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Abstract

Distributed control systems (DCS) and supervisory control and data acquisition (SCADA) systems
were developed to reduce labor costs, and to allow system-wide monitoring and remote control from a
central location. Control systems are widely used in critical infrastructures such as electric grid, natural
gas, water, and wastewater industries. While control systems can be vulnerable to a variety of types
of cyber attacks that could have devastating consequences, little research has been done to secure the
control systems. This paper presents a suite of security protocols optimized for SCADA/DCS systems
which include: point-to-point secure channels, authenticated broadcast channels, authenticated emer-
gency channels, and revised authenticated emergency channels. These protocols are designed to address
the specific challenges that SCADA systems have.

1 Introduction

Control systems are computer-based systems that are used within many critical infrastructures and industries
(e.g., electric grid, natural gas, water, and wastewater industries) to monitor and control sensitive processes
and physical functions. Without a secure SCADA system it is impossible to protect the nation’s critical
infrastructures. Indeed, the recent GAO report [15] shows that designing secure SCADA systems has the
highest priority in protecting the nation’s critical infrastructures.

Typically, control systems collect sensor measurements and operational data from the field, process
and display this information, and relay control commands to local or remote equipments. Control systems
may perform additional control functions such as operating railway switches, circuit breakers, and adjusting
valves to regulate flow in pipelines. The most sophisticated ones control devices and systems at an even
higher level.

Control systems have been in place since the 1930s and there are two primary types of control systems.
Distributed Control Systems (DCS) and Supervisory Control and Data Acquisition (SCADA) systems. DCS
systems typically are used within a single processing or generating plant or over a small geographic area.
SCADA systems typically are used for large, geographically dispersed distribution operations. For exam-
ple, a utility company may use a DCS to generate power and a SCADA system to distribute it. We will
concentrate on SCADA systems and our discussions are generally applicable to DCS systems.

In a typical SCADA system [12], data acquisition and control are performed by remote terminal units
(RTU) and field devices that include functions for communications and signaling. SCADA systems normally
use a poll-response model for communications with clear text messages. Poll messages are typically small
(less than 16 bytes) and responses might range from a short “I am here” to a dump of an entire day’s data.
Some SCADA systems may also allow for unsolicited reporting from remote units. The communications
between the control center and remote sites could be classified into following four categories.
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1. Data acquisition: the control center sends poll (request) messages to remote terminal units (RTU)
and the RTUs dump data to the control center. In particular, this includesstatus scan and measured
value scan. The control center regularly sends a status scan request to remote sites to get field devices
status (e.g., OPEN or CLOSED or a fast CLOSED-OPEN-CLOSED sequence) and a measured value
scan request to get measured values of field devices. The measured values could be analog values or
digitally coded values and are scaled into engineering format by the front-end processor (FEP) at the
control center.

2. Firmware download: the control center sends firmware downloads to remote sites. In this case, the
poll message is large (e.g., large than 64K bytes) than other cases.

3. Control functions: the control center sends control commands to a RTU at remote sites. Control
functions are grouped into four subclasses: individual device control (e.g., to turn on/off a remote
device), control messages to regulating equipment (e.g., a RAISE/LOWER command to adjust the
remote valves), sequential control schemes (a series of correlated individual control commands), and
automatic control schemes (e.g., closed control loops).

4. Broadcast: the control center may broadcast messages to multiple remote terminal units (RTUs).
For example, the control center broadcasts an emergent shutdown message or a set-the-clock-time
message.

Acquired data is automatically monitored at the control center to ensure that measured and calculated values
lie within permissible limits. The measured values are monitored with regard to rate-of-change and for
continuous trend monitoring. They are also recorded for post-fault analysis. Status indications are monitored
at the control center with regard to changes and time tagged by the RTUs. Existing communication links
between the control center and remote sites operate at very low speeds (could be on an order of 300bps to
9600bps). Figure 1 describes a simple SCADA system.

