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Abstract

We describe a block cipher mode of operation that implements a ‘tweakable’ (super) pseu-
dorandom permutation with an arbitrary block length. This mode can be used to provide the
best possible security in systems that cannot allow data expansion, such as disk-block encryp-
tion and some network protocols. The mode accepts an additional input, which can be used to
protect against attacks that manipulate the ciphertext by rearranging the ciphertext blocks.

Our mode is similar to a five-round Luby-Rackoff cipher in which the first and last rounds
do not use the conventional Feistel structure, but instead use a single block cipher invocation.
The third round is a Feistel structure using counter mode as a PRF. The second and fourth
rounds are Feistel structures using a universal hash function; we re-use the polynomial hash
over a binary field defined in the Galois/Counter Mode (GCM) of operation for block ciphers.
This choice provides efficiency in both hardware and software and allows for re-use of imple-
mentation effort. XCB also has several useful properties: it accepts arbitrarily-sized plaintexts
and associated data, including any plaintexts with lengths that are no smaller than the width
of the block cipher.

This document is a pre-publication draft manuscript.
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1 Introduction

There are several scenarios in which length-preserving, deterministic encryption is useful. An en-
cryption method is length-preserving if the ciphertext has exactly the same number of bits as does
the plaintext. Such a method must be deterministic, since it is impossible to accommodate ran-
dom data (such as an initialization vector) within the ciphertext. In some cases, deterministic
length-preserving encryption exactly matches the requirements. For example, in some encrypted
database applications, determinism is essential in order to ensure a direct correspondence between
plaintext values being looked up and previously stored ciphertext values.

In some other cases, there is a length-preservation requirement that makes it impossible to pro-
vide all of the security services that are desired. Length-preserving algorithms cannot provide
message authentication, since there is no room for a message authentication code, and they cannot
meet strong definitions of confidentiality [2]. Essentially, these algorithms implement a codebook;
repeated encryptions of the same plaintext value with the same key result it identical ciphertext
values. An adversary gains knowledge about the plaintext by seeing which ciphertext values
match, and which do not match. Despite these limitations, in many scenarios it may be desirable
to use length-preserving encryption because other methods are unworkable. Length-preservation
may allow encryption to be introduced into data processing systems that have already been im-
plemented and deployed. Many network protocols have fixed-width fields, and many network
systems have hard limits on the amount of data expansion that is possible. One important exam-
ple is that of disk-block encryption, which is currently being addressed in the IEEE Security in
Storage Working Group [5].

Given the limitation of length-preservation, the best security that we can provide is non-malleable
encryption. Informally, a cipher is non-malleable if changing a single bit of a ciphertext value
affects all of the bits of the corresponding plaintext. More formally, we require our cipher to be
a pseudorandom permutation; it is indistinguishable from a permutation on the set of messages to
a computationally bounded adversary. Because we want our cipher to handle plaintexts whose
size may vary, we require the cipher to be a pseudorandom arbitrary length permutation: for each
of the possible plaintext lengths, the cipher acts as a pseudorandom permutation. To provide as
much flexibility as possible, we allow the plaintext lengths to vary even for a single fixed key.

In some cases, some additional data can be associated with the plaintext. By using this data as
an input, we can provide better security, by letting each distinct associated data value ‘index’ a
pseudorandom permutation. That is, we require the cipher to be a pseudorandom arbitrary-length
permutation with associated data: for each plaintext length and each value of the associated data, the
cipher acts as a pseudorandom permutation. For maximum flexibility, we allow the length of the
associated data field to vary even for a single fixed key. In the disk block example, we can use
the block number as the associated data value. This will prevent some attacks which rely on the
codebook property, since identical plaintext values encrypted with distinct associated data values
give unrelated ciphertext values.

The use of an associated data input to a pseudorandom permutation first appeared in the inno-
vative Hasty Pudding Cipher of Schroppel [10], where it was called a ‘spice’, and was given a
rigorous mathematical treatment by Liskov, Rivest, and Wagner [7], who called it a ‘tweak’. Our
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security goal follows that of the latter work, with the distinction that we allow the associated data
to have an arbitrary length.

