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Abstract: In this article, we investigate the class of multivariate quadratic (MQ)
public key systems. These systems are becoming a serious alternative toRSA or ECC
based systems. After introducing the main ideas and sketching some relevant systems,
we deal with the advantages and disadvantages of these kinds of schemes. Based
on our observations, we determine application domains in whichMQ-schemes have
advantages over RSA or ECC. We concentrate on product activation keys, electronic
stamps and fast one-way functions.
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1 Introduction

Public key cryptography is used in e-commerce systems for authentication (electronic sig-
natures) and secure communication (encryption). The security of using current public key
cryptography centres on the difficulty of solving certain classes of problems. The RSA
scheme relies on the difficulty of factoring large integers,while the difficulty of solving
discrete logarithms provide the basis for ElGamal and Elliptic Curves [MvOV96]. Given
that the security of these public key schemes relies on such asmall number of problems
that arecurrentlyconsidered hard, research on new schemes that are based on other classes
of problems is worthwhile. Such work provides greater diversity and hence forces crypt-
analysts to expend additional effort concentrating on completely new types of problems.
In addition, important results on the potential weaknessesof existing public key schemes
are emerging as techniques for factorisation and solving discrete logarithm continually
improve. Polynomial time quantum algorithms [Sho97] can beused to solve both prob-
lems and hence, the existence of quantum computers in the range of 1000 bits would be
a real-world threat to systems based on factoring or the discrete log problem. This points
to the importance of research into new algorithms for asymmetric encryption. We want to
stress at this point that there are not many results known about the vulnerability of cryp-
tographic hard problems against quantum algorithm. We are only aware of [Sho97] at this
point. Hence, more research effort in this direction seems to be imperative if we assume
the existence of quantum computers within the next decades.

In addition, we want to point out that different types of schemes have different kinds of
properties: with schemes based on ECC, rather short signatures in the range of 320 bits
(cf [MvOV96]) are possible, in comparison to 1024–4096 for RSA. On the other hand,
the patents on RSA have expired, while there are still patents guarding the use of ECC (cf
[MvOV96]). Hence, applications which require a patent-free algorithm are likely to prefer
RSA while the requirement for short signatures would lead tothe use of ECC. There are
other properties of schemes such as verification time, signature creation time, public and
private key size. All of them play an important role when choosing a specific algorithm
for a particular application domain. Hence, having secure schemes based on different
problems, increases the variety of algorithms and hence gives the users of cryptographic
primitives more choice. In turn, this increases the chance to have the “right fit” for a
particular problem and reduces the necessity to make compromises — either in terms of
speed, memory, or security.

One proposal for secure public key schemes is based on the problem of solvingMultivariate
Quadratic equations (MQ-problem) over finite fields. In the last two decades, severalsuch
public key schemes have been proposed,e.g., [MI88, Pat96b, KPG99]. All of them use
the fact that theMQ-problem (cf Fig. 1) is difficult, namelyNP-complete (cf [GJ79, p.
251] and [PG97, App.] for a detailed proof)). Here, we mean with MQ-problem finding
a solutionx ∈ F for a given system of quadratic polynomials (cf Fig. 1) and a given vector
y ∈ F

m. We will introduce theMQ-problem more formally in Sect. 2.1. In this context,
we want to stress that linear or affine polynomial equations can be solved in polynomial
time, e.g., using Gaussian elimination. The knapsack cryptosystem isalso based on an
NP-complete problem (cf [MvOV96]). Due to unexpected properties of these kinds of
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y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,

Figure 1: Example of anMQ-problem withn variables andm equations

schemes, it was possible to break most of the proposals in this area. Therefore, basing
a scheme on anNP-complete problem does not guarantee its security. But in the case
of MQ-schemes, much research has been done on the average complexity of solving the
corresponding equations with trapdoor. Although some schemes have been broken (e.g.,
[Pat95, CSV97, KS98, KPG99, KS99, FJ03, WBP04]), the area is vital and promises effi-
cient algorithms — at present mostly for signing, but encryption should be possible, too,
at least from a theoretical point of view.

