

1

An Enhanced and Secure Protocol for Authenticated Key Exchange

Fuw-Yi Yang and Jinn-Ke Jan*

Department of Applied Mathematics, National Chung Hsing University

Taichung Taiwan 402, R.O.C., E-mail: yangfy@ms7.hinet.net
*Department of Computer Science, National Chung Hsing University

Taichung Taiwan 402, R.O.C., E-mail: jkjan@cs.nchu.edu.tw

 Abstract An enhanced authentication key exchange protocol was proposed to exchange

multiple session keys between two participants at a time. This paper shows that this enhanced

protocol is insecure under the known session key attack, known long-term private key attack,

signature forgery attack, and replay attack. This paper also proposes an enhanced and secure

key agreement protocol for exchanging multiple session keys in one run of the protocol. The

protocol is secure against the attacks mentioned above. Besides, a formal proof is given to

guarantee the security of the proposed protocol under other potential attacks.

Keywords Authentication, Diffie-Hellman key exchange, perfect forward secrecy, session key.

1. INTRODUCTION

In order to achieve secret communication over an insecure channel, the messages must be

transmitted in cipher. Therefore, the participants must agree on a shared session key before

starting to transmit/receive messages. The shared session key is used to encrypt plaintext or

decrypt ciphertext.

 The well-known Diffie-Hellman key exchange protocol proposed in [1] is often used to

establish a shared session key. Assume that Alice and Bob have agreed on a large prime p and

g, such that g is a primitive element in the multiplicative group*pZ . Alice randomly chooses

an element x from the additive group Z(p -1), computes X = gx mod p, and sends X to Bob.

Similarly, Bob chooses a random element y from Z(p -1), computes Y = gy mod p, and sends Y to

Alice. Then, Alice computes the shared session key KA = Yx = gxy mod p; Bob computes the

shared session key KB = Xy = gyx mod p. Both KA and KB are equal, since gxy = gyx mod p.

Although the quantities X and Y are transmitted over an insecure channel, no one listening on

the channel can compute the shared key. The protocol’s security is based on the assumption

that gx and gy are known making it difficult to compute the quantity gxy mod p. However, this

protocol does not authenticate the participants engaging in exchanging their session keys.

2

This allows an adversary to impersonate one of the participants. Thus, this protocol is

vulnerable to the middleman attack.

An enhanced protocol was proposed in [2], henceforth called H-protocol. To resist the

attack of the middleman, the H-protocol has been furnished with the capability of

authenticating participants. In addition, the participants can exchange multiple session keys at

one execution of the H-protocol. Therefore, the H-protocol provides a more efficient way to

share session keys and is more secure than that of the original Diffie-Hellman key exchange

protocol.

However, the H-protocol is still insecure. This paper will present four attacks on the H-

protocol, i.e., the known session key attack, the known long-term private key attack, the

signature forgery attack, and the replay attack.

In the first attack, if an adversary obtains a shared session key, then the adversary can

compute the long-term Diffie-Hellman key shared between Alice and Bob, i.e. yab = bxaxg

mod p, where xa and xb are Alice and Bob’s long-term private keys. In the second attack, when

obtaining the long-term private key, the adversary can compute the previous session keys and

thus decrypt those ciphertext that have been transmitted over a public channel. The third

attack demonstrates that an adversary can forge the signatures (messages exchanged) without

knowing the participant’s long-term private key. The H-protocol is unprotected under the

fourth attack — the replay attack. This attack is simply a retransmission of a previous message.

After cryptanalysis, the paper proposes a secure protocol for authenticated key exchange,

which provides the same functionality as that of the H-protocol. The paper shows that the

proposed protocol is secure under the attacks mentioned above. Furthermore, the paper

provides a formal proof to guarantee the protocol’s security under other unknown attacks.

Thus the proposed protocol is not merely able to mend the security leakage of the H-protocol;

it is intended to provide a secure way to exchange multiple session keys in one run of the

protocol.

The paper is organized as follows. Section 2 reviews the H-protocol. Section 3

demonstrates that the H-protocol is vulnerable under the four attacks mentioned above. The

proposed protocol will be described in Section 4. Section 5 investigates the proposed

protocol’s security, and finally Section 6 concludes the paper.

3

2. REVIEW OF THE H-PROTOCOL

The system authority chooses a large prime p. Let g be the primitive root in the finite field

GF(p). Assume the participants Alice and Bob have registered on the system. Therefore, Alice

has a long-term private key xa, long-term public key ya = axg mod p, and a certificate cert(ya).