Figure 1: A simple SCADA system

In practice, more complicated SCADA system configurations exist. Figure 2 lists three typical SCADA
system configurations (see, e.g., [4]).
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Figure 2: Typical SCADA system configurations

2 Threats to SCADA systems

An actual attack on SCADA systems was reported in [1]. In this attack, an Australian man hacked into the
Maroochy Shire, Queensland computerized waste management system and caused millions of liters of raw
sewage to spill out into local parks, rivers and even the grounds of a Hyatt Regency hotel. It is reported
that the 49-year-old Vitek Boden had conducted a series of electronic attacks on the Maroochy Shire sewage
control system after his job application had been rejected. Later investigations found radio transmitters and
computer equipments in Boden’s car. The laptop hard drive contained software for accessing and controlling
the sewage SCADA systems.

SCADA systems were not designed with public access in mind, they typically lack even rudimentary
security. However, with the advent of technology and particularly the Internet, much of the technical infor-
mation required to penetrate these systems is widely discussed in the public forums of the affected industries.
Critical security flaws for SCADA systems are well known to potential attackers. It is feared that SCADA
systems can be taken over by hackers, criminals, or terrorists. Some companies may assume that they use
leased lines and therefore nobody has access to their communications. The fact is that it is easy to tap these
lines [3]. Similarly, frequency hopping spread spectrum radio and other wireless communication mecha-
nisms frequently used to control remote terminal units (RTU) can be compromised as well. According to
GAO’s report [15], the factors that have contributed to the escalation of risk to SCADA systems include:

• The adoption of standardized technologies with known vulnerabilities. In the past, proprietary hard-
ware. software, and network protocols made it difficult to understand how SCADA systems operated—
and therefore how to hack into them. Today, standardized technologies such as Windows, Unix-like
operating systems, and common Internet protocols are used by SCADA systems. Thus the number of
people with knowledge to wage attacks on SCADA systems have increased.

• The connectivity of control systems to other networks. In order to provide decision makers with
access to real-time information and allowing engineers to monitor and control the SCADA systems
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from different points on the enterprise networks, the SCADA systems are normally integrated into the
enterprise networks. Enterprises are often connected to partners’ networks and to the Internet. Some
enterprises may also use wide area networks and Internet to transmit data to remote locations. This
creates further security vulnerabilities in SCADA systems.

• Insecure remote connections. Enterprises often use leased lines, wide area networks/Internet, and
radio/microwave to transmit data between control centers and remote locations. These communication
links could be easily hacked.

• The widespread availability of technical information about control systems. Public information about
infrastructures and control systems is readily available to potential hackers and intruders. For exam-
ple, Sean Gorman’s dissertation (see, e.g., [25]) mapped every business and industrial sector in the
American economy to the fiber-optic network that connects them, using materials that was available
publicly on the Internet. In addition, significant information on SCADA systems is publicly available
(from maintenance documents, from former employees, and from support contractors, etc.). All these
information could assist hackers in understanding the systems and to find ways to attack them.

Hackers may attack SCADA systems with one or more of the following actions. (1). Denial of service
attacks by delaying or blocking the flow of information through control networks. (2). Make unauthorized
changes to programmed instructions in RTUs at remote sites, resulting in damage to equipment, premature
shutdown of processes, or even disabling control equipment. (3). Send false information to control system
operators to disguise unauthorized changes or to initiate inappropriate actions by system operators. (4).
Modify the control system software, producing unpredictable results. (5). Interfere with the operation of
safety systems.

The analysis in [15] shows that securing control systems poses significant challenges which include (1)
the limitations of current security technologies in securing control systems. Existing Internet security tech-
nologies such as authorization, authentication, and encryption require more bandwidth, processing power,
and memory than control system components typically have; Controller stations are generally designed to
do specific tasks, and they often use low-cost, resource-constrained microprocessors. (2) the perception
that securing control systems may not be economically justifiable; and (3) the conflicting priorities within
organizations regarding the security of control systems. In this paper, we will concentrate on the protection
SCADA remote communication links. In particular, we design new security technologies to secure SCADA
systems.