In this paper, we introduce the basic concepts of multivariate quadratic schemes and inves-
tigate for which types of applications they are particularly suitable. This paper is organ-
ised as follows: after introducing the necessary mathematical notation in Sect. 2, we give
a concise overview of proposed schemes and discuss their advantages and disadvantages
in Sect. 3. Then, we move on to possible applications such as fast one-way functions,
electronically signed stamps, and product activation keys(Sect. 4). This paper concludes
with Sect. 5.

2 Basic Concepts

2.1 Mathematical Background

Let F be a finite field of prime characteristic withq := |F| elements; henceq is a prime-
power [LN86]. Moreover, using a polynomiali(t), irreducible overF, we can define an
extension fieldE := F[t]/i(t) over F. We have the degree ofi(t) to ben and hence,E
is ann-dimensional extension of the ground fieldF. Addition in E is the coefficient-wise
addition of polynomials and multiplication corresponds tothe multiplication of polynomi-
als, performed modulo the generating polynomiali(t). In this context, we want to recall
that we havexq = x for any x ∈ F in the finite field. Consequently, the operationXq

for X ∈ E is linear in the extension fieldE. With these preliminaries, we are now able to
define theMQ-problem more rigorously.

In the multivariate system of equationsP (cf fig. 1 and 2), the polynomialspi have the
form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n
∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m andαi, βi,j , γi,j,k ∈ F (constant, linear, and quadratic terms),i.e., they
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inputx

❄

x = (x1, . . . , xn)

❄

private:S

x′

❄

private:P ′

y′

❄

private:T

outputy ✛

public:
(p1, . . . , pn)

Figure 2: Graphical Representation of theMQ-trapdoor(S,P ′, T )

form an instance of anMQm(Fn)-problem withm equations inn variablesx1, . . . , xn

each. For the ease of notation, we define the polynomial-vector P := (p1, . . . , pm). Each
coefficientpi is a quadratic polynomial in then variablesx1, . . . , xn. In this polyno-
mial vectorP, the constantsα1, . . . , αm are obtained by subtracting coefficient-wise the
knownsy1, . . . , ym (cf fig. 1 and 2) from the constant part of the originalMQ-problem.

With these terms defined, we are now able to express the private key as the triple(S,P ′, T )
whereS ∈ AGLn(F), T ∈ AGLm(F) are affine transformations andP ′ ∈ MQm(Fn) is
a polynomial-vectorP ′ := (p′1, . . . , p

′
m) in m polynomials; each polynomial depends on

the input variablesx′
1, . . . , x

′
n. To obtain a difficultMQ-problem, it is necessary that the

polynomialsp′1, . . . , p
′
m are of degree 2 at least. For efficiency reasons, they should be of

degree 2 at most. Throughout this paper, we denote components of this private vectorP ′

by a prime′. In addition, the affine transformationS can be represented in the form of an
invertible matrixMS ∈ F

n×n and a vectorvs ∈ F
n, i.e., we haveS(x) := MSx + vs.

Similarly, we haveT (x) := MT x+vt for MT ∈ F
m×m an invertible matrix andvt ∈ F

m

a vector.

In contrast to the public polynomial vectorP ∈ MQm(Fn), the design goal for public
key schemes based on theMQ-problem is to have a private polynomial vectorP ′ which
allows efficient inversion,i.e., the computation ofx′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. At

least for secureMQ-schemes, this is not the case if the public keyP together with knowns
y1, . . . , yn alone is given. The main difference betweenMQ-schemes lies in their special
construction of the central equationsP ′ and consequently the trapdoor they embed into a
specific class ofMQ-problems.
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2.2 Public Key Generation

In all MQ-schemes, the public keyP is computed as function composition of the affine
transformationsS : F

n → F
n, T : F

m → F
m and the central equationsP ′ : F

n →
F

m, i.e., we haveP = T ◦ P ′ ◦ S. By construction, we have∀x ∈ F
n : P(x) =

T (P ′(S(x))). Efficient algorithms for computing the public key for a given private key can
be found in [MI88, Wol04]. DecomposingP into (S,P ′, T ) is called the “Isomorphism
of Polynomials” (IP), cf [Pat96b]. ForP,P ′ without structure,i.e., in particular random
equations forP ′, it is considered to be a hard problem in itself. Security evaluations for IP
can be found in [PGC98, GMS02, LP03].