The certificate cert(ya) is a signature of a trusted third party (TTP) on the public key ya and the

identity of Alice. Similarly, Bob has a long-term private key xb, long-term public key yb

= bxg mod p, and a certificate cert(yb). After registering on the system, these two participants

can exchange a set of authenticated Diffie-Hellman keys by executing the H-protocol. The

following steps describe the details of the H-protocol.

Step 1. Alice randomly selects two elements, ka1 and ka2, from the additive group Z(p – 1). The

quantities ra1 = 1akg mod p, ra2 = 2akg mod p, and sa = xa (ra1 ⊕ ra2) + ka1 ra2 mod (p – 1)

are computed. Then, the initiator Alice sends the message ma1 = {r a1, ra2, sa, cert(ya)} to the

recipient Bob.

Step 2. Upon receiving the message ma1, Bob first verifies the certificate cert(ya). Then he

starts checking asg = 2a1a rr
ay ⊕ 2ar

1ar mod p to verify the message ma1. A valid verification

leads Bob to construct a response message; otherwise, Bob stops this stage of the H-

protocol.

To construct a response message, Bob chooses two random elements, kb1 and kb2, from

the additive group Z(p – 1). The quantities rb1 = 1bkg mod p, rb2 = 2bkg mod p, and sb = xb (rb1

⊕ rb2) + kb1 rb2 mod (p – 1) are computed. Then, Bob sends the response message mb1 = {r b1,

rb2, sb, cert(yb)} to Alice. After constructing the response message, Bob also computes a set

of Diffie-Hellman keys, i.e., the shared session keys K1 = 1bk
1ar mod p, K2 = 1bk

2ar mod p, K3 =

2bk
1ar mod p, and K4 = 2bk

2ar mod p.

Step 3. Alice verifies the certificate cert(yb) when receiving the message mb1. In order to

certify that mb1 is sent from Bob, Alice must check whether bsg = 2b1b rr
by ⊕ 2br

1br mod p holds

true. Alice stops the execution if the check is invalid; otherwise, Alice also computes a set

4

of shared session keys K1 = 1ak
1br mod p, K2 = 2ak

1br mod p, K3 = 1ak
2br mod p, and K4 = 2ak

2br

mod p.

Therefore, Bob and Alice have agreed on a set of four session keys after executing the

protocol cooperatively. If both participants have chosen n random elements from the additive

group Z(p – 1) during executing the protocol, then they will agree on a set of n2 session keys. In

order to achieve perfect forward secrecy, only (n2 – 1) session keys are available to

participants. The property of perfect forward secrecy will be discussed in Section 3.2.

3. CRYPTANALYSIS

In order to investigate the security of the H-protocol, four well-known attacks  the known

session key, known long-term key, signature forgery, and replay attack are mounted to attack

it. The details are shown in the following subsections.

3.1 Known session key attack

The known session key attack examines the side effects if some previous session keys are

disclosed. No secret information of the participants or system must be revealed by the

disclosure of previous session keys. In the following calculation, it is shown how to compute

the long-term Diffie-Hellman key yab = baxxg mod p if the session key K1 is compromised.

First, express sa and sb in (1) and (2).

sa = xa (ra1 ⊕ ra2) + ka1 ra2 mod (p – 1) (1)

sb = xb (rb1 ⊕ rb2) + kb1 rb2 mod (p – 1) (2)

xa xb (ra1 ⊕ ra2) (rb1 ⊕ rb2) = (sa sb - ka1 ra2 sb - kb1 rb2 sa + ka1 ra2 kb1 rb2) mod (p – 1) (3)

)rr)(rr(
ab

2b1b2a1ay ⊕⊕ = bassg b2a sr
1ar

− a2b sr
1br

− 2b2a rr
1K mod p (4)

u = 1 / ((ra1 ⊕ ra2) (rb1 ⊕ rb2)) mod (p – 1) (5)

yab = (bassg b2a sr
1ar

− a2b sr
1br

− 2b2a rr
1K)u mod p (6)

Equation (3) is obtained by multiplying (1) by (2). Raising both sides of (3) to the

exponentials of the primitive root g, (4) is obtained. As can be seen in (5) and (6), given the

5

quantity of the session key K1, the long-term Diffie-Hellman key yab is derived, where the

quantities sa, sb, ra1, ra2, rb1, and rb2 are obtained by listening on the public channel.

