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Abstrat

We investigate the average ase omplexity of a generalization of the ompat knapsak problem to

arbitrary rings: given m (random) ring elements a

1

; : : : ; a

m

2 R and a (random) target value b 2 R, �nd

oeÆients x

1

; : : : ; x

m

2 S (where S is an appropriately hosen subset of R) suh that

P

a

i

� x

i

= b. We

onsider ompat versions of the generalized knapsak where the set S is large and the number of weights

m is small. Most variants of this problem onsidered in the past (e.g., when R = Z is the ring of the

integers) an be easily solved in polynomial time even in the worst ase. We propose a new hoie of the

ring R and subset S that yields generalized ompat knapsaks that are seemingly very hard to solve on

the average, even for very small values ofm. Namely, we prove that for any unbounded funtionm = !(1)

with arbitrarily slow growth rate, solving our generalized ompat knapsak problems on the average is

at least as hard as the worst-ase instane of various approximation problems over yli latties. Spei�

worst-ase lattie problems onsidered in this paper are the shortest independent vetor problem SIVP

and the guaranteed distane deoding problem GDD (a variant of the losest vetor problem, CVP) for

approximation fators n

1+�

almost linear in the dimension of the lattie.

Our results yield very eÆient and provably seure one-way funtions (based on worst-ase omplexity

assumptions) with key size and time omplexity almost linear in the seurity parameter n. Previous

onstrutions with similar seurity guarantees required quadrati key size and omputation time. Our

results an also be formulated as a onnetion between the worst-ase and average-ase omplexity of

various lattie problems over yli and quasi-yli latties.

Keywords: Knapsak problem, yli latties, average-ase omplexity, one-way funtions.

1 Introdution

Few problems in the theory of omputational omplexity and its appliation to the foundations of ryptog-

raphy have been as ontroversial as the knapsak problem and its many variants, inluding the notoriously

NP-hard subset-sum problem [28℄. The initial enthusiasm generated by the subset-sum based ryptosystem

of Merkle and Hellman [35℄ in the late 70's, was immediately followed by intensive ryptanalyti e�orts

that ulminated in the early 80's with the total break of the system in its basi [59℄ and iterated version

[8℄. Still, the possibility of building ryptographi funtions based on NP-hard problems, and the relatively

high speed at whih numbers an be added up (ompared to modular multipliation and exponentiation

operations required by number theoreti funtions), prompted many researhers to suggest variants, �xes,

and improvements (e.g., [19, 10℄) to the initial Merkle-Hellman proposal. These e�orts, whih lasted for

�
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more than a deade, were invariably followed by attaks (e.g., [26, 58, 47, 51℄) that seriously questioned the

seurity of the systems either in theory or in pratie. Reently, knapsak-like ryptographi funtions have

started attrating again onsiderable attention after Ajtai's disovery [1℄ that the generalized subset-sum

problem (over the additive group Z

n

p

of n-dimensional vetors modulo p) is provably hard to solve on the

average based on a worst-ase intratability assumption about ertain lattie approximation problems for

whih no polynomial time solution is known. Following [1℄, Ajtai and Dwork [3℄ also proposed a ryptosys-

tem with similar seurity properties. But, unfortunately, even this proposal with strong theoretial seurity

guarantees has been subjet to pratial attaks [48℄.

Attaks to subset-sum (or more generally knapsak) problems an be lassi�ed into two broad ategories:

1. attaks targeted to spei� publi key ryptosystems that try to exploit the speial struture resulting

from the embedding of a deryption trapdoor (e.g., [59℄); and

2. attaks to generi subset-sum or knapsak instanes that an be applied regardless of the existene of

a trapdoor (e.g., [30, 11℄).

The �rst lass of attaks is usually stronger, meaning that it gives asymptotially good algorithms that

sueed (with high probability) regardless of the value of the seurity parameter, but only applies to spei�

publi key ryptosystems whose underlying knapsak problems are not as hard as the general ase. The

seond lass of attaks is more general but only heuristis: the asymptoti omplexity of these attaks is

usually exponential, or their suess rate negligible as a funtion of the seurity parameter. These methods

are evaluated experimentally by testing them on spei� problem instanes (e.g., hallenges or randomly

generated iphertexts) for typial values of the seurity parameter, and attaks an be usually avoided

setting the seurity parameter to a suÆiently large value. Still, the e�etiveness of these attaks, even for

moderately large values of the seurity parameter, is urrently onsidered the main pratial obstale in the

design of ryptographi funtions based on variants of the knapsak problem.

