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Abstrat

This paper introdues a new radix-2 representation with the same

average weight as the width-w nonadjaent form (w-NAF). In both

w-NAF and the proposed representations, eah nonzero digit is an odd

integer with absolute value less than M . However, for w-NAF, M is

of the form 2

w�1

, while for the proposed representation it an be any

positive integer. Therefore, using the proposed integer representation

we an use the available memory eÆiently, whih is attrative for

devies with limited memory. Another advantage of the proposed rep-

resentation over w-NAF is that it an be obtained by sanning the bits

from left-to-right. This property is also useful for memory-onstrained

devies beause it an redue both time and spae omplexity of fast

point multipliation tehniques.

1 Introdution

In 1985 Koblitz [1℄ and Miller [2℄ proposed the group of points on an el-

lipti urve over a �nite �eld to reate the ellipti urve disrete logarithm

problem (ECDLP). Unlike the disrete logarithm problem over the multi-

pliative group of a �nite �eld (DLP), there is no known subexponential-time

algorithm to solve the ECDLP in general. Thus, ellipti urves are an at-

trative alternative to implement many ryptographi tehniques suh as

DiÆe-Hellman [3℄ and ElGamal [4℄.

Point multipliation dominates the exeution time of ellipti urve ryp-

tosystems, so various methods have been studied to enhane the perfor-

mane of this operation [5, 6℄. Spei�ally, the integer representation of
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the multiplier plays an important role in the performane of these methods

[7℄. Among the existing integer representations, those with minimal aver-

age Hamming weight (number of nonzero digits) suh as w-NAF are more

attrative. This is due to the fat that they redue the required number of

point additions/subtrations. It is also of interest to have a representation

whih an be obtained by sanning the bits from left to right (i.e., from the

most signi�ant bit to the least signi�ant bit) [8, 9℄. This property elim-

inates the need for reoding and storing the multiplier in advane, hene

improving the performane of left-to-right point multipliation methods in

terms of running time and memory spae. We are also interested in rep-

resentations whih allow eÆient usage of memory. This is important for

devies with a small amount of memory. In [10℄, the author proposes a gen-

eralized w-NAF whih allows more eÆient usage of memory than w-NAF.

However, similar to the w-NAF reoding algorithm, the generalized w-NAF

reoding algorithm sans the bits from right to left.

In this paper, we introdue a new integer representation whih has the

same average weight as w-NAF, but has the advantage that it results in a

point multipliation method whih uses less memory. This memory saving

results from the fat that the new representation an be obtained by sanning

the multiplier bits from left to right. It an also result in more eÆient

usage of memory. This is beause in the left-to-right point multipliation

algorithms (suh as Algorithm 1, given in Setion 2.2), we need to store

m points where m is the number of positive integers in the digit set. For

w-NAF and the representations proposed in [11, 12℄, m is of the form 2

w�1

,

where w is a positive integer. So if we have for example suÆient memory

for storing seven points in a devie with small amount of storage, using

these representations we an only store up to four points and the rest of the

memory is wasted. However, using the proposed representation we are able

to use all available memory to store seven points. This is due to the fat

that for the proposed representation m an be any positive integer.

The rest of this paper is organized as follows. In Setion 2, we briey

review ellipti urves. Setion 3 proposes the new integer representation

and presents an eÆient reoding algorithm to generate it. In Setion 4,

we analyze the average Hamming weight of the proposed representation.

In Setion 5, we show how the proposed representation an be used for

omputing ellipti urve point multipliation. Finally, some onlusions are

given in setion 6.
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2 Ellipti Curves

An ellipti urve E over the �eld F is a smooth urve in the so alled \long

weirestra� form"

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

; (1)

where a

1

; : : : ; a

6

2 F. Equation 1 may be simpli�ed to

E : y

2

= x

3

+ ax+ b (2)

E : y

2

+ xy = x

3

+ ax

2

+ b (3)

When Char(F) 6= 2; 3 and Char(F) = 2, respetively.

2.1 Point Addition

Let E(F) be the set of points P = (x; y) 2 F

2

that satisfy the ellipti urve

equation (along with a \point at in�nity" denoted O). It is well known that

E(F) together with the point addition operation given in Table 1 form an

abelian group. As shown in Table 2, point inversion in this group an be

omputed easily. Note that in both Tables 1 and 2, the points P

1

= (x

1

; y

1

) ,

P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) are represented in aÆne oordinates.