The extended codebook (XCB) mode of operation for block ciphers implements a pseudorandom
arbitrary-length permutation with associated data. XCB is defined so that it can use any block
cipher, but we provide test data only for AES-128. This mode is amenable to implementation in
both hardware and software, and it has a computational cost that is relatively low (compared to
similar modes): it only requires n + 1 block cipher invocations and 2n multiplications in GF (2w),
where w is the number of bits in the block cipher inputs and outputs. The mode also has sev-
eral useful properties: it accepts arbitrarily-sized plaintexts and associated data, including any
plaintexts with lengths of at least w bits. This property allows XCB to protect short data, like the
common 20-byte G.729 voice codec in Secure RTP [1].

There are several other block cipher modes of operation that also implement psedurandom arbitrary-
length permutations. Most notable is the EME mode of Halevi and Rogaway [4], which is also
efficient and accepts associated data.

In the following, we define XCB (Section 2) and analyze its security (Section 3). Test data for
XCB mode for the Advanced Encryption Standard with 128 bit keys (AES-128) [9] is provided in
Appendix A.

2 Specification

This section contains the complete normative specification for XCB for use with 128-bit block
ciphers. In order to use XCB with other block cipher widths, it is necessary to define a finite
field of the appropriate size.

2.1 Notation

The two main functions used in XCB are block cipher encryption and multiplication over the field
GF (2128). The block cipher encryption of the value X with the key K is denoted as e(K, X), and
the block cipher decryption is denoted as d(K, X). (Note that we reserve the symbols E and D to
denote XCB encryption and decryption, respectively.) The number of bits in the inputs and outs
of the block cipher is denoted as w. For the Advanced Encryption Standard (AES), w = 128. The
multiplication of two elements X, Y ∈ GF (2128) is denoted as X · Y , and the addition of X and Y
is denoted as X ⊕Y . Addition in this field is equivalent to the bitwise exclusive-or operation, and
the multiplication operation is defined in Section 2.3.

The function len(S) returns a 64-bit string containing the nonnegative integer describing the num-
ber of bits in its argument S, with the least significant bit on the right. The expression 0l denotes
a string of l zero bits, and A‖B denotes the concatenation of two bit strings A and B. We consider
bit strings to be indexed starting on the left, so that bit zero of S is the leftmost bit. When S is a bit
string and 0 ≤ a < b ≤ len(S), we denote as S[a; b] the length b− a subtring of S consisting of bits
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a through b of S. The symbol {} denotes the bit string with zero length.

2.2 Definition

The XCB encryption and decryption operations are defined in Algorithms 1 and 2, respectively,
and he encryption operation is illustrated in Figure 1. These algorithms use the block cipher
encryption functions e and d, as well as the hash function h and the pseudorandom function c.
The round keys K0,K1,K2,K3,K4 could be stored between evaluations of these algorithms1.

Algorithm 1 The XCB encryption operation. Given a key K ∈ {0, 1}k, a plaintext P ∈ {0, 1}m
where m ∈ [w, 239], and associated data Z ∈ {0, 1}n where n ∈ [0, 239], returns a ciphertext C ∈
{0, 1}m.

K0 ← e(K, 0w), K1 ← e(K, 0w−1‖1), K2 ← e(K, 0w−2‖1‖0),
K3 ← e(K, 0w−2‖12), K4 ← e(K, 0w−3‖1‖02)

A← P[0;w − 1]
B ← P[w; len(P)− 1]
C ← e(K0, A)
D ← C ⊕ h(K1, B,Z)
E ← B ⊕ c(K2, D)
F ← D ⊕ h(K3, E, Z)
G← d(K4, F )
return G‖E

Algorithm 2 The XCB decryption operation. Given a key K ∈ {0, 1}k, a ciphertext C ∈ {0, 1}m
where m ∈ [w, 239], and associated data Z ∈ {0, 1}n where n ∈ [0, 239], returns a plaintext P ∈
{0, 1}m.

