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Abstract

This paper introduces a new radix-2 representation with the same
average weight as the width-w nonadjacent form (w-NAF). In both
w-NAF and the proposed representations, each nonzero digit is an odd
integer with absolute value less than M. However, for w-NAF, M is
of the form 2¥~!, while for the proposed representation it can be any
positive integer. Therefore, using the proposed integer representation
we can use the available memory efficiently, which is attractive for
devices with limited memory. Another advantage of the proposed rep-
resentation over w-NAF is that it can be obtained by scanning the bits
from left-to-right. This property is also useful for memory-constrained
devices because it can reduce both time and space complexity of fast
point multiplication techniques.

1 Introduction

In 1985 Koblitz [1] and Miller [2] proposed the group of points on an el-
liptic curve over a finite field to create the elliptic curve discrete logarithm
problem (ECDLP). Unlike the discrete logarithm problem over the multi-
plicative group of a finite field (DLP), there is no known subexponential-time
algorithm to solve the ECDLP in general. Thus, elliptic curves are an at-
tractive alternative to implement many cryptographic techniques such as
Diffie-Hellman [3] and ElGamal [4].

Point multiplication dominates the execution time of elliptic curve cryp-
tosystems, so various methods have been studied to enhance the perfor-
mance of this operation [5, 6]. Specifically, the integer representation of



the multiplier plays an important role in the performance of these methods
[7]. Among the existing integer representations, those with minimal aver-
age Hamming weight (number of nonzero digits) such as w-NAF are more
attractive. This is due to the fact that they reduce the required number of
point additions/subtractions. It is also of interest to have a representation
which can be obtained by scanning the bits from left to right (i.e., from the
most significant bit to the least significant bit) [8, 9]. This property elim-
inates the need for recoding and storing the multiplier in advance, hence
improving the performance of left-to-right point multiplication methods in
terms of running time and memory space. We are also interested in rep-
resentations which allow efficient usage of memory. This is important for
devices with a small amount of memory. In [10], the author proposes a gen-
eralized w-NAF which allows more efficient usage of memory than w-NAF.
However, similar to the w-NAF recoding algorithm, the generalized w-NAF
recoding algorithm scans the bits from right to left.

In this paper, we introduce a new integer representation which has the
same average weight as w-NAF, but has the advantage that it results in a
point multiplication method which uses less memory. This memory saving
results from the fact that the new representation can be obtained by scanning
the multiplier bits from left to right. It can also result in more efficient
usage of memory. This is because in the left-to-right point multiplication
algorithms (such as Algorithm 1, given in Section 2.2), we need to store
m points where m is the number of positive integers in the digit set. For
w-NAF and the representations proposed in [11, 12], m is of the form 2* !,
where w is a positive integer. So if we have for example sufficient memory
for storing seven points in a device with small amount of storage, using
these representations we can only store up to four points and the rest of the
memory is wasted. However, using the proposed representation we are able
to use all available memory to store seven points. This is due to the fact
that for the proposed representation m can be any positive integer.

The rest of this paper is organized as follows. In Section 2, we briefly
review elliptic curves. Section 3 proposes the new integer representation
and presents an efficient recoding algorithm to generate it. In Section 4,
we analyze the average Hamming weight of the proposed representation.
In Section 5, we show how the proposed representation can be used for
computing elliptic curve point multiplication. Finally, some conclusions are
given in section 6.



2 Elliptic Curves

An elliptic curve F over the field F is a smooth curve in the so called “long
weirestrafl form”

E:y? + a2y + asy = 2 + asz® + ayz + ag, (1)

where ay,...,as € F. Equation 1 may be simplified to

E:y*=23+ax+b (2)

E:y?+zy=2+az’+0b (3)
When Char(F) # 2,3 and Char(IF) = 2, respectively.