Char(F) = 2

P

1

6= �P

2

� =

y

2

+y

1

x

2

+x

1

x

3

= �

2

+ �+ x

1

+ x

2

+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

P

1

= P

2

� =

y

1

x

1

+ x

1

x

3

= �

2

+ �+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

Char(F) 6= 2; 3

P

1

6= �P

2

� =

y

2

�y

1

x

2

�x

1

x

3

= �

2

� x

1

� x

2

y

3

= (x

1

� x

3

)�� y

1

P

1

= P

2

� =

3x

2

1

+a

2y

1

x

3

= �

2

� 2x

1

y

3

= (x

1

� x

3

)�� y

1

Table 1: Ellipti urve point addition (P

3

= P

1

+ P

2

).
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Char(F) = 2 �P

1

= (x

1

; x

1

+ y

1

)

Char(F) 6= 2; 3 �P

1

= (x

1

;�y

1

)

Table 2: Ellipti urve point inversion.

2.2 Point Multipliation

Ellipti urve ryptographi tehniques require the omputation of point

multipliation de�ned as repeated addition

kP = P + P + : : :+ P

| {z }

k times

,

where P is an ellipti urve point, k 2 [1; n � 1℄ is an integer, and n is the

order of the point P . To ompute the point multipliation kP , the multiplier

k an be represented in base 2 as

k =

X

0�i<l

k

i

2

i

,

where k

i

2 B [ f0g and B is a set of nonzero integers inluding 1. Then,

Algorithm 1 an use this representation of k to ompute kP . Note that in

the preomputation stage of this algorithm, we are only required to ompute

and store dP for positive integers d 2 B. This is beause point inversion

in E(F) requires almost no omputational e�ort. In the evaluation stage of

this algorithm, we require about l point doublings (it is in fat slightly less)

and (H(k) � 1) point additions, where H(k) denotes the Hamming weight

of the representation of k.

3 The Proposed Representation

Let B = f�1;�3; : : : ;�(2

w�1

�1)g and k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g be an in-

teger. Then k an be represented as k =

P

0�i�l

k

i

2

i

, k

i

2 B[f0g suh that

of any w onseutive k

i

's at most one is nonzero. This is a unique represen-

tation of k alled w-NAF. It is known that w-NAF has the minimum H(k)

among all radix-2 representations of k with digits in B [13℄. This property

makes w-NAF suitable for eÆient implementation of point multipliation.

However, the w-NAF reoding algorithm is a right-to-left algorithm, so we

need to store the w-NAF representation of the multiplier before using it in

a left-to-right point multipliation algorithm (suh as Algorithm 1). In on-

trast to w-NAF, the proposed representation an be obtained using a left-to-

right algorithm (Algorithm 2). In addition, in the proposed representation,
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Algorithm 1: Left-to-right point multipliation

Input: An integer k =

P

0�i<l

k

i

2

i

, k

i

2 B [ f0g, P 2 E(F).

Output: kP .

Preomputation Stage:

1. Compute and store dP for all positive integers d 2 B.

Evaluation Stage:

2. Q O.

3. for i from l � 1 down to 0 do

3.1 Q 2Q.

3.2 if k

i

> 0 then Q Q+ k

i

P .

3.3 else if k

i

< 0 then Q Q� (�k

i

)P .

4. return Q.

we are able to use a more general set B = f�1;�3; : : : ;�(2m� 1)g, where

m is equal to the number of points we want to store in the preomputation

stage. This feature allows us to use the available memory eÆiently.

For example, assume that we have enough memory to store three points.

As a result, we an use the set B = f�1;�3;�5g. Let

k = (10110111010101111110010110010001)

2

:

Using Algorithm 2, k is reoded to

k = (1

�

11

|{z}

3

0

�

11

|{z}

�1

00

�

11

�

11

|{z}

�5

�

11

|{z}

�1

00000

�

101

|{z}

�3

�

110

�

1

|{z}

�5

0 1

�

1

|{z}

1

00 1

�

1

|{z}

1

)

2

;

where

�

1 denotes �1.

4 Analysis of the Proposed Representation

In this setion we analyze the average Hamming weight of the proposed

representation. To ompare the Hamming weight of the proposed repre-

sentation with that of w-NAF, we use the same set B as used for w-NAF,

namely B = f�1;�3; : : : ;�(2

w�1

� 1)g. Let

f(n) =

1

2

n�1

X

2

n�1

�N<2

n

H(N); (4)

and

g(n) =

1

2

n

X

0�N<2

n

H(N): (5)
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Algorithm 2: The proposed reoding algorithm

Input: Integers m and k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g.