K0 ← e(K, 0w), K1 ← e(K, 0w−1‖1), K2 ← e(K, 0w−2‖1‖0),
K3 ← e(K, 0w−2‖12), K4 ← e(K, 0w−3‖1‖02)

G← C[0;w − 1]
E ← C[w; len(P)− 1]
F ← e(K4, G)
D ← F ⊕ h(K3, E,Z)
B ← E ⊕ c(K2, D)
C ← D ⊕ h(K1, B, Z)
A← d(K0, C)
return A‖B

The function c : {0, 1}k × {0, 1}w → {0, 1}0:239
generates an arbitrary-length output by running

1The use of distinct keys in each round is a burden, because those values must either stored in memory and fetched
when needed, or computed from the master key when needed. We believe that it is possible to re-use key material
between rounds, but have not yet thoroughly analyzed the security of those cases. We chose the conservative security
option for the initial version of XCB, but we hope to offer a reduced number of round keys in a future version.
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Figure 1: The XCB encryption operation.

the block cipher e in counter mode, using its input as the initial counter value. Its definition is

c(K, W ) = E(K, W )‖E(K, incr(W )‖ . . . ‖MSBt(E(K, incrn−1(W )), (1)

where n = dl/we is the number of blocks in the output and t = l mod w is number of bits in the
trailing block. Here incr : {0, 1}w → {0, 1}w is the increment function that is used to generate suc-
cessive counter values. This function treats the rightmost 32 bits of its argument as a nonnegative
integer with the least significant bit on the right, increments this value modulo 232. More formally,

incr(X) = X[0;w − 33] ‖ (X[w − 32;w − 1] + 1 mod 232), (2)

where we rely on the implicit conversion of bit strings to integers.

The function h : {0, 1}w × {0, 1}m × {0, 1}n → {0, 1}w,m ∈ [w, 239], n ∈ [0, 239] is defined by
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h(H,A, C) = Xm+n+1, where the variables Xi ∈ {0, 1}w for i = 0, . . . ,m + n + 1 are defined as

Xi =



0 for i = 0
(Xi−1 ⊕Ai) ·H for i = 1, . . . ,m− 1
(Xm−1 ⊕ (A∗

m‖0w−v)) ·H for i = m

(Xi−1 ⊕ Ci−m) ·H for i = m + 1, . . . ,m + n− 1
(Xm+n−1 ⊕ (C∗

n‖0w−u)) ·H for i = m + n

(Xm+n ⊕ (len(A)‖len(C))) ·H for i = m + n + 1.

(3)

Here we let Ai denote the w-bit substring A[(i − 1)w; iw − 1], and let Ci denote C[(i − 1)w; iw −
i]. In other words, Ai and Ci are the ith blocks of A and C, respectively, if those bit strings are
decomposed into w-bit blocks. This function is identical to GHASH, the universal hash that is
used as a component of the Galois/Counter Mode (GCM) of Operation [8], except that GHASH
requires w = 128, as is the case for AES [9].

2.3 Multiplication in GF (2128)

The multiplication operation is defined as an operation on bit vectors in order to simplify the
specification; it allows us to keep finite field mathematics out of the normative definition of the
algorithm. Background information on this field and its representation, and strategies for efficient
implementation, is provided in the GCM specification [8, Sections 3 and 4]. This definition of
multiplication corresponds to the polynomial basis with the field polynomial of f = 1 + α + α2 +
α7 + α128.

Each field element is a vector of 128 bits. The ith bit of an element X is denoted as Xi. The leftmost
bit is X0, and the rightmost bit is X127. The multiplication operation uses the special element
R = 11100001‖0120 , and is defined in Algorithm 3. The function rightshift() moves the bits of its

Algorithm 3 Multiplication in GF (2128). Returns Z = X · Y , where X, Y, Z ∈ GF (2128).
Z ← 0, V ← X
for i = 0 to 127 do

if Yi = 1 then
Z ← Z ⊕ V

end if
if V127 = 0 then

V ← rightshift(V )
else

V ← rightshift(V )⊕R
end if

end for
return Z

argument one bit to the right. More formally, whenever W = rightshift(V ), then Wi = Vi−1 for
1 ≤ i ≤ 127 and W0 = 0.
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3 Security

We provide a proof sketch for the security of XCB in the concrete security model introduced by
Bellare et. al. [3]. We can show that XCB is a secure pseudorandom arbitrary-length permutation
with associated data (ALPA), using only the assumption that e is a secure w-bit pseudorandom
permutation, as follows. We start by showing that a pseudorandom arbitrary-length function with
associated data (ALFA) is nearly indistinguishable from an arbitrary-length PRP with associated
data, as long as the number of invocations of the function is bounded. We then show that XCB
is nearly indistinguishable from a pseudorandom ALFA, as long as the number of queries to the
oracle representing e is bounded. Tying these two facts together shows that XCB is a pseudo-
random ALPA when these bounds are respected. The number of invocations of the XCB encrypt
and decrypt functions is less than the number of block cipher encryptions and decryptions used
during those invocations. This fact ensures that the security degradation due to our viewing XCB
as a PRF is small.