3 Securing SCADA remote connections

Relatively cheap attacks could be mounted on SCADA system communication links between the control
center and remote terminal units (RTU) since there is neither authentication nor encryption on these links.
Under the umbrella of NIST “Critical Infrastructure Protection Cybersecurity of Industrial Control Systems”
[2], “American Gas Association (AGA) SCADA Encryption Committee” [6] has been trying to identify the
functions and requirements for authenticating and encrypting SCADA communication links. Their pro-
posal [4] is to build cryptographic modules that could be invisibly embedded into existing SCADA systems
(in particular, one could attach these cryptographic modules to modems of Figure 2) so that all messages
between modems are encrypted and authenticated when necessary, and they have identified the basic re-
quirements for these cryptographic modules. However, due to the constraints of SCADA systems, no viable
cryptographic protocols have been identified to meet these requirements. In particular, the challenges for
building these devices are (see [4]):

1. encryption of repetitive messages
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2. minimizing delays due to cryptographic operations

3. assuring integrity with minimal latency

• intra-message integrity: if cryptographic modules buffer message until the message authentica-
tor is verified, it introduces message delays that are not acceptable in most cases

• inter-message integrity: reorder messages, replay messages, and destroy specific messages

4. accommodating various SCADA poll-response and retry strategies: delays introduced by crypto-
graphic modules may interfere with the SCADA system’s error-handling mechanisms (e.g., time-out
errors)

5. supporting broadcast messages

6. incorporating key management

7. cost of device and management

This paper designs efficient cryptographic mechanisms to address these challenges and to build crypto-
graphic modules as recommended in [4]. These mechanisms can be used to build plug-in devices (called
sSCADA) that could be inserted into SCADA networks so that all communication links are authenticated
and encrypted. In particular, authenticated broadcast protocols are designed so that they can be cheaply in-
cluded into these devices. It has been a major challenging task to design efficiently authenticated emergency
broadcast protocols in SCADA systems.

The trust requirements in our security protocol design is as follows. RTU devices are deployed in un-
trusted environments and individual remote devices could be controlled by adversaries. The communication
links are not secure but messages (maybe modified or re-ordered) could be delivered to the destination with
certain probability. In another word, complete denial of service attacks (e.g., jamming) on the communi-
cation links are not addressed in our protocol. Compromising the control center in a SCADA system will
make the entire system useless. Thus we assume that control centers are trusted in our protocol.

4 sSCADA protocol suite

The sSCADA protocol suite is proposed to overcome the challenges that we have discussed in the previous
section. sSCADA devices that are installed at the control center is called master sSCADA device, and sS-
CADA devices that are installed at remote sites are called slave sSCADA devices. Each master sSCADA de-
vice may communicate privately with several slave sSCADA devices. Once in a while, the master sSCADA
device may also broadcast authenticated messages to several slave sSCADA devices (e.g., an emergency
shutdown). An illustrative sSCADA device deployment for point-to-point SCADA configuration is shown
in Figure 3.

control center

RTU
     slave
secSCADAmodemmodemFEP

   master
secSCADA

Figure 3: sSCADA with point-to-point SCADA configuration
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4.1 Point-to-point secure channels

In order to reduce the cost of sSCADA devices and management, only symmetric key cryptographic tech-
niques is used in our design. Indeed, due to the slow operations of public key cryptography, public key cryp-
tographic protocols could introduce delays in message transmission which are not acceptable to SCADA
protocols. Semantic security property [17] is used to ensure that an eavesdropper has no information about
the plaintext, even if it sees multiple encryptions of the same plaintext. For example, even if the attacker has
observed the ciphertexts of “shut down” and “turn on”, it will not help the attacker to distinguish whether
a new ciphertext is the encryption of “shut down” or “turn on”. In practice, the randomization technique
is used to achieve this goal. For example, the message sender may prepend a random string (e.g., 128 bits
for AES-128) to the message and use special encryption modes such as chaining block cipher mode (CBC)
or counter mode (CTR). In some mode, this random string is called the initialization vector (IV). This pre-
vents information leakage from the ciphertext even if the attacker knows several plaintext/ciphertext pairs
encrypted with the same key.

Since SCADA communication links could be as low as 300bps and immediate response are generally
required, there is no sufficient bandwidth to send the random string (IV) each time with the ciphertext, thus
we need to design different cryptographic mechanisms to achieve semantic security without additional trans-
mission overhead. In our design, we use two counters shared between two communicating partners, one for
each direction of communication. A similar design has been proposed in the sensor network communication
protocol SNEP [22].