2.3 Decryption/Signing

To decrypt for a giveny ∈ F
m (or to compute its signature, respectively), we observe

that we have to invert the computation ofy = P(x). Using the trapdoor-information
(S,P ′, T ), cf Fig. 2, this is easy. First, we observe that transformationT is a bijection. In
particular, we can computey′ = M−1

T (y − vt). The same is true for givenx′ ∈ F
n and

S ∈ AGLn(F). Using the LU-decomposition of the matricesMS ,MT , this computation
takes timeO(n2) andO(m2), respectively. Hence, the difficulty lies in evaluatingx′ =
P ′−1(y′). We will discuss different strategies in Sect. 3.

2.4 Encryption/Verification

In contrast to decryption/signing, the encryption/verification step is the same for allMQ-
schemes: given a vectorx ∈ F

n, we evaluate the polynomials

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +

n
∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and givenαi, βi,j , γi,j,k ∈ F. Obviously, all operations can
be efficiently computed, in particular if the fieldF is of characteristic 2. Assuming uniform
costs for the finite field operations, we obtain a total ofO(mn2) steps for evaluating the
public key.
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3 Schemes based on theMQ-problem

An overview aboutMQ-schemes can be found in [WP05d]. In this section, we give a
very short overview about the topic.

As explained in the previous section, all schemes based on the MQ-problem have the
same structure for the public key. Hence, their key-sizes can be computed using the same
formula. First, we define

τ(n) :=







1 + n + n(n−1)
2 = 1 + n(n+1)

2 if F = GF (2)

1 + n + n(n+1)
2 = 1 + (n)(n+3)

2 otherwise.

The first row in the above expression comes from the fact that we havex2
i = xi for F =

GF(2) and1 ≤ i ≤ n, i.e., quadratic terms of the formx2
i over GF(2) reduce to linear

terms.

Using the above formula, we obtainmτ(n) = O(mn2) for the number of coefficients
and hence a memory requirement oflog256(q)mτ(n) byte. For a secureMQ-system, the
public key polynomials should behave similar to random equations. Therefore, we do not
expect to find efficient compression techniques for these keys.

3.1 C∗

3.1.1 General Scheme

In 1988, Matsumoto and Imai developed the scheme C∗ [MI88]. It is one of the oldest
multivariate schemes. Therefore, its own security and alsothe security of its variations is
well understood. In C∗, the central equationP ′ has the form

P ′(X ′) := X ′qλ+1

over the extension fieldE and withλ ∈ N such thatgcd(qn − 1, qλ + 1) = 1. The main
point is that C∗ mixes operations over the ground fieldF with operations in the extension
field E: the first is used for the affine transformationsS, T and the latter for the private key
equationsP ′. We inspect now how we can expressP ′(X ′) over the ground fieldF. We
observe thatXq = X is a linear transformation in the extension fieldE, and notice that we
hence can expressP ′(X ′) using multivariate quadratic polynomial equationsp′1, . . . , p

′
m

over the ground fieldF = GF(q). This way, we are able to construct anMQm(Fn)-problem
from the equation over the extension fieldE. Moreover, the conditiongcd(qn−1, qλ+1) =
1 ensures that the equationh.(qλ + 1) ≡ 1 (mod qn − 1) has exactly one solutionh ∈ N

with h < qn − 1. Givenh, we can solveY ′ = P ′(X ′) as(Y ′)h ≡ X ′[h.(qλ+1)] ≡ X ′ by
raisingY ′ to the power ofh. Note that these operations take place in the extension field
E. All in all, this approach is similar to RSA. However, the hardness of C∗ is not based on
the difficulty of finding exponenth but in the intractability to obtain transformationsS, T
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for given polynomial equationsP,P ′. A more detailed discussion of C∗ can be found in
[MI88]. We want to point out that the basic C∗ has been broken in [Pat95, FJ03]. However,
its variation C∗−− [Pat96a] is still unbroken and leads to a very efficient signature scheme.
In this context, we also want to mention the variation PMI of [Din04], which would allow
even better constructions than C∗−−. By now, it is known that this variation is weak, cf
[FGS05].