It is important to realize that the seond lass of attaks dismisses most knapsak ryptographi funtions

as pratial alternatives to number theory based funtions, not on the grounds of their inherent inseurity,

but simply beause of the large key sizes required to avoid heuristis attaks. In fat (espeially if one drops

the more ambitious goal of designing a publi key ryptosystem, and more modestly attempts to design

ryptographi primitives with no trapdoors, like pseudo-random generators or one-way hash funtions, et.)

there is theoretial evidene [24, 1, 3, 53℄ that subset-sum an indeed be a good soure of omputational

hardness, at least from an asymptoti point of view. The main issue a�eting the pratial seurity of

knapsak funtions is eÆieny. In a typial knapsak funtion, the key (orresponding to seurity parameter

n) onsists of 
(n) numbers, eah of whih is n bits long. Therefore, the size of the resulting ryptographi

key grows as 
(n

2

). Even if all known attaks to knapsak have exponential time omplexity, one needs

to set n to at least a few hundreds to make heuristis approahes (most notably lattie basis redution

[32, 57, 27, 49, 50℄) ine�etive or too ostly. As a onsequene, the resulting key an easily reah megabit

sizes still without ahieving a suÆient degree of seurity. Even if knapsak funtions an be still ompetitive

from a running time point of view, these huge key sizes are onsidered too big for most pratial appliations.

Generalized ompat knapsaks. The impat of spae eÆieny on the pratial seurity of knapsak

based funtions has long been reognized, even before the development of ingenious lattie based attaks. A

simple improvement that omes to mind is to use a so alled ompat knapsak: instead of using 0{1 ombi-

nations of 
(n) input weights (resulting in 
(n

2

) key size), onsider a smaller (onstant, or slowly inreasing)

number of weights a

1

; : : : ; a

m

and ombine them with oeÆients from a larger set, e.g., f0; : : : ; 2

Æn

g for some

small onstant Æ > 0. Notie that if Æ = 0, then we get the usual subset-sum problem, whih an be solved

(for m = O(log n)) in polynomial time using exhaustive searh. However, if Æ = 
(1) then the searh spae

beomes exponentially large, and exhaustive searh is infeasible. Suggestions of this type appear already in

Merkle and Hellman's original paper [35℄ and subsequent works as a method to inrease the bandwidth of

the sheme. These early attempts to redue the key size of knapsak based funtions were subjet to attaks

even more devastating than the general ase: in [4℄ it is observed that the problem easily redues to an in-

teger programming instane with O(m) variables, and therefore it an be solved in polynomial time for any

onstant value of m(n) = O(1), or even any slowly growing funtion m(n) = O(log n= log logn). Attempts
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to use ompat knapsaks to design eÆient ryptographi funtions persisted during the 90's [52, 33℄, but

were always followed by ryptanalyti attaks [55, 12, 31℄.

In this paper we introdue and study a new lass of ompat knapsaks whih are both very eÆient and

provably hard to solve in a strong sense similar to Ajtai's funtion [1℄. The one-way funtion proposed in [1℄

an be desribed as a generalization of the integer knapsak problem to arbitrary rings. Spei�ally, for any

ring R and subset S � R, onsider the following problem: given ring elements a

1

; : : : ; a

m

2 R and a target

value b 2 R, �nd oeÆients x

i

2 S suh that

P

m

i=1

a

i

� x

i

= b, where all operations are performed in the

ring. In Ajtai's work, R is the produt ring

1

Z

n

p

of n-dimensional vetors modulo p (for some polynomially

bounded p(n) = n

O(1)

) and S = f0;1g onsists of the additive and multipliative identities of the ring.

In partiular, S has size 2, and the problem an be solved by exhaustive searh in polynomial time when

m = O(log n).