The counters are initially set to zeros and should be at least 128 bits, which ensures that the counter
values will never repeat, avoiding replay attacks. The counter is used as the initialization vector (IV) in
message encryptions if CBC or CTR mode is used. After each message encryption, the counter is increased
by one if CBC mode is used and it is increased by the number of blocks of encrypted data if CTR mode
is used. The two communicating partners are assumed to know the values of the counters and the coun-
ters do not need to be added to each ciphertext. Messages may get lost and the two counters need to be
synchronized once a while (e.g., at off-peak time). A simple counter synchronization protocol is proposed
for the sSCADA protocol suite. The counter synchronization protocol could also be initiated when some
encryption/decryption errors appear due to unsynchronized counters.

In order for two sSCADA devices to establish a secure channel, a master secret key needs to be boot-
strapped into the two devices at the deployment time (or when a new sSCADA device is deployed into the
existing network). For most configurations, secure channels are needed only between a master sSCADA
device and a slave sSCADA device. For some configurations, secure channels among slave sSCADA de-
vices may be needed also. The secure channel identified with this master secret is used to establish other
channels such as session secure channels, time synchronization channels, authenticated broadcast channels,
and authenticated emergency channels.

Assume thatH(·) is a pseudorandom function (e.g., constructed from SHA-256) and two sSCADA de-
vicesA andB share a secretKAB = KBA. Depending on the security policy, this keyKAB could be the
shared master secret or a shared secret for one session which could be established from the share master
key using a simple key establishment protocol (in order to achieve session key freshness, typically one node
sends a random nonce to the other one and the other node sends the encrypted session key together with an
authenticator on the ciphertext and the random nonce). Keys for different purposes could be derived from
this secret as follows (it is not a good practice to use the same key for different purposes). For example,
KAB = H(KAB , 1) is for message encryption fromA to B, K ′

AB = H(KAB , 2) is for message authentica-
tion fromA to B, KBA = H(KAB, 3) is for message encryption fromB to A, andK ′

BA = H(KAB , 4) is
for message authentication fromB to A.

Message authentication codes (MAC) are used for two parties to achieve data authentication and in-
tegrity. Message authentication codes that could be used for sSCADA implementation include HMAC
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[8, 20], CBC-MAC [19], and others. When partyA wants to send a messagem to partyB securely,A com-
putes the ciphertextc = E(CA,KAB ,m) and message authenticatormac = MAC(K ′

AB, CA||c), where
E(CA,KAB ,m) denotes the encryption ofm using keyKAB and random-prefix (or IV)CA andCA is the
counter value for the communication fromA to B. ThenA sends the following packets toB:

A → B : c, mac

WhenB receives the above packets,B decryptsc and verifies the message authenticatormac. There are
several implementation issues on how to deliver the message to the target (e.g., RTU). For example, we give
two cases in the following.

• B receives the entire package and verifies the message authenticator. During the verification proce-
dure, the authenticity of the counter is verified implicitly. If the verification fails, the reason could be
that the counterCA is not synchronized. ThusB may try several possible counters until the authen-
ticator is verified.B uses the verified counter and the corresponding key to decrypt the message and
deliver the resulting message to the target. If no counter could be verified in a limited number of trials.
B may notify A of the transmission failure and initiate the counter synchronization protocol in the
next section. The disadvantage for this implementation is that these operations introduce additional
delay which may interfere with SCADA protocols.

• In order to avoid delays introduced by cryptographic operations, sSCADA devices may deliver de-
crypted bytes immediately to the target except the last byte. If the message authenticatormac is
verified successfully, the sSCADA device delivers the last byte to the target; Otherwise, the sSCADA
device discards the last byte or sends a random byte to the target. That is, we rely on the error correc-
tion mechanisms at the target to discard the entire message. Similar mechanisms have been proposed
in [5]. The disadvantage for this implementation is thatB has no chance to try for different counters
CA. Thus it is not as robust as the previous implementation. However, if the chance that the counters
are synchronized is significantly high, then this implementation is better.

• Another potential solution is to add two bytes of special format string to the plaintext message (two
bytes bandwidth is normally available in SCADA systems) before encryption. WhenB receives a
ciphertext, it decrypts it with the available counter value. If the special prefix is correct, thenB has
confidence that the counter value is synchronized. Otherwise,B tries other counter values to decrypt
the correct prefix. After the counter value is determined,B continues the decryption and delivers the
decrypted message to the target except the last byte. The last byte message is delivered only if the
authenticator is verified.

