
A New Minimal Average Weight Representation for

Left-to-Right Point Multipli
ation Methods

M. Khabbazian and T.A. Gulliver

Department of Ele
tri
al & Computer Engineering

University of Vi
toria

majidk�e
e.ub
.
a

August 2, 2004

Abstra
t

This paper introdu
es a new radix-2 representation with the same

average weight as the width-w nonadja
ent form (w-NAF). In both

w-NAF and the proposed representations, ea
h nonzero digit is an odd

integer with absolute value less than M . However, for w-NAF, M is

of the form 2

w�1

, while for the proposed representation it 
an be any

positive integer. Therefore, using the proposed integer representation

we 
an use the available memory eÆ
iently, whi
h is attra
tive for

devi
es with limited memory. Another advantage of the proposed rep-

resentation over w-NAF is that it 
an be obtained by s
anning the bits

from left-to-right. This property is also useful for memory-
onstrained

devi
es be
ause it 
an redu
e both time and spa
e 
omplexity of fast

point multipli
ation te
hniques.

1 Introdu
tion

In 1985 Koblitz [1℄ and Miller [2℄ proposed the group of points on an el-

lipti
 
urve over a �nite �eld to 
reate the ellipti
 
urve dis
rete logarithm

problem (ECDLP). Unlike the dis
rete logarithm problem over the multi-

pli
ative group of a �nite �eld (DLP), there is no known subexponential-time

algorithm to solve the ECDLP in general. Thus, ellipti
 
urves are an at-

tra
tive alternative to implement many 
ryptographi
 te
hniques su
h as

DiÆe-Hellman [3℄ and ElGamal [4℄.

Point multipli
ation dominates the exe
ution time of ellipti
 
urve 
ryp-

tosystems, so various methods have been studied to enhan
e the perfor-

man
e of this operation [5, 6℄. Spe
i�
ally, the integer representation of
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the multiplier plays an important role in the performan
e of these methods

[7℄. Among the existing integer representations, those with minimal aver-

age Hamming weight (number of nonzero digits) su
h as w-NAF are more

attra
tive. This is due to the fa
t that they redu
e the required number of

point additions/subtra
tions. It is also of interest to have a representation

whi
h 
an be obtained by s
anning the bits from left to right (i.e., from the

most signi�
ant bit to the least signi�
ant bit) [8, 9℄. This property elim-

inates the need for re
oding and storing the multiplier in advan
e, hen
e

improving the performan
e of left-to-right point multipli
ation methods in

terms of running time and memory spa
e. We are also interested in rep-

resentations whi
h allow eÆ
ient usage of memory. This is important for

devi
es with a small amount of memory. In [10℄, the author proposes a gen-

eralized w-NAF whi
h allows more eÆ
ient usage of memory than w-NAF.

However, similar to the w-NAF re
oding algorithm, the generalized w-NAF

re
oding algorithm s
ans the bits from right to left.

In this paper, we introdu
e a new integer representation whi
h has the

same average weight as w-NAF, but has the advantage that it results in a

point multipli
ation method whi
h uses less memory. This memory saving

results from the fa
t that the new representation 
an be obtained by s
anning

the multiplier bits from left to right. It 
an also result in more eÆ
ient

usage of memory. This is be
ause in the left-to-right point multipli
ation

algorithms (su
h as Algorithm 1, given in Se
tion 2.2), we need to store

m points where m is the number of positive integers in the digit set. For

w-NAF and the representations proposed in [11, 12℄, m is of the form 2

w�1

,

where w is a positive integer. So if we have for example suÆ
ient memory

for storing seven points in a devi
e with small amount of storage, using

these representations we 
an only store up to four points and the rest of the

memory is wasted. However, using the proposed representation we are able

to use all available memory to store seven points. This is due to the fa
t

that for the proposed representation m 
an be any positive integer.

The rest of this paper is organized as follows. In Se
tion 2, we brie
y

review ellipti
 
urves. Se
tion 3 proposes the new integer representation

and presents an eÆ
ient re
oding algorithm to generate it. In Se
tion 4,

we analyze the average Hamming weight of the proposed representation.

In Se
tion 5, we show how the proposed representation 
an be used for


omputing ellipti
 
urve point multipli
ation. Finally, some 
on
lusions are

given in se
tion 6.
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2 Ellipti
 Curves

An ellipti
 
urve E over the �eld F is a smooth 
urve in the so 
alled \long

weirestra� form"

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

; (1)

where a

1

; : : : ; a

6

2 F. Equation 1 may be simpli�ed to

E : y

2

= x

3

+ ax+ b (2)

E : y

2

+ xy = x

3

+ ax

2

+ b (3)

When Char(F) 6= 2; 3 and Char(F) = 2, respe
tively.