In this paper we study ompat versions of the generalized knapsak problem, where the set S has size

muh larger than 2, so that exhaustive searh is infeasible even for very small values of m. In the ase of

the ring Z

n

p

, the �rst idea that omes to mind is to use, as oeÆients the set S = f0; 1g

n

of all binary

vetors, or, more generally, the set S = f0; : : : ; p

Æ

g

n

of n-dimensional vetors with entries muh smaller

than p. Unfortunately, as for the ase of the integer ompat knapsak problem desribed above, this

straightforward onstrution admits muh faster solutions than exhaustive searh: the resulting generalized

ompat knapsak is equivalent to n independent instanes of the knapsak problem modulo p, whih, for any

polynomially bounded p(n) = n

O(1)

, an be eÆiently solved in the worst ase by dynami programming.

Our ontribution. The main ontribution of this paper is the study of a new lass of ompat knapsak

funtions f

a

(x) =

P

i

a

i

�x

i

that are oneivably hard to invert in a very strong sense, even when the number

m of weights is very small. In partiular, we prove that, for appropriate hoie of ring R and subset S � R,

and for any unbounded funtion m(n) = !(1) (with arbitrarily slow growth rate) the ompat knapsak

funtion is at least as hard to invert on the average (even with nonnegligible probability) as the worst-ase

instane of various lattie problems (for the speial lass of yli latties) for whih no polynomial time

algorithm is known.

Our generalized knapsak problems are de�ned by the ring R = Z

n

p

of n-dimensional vetors modulo a

prime p with the omponentwise addition and onvolution produt operations. As in the previously disussed

ompat variant of Ajtai's funtion, the set S = f0; : : : ; p

Æ

g

n

onsists of all n-dimensional vetors with small

entries. Surprisingly, using the onvolution produt operation (as opposed to omponentwise multipliation)

makes the problem onsiderably harder: solving random instanes of our generalized ompat knapsaks

with nonnegligible probability is as hard as approximating the shortest independent vetor problem (as well

as various other lattie problems) on yli latties in the worst ase within fators n

1+�

(for any � > 0)

almost linear in the dimension of the lattie.

This results in strong one-way funtions with average-ase seurity guarantees based on a worst-ase

intratability assumption similar to Ajtai's funtion [1℄ (and subsequent improvements [9, 40, 42, 44℄,) but

with a muh smaller key size O(m log p

n

) = !(n logn), where !(�) is an unbounded funtion with arbitrarily

slow growth rate. (For omparison, [1, 9, 40, 42, 44℄ require m(n) = 
(n logn), and key size 
(n

2

log

2

n).)

Our ompat knapsak funtions are also extremely fast, as, for appropriate hoie of the parameters,

they an be omputed in almost linear time O(n log



n) using the fast Fourier transform in the evaluation

of the onvolution produts. Spei�ally, the ost of evaluating our funtions is equivalent to omputing an

almost onstant number !(1) of FFT operations on n-dimensional vetors modulo a small prime p = n

O(1)

.

The almost linear time evaluation algorithm together with the substantially smaller key size, make our

generalized ompat knapsak funtion even muh faster than the already attrative subset-sum funtion.

In the proess of establishing our hardness result, we prove various properties of our knapsak funtions

that might be of independent interest. In partiular, we prove that our ompat knapsak funtion f

a

(x) has

very small ollision probability. By a result of Impagliazzo and Zukerman [25℄, this is enough to guarantee

that the value f

a

(x) (for randomly hosen a and x) is almost uniformly distributed over Z

n

p

and independent

from a = (a

1

; : : : ; a

m

). Moreover, this is true for arbitrary small values of m(n) = !(1). Previous results of

this kind for the subset-sum funtion relied on the additive struture of Z

n

p

alone, and requiredm = 
(n log p).

1

The produt ring R

n

is the set of n-tuples with entries in R, with the omponentwise addition and multipliation operations.
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Our proof makes substantial use of the multipliative struture of the ring Z

n

p

(with the onvolution produt

operation) and the haraterization of its ideals as polynomial quotient rings.

Beside the tehnial ontribution of a very eÆient and provably seure one-way funtion based on a

worst-ase omplexity assumption, we view the following as additional ontributions of this papers: the

introdution of the lass of yli latties as a soure of interesting omputational problems; asting a new

light on the omplexity of the ompat knapsak problem showing that if the ring is appropriately hosen the

problem an be substantially harder than the integer ase; and demonstrating that the tehniques initially

developed in [1, 44℄ an be useful to study seemingly di�erent problems, and still produe the same kind of

strong worst-ase/average-ase seurity guarantees. In our view all these ontributions are important steps

toward the development of ryptographi funtions that are both eÆient and provably seure in a very

strong sense.