2.1 Point Addition

Let E(FF) be the set of points P = (z,y) € F? that satisfy the elliptic curve
equation (along with a “point at infinity” denoted ). Tt is well known that
E(IF) together with the point addition operation given in Table 1 form an
abelian group. As shown in Table 2, point inversion in this group can be
computed easily. Note that in both Tables 1 and 2, the points P = (z1,¥1) ,
P, = (z2,y9) and P3 = (z3,ys3) are represented in affine coordinates.

)= yziyl
ro+x1
P # £P r3=A+A+z +22+0a
Char(F) = 2 ?>J\3 zy(lm:L r3)\+y1 + 23
1
P =P $3:>\2+)\+a
Y3 = (z1 + w3) A +y1 + 23
— Y2=y1
To—I1
P17é:|:P2 «T3:>\2—IE1—$2
Char(F) # 2,3 Ys :3(§1+; 23)\ — Y1
A= 2oite
2
P =P, oy = g .
ys = (z1 —z3) A — 11

Table 1: Elliptic curve point addition (P3 = P, + P5).



[Char(F) =2 [ P = (z1,21 + 1) |
| Char(F) #2,3 | =Py = (z1,—y1) |

Table 2: Elliptic curve point inversion.

2.2 Point Multiplication

Elliptic curve cryptographic techniques require the computation of point
multiplication defined as repeated addition

kP=P+P+...+P,

k times

where P is an elliptic curve point, k € [1,n — 1] is an integer, and n is the
order of the point P. To compute the point multiplication kP, the multiplier
k can be represented in base 2 as

k=Y k2,

0<i<l

where k; € BU {0} and B is a set of nonzero integers including 1. Then,
Algorithm 1 can use this representation of k& to compute kP. Note that in
the precomputation stage of this algorithm, we are only required to compute
and store dP for positive integers d € B. This is because point inversion
in F(IF) requires almost no computational effort. In the evaluation stage of
this algorithm, we require about [ point doublings (it is in fact slightly less)
and (H (k) — 1) point additions, where H (k) denotes the Hamming weight
of the representation of k.

3 The Proposed Representation

Let B = {£1,+3,...,£(2* ' =)} and k = Y, b:2", b; € {0,1} be an in-
teger. Then k can be represented as k = 3 -,<; ki2', ki € BU{0} such that
of any w consecutive k;’s at most one is nonzero. This is a unique represen-
tation of k called w-NAF. It is known that w-NAF has the minimum H (k)
among all radix-2 representations of k& with digits in B [13]. This property
makes w-NAF suitable for efficient implementation of point multiplication.
However, the w-NAF recoding algorithm is a right-to-left algorithm, so we
need to store the w-NAF representation of the multiplier before using it in
a left-to-right point multiplication algorithm (such as Algorithm 1). In con-
trast to w-NAF, the proposed representation can be obtained using a left-to-
right algorithm (Algorithm 2). In addition, in the proposed representation,



Algorithm 1: Left-to-right point multiplication
Input: An integer k =3, k2", k; € BU{0}, P € E(F).
Output: kP. -

Precomputation Stage:
1.  Compute and store dP for all positive integers d € B.
Evaluation Stage:

2. Q<+ 0.
3. for 7 from [ — 1 down to 0 do
3.1 Q + 2Q.

3.2 if k; > 0 then Q + Q + k; P.
3.3 else if k; < 0 then Q < Q — (—k;)P.
4.  return Q.

we are able to use a more general set B = {£1,+3,...,£(2m — 1)}, where
m is equal to the number of points we want to store in the precomputation
stage. This feature allows us to use the available memory efficiently.

For example, assume that we have enough memory to store three points.
As a result, we can use the set B = {£1,+3,+5}. Let

k =(10110111010101111110010110010001),.

Using Algorithm 2, k is recoded to

k= (1110_11 001111 11 00000 101 11010 _11 00 11 )s,
3 -1 -5 -1 -3 -5 1 1

where 1 denotes —1.