There could be other implementations to improve the performance and interoperability with SCADA pro-
tocols. sSCADA device should provide several possible implementations for users to configure. Indeed,
sSCADA devices may also be configured in a dynamic way that for different messages it uses different
implementations.

In some SCADA communications, message authentication-only is sufficient. That is, it is sufficient for
A to send(m, mac) to B, wherem is the cleartext message andmac = MAC(K ′

AB , CA||m). sSCADA
device should provide configuration options to do message authentication without encryption. In this case,
even if the counter value is not used as the IV, the counter value should still be increased after the operation.
This will provide message freshness assurance and avoid replay attacks. sSCADA should also support mes-
sage pass-through mode. That is, message is delivered without encryption and authentication. In a summary,
it should be possible to configure a sSCADA device in such a way that some messages are authenticated and
encrypted, some messages are authenticated only, and some messages are passed through directly.
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When necessary, it is also possible to configure sSCADA devices to do encryption only. That is, each
time whenA wants to send a messagem to B, it computes the ciphertextc = E(CA,KAB ,M) and sends
c to B. The advantage of this encryption-only mode is thatmac is not sent over the channel thus avoiding
message overhead. This may be important in several SCADA applications since there is no additional
bandwidth for the message authenticator at all. Indeed, weak authentication and message freshness are also
achieved in the encryption-only mode if the counters are synchronized.B uses the synchronized counter
CA to decrypt the ciphertextc. If the message is generated by the adversary without the knowledge of the
secret key or is a replayed ciphertext, then the decrypted message is generally not meaningful and the CRC
code verification in the SCADA protocol will fail. Thus the SCADA protocol at the target will discard this
message.

It is straightforward to show that our point-to-point secure channels provide data authentication, data
integrity, data confidentiality, and weak data freshness (that is, messages arrive at the destination in the same
order that was sent from the source).

4.2 Counter synchronization

In the point-to-point message authentication and encryption protocol, we assume that both sSCADA devices
A andB know each other’s counter valuesCA andCB . In most cases, reliable communication in SCADA
systems is provided and the security protocols in the previous section work fine. Still we provide a counter
synchronization protocol so that sSCADA devices could synchronize their counters when necessary. The
counter synchronization protocol could be initiated by either side. Assume thatA initiates the counter
synchronization protocol. Then the protocol looks as follows:

A → B : NA

B → A : CB , MAC(K ′
BA, NA||CB)

This counter synchronization protocol is analogous to that in [22].
The initial counter values of two sSCADA devices could be bootstrapped directly. The above counter

synchronization protocol could also be used by two devices to bootstrap the initial counter values. A master
sSCADA device may also use the authenticated broadcast channel that we will discuss in the next section to
set several slave sSCADA devices’ counters to the same value using one message.

4.3 Authenticated broadcast channels

Encryption and authentication alone are not sufficient for SCADA applications. For example, it is not
acceptable to authenticate a message individually in an emergent shutdown when timely responses from the
RTU’s are critical. In order to support authenticated broadcast, we use one way key chains. This channel
can be used to establish other channels such as authenticated emergency channels (see next section).

Typical authenticated broadcast channels require asymmetric cryptographic techniques, otherwise any
compromised receiver could forge messages from the sender. Cheung [13] proposed a symmetric cryptog-
raphy based source authentication technique in the context of authenticating communication among routers.
Cheung’s technique is based on delayed disclosure of keys by the sender. Later, it was used in the Guy
Fawkes protocol [7] for interactive unicast communication, and in [9, 10, 11, 23, 24] for streamed data mul-
ticast. Recently, Perrig, Szewczyk, Tygar, Wen, and Culler adapted delayed key disclosure based TESLA
protocols [23, 24] to sensor networks for sensor broadcast authentication (the new adapted protocol is called
µTESLA). One-way key chains used in these protocols are analogous to the one-way key chains introduced
by Lamport [21] and the S/KEY authentication scheme [18].

In the following, we briefly describe the authenticated broadcast scheme for SCADA systems. At the
sender (normally the master sSCADA device or a computer connected to it) set up time, the sender generates
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a one-way key chain in the setup phase. In order to generate a one-way key chain of lengthn, the sender
chooses a random keyKn first, then it applies the pseudorandom functionH repeatedly toKn to generate
the remaining keys. In particular, for eachi < n,Ki = H(Ki+1).