3.1.2 C∗−−

We move on to a description of C∗−− [Pat96a]. Its name is motivated by the fact that
many of the public key polynomials are “subtracted”. Less loosely speaking, we use the
idea of a projectionπ : F

n → F
n−r for n, r ∈ N andr ≥ 1. The overall construction

of the public key becomesP = π ◦ T ◦ P ′ ◦ S. This means in particular that we obtain
the functionP : F

n → F
n−r for the public key by removing the lastr polynomials

pn−r+1, . . . , pn from the public key. Hence, for solving the equationP(X) = Y for
a vectorY ∈ F

n−r and unknownX ∈ F
n, we addr random elements fromF for the

missing componentsyn−r+1, . . . , yn before inverting the transformationT . The rest of
inversion ofP works as for C∗. In terms of cryptanalysis, the new scheme has a strength
of qr (cf [Pat96a, CGP03]). In particular, the construction of C∗−− has been used in the
signature scheme Sflashv3. It uses the parametersq = 128, n = 67, r = 11. This leads to a
private/public key size of 112.3/7.8kB. In [CGP03, Sect. 8], the time to verify or generate
a signature is empirically obtained to be less than 1 ms on a PC, without giving further
details on the hardware used.

3.2 Hidden Field Equations

The Hidden Field Equations (HFE) are a generalisation of theC∗-scheme. They have been
proposed by Patarin [Pat96b]. The central map has the form

P ′(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

C ′
i,jX

′qi+qj

+
∑

0≤k≤d

qk≤d

B′
kX ′qk

+ A′

where







C ′
i,jX

qi+qj

for C ′
i,j ∈ E are the quadratic terms,

B′
kXqk

for B′
k ∈ E are the linear terms, and

A′ for A′ ∈ E is the constant term

for i, j ∈ N and a degreed ∈ N. As the degree of the polynomialP ′ is bounded byd,
this allows efficient inversion of the equationP ′(X ′) = Y ′ for givenY ′ ∈ E, cf [Pat96b,
Sect. 5] for an overview of possible algorithms for this problem. In any case, HFE is not
a bijection but with 7 additional bits and with probability1 − 2187, we are able to find a
pre-image for any givenY ′, cf [Pat96b, CGP01] for details.

A Cryptanalysis of HFE can be found in [KS99, Cou01]. A signature scheme based on
HFE called “Quartz” has been proposed in [CGP01] but broken in [FJ03]. A version
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of Quartz which is resistant against all known attacks is discussed in [WP04, Sect. 4.3].
They useq = 2, n = 107 and remover = 7 equations (cf minus modification of C∗,
Sect. 3.1.2). Using the values of [CGP01, Sect. 8], we obtaina public/private key size of
71/3kB, a signature verification time of less than 1 ms but a signature generation time of
10 s on a Pentium II 500 MHz.

3.3 Unbalanced Oil and Vinegar

Due to space limitations in this paper, we will only quote results for UOV and refer the
reader to the corresponding papers for the construction of the central equations.

As C∗−−, the Unbalanced Oil and Vinegar schemes (UOV) can only be used for signing
[KPG99]. With the parameters from [KPG03], we haveq = 16, m = 16, n = 32/48 and
a public key of 9/16kB (forn = 32/48). The corresponding private key is 512/1152 Byte.
Unfortunately, we are not aware of empirical measurements for the signing or verification
time. However, based on the results given in [CGP03], we estimate for both a timing of less
than 1 ms on a PC. Attacks against UOV can be found in [KPG03, CGMT02, BWP05].