3.2 Perfect forward secrecy (Known long-term private key attack)

A very desirable security property of key exchange protocol is the perfect forward secrecy.

Communications are usually on insecure channels. The insecure channels have many

unacceptable properties, e.g., the adversaries can eavesdrop on, intercept, and modify the

messages transmitted over the channels. Therefore, the shared session keys are used to encrypt

the confidential messages before putting them in an insecure transmission channel. Suppose

that a secure encryption function has been used to encrypt the plaintext or to decrypt the

ciphertext. Then, the adversaries cannot glean any information about the confidential

messages since they do not know the session keys used.

Assume that an adversary has recorded some ciphertext from an insecure channel and the

exposure of a participant’s long-term private key leads the shared session keys to be revealed.

Thus, the adversary is able to decrypt those intercepted cipher texts and thereby read the

confidential messages that were sent in the past sessions. This result would be undesirable.

Hence, a stronger security property is required. This is the property of perfect forward secrecy.

It requires that the session keys should be concealed even though the participant’s long-term

secret key is disclosed.

 From (7), the adversary listening on the public channel can compute the session key K1 if

yab is available.

v = 1 / (ra2 rb2) mod (p – 1)

K1 = ()rr)(rr(
ab

2b1b2a1ay ⊕⊕ bassg− b2a sr
1ar

a2b sr
1br)v mod p (7)

 From (1), the adversary can compute the quantity ka1 if Alice’s private key xa is available.

Thus the session keys K1 and K3 are computed. Similarly, from (2), the adversary can compute

the quantity kb1 and the session keys K1 and K2 if Bob’s private key xb is available.

Therefore the H-protocol does not satisfy the requirement of perfect forward secrecy, since

the disclosure of either Alice’s or Bob’s long-term private keys xa or xb enables an adversary

to compute the shared session keys K1, K2, or K3.

3.3 Signature forgery attack

6

Bob verifies the received message ma1 = {r a1, ra2, sa, cert(ya)} by checking asg = (2a1a rr
ay ⊕

2ar
1ar) mod p. Similarly, Alice verifies the received message mb1 = {r b1, rb2, sb, cert(yb)} by the

verification equation bsg = 2b1b rr
by ⊕ 2br

1br mod p. Essentially, the triplet (ra1, ra2, sa) is a

signature of Alice on the message ra2, and the triplet (rb1, rb2, sb) is a signature of Bob on the

message rb2, using the scheme of ElGamal signature [3]. The original ElGamal signature is

well-known to be existentially forgeable. Assume that an adversary wants to construct a

message ma1 = {r a1, ra2, sa, cert(ya)}. The following steps show how to forge signatures so as to

pass the verification equation.

Step 1. The certificate cert(ya) is obtained from a previous intercepted message.

Step 2. Let ra1 = gv ya
u mod p, where v is chosen randomly from Z(p – 1) and -u = 2 mod (p – 1).

Step 3. Substituting ra1 = gv ya
u mod p into verification equation (8), (9) is obtained. Equations

(10) and (11) are obtained by combining the terms with the same base in (9).

asg = 2a1a rr
ay ⊕ 2ar

1ar mod p (8)

asg = 2a1a rr
ay ⊕ 2avrg 2aur

ay mod p (9)

ra1 ⊕ ra2 = -u ra2 = 2 ra2 mod (p – 1) (10)

sa = v ra2 mod (p – 1) (11)

Step 4. Assume that the most significant bit of ra2 is 0 such that the quantity 2 ra2 is derived by

merely left shifting one bit on all bits of ra2 (the least significant bit of the result is filled by

0). Please note that this assumption occurs with high probability. Then, ra2 can be solved

from (10) by the following equations. Let ra2[1] and ra2[|p|] denote the least significant bit

and the most significant bit of ra2.

ra2[1]= r a1[1],

ra2[2]= r a1[2] ⊕ ra2[1],...,

ra2[j]= r a1[j] ⊕ ra2[j-1],...,

ra2[|p|]= r a1[|p|] ⊕ ra2[|p|-1].

7

If ra2[|p|] ≠ 0, redo Step 2.

Therefore, without knowing Alice’s long-term private key the adversary has constructed a

message ma1 = {r a1, ra2, sa, cert(ya)}, which would pass the verification equation asg =

(2a1a rr
ay ⊕ 2ar

1ar) mod p. Although the adversary cannot compute the shared session keys, this

undesired result may still cause problem, if the shared session keys are used to encrypt

random messages and no further key confirmation protocol is used.