For the purpose of broadcast authentication, the sender splits the time into even intervalsIi. The duration
of each time interval is denoted asδ (e.g.,δ = 5 seconds or5 minutes or even 2 hours), and the starting time
of the intervalIi is denoted asti. In another word,ti = t0 + iδ. At time ti, the sender broadcasts the key
Ki. Any device that has an authentic copy of keyKi−1 can verify the authenticity of the keyKi by checking
whetherKi−1 = H(Ki). Indeed, any device that has an authentic copy of some keyKv (v < i) can verify
the authenticity of keyKi sinceKv = H(i−v)(Ki).

Let d (a unit of time intervals) be the key disclosure delay factor. The value ofd is application dependent
and could be configured at deployment time or after deployment. Afterd is fixed, the sender will use keying
materials derived from keyKi+d to authenticate broadcast messages during the time intervalIi. Thus the
message being broadcast during time intervalIi could be verified by the receiver during the time interval
Ii+d after the sender broadcastsKi+d at timeti+d. It is easy to see that in order to achieve authenticity, the
sender and the receiver need to be loosely time synchronized. Otherwise, if the receiver time is slower than
the sender’s time, an attacker can use published keys to impersonate the sender to the receiver. Typically
the key disclosure delay should be greater than any reasonable round trip time between the sender and the
receiver. If the sender does not broadcast data frequently, the key disclosure delay may be significantly
larger. For example,dδ could take the value of several hours for some SCADA systems.

If a receiver (typically a slave sSCADA device) is deployed at some time during the intervalIi, the sender
needs to bootstrap keyKi on the one-way key chain to the receiver. The sender also needs to bootstrap the
key disclosure schedule which includes the starting timeti of the time intervalIi, the key disclosure delay
factord, and the durationδ of each time interval. All these information could be bootstrapped to the receiver
using the point-to-point secure channel that we have designed in the previous section or using other channels
such as manual input. During a time intervalIj (j > i), the receiver receives the broadcast keyKj from the
sender and verifies whetherKj−1 = H(Kj). If the verification is successful, the receiver updates its key on
the one-way key chain. If the receiver does not receive the broadcast key during the time intervalIj (either
due to packet loss or due to active denial of service attacks such as jamming attacks), it can update its key
in the next time intervalIj+1.

When a receiver gets a packet from the sender, it first checks whether the key used for the packet
authentication has been revealed. If the answer is yes, then the attacker knows the key also and the packet
could be a forged one. Thus the receiver needs to discard the packet. If the key have not been revealed yet,
the receiver puts the packet in the buffer and checks the authenticity of the packet when the corresponding
key is revealed. As stated above, if the sender and the receiver agree on the key disclosure schedule and
the time is loosely synchronized, then message authenticity is guaranteed. However, the protocol does not
provide non-repudiation, that is, the receiver cannot convince a third party that the message was from the
claimed sender.

If we assume that the time between the sender and the receiver are loosely synchronized and the pseu-
dorandom functionH(·) and the message authentication code (MAC) are secure, then an analogous proof
as in [24] could be used to show that the above authenticated broadcast channel is secure. Note that we
say that apseudorandom functionH(·) is secure if the function familyfk(x) = H(k, x) is a pseudoran-
dom function family in the sense of [16] whenk is chosen randomly. That is, a function family{fk(·)} is
pseudorandom if the adversary with polynomially bounded resources cannot distinguish between a random
chosen function from{fk(·)} and a totally random function with non-negligible probability. We say that a
message authentication scheme MAC is secure if a polynomially bounded adversary will not succeed with
non-negligible probability in the following game. A randoml-bits keyk are chosen by the user. The adver-
sary chooses messagesm1, . . . ,mt and the user generates the MAC codes on these messages using the key
k. The adversary succeeds if she could then generate a MAC code on a different messagem′ 6= m1, . . . ,mt.
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Though the time synchronization between the sender and the receiver plays an important role in the
security of the protocol, they do not need to have 100% accurate clocks. If their clocks are sufficiently
accurate, then time synchronization protocol could be designed to synchronize their clocks to meet the
security requirements. The time synchronization protocols could be based on the point-to-point secure
channels discussed in the previous section.