3.4 Other Schemes

The schemes from this section have been proposed recently. They have nice characteris-
tics in terms of speed and key size, but they are all rather newand hence, their security
is not well understood yet. Therefore, we do not recommend them for current construc-
tions. In addition, we point out broken proposals to give thereader a bibliography for the
corresponding cryptanalysis.

The Tame Transformation Method (TTM) was proposed in [Moh99]. Practical versions
of it have been broken in [GC00, DY04]. A signature scheme based on TTM has been
proposed in [YC04]. Its security is an open problem but its authors claim that it is immune
against all known attacks. According to [YC04], an earlier version of this scheme has
been broken in [DY04]. RSE(2)PKC and its generalisation RSSE(2)PKC was proposed
in [KS04b, KS04a]. This scheme has been further generalisedto STS [WBP04] and this
generalisation has been broken in the same paper.

3.5 General Characteristics ofMQ-schemes

As we saw in the previous sections, multivariate quadratic schemes have rather large public
keys in the range of 8kB – 71kB. The private key can be smaller,e.g., down to 512 byte
in UOV. In terms of signature or message sizes, we can go down until 128 bits (Quartz).
In any case, signature verification and encryption take lessthan 1 ms on a PC while the
time for signature generation reaches 10 s (Quartz), but is usually in the range of 100 ms
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for the other schemes. Hence, the strong points of multivariate quadratic schemes are
short signatures, low message overhead/short signature sizes and fast encryption/signature
verification. Unfortunately, the only suitable candidate for a practical encryption scheme
based on theMQ-problem is PMI. As its security is only studied since this year, we do
not recommend it at present.

4 Applications

Starting from the observations from the previous section, we develop applications based
on multivariate quadratic schemes. All proposals in this section have an expected security
level of 280 — based on our current knowledge of cryptanalysis. A level of280 3-DES
computations has been identified in the European project [NES] as an adequate security
level for nowadays cryptographic applications. The security level of 280 in our proposals
is not “tight”, i.e., a more rigorous discussion would show that they also fulfil the NESSIE
requirement of280 3-DES computations. However, due to space limitations in this paper,
we chose this more loosely approach, still keeping the stricter NESSIE requirement in
mind.

4.1 Electronic Stamps

The idea here is to replace the current stamping machines by digitally signed stamps which
can then be printed on any normal printer — if they are printedmore than once, the person
who has bought the stamp will be caught, cf [NS00, PV00] for a thorough discussion
of this idea. In a nutshell, we have two objectives in this context. First, we want the
corresponding signature to be as short as possible — for example, using message recovery
techniques, cf [MvOV96]. Second, the signature verification time should be low as the
post service has to verify the signed stamps on a rather high rate.

Table 1: Proposed Scheme for Electronic Stamps

Hash Parameter Priv. Key Pub. Key Sign Verify Expansion
[bit] [kByte] [kByte] [ms] [ms] [bit]

q = 128
160 n = 67 7.8 112.3 < 1 < 1 237

r = 11

The characteristics of our proposal are summarised in Table1. We base our proposal on
Sflashv3 as this is a bijection and hence, we will be able to obtain a valid signature in any
case. The overall idea is to compute a 160-bit hash of the whole message, using a hash
function from,e.g., [FIP, DBP96]. The remaining 392-160=232 bits are used to encode
a part of the message to sign. Hence, the overall message expansion becomes 77 + 160
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= 237 bits although the whole signature has — strictly speaking — a size of 469 bits, cf
[CGP03] for details on Sflashv3.