3.4 Replay attack

The adversary sends ma1 = {r a1, ra2, sa, cert(ya)} obtained from a previous intercepted

message to Bob. Bob would recognize that Alice is trying to establish a new session with him,

since the message ma1 is really constructed by Alice. Like the attack of signature forgery, the

adversary cannot compute the shared session keys. Note that this replay attack is inherent in

the key exchange protocol implemented in only two rounds (one round trip). This type of

attack can be avoided if the participants cache all the messages received or use a global

timestamp. However, caching all messages would require an unlimited capacity of storage.

4. THE PROPOSED PROTOCOL

Let p be a large prime number such that (p – 1) has a large prime factor q. The element g in

the multiplicative group *
pZ has order q. e ∈R G and represents that the element e is randomly

chosen from the group G. |b| denotes the bit length of the string b. h(.) : {0, 1}* � {0, 1}l is a

collision-free hash function, where l is a security parameter, i.e. l = 160 or l = |q| for a

practical cryptographic setting [4]. Alice has a long-term private key xa ∈R
*
qZ , long-term

public key ya = axg mod p, and a certificate cert(ya). Similarly, Bob has a long-term private

key xb ∈R
*
qZ , long-term public key yb = bxg mod p, and a certificate cert(yb).

The following steps describe the details of the proposed scheme.

Step 1. Alice randomly selects three elements ka, ka1, ka2 ∈R Zq. The quantities ra = akg mod p ,

ra1 = 1akg mod p, and ra2 = 2akg mod p are computed. Then, the initiator Alice sends the

message ma1 = {r a, ra1, ra2, cert(ya)} to the recipient Bob.

8

Step 2. Upon receiving the message ma1, Bob first verifies the certificate cert(ya). A valid

verification leads Bob to construct a response message; otherwise, Bob stops this instance

of key exchange protocol.

To form a response message, Bob chooses three random elements kb, kb1, kb2 ∈R Zq and

computes the quantities rb = bkg mod p, rb1 = 1bkg mod p, rb2 = 2bkg mod p and the signing

equation

 sb = kb h(rb, rb1, rb2, ra1, ra2, cert(yb)) + xb rb mod q. (12)

Then, Bob sends the response message mb = {r b, rb1, rb2, sb, cert(yb)} to Alice.

Step 3. Alice verifies the certificate cert(yb) when receiving the message mb. Then, Alice

verifies the message mb by checking bsg =))y(cert,r,r,r,r,r(h
b

b2a1a2b1bbr br
by mod p. Alice stops

the execution if the check is invalid; otherwise, Alice uses the following equation to

construct the response message ma = {sa} and sends it to Bob.

 sa = ka h(ra, ra1, ra2, rb1, rb2, cert(ya)) + xa ra mod q (13)

 While constructing a response message, Alice also computes a set of Diffie-Hellman keys,

i.e., the shared session keys K1 = 1ak
1br mod p, K2 = 2ak

1br mod p, K3 = 1ak
2br mod p, and K4 =

2ak
2br mod p.

Step 4. Upon receiving the message ma, Bob verifies ma by checking asg =

))y(cert,r,r,r,r,r(h
a

a2b1b2a1aar ar
ay mod p. Bob stops the key exchange protocol if the check is

invalid.

Bob also computes a set of Diffie-Hellman keys, i.e., the shared session keys K1 = 1bk
1ar

mod p, K2 = 1bk
2ar mod p, K3 = 2bk

1ar mod p, and K4 = 2bk
2ar mod p.

9

Therefore, Bob and Alice have agreed on a set of four session keys after executing the

protocol cooperatively. If both Alice and Bob have chosen n random numbers from the group

Zq during execution of the protocol, then they will agree on a set of (n – 1)2 session keys.

4.1 Security of the signature scheme

Let m be the message and x be the signer’s secret key. Then, (s, r) is an ElGamal signature

on the message m, where s = k-1 (m – x r) mod (p - 1), r = gk mod p and k ∈R Zp-1. However,

the original ElGamal signature scheme [3] is well-known to be existentially forgeable. The

signature forgery attack described in Section 3.3 is an example.