Output: A sequene of pairs f(k

i

; e

i

)g

d�1

i=0

suh that 0 � e

i

� l,

k

i

2 f�1;�3; : : : ;�(2m� 1)g, and k =

P

0�i<d

k

i

2

e

i

.

Suppose that b

l

= b

�1

= 0 and let

�

b

i

= b

i�1

�b

i

for 0 � i � l, so we

have

�

b

i

2 f0; 1;�1g and (

�

b

l

;

�

b

l�1

; : : : ;

�

b

0

)

2

= (b

l�1

; b

l�2

; : : : ; b

0

)

2

.

1. i l, j  0.

2. while i � 0 do

2.1 if

�

b

i

= 0 then i i� 1.

2.2 else

2.2.1 Let t be the minimum integer suh that

j(

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

j is an odd integer less than 2m.

2.2.2 k

j

 (

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

, e

j

 t, i t� 1, j  j + 1.

f(n) is the average Hamming weight of all n-bit numbers while g(n) is the

average Hamming weight of all m-bit numbers where m � n. From (4) and

(5) we have

2

n

g(n) =

X

0�N<2

n

H(N) =

X

0�N<2

n�1

H(N) +

X

2

n�1

�N<2

n

H(N)

= 2

n�1

g(n� 1) + 2

n�1

f(n):

Therefore, the two funtions are related through the equation

f(n) = 2g(n) � g(n� 1): (6)

Now suppose that 2

n+w�2

� N < 2

n+w�1

is an integer. Therefore, N an

be represented as

N =

X

0�i<n+w�1

b

i

2

i

; b

i

2 f0; 1g

and

N =

X

0�i<n+w

�

b

i

2

i

;

�

b

i

2 f0; 1;�1g;

�

b

i

= b

i�1

� b

i

:

These are the binary representation and the signed binary representation

of N , respetively (note that to obtain the signed binary representation we
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assume that b

n+w�1

= b

�1

= 0).We an also writeN uniquely as N = q2

n

+r

with 2

w�2

� q < 2

w�1

and 0 � r < 2

n

.

We will onsider two ases, �rst when b

n�1

= 0 and then when b

n�1

= 1.

For Case 1 we have

(

�

b

n+w�1

;

�

b

n+w�2

; : : : ;

�

b

n

)

2

= (b

n+w�2

; b

n+w�3

; : : : b

n

)

2

= q;

and

(

�

b

n�1

;

�

b

n�2

; : : : ;

�

b

0

)

2

= (b

n�1

; b

n�2

; : : : b

0

)

2

= r:

Sine q � 2

w�1

� 1,we dedue that H(N) = 1 +H(r).

For Case 2 we have

(

�

b

n+w�1

;

�

b

n+w�2

; : : : ;

�

b

n

)

2

= (b

n+w�2

; b

n+w�3

; : : : b

n

)

2

+ 1 = q + 1

and

(

�

b

n�1

;

�

b

n�2

; : : : ;

�

b

0

)

2

= (b

n�1

; b

n�2

; : : : b

0

)

2

� 2

n

= r � 2

n

:

Therefore, H(N) = 1 + H(r � 2

n

) = 1 + H(2

n

� r) (note that H(M) =

H(�M)). These two ases an be summarized to

H(N) =

(

1 +H(r) if 0 � r < 2

n�1

1 +H(2

n

� r) if 2

n�1

� r < 2

n

:

(7)

Then it follows by writing N = q2

n

+ r that

2

n+w�2

f(n+ w � 1) =

X

2

n+w�2

�N<2

n+w�1

H(N)

= 2

w�2

X

0�r<2

n�1

(1 +H(r)) + 2

w�2

X

2

n�1

�r<2

n

(1 +H(2

n

� r))

= 2

w�2

X

0�r<2

n�1

(1 +H(r)) + 2

w�2

X

0<r�2

n�1

(1 +H(r))

= 2

w�2

(2

n�1

g(n� 1) + 2

n�1

) + 2

w�2

(2

n�1

g(n� 1) + 2

n�1

+ 1)

= 2

n+w�2

g(n� 1) + 2

n+w�2

+ 2

w�2

;

so that

f(n+ w � 1) = g(n� 1) + 1 + 2

�n

: (8)

Combining (8) with (6) we obtain the reursion

2g(n + w)� g(n+ w � 1)� g(n) = 1 + 2

�(n+1)

;
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with the initial onditions

g(n) =

(

1� 2

�n

if 1 � n � w � 1

5

4

� 2

�w

if n = w:

Now let u(n) = g(n) �

n

w+1

+ 2

�(n+1)

. It is easy to see that u(n) satis�es

the homogeneous reursion

2u(n+ w)� u(n+ w � 1)� u(n) = 0;

with the initial onditions

u(n) =

(

1�

n

w+1

� 2

�(n+1)

if 1 � n � w � 1

1

4

+

1

w+1

� 2

�(w+1)

if n = w:

To solve this reursion we use the following proposition from [14℄.