We next sketch how to show that XCB is a secure pseudorandom ALFA against either adaptive
chosen plaintext attacks or adaptive chosen ciphertext attacks. (We defer consideration of attacks
in which an adversary is allowed to adaptively choose both plaintexts and ciphertexts until later.)
The basic idea behind this proof is that the ciphertext value d(K4, F )‖(B ⊕ c(K2, D)) returned
from an encryption query is indistinguishable from random as long as the values of the variables
D and F do not repeat across different invocations of that function, and the functions c and e are
indistinguishable from random. Similarly, the plaintext values e(K0, C)‖(E ⊕ c(K2, D)) returned
from a decryption query are indistinguishable from random as long as the values of D and C do
not repeat. The proof that counter mode is secure is standard [2], as is the effectiveness of a block
cipher as a pseudorandom function. The probable uniqueness of the variables C, D and F across
all invocations follows from the properties of the function h, which is ε-almost xor universal [6].
A detailed treatment requires consideration of the probability that no collision on those variables
occurs on the ith query, given that no collision occurred on any of the previous i− 1 queries.

Security against attacks in which the adversary can adaptively choose both ciphertexts and plain-
texts can be proven using a method similar to that outlined above. We give the adversary access
to ALFA encryption and decryption oracles, and allow her q queries in total. We assume without
loss of generality that the adversary never repeats a query, and never asks for the decryption of a
ciphertext value returned by a previous encryption query, and never asks for the encryption of a
plaintext value returned by a previous decryption query.

As above, we rely on the absence of collisions for the variables C, D, and F , but in this case we
need to more carefully define what a collision means. More precisely, we can show that, if an
event Γ occurs, then XCB cannot be effectively distinguished from a random ALFA. This event is
defined as the conjunction Γ = Γ0 ∩ Γ1 ∩ Γ2 ∩ Γ3 of the events defined as follows:

Γ0 is the event that both Di 6= Dj and Fi 6= Fj for each pair of distinct encryption queries (i, j).

Γ1 is the event that both Di 6= Dj and Ci 6= Ci for each pair of distinct decryption queries (i, j).

Γ2 is the event that both Di 6= Dj and Fi 6= Fj for each pair (i, j) of queries consisting of an
encryption query i and a decryption query j, where j < i.
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Γ3 is the event that both Di 6= Dj and Ci 6= Cj for each pair (i, j) of queries consisting of an
encryption query i and a decryption query j, where j > i.

Events Γ1 and Γ2 correspond to security against chosen plaintext and chosen ciphertext attacks,
respectively. Event Γ3 takes into account that an adversary can attempt to force an encryption
query to cause a collision on D or F with a previous decryption query. Event Γ4 takes into account
that an adversary can attempt to force a decryption query to cause a collision on C or D with a
previous encryption query. Of course, an adversary can easily cause a collision on the C-values
with two encryption queries that use the same A-values, but this fact is irrelevant because it does
not lead to a method of distinguishing XCB from a random ALFA. Similarly, collisions on F -values
from two decryption queries are possible but irrelevant.
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A Test Data

In this section we provide detailed test data for AES-128 XCB. The variables are as defined above.
The variable Xi corresponds to the invocation of h that uses the key K1, while X ′

i corresponds to
the invocation with the key K3. The variable Yi denotes the ith counter block, that is, the value
incri−1(W ) from Equation 1. The variable Ci denotes e(K2,Wi). All values are in hexadecimal,
and values that are larger than 128 bits in length are continued on the following lines.

All data correspond to a single test case in which the plaintext P is 512 bytes long and the associ-
ated data Z is 16 bytes long.