2.1 Point Addition

Let E(F) be the set of points P = (x; y) 2 F

2

that satisfy the ellipti
 
urve

equation (along with a \point at in�nity" denoted O). It is well known that

E(F) together with the point addition operation given in Table 1 form an

abelian group. As shown in Table 2, point inversion in this group 
an be


omputed easily. Note that in both Tables 1 and 2, the points P

1

= (x

1

; y

1

) ,

P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) are represented in aÆne 
oordinates.

Char(F) = 2

P

1

6= �P

2

� =

y

2

+y

1

x

2

+x

1

x

3

= �

2

+ �+ x

1

+ x

2

+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

P

1

= P

2

� =

y

1

x

1

+ x

1

x

3

= �

2

+ �+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

Char(F) 6= 2; 3

P

1

6= �P

2

� =

y

2

�y

1

x

2

�x

1

x

3

= �

2

� x

1

� x

2

y

3

= (x

1

� x

3

)�� y

1

P

1

= P

2

� =

3x

2

1

+a

2y

1

x

3

= �

2

� 2x

1

y

3

= (x

1

� x

3

)�� y

1

Table 1: Ellipti
 
urve point addition (P

3

= P

1

+ P

2

).
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Char(F) = 2 �P

1

= (x

1

; x

1

+ y

1

)

Char(F) 6= 2; 3 �P

1

= (x

1

;�y

1

)

Table 2: Ellipti
 
urve point inversion.

2.2 Point Multipli
ation

Ellipti
 
urve 
ryptographi
 te
hniques require the 
omputation of point

multipli
ation de�ned as repeated addition

kP = P + P + : : :+ P

| {z }

k times

,

where P is an ellipti
 
urve point, k 2 [1; n � 1℄ is an integer, and n is the

order of the point P . To 
ompute the point multipli
ation kP , the multiplier

k 
an be represented in base 2 as

k =

X

0�i<l

k

i

2

i

,

where k

i

2 B [ f0g and B is a set of nonzero integers in
luding 1. Then,

Algorithm 1 
an use this representation of k to 
ompute kP . Note that in

the pre
omputation stage of this algorithm, we are only required to 
ompute

and store dP for positive integers d 2 B. This is be
ause point inversion

in E(F) requires almost no 
omputational e�ort. In the evaluation stage of

this algorithm, we require about l point doublings (it is in fa
t slightly less)

and (H(k) � 1) point additions, where H(k) denotes the Hamming weight

of the representation of k.

3 The Proposed Representation

Let B = f�1;�3; : : : ;�(2

w�1

�1)g and k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g be an in-

teger. Then k 
an be represented as k =

P

0�i�l

k

i

2

i

, k

i

2 B[f0g su
h that

of any w 
onse
utive k

i

's at most one is nonzero. This is a unique represen-

tation of k 
alled w-NAF. It is known that w-NAF has the minimum H(k)

among all radix-2 representations of k with digits in B [13℄. This property

makes w-NAF suitable for eÆ
ient implementation of point multipli
ation.

However, the w-NAF re
oding algorithm is a right-to-left algorithm, so we

need to store the w-NAF representation of the multiplier before using it in

a left-to-right point multipli
ation algorithm (su
h as Algorithm 1). In 
on-

trast to w-NAF, the proposed representation 
an be obtained using a left-to-

right algorithm (Algorithm 2). In addition, in the proposed representation,
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Algorithm 1: Left-to-right point multipli
ation

Input: An integer k =

P

0�i<l

k

i

2

i

, k

i

2 B [ f0g, P 2 E(F).

Output: kP .

Pre
omputation Stage:

1. Compute and store dP for all positive integers d 2 B.

Evaluation Stage:

2. Q O.

3. for i from l � 1 down to 0 do

3.1 Q 2Q.

3.2 if k

i

> 0 then Q Q+ k

i

P .

3.3 else if k

i

< 0 then Q Q� (�k

i

)P .

4. return Q.

we are able to use a more general set B = f�1;�3; : : : ;�(2m� 1)g, where

m is equal to the number of points we want to store in the pre
omputation

stage. This feature allows us to use the available memory eÆ
iently.

For example, assume that we have enough memory to store three points.

As a result, we 
an use the set B = f�1;�3;�5g. Let

k = (10110111010101111110010110010001)

2

:

Using Algorithm 2, k is re
oded to

k = (1

�

11

|{z}

3

0

�

11

|{z}

�1

00

�

11

�

11

|{z}

�5

�

11

|{z}

�1

00000

�

101

|{z}

�3

�

110

�

1

|{z}

�5

0 1

�

1

|{z}

1

00 1

�

1

|{z}

1

)

2

;

where

�

1 denotes �1.