4 Analysis of the Proposed Representation

In this section we analyze the average Hamming weight of the proposed
representation. To compare the Hamming weight of the proposed repre-
sentation with that of w-NAF, we use the same set B as used for w-NAF,
namely B = {£1,43,...,+(2¥"! - 1)}. Let

=g S HM), (1
n-1< N<2n
and )
o) = xS H() )
0<N<2n
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Algorithm 2: The proposed recoding algorithm

Input: Integers m and k = >, 0;2", b; € {0,1}.

Output: A sequence of pairs {zki,ei)}g:_ol such that 0 < e; < I,
kie{£1,£3,...,£(2m - 1)}, and k = ) ;4 ki2%.

Suppo_se that by =b_1 = O_arld let b; = b;_1—0b; for 0 <i <1, sowe
have b; € {0, 1, —1} and (bl, by_1,..., b0)2 = (bl,l, bi_o,... ,bo)g.

1. 11,7+ 0.
2. while 2 > 0 do
2.1 if b; = 0 then i <4 — 1.
2.2 else
2.2.1 Let ¢ be the minimum integer such that
|(Bs, bi_1,...bt)2| is an odd integer less than 2m.
2.2.2 kj%(l_)i,l_)i_l,...l_)t)g, ejtit—1,j5<75+1.

f(n) is the average Hamming weight of all n-bit numbers while g(n) is the
average Hamming weight of all m-bit numbers where m < n. From (4) and
(5) we have

2g(n)= > H(N)= > HN)+ Y  H(N)

0<N<2n 0<N<2n—1 2n—1<N<2n
=2""lg(n —1) + 2" Lf(n).

Therefore, the two functions are related through the equation

f(n) =2g(n) —g(n —1). (6)

Now suppose that 2"t%=2 < N < 27*“=! is an integer. Therefore, N can
be represented as

N= Y b2, be{01}

0<i<ntw—1
and

N= > b2, be{0,1,-1},b =b_1—b.
0<i<n+w

These are the binary representation and the signed binary representation
of N, respectively (note that to obtain the signed binary representation we



assume that b, 4,1 = b_1 = 0).We can also write N uniquely as N = ¢2"+r
with 22 < g < 2% tand 0 <r < 2™

We will consider two cases, first when b,,_1 = 0 and then when b,, ; = 1.
For Case 1 we have

(bn-l—w—la bn+w—2a e abn)2 = (bn+w—2a bn+w—3a cee bn)? =4dq,

and B B B
(bp—1,bn—2,...,b00)2 = (bp—1,bp—2,...bp)2 = .

Since ¢ < 2¥ ! — 1,we deduce that H(N) = 1+ H(r).
For Case 2 we have

(bn+w717 bn+w727 s 7bn)2 = (bn+w727 bn+w73a s bn)Z +1l=q+1

and B B B
(bn—labn—2, PN ,bo)g = (bn_l,bn_Q, PN bg)g — 2” =7r— 2”.

Therefore, H(N) = 1+ H(r —2") = 1+ H(2" —r) (note that H(M) =
H(—M)). These two cases can be summarized to

HN) = {1+H(r) if0<r<2nl 0

L+H@2M—7r) if2nt <r <2
Then it follows by writing N = ¢2"” + r that

U2 f (i fw — 1) = > H(N)

2n+w—2§N<2n+w—1

=2v=2 N (14H(r)+2" > (1+HE2"-r))

0<r<2n—1 n—1<pgon
=2v"2 M (L+H(r)+2"* Y (1+H(r)
0<r<2n—1 0<r<2n—1

=2 22" lg(n — 1)+ 2" 1) + 222" g(n — 1) + 271 4 1)
— 2n+w72g(n o 1) + 2n+w72 T 2w72,

so that
fn+w—-1)=gn—-1)+1427" (8)

Combining (8) with (6) we obtain the recursion

29(n 4+ w) —g(n+w—1) — g(n) = 1 4+ 2- "+,



with the initial conditions
1-27" if1<n<w-1
gn) =<+ . .
72 ifn=w.
Now let u(n) = g(n) — ;45 + 2-(+1) Tt is easy to see that u(n) satisfies
the homogeneous recursion
2u(n +w) —u(n +w—1) —u(n) =0,
with the initial conditions
{1—#1—2—("” ifl<n<w-1
1

u(n) = 2= (wtl) if = qp.