Input Value
K 000102030405060708090a0b0c0d0e0f
P 00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
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Input Value
C 55d00a317ddff00d731e03cdadaa6d81

0d683b183a3e178ced28c7340175c7b6
7611cf25eb0e9a2318b798c643d9815c
723422504806dcf4d7892ca280d9c63b
b4230e84ff29ef575b525b82fabe023e
59cb9441d39a146aeee0c41bee6f51ea
dceba56600a6c503a611a201543758f1
2553571570f61b93a5e88f6044e8b49d
854aca2c455cf37a26bb56a81b736998
fca69195940476076bc4fdbedfa55cb8
46632a0fd4ab01b29a8e40519ffc476b
e992de544e435b33c8664e5e05281a0c
8ce8ffeb1f54d9cd13a4523caace820d
c07cc362b234989295f1384dedad9a37
4ebe9cb3b9bb68f6bca463b13d2f128b
3548cd1b1683e2aba097cc288dfe3bd1
4b4b272ac5517bb17b86e52862ae8df4
d5e7683acee2bf39818d6a774935ae0e
609cc97a21174b9f8543d2836b813ba6
3d6c9778a076c71613a2da9cf857f73a
b02558a3f064861e7872c2889167cc78
d219f41fae7b511ea2b00aa219101678
6573424b1aa608e4188e053d708e5fc9
22462845bf932ef4995f25905fbfbace
79ff8398153e287f991946786ec33d38
bd5535a3f9be795ec9536907b76c0885
2554a62b304dcbc83ea60ac13d7571fd
15414a7d2bb6770b86434bc779f08285
f2a16a17d43a844b2e607ec26eb4e4e2
3b6547782ea97975315a0c835f2f8b99
49ffa58d04d8c7e218609e817f737a8d
14a24a064811e14ad5eef66714a71e6c
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Variable Value
K0 c6a13b37878f5b826f4f8162a1c8d879
K1 c6bbf34fdff071c1631dadcbfcebdcfc
K2 5329a0a02908652c64781aee28f06a9e
K3 10b1898d04e239bfa49e17ebe95a9197
K4 5c91f36ade782c2690fab5e6f321eb51
A 00000000000000000000000000000000
B 00000000000000000000000000000000

00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000

C 2c578f7927a949d3b511ae8fb69145c6
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Variable Value
X1 5c6b03bab0976b641124560ed4ba2408
X2 55867ce090a7597c4d3044ec6fbebac7
X3 f991a437ce4192088d4b57d32ce81c46
X4 10baacdf9eac69a95653ffd45fd9d878
X5 6cc344dfbbe84e3489dbc61896bed197
X6 49083f5790ba45227a6b6772ea9216a8
X7 2077f91d78c8530c27ade9df22003d6b
X8 38a02d2382aad97a0d05d652129e5854
X9 c5682e43025bcf8d92a3351c08c3ee1f

X10 6ba34cd6156cec249192e4e01c095d2e
X11 406788525af56f7a0ef2b2951287529d
X12 826dd62ed7d6bd6e4864460ad0564446
X13 a4975e7da5e0d7496b33bbe0681f5733
X14 bcc4009a8cda15f5755c81d95c15c3ba
X15 e15a3b86f0e989bb45a2c05e1301d521
X16 9b597090e3e4966607d3a35466c8161e
X17 c6c383271c7d3a8dfa35f2bbf2364659
X18 ab4e4468163fbd1a1dd2a0eee6a23cdb
X19 fe44881cd2b9f743335c8537e780734b
X20 94ff616e3fa2a49c2093af246f6cfbb0
X21 2763b47eaebb44cc3b16075e9963f9d6
X22 11112b53a1d3d249ec7a7a93ddb9a434
X23 8503d52c54254fc5f1485309b614d29d
X24 c35357d50432baa88721bfaee63705eb
X25 c80b2f88d2f04a6eb8ddefca35efb09f
X26 ed9afb52d66bef5fed7427e92b951e2c
X27 47fdc11c4e6bd38eae07bc47bcd2c2c6
X28 7117b6431e2781c6193d631151ab9363
X29 0cefcbff686d397807f0c77bb6848ca6
X30 5c915e9ea63ae07c06607e26347305df
X31 758c0f79743a569ed49521dc3e50e490
X32 dcdee25acacf602586f93555e2d61a0c
X33 4889f1e2ab1c9c9586e45dbfcb799ffb