4 Analysis of the Proposed Representation

In this se
tion we analyze the average Hamming weight of the proposed

representation. To 
ompare the Hamming weight of the proposed repre-

sentation with that of w-NAF, we use the same set B as used for w-NAF,

namely B = f�1;�3; : : : ;�(2

w�1

� 1)g. Let

f(n) =

1

2

n�1

X

2

n�1

�N<2

n

H(N); (4)

and

g(n) =

1

2

n

X

0�N<2

n

H(N): (5)
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Algorithm 2: The proposed re
oding algorithm

Input: Integers m and k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g.

Output: A sequen
e of pairs f(k

i

; e

i

)g

d�1

i=0

su
h that 0 � e

i

� l,

k

i

2 f�1;�3; : : : ;�(2m� 1)g, and k =

P

0�i<d

k

i

2

e

i

.

Suppose that b

l

= b

�1

= 0 and let

�

b

i

= b

i�1

�b

i

for 0 � i � l, so we

have

�

b

i

2 f0; 1;�1g and (

�

b

l

;

�

b

l�1

; : : : ;

�

b

0

)

2

= (b

l�1

; b

l�2

; : : : ; b

0

)

2

.

1. i l, j  0.

2. while i � 0 do

2.1 if

�

b

i

= 0 then i i� 1.

2.2 else

2.2.1 Let t be the minimum integer su
h that

j(

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

j is an odd integer less than 2m.

2.2.2 k

j

 (

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

, e

j

 t, i t� 1, j  j + 1.

f(n) is the average Hamming weight of all n-bit numbers while g(n) is the

average Hamming weight of all m-bit numbers where m � n. From (4) and

(5) we have

2

n

g(n) =

X

0�N<2

n

H(N) =

X

0�N<2

n�1

H(N) +

X

2

n�1

�N<2

n

H(N)

= 2

n�1

g(n� 1) + 2

n�1

f(n):

Therefore, the two fun
tions are related through the equation

f(n) = 2g(n) � g(n� 1): (6)

Now suppose that 2

n+w�2

� N < 2

n+w�1

is an integer. Therefore, N 
an

be represented as

N =

X

0�i<n+w�1

b

i

2

i

; b

i

2 f0; 1g

and

N =

X

0�i<n+w

�

b

i

2

i

;

�

b

i

2 f0; 1;�1g;

�

b

i

= b

i�1

� b

i

:

These are the binary representation and the signed binary representation

of N , respe
tively (note that to obtain the signed binary representation we
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assume that b

n+w�1

= b

�1

= 0).We 
an also writeN uniquely as N = q2

n

+r

with 2

w�2

� q < 2

w�1

and 0 � r < 2

n

.

We will 
onsider two 
ases, �rst when b

n�1

= 0 and then when b

n�1

= 1.

For Case 1 we have

(

�

b

n+w�1

;

�

b

n+w�2

; : : : ;

�

b

n

)

2

= (b

n+w�2

; b

n+w�3

; : : : b

n

)

2

= q;

and

(

�

b

n�1

;

�

b

n�2

; : : : ;

�

b

0

)

2

= (b

n�1

; b

n�2

; : : : b

0

)

2

= r:

Sin
e q � 2

w�1

� 1,we dedu
e that H(N) = 1 +H(r).

For Case 2 we have

(

�

b

n+w�1

;

�

b

n+w�2

; : : : ;

�

b

n

)

2

= (b

n+w�2

; b

n+w�3

; : : : b

n

)

2

+ 1 = q + 1

and

(

�

b

n�1

;

�

b

n�2

; : : : ;

�

b

0

)

2

= (b

n�1

; b

n�2

; : : : b

0

)

2

� 2

n

= r � 2

n

:

Therefore, H(N) = 1 + H(r � 2

n

) = 1 + H(2

n

� r) (note that H(M) =

H(�M)). These two 
ases 
an be summarized to

H(N) =

(

1 +H(r) if 0 � r < 2

n�1

1 +H(2

n

� r) if 2

n�1

� r < 2

n

:

(7)

Then it follows by writing N = q2

n

+ r that

2

n+w�2

f(n+ w � 1) =

X

2

n+w�2

�N<2

n+w�1

H(N)

= 2

w�2

X

0�r<2

n�1

(1 +H(r)) + 2

w�2

X

2

n�1

�r<2

n

(1 +H(2

n

� r))

= 2

w�2

X

0�r<2

n�1

(1 +H(r)) + 2

w�2

X

0<r�2

n�1

(1 +H(r))

= 2

w�2

(2

n�1

g(n� 1) + 2

n�1

) + 2

w�2

(2

n�1

g(n� 1) + 2

n�1

+ 1)

= 2

n+w�2

g(n� 1) + 2

n+w�2

+ 2

w�2

;

so that

f(n+ w � 1) = g(n� 1) + 1 + 2

�n

: (8)

Combining (8) with (6) we obtain the re
ursion

2g(n + w)� g(n+ w � 1)� g(n) = 1 + 2

�(n+1)

;
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with the initial 
onditions

g(n) =

(

1� 2

�n

if 1 � n � w � 1

5

4

� 2

�w

if n = w:

Now let u(n) = g(n) �

n

w+1

+ 2

�(n+1)

. It is easy to see that u(n) satis�es

the homogeneous re
ursion

2u(n+ w)� u(n+ w � 1)� u(n) = 0;

with the initial 
onditions

u(n) =

(

1�

n

w+1

� 2

�(n+1)

if 1 � n � w � 1

1

4

+

1

w+1

� 2

�(w+1)

if n = w:

To solve this re
ursion we use the following proposition from [14℄.