The signature scheme in [5, 6] replaces the earlier signing equation s = k-1 (m – x r) mod (p

- 1) with s = k-1 (h(m, r) – x r) mod (p - 1), where r = gk mod p and k∈R Zp-1. This modified

version of ElGamal signature is provably secure against the adaptive chosen message attack

proposed in [7] under the random oracle model [8]. In this model of attack, it is assumed that

an adversary has access to a signing oracle, which generates the signatures. The adversary is

allowed to collect the signatures by asking the signing oracle as he wishes, except for the one

that the adversary is forging.

 In the paper, the proposed key exchange protocol uses s = (h(m, r) k + x r) mod q as the

signing equation, which has the advantage of saving an inverse computation. The work in [9]

proved that this variant of ElGamal signature scheme is also secure against the adaptive

chosen message attack. Thus the following Theorem is obtained without proof.

Theorem 1. The signature scheme used in the proposed key exchange protocol (Section 4) is

secure against the adaptive chosen message attack.

Proof. Please refer to [9]. �

5. SECURITY ANALYSIS

 The sub-sections 5.1-5.4 demonstrate that the proposed protocol is secure under the attacks

described in Section 3. Sub-section 5.5 provides a formal proof for the protocol’s security.

5.1 Security under known session key attack

The discrete logarithms of random numbers ra1, ra2, rb1, and rb2 are not used in computing the

quantities sa and sb. Thus an adversary cannot solve the long-term Diffie-Hellman key yab in

the same way as described in Section 3.1.

10

5.2 Security under known long-term private key attack

 From (12) and (13), compromise of private keys xa and xb can reveal ka and kb. However,

these values are irrelevant to the computations of the session keys. Therefore, the proposed

protocol possesses the perfect forward secrecy.

5.3 Security under signature forgery attack

 Both Alice and Bob check on the messages mb and ma, which are signatures generated by

Bob and Alice, respectively. By Theorem 1, the signatures are secure against the adaptive

chosen message attack. Thus, the proposed protocol is secure under the forgery attack

described in 3.3.

5.4 Security under replay attack

 For each execution of the proposed protocol, Bob generates two fresh random numbers rb1

and rb2. The check of fresh random numbers is performed by the computation of hash value

h(ra1, ra2, rb1, rb2, cert(ya)). Similarly, Alice does the same check. Thus the proposed protocol

is secure under the replay attack.

5.5 Security proof of the proposed protocol

This sub-section investigates the security of the proposed protocol by adopting the security

measure and those attack models used in [10, 11]. Assume that an adversary with total control

over the communication channels can mount parallel attacks, and is told the previous session

keys. A key exchange protocol is secure if the following requirements are satisfied.

1. If both participants execute the protocol honestly, then the session key is Kse = KAB = KBA,

where KAB is the session key computed by Alice and KBA is the session key computed by

Bob.

2. No one can calculate the session key Kse except the participants Alice and Bob.

3. The session key is indistinguishable from a truly random number.

Lemma 2. The proposed protocol satisfies the first security requirement.

Proof. Both participants have agreed on the random numbers ra1, ra2, rb1, and rb2, because

these random numbers are included in the message signed by Alice and Bob. By Theorem 1,

11

the signatures are secure against the adaptive chosen message attack. Thus, with

overwhelming probability, the random numbers rb1 and rb2 received by Alice are originally

sent from Bob, and ra1 and ra2 received by Bob are random numbers sent by Alice. Therefore,

K1 = 1bk
1ar = 1ak

1br = 1b1a kkg mod p, K2 = 1bk
2ar = 2ak

1br = 1b2a kkg mod p, K3 = 1ak
2br = 2bk

1ar =

2b1a kkg mod p, and K4 = 2ak
2br = 2bk

2ar = 2b2a kkg mod p, by the commutative law of the

multiplicative group *
pZ . �

Since the Computational Diffie-Hellman assumption (CDH) and Decisional Diffie-Hellman

assumption (DDH) are required in proving Lemma 3 and Theorem 4, a brief description

follows. For further details, refer to the detailed descriptions of cryptographic primitives in

[12]. Suppose that G is a group with a large prime order q and g ∈ G generating the group G.

The CDH assumption implies that computing gxy from gx and gy is difficult [1].