Proposition 1. Let u(n) be a sequene satisfying the linear reursion 2u(n+

w) � u(n+ w � 1) � u(n) = 0 for n � 1. Then there exists � > 1 suh that

as n!1

u(n) =

1

w + 1

0

�

2u(w) +

X

1�i<w

u(i)

1

A

+O(�

�n

):

Therefore, when n!1 we an write

u(n) =

1

w + 1

0

�

2(

1

4

+

1

w + 1

� 2

�(w+1)

) +

X

1�i<w

u(i)

1

A

+O(�

�n

)

=

1

w + 1

�

(

1

2

+

2

w + 1

� 2

�w

) + ((w � 1)�

w(w � 1)

2(w + 1)

� (

1

2

� 2

�w

))

�

+O(�

�n

)

=

1

w + 1

�

1

w + 1

+

w

2

�

+O(�

�n

):

Hene

g(n) = u(n)+

n

w + 1

�2

�(n+1)

=

n

w + 1

+

1

w + 1

(

1

w + 1

+

w

2

)+O(�

�n

)�2

�(n+1)

Applying (8) gives

f(n) = g(n� w) + 1 + 2

�(n�w+1)

=

n� w

w + 1

+

1

w + 1

(

1

w + 1

+

w

2

) + 1� 2

�(n�w+1)

+ 2

�(n�w+1)

+O(�

�(n�w)

)

=

n

w + 1

�

(w � 1)(w + 2)

2(w + 1)

2

+ 1 +O(�

0�n

); �

0

> 1:
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This is equal to the average Hamming weight of w-NAF when n ! 1

[14℄. (Note that in [14℄, the author ompute the average number of group

multipliations, whih is equal to the average Hamming weight of w-NAF

minus 1).

5 A Point Multipliation Algorithm Using the Pro-

posed Representation

As shown in Setion 3, the proposed representation an be obtained by

sanning the bits from left to right. Consequently, to ompute kP , the

multiplier doesn't need to be reoded and stored in advane. In other words,

reoding k and omputing kP an be arried out simultaneously (Algorithm

3). Note that we an use a diret 2

r

P omputation algorithm [15, 16℄ to

ompute 2

i�t+1

Q in line 3:3 of Algorithm 3 to further improve the speed of

the algorithm.

Algorithm 3: Computing kP using the proposed representation

Input: An integer k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g.

Output: kP .

Suppose that b

l

= b

�1

= 0 and let

�

b

i

= b

i�1

� b

i

for 0 � i � l.

Preomputation Stage:

1. Compute and store dP for all positive odd integers d < 2m, where

m is the number of points we want to store in the preomputation

stage.

Evaluation Stage:

2. Q O, i l.

3. while i � 0 do

3.1 Let t be the minimum integer suh that

j(

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

j is zero or an odd integer less than 2m.

3.2 h (

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

.

3.3 Q 2

i�t+1

Q, i t� 1.

3.4 if h > 0 then Q Q+ hP .

3.5 else if h < 0 then Q Q� (�h)P .

4. return Q.
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6 Conlusion

In this paper, a new radix-2 representation was proposed. The average Ham-

ming weight of the proposed representation was analyzed, and shown to be

equal to the average Hamming weight of w-NAF. This is an important prop-

erty, as it speeds up point multipliation methods by reduing the required

number of point additions/subtrations.

The proposed representation has two other properties, whih are espe-

ially attrative for eÆient implementation of point multipliation methods

in devies with a small amount of memory. First, the proposed representa-

tion an be obtained by sanning the bits from left to right. Consequently,

there is no need to store the reoded representation in advane, and hene

the memory requirements are redued. Seond, using the proposed rep-

resentation, we an store as many points as we want (up to the limits of

available memory). Therefore, we an use memory eÆiently to improve the

performane of the multipliation methods.
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