In the above authenticated broadcast protocol, the receiver cannot verify the authenticity of the mes-
sage immediately since it needs to wait for the disclosure of the key after a time period ofdδ. This is not
acceptable for some broadcast messages such as an emergency shutdown. In order to overcome this chal-
lenge, the sender may reveal the key used for emergency messages immediately or shortly after the message
broadcast. This will open the door for an adversary to modify the emergency messages. For example, if the
message passes through a nodeD before it reaches a nodeC, D can discard the message and create a dif-
ferent emergency message and forward it toC. In another case, an attacker may jam the targetC during the
emergency broadcast period and sendsC a different emergency message (authenticated using the revealed
key for the emergency message) later. If these attacks are not practical, then it is OK to use this immediate-
key-disclosure protocol for emergency broadcast. Otherwise, we need to use the emergency channels that
we will discuss in the next sections.

4.4 Authenticated emergency channels

As stated in the previous section, authenticated emergency channels are needed for many SCADA systems.
In this section we design such a channel based on the authenticated broadcast channel. Generally there are
limited number of emergency messages. Assume that these emergency messages aree1, . . . , eu. Without
loss of generality, we may assume thatei = i for i ≤ u. Before the sender could authentically broadcast
these messages, it needs to carry out a commitment protocol.

Let v be a fixed number. During the message commitment procedure, the sender choosesv random
numbersN i

1, . . . , N
i
v for eachi ≤ u. It then computesri,j = H(ei||N i

j) for all i ≤ u andj ≤ v. Using
the authenticated broadcast channel, the sender broadcasts the commitments{ri,j : i ≤ u andj ≤ v} to all
receivers. Receivers store these commitments in their memory space.

Each time when the sender wants to broadcast the messageei to receivers emergently, it chooses a
random unusedj ≤ v, and broadcasts(ei, j,N

i
j) to all receivers. The receiver verifies thatri,j = H(ei||N i

j).
If the verification is successful, it knows that the messageei comes from the sender and delivers it to the
target. At the same time, the receiver deletes the commitmentri,j from its memory space.

Note that after each message commitment procedure, the sender could broadcast each message at most
v times. Thus the sender may decide to initiate the message commitment protocol when any one of these
messages has been broadcast sufficiently many times (e.g.,v − 1 times). Each time when the message
commitment protocol is initiated, both the sender and the receiver should delete all previous commitments
from their memory space.

The security of the emergency channel could be proved formally under the assumption that the pseudo-
random functionH(·) is a secure one-way function. That is, for any giveny with appropriate length, one
cannot find anx such thatH(x) = y with non-negligible probability.

Theorem 4.1 Assume that the authenticated broadcast channel is secure and the pseudorandom function
H(·) is a secure one-way function. Then the authenticity of messages that receivers accept from the emer-
gency channel is guaranteed.

Sketch of Proof.Assume for a contradiction that the authenticity of the emergency protocol is broken. That
is, there is an adversaryA who controls communication links and manages to deliver a messagem to the
receiver such that the sender has not sent the message but the receiver accepts the message. We show in the
following that thenH(·) is not a secure one-way function. Specifically, lett be the total number of messages
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that the sender can broadcast in the emergency channel with one commitment{ri,j}, andy1, . . . , yt be t
randomly chosen strings with appropriate lengths (i.e., they are potential outputs ofH). We will construct
an algorithmP that usesA to compute a pre-imagex = H−1(yi) of some stringyi with non-negligible
probability.

Since the broadcast channel is secure, we can always assume that the commitment{ri,j} that the re-
ceivers accept are authentic. The algorithmP works by runningA as follows. Essentially,P simulates an
authenticated broadcast channel forA with a senderA and a receiverB.

1. P chooses a random numberl ≤ t.

2. P computes a commitment{ri,j} as specified in the emergency broadcast protocol.P pickst− l + 1
random values from the commitment{ri,j} and replace them withyl, yl+1, . . . , yt.

3. P runs the sender’s algorithm to authentically broadcast the modified commitment toB.

4. For the firstl − 1 emergency messages,P runs the sender’s algorithm of the emergency broadcast
protocol with no modification to broadcast the pre-images of thel − 1 unmodified commitments.

5. P then waits forA to deliver a fake messagex′ thatB accepts as an authentic emergency broadcast.
P outputsx′ as one of the pre-images ofyl, . . . , yt.