Proposition 1. Let u(n) be a sequen
e satisfying the linear re
ursion 2u(n+

w) � u(n+ w � 1) � u(n) = 0 for n � 1. Then there exists � > 1 su
h that

as n!1

u(n) =

1

w + 1

0

�

2u(w) +

X

1�i<w

u(i)

1

A

+O(�

�n

):

Therefore, when n!1 we 
an write

u(n) =

1

w + 1

0

�

2(

1

4

+

1

w + 1

� 2

�(w+1)

) +

X

1�i<w

u(i)

1

A

+O(�

�n

)

=

1

w + 1

�

(

1

2

+

2

w + 1

� 2

�w

) + ((w � 1)�

w(w � 1)

2(w + 1)

� (

1

2

� 2

�w

))

�

+O(�

�n

)

=

1

w + 1

�

1

w + 1

+

w

2

�

+O(�

�n

):

Hen
e

g(n) = u(n)+

n

w + 1

�2

�(n+1)

=

n

w + 1

+

1

w + 1

(

1

w + 1

+

w

2

)+O(�

�n

)�2

�(n+1)

Applying (8) gives

f(n) = g(n� w) + 1 + 2

�(n�w+1)

=

n� w

w + 1

+

1

w + 1

(

1

w + 1

+

w

2

) + 1� 2

�(n�w+1)

+ 2

�(n�w+1)

+O(�

�(n�w)

)

=

n

w + 1

�

(w � 1)(w + 2)

2(w + 1)

2

+ 1 +O(�

0�n

); �

0

> 1:
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This is equal to the average Hamming weight of w-NAF when n ! 1

[14℄. (Note that in [14℄, the author 
ompute the average number of group

multipli
ations, whi
h is equal to the average Hamming weight of w-NAF

minus 1).

5 A Point Multipli
ation Algorithm Using the Pro-

posed Representation

As shown in Se
tion 3, the proposed representation 
an be obtained by

s
anning the bits from left to right. Consequently, to 
ompute kP , the

multiplier doesn't need to be re
oded and stored in advan
e. In other words,

re
oding k and 
omputing kP 
an be 
arried out simultaneously (Algorithm

3). Note that we 
an use a dire
t 2

r

P 
omputation algorithm [15, 16℄ to


ompute 2

i�t+1

Q in line 3:3 of Algorithm 3 to further improve the speed of

the algorithm.

Algorithm 3: Computing kP using the proposed representation

Input: An integer k =

P

0�i<l

b

i

2

i

, b

i

2 f0; 1g.

Output: kP .

Suppose that b

l

= b

�1

= 0 and let

�

b

i

= b

i�1

� b

i

for 0 � i � l.

Pre
omputation Stage:

1. Compute and store dP for all positive odd integers d < 2m, where

m is the number of points we want to store in the pre
omputation

stage.

Evaluation Stage:

2. Q O, i l.

3. while i � 0 do

3.1 Let t be the minimum integer su
h that

j(

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

j is zero or an odd integer less than 2m.

3.2 h (

�

b

i

;

�

b

i�1

; : : :

�

b

t

)

2

.

3.3 Q 2

i�t+1

Q, i t� 1.

3.4 if h > 0 then Q Q+ hP .

3.5 else if h < 0 then Q Q� (�h)P .

4. return Q.
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6 Con
lusion

In this paper, a new radix-2 representation was proposed. The average Ham-

ming weight of the proposed representation was analyzed, and shown to be

equal to the average Hamming weight of w-NAF. This is an important prop-

erty, as it speeds up point multipli
ation methods by redu
ing the required

number of point additions/subtra
tions.

The proposed representation has two other properties, whi
h are espe-


ially attra
tive for eÆ
ient implementation of point multipli
ation methods

in devi
es with a small amount of memory. First, the proposed representa-

tion 
an be obtained by s
anning the bits from left to right. Consequently,

there is no need to store the re
oded representation in advan
e, and hen
e

the memory requirements are redu
ed. Se
ond, using the proposed rep-

resentation, we 
an store as many points as we want (up to the limits of

available memory). Therefore, we 
an use memory eÆ
iently to improve the

performan
e of the multipli
ation methods.
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