Let g1, g2, r1, and r2 be elements of the group G. The Diffie-Hellman Pair function DHP(g1,

g2, r1, r2) is defined to be 1 if an x ∈ Zq exists such that r1 = g1
x and r2= g2

x; otherwise, 0 is

assigned to the function DHP(). A good algorithm for DHP() is a polynomial bounded

algorithm that correctly decides whether DHP(g1, g2, r1, r2) is 1 or 0 for all elements g1, g2, r1,

and r2 randomly selected from G, with negligible error probability. The DDH assumption is

that there is no good algorithm for DHP(). By letting g1 = g, g2 = gx, r1 = gy and r2 = gxy, the

quadruple form of DHP(g1, g2, r1, r2) can be expressed by the triple form of DHP(gx, gy, gxy).

In the triple form, the first argument g is implicitly implied. The latter form is used in this

paper.

Lemma 3. The proposed protocol satisfies the second security requirement.

Proof. Assume that an adversary is trying to compute the session keys. The adversary cannot

obtain random numbers ka1, ka2 , kb1, and kb2, since Alice and Bob generate these random

numbers secretly and do not disclose them. Thus, the adversary does not know the discrete

logarithms of ra1, ra2 , rb1, and rb2. The adversary is challenged to compute K1 = 1b1a kkg mod p,

K2 = 1b2a kkg mod p, K3 = 2b1a kkg mod p, and K4 = 2b2a kkg mod p, with knowledge of ra1, ra2 ,

rb1, and rb2. The adversary will fail to compute the session keys, since asked to break the CDH

assumption. �

12

Theorem 4. The proposed protocol satisfies the third security requirement.

Proof. Assume that an adversary S can distinguish one of the session keys, e.g. K4, from a

truly random number with non-negligible probability. Then the adversary S is also a good

algorithm for DHP(). The following processes show that the adversary S is used to calculate

DHP(ra2, rb2, R).

Process 1. Alice and Bob cooperatively perform the steps 1, 2, 3, and 4 in Section 4.

Process 2. Select r∈R G and c ∈R {0, 1}. Compute R = (K4)
c (r)1-c.

 The adversary S is able to answer whether c is 0 or 1, because it is assumed that S can

distinguish the session key K4 from a truly random number. This conclusion contradicts the

assumption of DDH. This completes the proof of Theorem 4. �

6. CONCLUSIONS

It is shown that H-protocol is vulnerable to the known session key attack, known long-term

private key attack, signature forgery attack, and replay attack. A secure protocol is proposed

and shown that it is resistant to those attacks presented in the paper. To resist other possible

attacks, Section 5 provides a formal proof to guarantee the proposed protocol’s security.

Therefore, the proposed protocol is not only to mend the flaws in H-protocol, but also to

provide a secure and efficient method to exchange multiple session keys between participants.

REFERENCES

1. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on

Information Theory, Vol. 22, pp. 644-654, 1976.

2. M. S. Hwang, T. Y. Chang, S. C. Lin, and C. S. Tsai, “On the security of an enhanced

authentication key exchange protocol,” In Proceedings of the 18th International

Conference on Advanced Information Networking and Application (AINA’04), IEEE,

Volume 2, pp. 160-163, 2004.

3. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” IEEE Trans. Inform. Theory, IT-31, (4), pp. 469-472, 1985.

4. A. Lenstra and E. Verheul, “Selecting cryptographic key sizes,” The Third International

Workshop on Practice and Theory in Public Key Cryptography (PKC2000), LNCS 1751,

pp. 446-465, 2000.

13

 5. D. Pointcheval and J. Stern, “Security proofs for signature schemes”, Advances in

Cryptology- EUROCRYPT’96, LNCS 1070, pp. 387-398, 1996.

6. D. Pointcheval and J. Stern, “Security arguments for digital signatures and blind

signatures,” Journal of Cryptology, Vol. 13, N0. 3, pp. 361-396, 2000.

7. S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against

adaptive chosen-message attacks,” SIAM journal of computing, Vol. 17, No. 2, pp. 281-

308,1988.

8. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing

efficient protocols”, Proc. of the 1st ACM Conference on Computer and Communications

Security CCS’93, ACM press, pp. 62-73, 1993.

9. F. Y. Yang and J. K. Jan, ”A provable access control using smart cards”, IEEE Transactions

on Consumer Electronics, 49, (4), pp. 1223-1226, 2003.

10. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” Advances in

Cryptology- CRYPTO’93, LNCS 773, pp. 232-249, 1993.

11. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for

building secure channels,” Advances in Cryptology- EUROCRYPT’01, LNCS 2045, pp.

453-474, 2001.

12. V. Shoup, “On formal models for secure key exchange,” IBM Research Report RZ 3120

Version 4, 1999.