1
PR RES i
To solve this recursion we use the following proposition from [14].

Proposition 1. Let u(n) be a sequence satisfying the linear recursion 2u(n+
w) —u(n+w—1) —u(n) =0 for n > 1. Then there exists p > 1 such that
as n — 0o

u(n) = —— | 2u(w) + 3 uli) | +0(™).

w+ 1
+ 1<i<w

Therefore, when n — 0o we can write

1 1 1
- - - & o—(w+1) . -n
un) = —— |27+ —7 =2 )+ Do u@) | +0(™)
1<i<w
! 1 2 Cw ww-1) 1 —n
_w+1((2+w+1 )+ ((w=1) 20w + 1) (3-2 ))>+O(p )
1 1 w n
—m(m+5>+0(p )
Hence
_ n gt _ ™ 1 1 | w —ny_g—(n+1)
9(n) = u(n)+o—7 =2 w1l w12 o )2
Applying (8) gives
f(n)=gn—w)+1+2 v
n—uw 1 1 w
— el 1_ 27(n7w+1) 27(n7w+1) —(n—w)
w+1+w+1(w+1+2)+ * +0(p )

n (w—1)(w+2)

= o1 2w + 1) +1+0(p"™),p > 1.




This is equal to the average Hamming weight of w-NAF when n — oo
[14]. (Note that in [14], the author compute the average number of group
multiplications, which is equal to the average Hamming weight of w-NAF
minus 1).

5 A Point Multiplication Algorithm Using the Pro-
posed Representation

As shown in Section 3, the proposed representation can be obtained by
scanning the bits from left to right. Consequently, to compute kP, the
multiplier doesn’t need to be recoded and stored in advance. In other words,
recoding k and computing kP can be carried out simultaneously (Algorithm
3). Note that we can use a direct 2" P computation algorithm [15, 16] to
compute 2° 71 Q in line 3.3 of Algorithm 3 to further improve the speed of
the algorithm.

Algorithm 3: Computing kP using the proposed representation
Input: An integer k =, 02", b; € {0,1}.
Output: kP. B

Suppose that b =b_; =0 and let b; = b;_1 — b; for 0 < i < .

Precomputation Stage:

1.  Compute and store dP for all positive odd integers d < 2m, where
m is the number of points we want to store in the precomputation
stage.

Evaluation Stage:

2. Q<+ 0,i+ L

3. while 7 > 0 do

3.1 Let ¢ be the minimum integer such that

|(bi, bi_1, - ..bt)2| is zero or an odd integer less than 2m.

3.2 h + ((i)z',i)ifl,...i)t)g.

3.3 Q «— 2711Q, i+t — 1.

3.4 if h >0 then Q + Q + hP.

3.5 else if h < 0 then Q + Q — (—h)P.

4.  return Q.




6 Conclusion

In this paper, a new radix-2 representation was proposed. The average Ham-
ming weight of the proposed representation was analyzed, and shown to be
equal to the average Hamming weight of w-NAF. This is an important prop-
erty, as it speeds up point multiplication methods by reducing the required
number of point additions/subtractions.

The proposed representation has two other properties, which are espe-
cially attractive for efficient implementation of point multiplication methods
in devices with a small amount of memory. First, the proposed representa-
tion can be obtained by scanning the bits from left to right. Consequently,
there is no need to store the recoded representation in advance, and hence
the memory requirements are reduced. Second, using the proposed rep-
resentation, we can store as many points as we want (up to the limits of
available memory). Therefore, we can use memory efficiently to improve the
performance of the multiplication methods.
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