D 64de7e9b8cb5d54633f5f3307de8da3d
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Variable Value
Y1 64de7e9b8cb5d54633f5f3307de8da3d
C1 0d683b183a3e178ced28c7340175c7b6
Y2 64de7e9b8cb5d54633f5f3307de8da3e
C2 7611cf25eb0e9a2318b798c643d9815c
Y3 64de7e9b8cb5d54633f5f3307de8da3f
C3 723422504806dcf4d7892ca280d9c63b
Y4 64de7e9b8cb5d54633f5f3307de8da40
C4 b4230e84ff29ef575b525b82fabe023e
Y5 64de7e9b8cb5d54633f5f3307de8da41
C5 59cb9441d39a146aeee0c41bee6f51ea
Y6 64de7e9b8cb5d54633f5f3307de8da42
C6 dceba56600a6c503a611a201543758f1
Y7 64de7e9b8cb5d54633f5f3307de8da43
C7 2553571570f61b93a5e88f6044e8b49d
Y8 64de7e9b8cb5d54633f5f3307de8da44
C8 854aca2c455cf37a26bb56a81b736998
Y9 64de7e9b8cb5d54633f5f3307de8da45
C9 fca69195940476076bc4fdbedfa55cb8
Y10 64de7e9b8cb5d54633f5f3307de8da46
C10 46632a0fd4ab01b29a8e40519ffc476b
Y11 64de7e9b8cb5d54633f5f3307de8da47
C11 e992de544e435b33c8664e5e05281a0c
Y12 64de7e9b8cb5d54633f5f3307de8da48
C12 8ce8ffeb1f54d9cd13a4523caace820d
Y13 64de7e9b8cb5d54633f5f3307de8da49
C13 c07cc362b234989295f1384dedad9a37
Y14 64de7e9b8cb5d54633f5f3307de8da4a
C14 4ebe9cb3b9bb68f6bca463b13d2f128b
Y15 64de7e9b8cb5d54633f5f3307de8da4b
C15 3548cd1b1683e2aba097cc288dfe3bd1
Y16 64de7e9b8cb5d54633f5f3307de8da4c
C16 4b4b272ac5517bb17b86e52862ae8df4
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Variable Value
Y17 64de7e9b8cb5d54633f5f3307de8da4d
C17 d5e7683acee2bf39818d6a774935ae0e
Y18 64de7e9b8cb5d54633f5f3307de8da4e
C18 609cc97a21174b9f8543d2836b813ba6
Y19 64de7e9b8cb5d54633f5f3307de8da4f
C19 3d6c9778a076c71613a2da9cf857f73a
Y20 64de7e9b8cb5d54633f5f3307de8da50
C20 b02558a3f064861e7872c2889167cc78
Y21 64de7e9b8cb5d54633f5f3307de8da51
C21 d219f41fae7b511ea2b00aa219101678
Y22 64de7e9b8cb5d54633f5f3307de8da52
C22 6573424b1aa608e4188e053d708e5fc9
Y23 64de7e9b8cb5d54633f5f3307de8da53
C23 22462845bf932ef4995f25905fbfbace
Y24 64de7e9b8cb5d54633f5f3307de8da54
C24 79ff8398153e287f991946786ec33d38
Y25 64de7e9b8cb5d54633f5f3307de8da55
C25 bd5535a3f9be795ec9536907b76c0885
Y26 64de7e9b8cb5d54633f5f3307de8da56
C26 2554a62b304dcbc83ea60ac13d7571fd
Y27 64de7e9b8cb5d54633f5f3307de8da57
C27 15414a7d2bb6770b86434bc779f08285
Y28 64de7e9b8cb5d54633f5f3307de8da58
C28 f2a16a17d43a844b2e607ec26eb4e4e2
Y29 64de7e9b8cb5d54633f5f3307de8da59
C29 3b6547782ea97975315a0c835f2f8b99
Y30 64de7e9b8cb5d54633f5f3307de8da5a
C30 49ffa58d04d8c7e218609e817f737a8d
Y31 64de7e9b8cb5d54633f5f3307de8da5b
C31 14a24a064811e14ad5eef66714a71e6c
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Variable Value
E 0d683b183a3e178ced28c7340175c7b6

