with some of its elements in order to satisfy the condition, comparing
to the previous case where we need to reduce the number (e.g., t to t − 1 for
example) discarding all sets of a fixed cardinality (e.g., with cardinality t).

This approach gives more insight and better understanding in the behaviour
of a Boolean function. More precisely, it allows us to determine which structural
properties contributes to different known results like for instance the Siegen-
thaler’s inequality. Future work will investigate if these insights lead to new
constructions of t-resilient functions (functions satisfying PC properties) by go-
ing over special monotone set resilient function (PC functions).

We leave as an open question whether such functions exist for any ∆. In the
theory of Secret Sharing Schemes (SSS), a scheme (or equivalently a monotone
increasing set) is called ideal if each player has a share of minimal size. But it
is known that for “many” monotone sets there is no ideal scheme, i.e., there is
no finite field in which the SSS is ideal. For Boolean functions we consider only
this ideal case, since every coordinate (input) in the function is considered as
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a player’s share. Thus in the binary field there are monotone sets Γ for which
there does not exist a corresponding MSP (equivalently SSS). We do not know a
relation between MSPs and ∆-resilient functions, but it seems likely that there
exist sets ∆ for which there does not exist a corresponding ∆-resilient function.
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