4.2 Product Activation Keys

For product activation keys, nowadays mostly symmetric keytechniques are used. To the
knowledge of the authors, the idea to use public key techniques for this problem is due to
[Ber03]. In contrast to symmetric key techniques, crackerscannot retrieve the symmetric
key and hence, they are not able to compute valid activation keys — even if they manage to
get a copy of the (public) key of the corresponding product. Therefore, techniques based
on asymmetric cryptology are clearly superior — if they allow similar size and speed as
their symmetric counterparts. In this paper, we propose to use a construction based on
HFE- as outlined in [CGP01] and with the tweaks proposed in [WP04]. In particular, we

Table 2: Proposed Schemes for Product Activation Keys

User-ID Key Parameter Priv. Key Pub. Key Gen. Ver. Signature
[bit] [char] [byte] [kByte] [s] [ms] [bit]

20 21 q=2,n=107,r=7 3264 71 ≈ 10 < 1 107
40 25 q=2,n=127,r=7 4509 119 ≈ 15 < 2 127

suggest to compute an 80-bit hash from a user-ID of 20/40 bits. The product activation key
is then the signature of the 100/120 bits concatenation of the user-ID and the corresponding
hash. In symbols:m := i || h(i) wherem is the 100/120 bit message to be signed,i the
20/40-bit user-id,h(·) a cryptographically secure hash function (e.g., [FIP, DBP96]) and
·||· the concatenation of bit-strings. In this context we want topoint out that this proposal
is not vulnerable to the birthday paradox and hence, we do notneed a hash-length of 160
bits to achieve a security level of280. To distinguish different products, we suggest to
use different public (and hence private) keys for each product as this rules out attacks
using valid signatures for one product for another product.We want to stress that a public
key size in the suggested range is not a problem to be put on a product CD/DVD and
hence the additional memory requirement is negligible. Finally, we give the length of
the corresponding activation key in characters, assuming acode with 36 symbols. For
information: Microsoft uses a 25 character code for its products. The verification and
signature timings are extrapolations from [CGP01].
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4.3 Fast One-Way functions

The last application we see are fast but secure one-way functions. In this case, we do
not need a trapdoor but merely the intractability of theMQ-problem. Hence, we suggest
to generate randomMQ-polynomials with the parameters as suggested in Table 3. As

Table 3: Proposed Schemes for One-Way functions

Seed Parameter MQ-System Evaluation
[bit] [kByte] [ms]

259 q = 128, n = 37 23 < 1
469 q = 128, n = 67 134 < 1

for Table 1, the evaluation timings are based on [CGP03]. A similar construction — but
based on sparse polynomials over large finite fields — has beenused by Purdy in [Pur74]
to construct a kind of hash function. While this proposal is based on the intractability of
univariate polynomial equations of large degree, our proposal is based on the difficulty
of solving polynomial-equations of small degree, but with ahigh number of variables.
Although the construction we propose here is difficult to invert, it is not resistant against
collisions. The reason is a general attack from [Pat96b, Sect. 3, “Attack with related
messages”] againstMQ-schemes which can be applied here.
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5 Conclusions

In this paper, we gave a concise overview of an alternative class of public key schemes,
called “MultivariateQuadratic” schemes. In particular — using the variations HFE- and
C∗−− — we developed practical instantiations for the problems offast one-way functions,
electronic stamps, and product activation keys. In all cases, the short signature verifi-
cation times and also the rather short signature generationtimes (resp., encryption and
decryption) are a clear advantage over schemes based on RSA and ECC. In particular, the
authors is not aware of patent-restrictions for HFE- and C∗−−. Hence, they are also a
good alternative for projects where patent royalties are a serious consideration. We also
want to point out that the predecessor of Sflashv3, i.e., Sflashv2 has been recommended
by NESSIE for special application domains. Similar, Quartzwas a recommendation in
NESSIE for applications which require particularly short signatures.
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PMI has been broken by [FGS05]. Hence, we do not recommend theconstructions from
this appendix but leave it here for reference purposes. We want to stress that the crypt-
analysis of [FGS05] is very efficient against PMI and hence, we strongly discourage the
use of PMI.

A Perturbated Matsumoto-Imai

In a nutshell, PMI is a variation on the C∗ scheme. Unfortunately, the security of PMI is
not investigated as thoroughly as the security of,e.g., HFE- or C*– . But as it allows very
interesting solutions, we think its worthwhile to include its description in this paper. As
already stressed previously, we do not recommend its use at present as the scheme is far
too new. We start with a description of the original system and then move on to possible
choices of parameters.