We briefly argue thatP outputs the pre-image of one of the strings fromy1, . . . , yt with non-negligible
probability. SinceA succeeds with non-negligible probability in convincing the receiver to accept a fake
message, it must deliver this message as thel-th message for somel ≤ t in the authenticated emergency
channel. Thus for thisl, the algorithmP outputs a pre-image for one of the given strings with non-negligible
probability. Q.E.D.

Theorem 4.1 shows that messages received in the emergency channel are authentic. However, it does
not show whether these messages are fresh. Indeed, when the sender broadcasts an emergency message at
the timet, the adversary may launch a denial of service attack against the receiver or just does not deliver
the message to the receiver. Thus the receiver will not be able to delete the commitment of this message
from its memory space. Later at timet′, the adversary delivers this message to the receiver and the receiver
accepts it. In our emergency channel, there is no way to avoid this kind of delayed message attacks. Thus
when message freshness is important, one may use the revised authenticated emergency broadcast channel
that we will discuss in the next section.

4.5 Revised authenticated emergency channel

There are basically two ways to guarantee the freshness of a received message. The first one is to use public
key cryptography together with time-stamps. The second solution is to let the receiver send a nonce to the
sender first and the sender authenticates the message together with the nonce. As we have mentioned earlier,
public key cryptography is too expensive to be deployed in SCADA systems. For the second solution, the
delays introduced in nonce submission process are generally not acceptable in an emergent situation. In this
section, we introduce a revised emergency broadcast protocol, which provides weak freshness of received
messages.

Let theu emergency messages bee1, . . . , eu. Similar to the previous protocol, the sender needs to carry
out a commitment protocol before the authenticated emergency broadcast. In the revised protocol, the sender
choosesv random numbersN i

1, . . . , N
i
v andv expiration time pointsT i

1 < T i
2 < . . . < T i

v for eachi ≤ u.
It then computesri,j = H(ei||N i

j ||T i
j ) for i ≤ u andj ≤ v. Using the authenticated broadcast channel,

the sender broadcasts the commitments{ri,j : i ≤ u andj ≤ v} to all receivers. Receivers store these
commitments in their memory space. The functionality of expiration time points in the revised protocol is
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to guarantee that the commitmentri,j for the messageei expires at the timeT i
j . In another word, when the

receiver receives(ei, N
i
j , T

i
j ), it will accepts the message only if the current clock time of the receiver is

earlier thanT i
j .

If the sender wants to send the messageei to receivers at timet, it chooses a random unusedj ≤ v such
that t < T i

j , the estimated transmission time from the sender to receiver is less thanT i
j − t, andT i

j is the
earliest time in the commitments that satisfies these conditions. Then the sender broadcasts(ei, j,N

i
j , T

i
j )

to all receivers. The receiver verifies thatri,j = H(ei||N i
j ||T i

j ) and the current clock time of the receiver
is earlier thanT i

j . If the verification is successful, it knows that the messageei comes from the sender and
delivers it to the target. At the same time it deletes the commitmentri,j from its memory space. Otherwise,
the receiver discards the message.

The implementation of the revised emergency broadcast protocol has the flexibility to choose the gaps
between expiration time pointsT i

j s for eachi ≤ u. The smaller the gap, the better the freshness property.
However, smaller gaps betweenT i

j s add additional overhead on the communication links. It is also possible,
for different messagesei, one chooses different valuesv. For example, for more frequently broadcast
message, the value ofv should be larger. It is also important to guarantee that the commitment is always
sufficient and when only a few commitments are unused, the sender should initiate a procedure for a new
commitment.

The security of the revised emergency broadcast protocol can be proved similarly as in Theorem 4.1.
It is still possible for an adversary to delay an emergency message(ei, j,N

i
j , T

i
j ) broadcast by the sender

during the time period[T i
j−1, T

i
j ] until T i

j . However, she cannot delay the message to some time points
afterT i

j . In another word, weak freshness of received messages are guaranteed in the revised authenticated
emergency channel.

5 Conclusion

In this paper, we introduced a security protocol suite that addresses the challenges of SCADA communica-
tion environments. The sSCADA devices are under the process of development at the moment. After these
devices are built, they will be tested in the real SCADA system environments. However, our theoretical
analysis shows that the sSCADA devices can solve all these challenges and will not interfere with SCADA
protocols.
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