7611cf25eb0e9a2318b798c643d9815c
723422504806dcf4d7892ca280d9c63b
b4230e84ff29ef575b525b82fabe023e
59cb9441d39a146aeee0c41bee6f51ea
dceba56600a6c503a611a201543758f1
2553571570f61b93a5e88f6044e8b49d
854aca2c455cf37a26bb56a81b736998
fca69195940476076bc4fdbedfa55cb8
46632a0fd4ab01b29a8e40519ffc476b
e992de544e435b33c8664e5e05281a0c
8ce8ffeb1f54d9cd13a4523caace820d
c07cc362b234989295f1384dedad9a37
4ebe9cb3b9bb68f6bca463b13d2f128b
3548cd1b1683e2aba097cc288dfe3bd1
4b4b272ac5517bb17b86e52862ae8df4
d5e7683acee2bf39818d6a774935ae0e
609cc97a21174b9f8543d2836b813ba6
3d6c9778a076c71613a2da9cf857f73a
b02558a3f064861e7872c2889167cc78
d219f41fae7b511ea2b00aa219101678
6573424b1aa608e4188e053d708e5fc9
22462845bf932ef4995f25905fbfbace
79ff8398153e287f991946786ec33d38
bd5535a3f9be795ec9536907b76c0885
2554a62b304dcbc83ea60ac13d7571fd
15414a7d2bb6770b86434bc779f08285
f2a16a17d43a844b2e607ec26eb4e4e2
3b6547782ea97975315a0c835f2f8b99
49ffa58d04d8c7e218609e817f737a8d
14a24a064811e14ad5eef66714a71e6c
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Variable Value
X ′

1 bd709877bb44def9c17f4b9660e79034
X ′

2 66c14200e418c1936df177c74423493c
X ′

3 bd26575d4893af055501b42350f2b0f5
X ′

4 8274c32c7a049c5f70155debd2b2ed7e
X ′

5 a0c41b5a0a67e85b2392866ff644fbc3
X ′

6 f866e6420f413c04bd45e2dd46c83773
X ′

7 5f62d84a09dc7b03cfdf8c2960ae0414
X ′

8 1ea481d9622affe26557e9ca47471a69
X ′

9 d82dd0c6b5e34a3226bae62d3e6801b5
X ′

10 5533a34ab8ab1af066f0e437fa276a45
X ′

11 cfb7c995d32bfba53870bb803a3ff65a
X ′

12 6c4531e73ae2ff2cc940c200651bd3a4
X ′

13 f90a7a6e97ffe3d53568f27bb62ec8e4
X ′

14 a2bb4aa5cf51c1e7f5feb183ecd0bd93
X ′

15 d75694eac2af04fae8a18b4d45b982f7
X ′

16 df8e6ac581e260667bc484882550c648
X ′

17 a80c69989248e3d6e854753f0b3cb1e2
X ′

18 c02911dfd11caed7a7e9bb80a87b0cbb
X ′

19 6823ad9ff0dab54bbac6e8df27c09ea5
X ′

20 c11f218b8a65e7a9c88485ea15b9b9dd
X ′

21 bd5af3c996f5b885d10703475f0c11b8
X ′

22 f2384e75b35b5515892b8a38ba876b49
X ′

23 1aab27da4a9c150d3b0c170413fbfbbb
X ′

24 439fcad79c17bf851a9383e0587f99e7
X ′

25 8f7df83c4bee76ea74d408231f5c12d4
X ′

26 44b577aee0f4c3297776c2f02792320a
X ′

27 cfa2a342c1fe946bc027411f394caf57
X ′

28 acf7cc8fe0e668e5f45bfd853ca2192e
X ′

29 3777aa7734a8c140464d9c694455ce40
X ′

30 d62049b32602c8dc4bb5a527b80e5d04
X ′

31 35206767f2ba76b1fc25f177120492b9
X ′

32 aea61a18ebc0895948da42447afbbd15
X ′

33 46cba0b362da628d86d8ea2f16503476
F 2215de28ee6fb7cbb52d191f6bb8ee4b
G 55d00a317ddff00d731e03cdadaa6d81
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