A.1 PMI

For PMI [Din04], the idea used is different from C∗−−: we addn quadratic random poly-
nomialsπ′

1, . . . , π
′
n in r variables to the central equationsP ′ rather than removingr equa-

tions (cf below). This acts as an internal perturbation, hence its name. After introducing
the new components of PMI, we give a formal definition of the system.

Let s : F
n → F

r be an affine transformation wherer < n. Moreover, denote with
Ms ∈ F

n×r a matrix of rankr and withvs ∈ F
n a vector. Now we haves(x) := Msx+vs

a (non-invertible) transformation of degree 1. Moreover, let π′
1, . . . , π

′
n be multivariate

quadratic equations inr variables each:

πi(z
′
1, . . . , z

′
r) :=

∑

γ̃i,j,k +
∑

β̃i,j + α̃

for 1 ≤ i ≤ n, 1 ≤ j, k ≤ r and γ̃i,j,k, β̃i,j , α̃ ∈R F. DenoteP̃(X̃) := X̃qλ+1 the C∗

transformation withλ ∈ N defined as above. We can now write the public key equation as

P := T ◦ (P̃ ◦ S + Π ◦ s)

whereΠ := (π1, . . . , πn) and “+” is vector-addition of quadratic polynomials. To invert
this function, [Din04] proposes two methods: first, we can use brute-force for the values
z′1, . . . , zr and obtain an extra complexity ofqr. Hence,qr cannot be too big using this
method. The second approach is to use the cryptanalysis of [Pat96a] against C∗ for the
central equations alone. This way, we are able to solve PMI quicker inmost cases. We
refer to [Din04] for details but want to stress that this doesnot imply that the original
cryptanalysis of [Pat96a] is applicable against PMI. According to [Din04], parameters
of q = 2, r = 5 andn = 96 lead to a secure version of PMI. According to our own
estimations, an increase of the parameterr to 6 allows to reduce the value forn to 87. In
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any case, PMI is no longer a bijection. But using the same trick as for HFE, we are able to
invert PMI with 7 additional bits and a probability of1 − 2187, cf [Pat96b] for details.

A.2 Product Activation Keys

As in Sect. 4.2, we suggest a proposal based on theMQ-problem. We see that this pro-
posal, based on PMI, allows much smaller product activationkeys. As the user’s coop-
eration will considerably drop with the length of such a product activation key, we want
to stress the importance of this fact. The construction proposed here is the same as in
Sect. 4.2, but with smaller product activation keys.

Table 4: Proposed Schemes for Product Activation Keys

User-ID Key Parameter Priv. Key Pub. Key Gen. Ver. Signature
[bit] [char] [Byte] [kByte] [ms] [ms] [bit]

17 19 q=2,n=97,r=6 2462 56.3 < 80 < 1 97
33 22 q=2,n=113,r=6 3320 88.9 < 100 < 2 113

A.3 Session Keys

Again, we base our proposal for the submission of session keys on the scheme PMI. Our
results are summarised in Table 5. In this table, “Key” is thesize of the session key. For

Table 5: Proposed Schemes for Session Key Transmission

Key Parameter Priv. Key Pub. Key Encr. Decr. Expansion
[bit] [Byte] [kByte] [ms] [ms] [bit/ratio]

128 n=137,r=6 2347 158 < 2 < 100 9/1.07
192 n=199,r=6 4951 483 < 6 < 120 7/1.04
256 n=263,r=6 8647 1114 < 16 < 160 7/1.03

these sizes, we follow the recommendation of NIST for the AES[FIP01]. “Parameter”
is our choice for the corresponding PMI scheme. The fields “Priv.” and “Pub.” show the
size of the corresponding private/public key. The timings are extrapolated from the values
in [CGP01, Din04]. We want to stress that PMI is the only knownvariant at the moment
which allows to use theMQ-problem in the context of encryption and hence, for the
exchange of session keys. All other proposals only allow theconstruction of signature
schemes.