Related work The �rst onstrution of one-way funtion that is provably seure based on a worst-ase

omplexity assumption was given by Ajtai in [1℄. Subsequent work [9, 40, 42, 44℄ foused on improving

the required worst-ase omplexity assumption. In this paper, the goal is to improve the eÆieny of the

one-way funtion.

This paper is an almost omplete rewriting and substantial improvement of an extended abstrat [39℄

presented at FOCS 2002. In partiular, in [39℄ the author proved that solving the generalized ompat

knapsak on the average when m = O(log n) is at least as hard as approximating various lattie problems in

the worst ase within a fator n

3+�

. Here, we prove a new regularity theorem for ompat knapsak funtions

(Theorem 4.2) and inorporate the reently developed Gaussian distribution tehniques of [44℄, to present

an improved result that holds for any funtion m = !(1) with arbitrarily slow growth rate, and worst-ase

approximation fators n

1+�

almost linear in the dimension of the lattie.

For a desription of other related works, see Setion 5.

Organization The rest of the paper is organized as follows. In Setion 2 we reall basi notation, de�nitions

and results needed in this paper. In Setion 3 we prove two preliminary lemmas about yli latties that

will be used in the proof of our main result. In Setion 4 we present the main tehnial result of the paper:

we formally de�ne our generalized ompat knapsak funtion, and prove that inverting the funtion on

the average is at least as hard as the worst ase instane of various lattie problems on yli latties. In

the proess, we also establish various other properties of our ompat knapsak funtions that might be of

independent interest, e.g., we bound the ollision probability of the funtion, and prove that the funtion is

almost regular. Setion 5 onludes with a disussion of related work, the omplexity of yli latties, and

open problems.

2 Preliminaries

In this setion we introdue some notational onventions, and reall basi de�nitions and results about the

statistial distane, hash funtions, latties and Gaussian probability distributions.

For any real r � 0, TrU denotes the set f0; : : : ; brg of all positive integers not greater than r. The uniform

probability distribution over a set S is denoted U(S). We use the standard asymptoti notation f = O(g)

(or g = 
(f)) when lim sup

n!1

jf(n)=g(n)j < 1, f = o(g) (or g = !(f)) when lim

n!1

jf(n)=g(n)j = 0,

and f = �(g) when f = O(g) and f = 
(g).

A funtion f(n) is negligible (denoted f(n) = n

�!(n)

) if for every  there exists an n

0

suh that jf(n)j <

1=n



for all n > n

0

. Throughout the paper, we use olumn notation for all vetors, and use (�)

T

to denote

the matrix transposition operation.

2.1 Statistial distane

The statistial distane is a measure of how two probability distributions are far apart from eah other, and

it is a onvenient tool in the analysis of randomized algorithms and redutions. In this subsetion we de�ne

the statistial distane and state some simple fats that will be used in the analysis of the redutions in this
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paper. All the properties of the statistial distane stated in this subsetion are easily veri�ed. For more

details the reader is referred to [43, Chapter 8℄.

De�nition 2.1 Let X and Y be two disrete random variables over a (ountable) set A. The statistial

distane between X and Y is the quantity

�(X;Y ) =

1

2

X

a2A

jPrfX = ag � Pr fY = agj :

In the ase of ontinuous random variables, the statistial distane between X and Y is

�(X;Y ) =

1

2

Z

A

jÆ

X

(a)� Æ

Y

(a)jda;

where Æ

X

and Æ

Y

are the probability density funtions of X and Y respetively.

An easy alulation shows that the statistial distane �(X;Y ) equals the maximum over all sets S � A of

Pr fX 2 Sg�PrfY 2 Sg. So, for example, there is always a set S � A suh that Pr fX 2 Sg = Pr fY 2 Sg+

�(X;Y ).

We say that two random variables X;Y are identially distributed (written X � Y ) if and only if

Pr fX 2 Sg = Pr fY 2 Sg for every S � A. The reader an easily hek that the statistial distane

satis�es the usual properties of distane funtions, i.e., �(X;Y ) � 0 (with equality if and only if X � Y ),

�(X;Y ) = �(Y;X), and �(X;Z) � �(X;Y ) + �(Y; Z).

The following proposition shows that applying a (possibly randomized) funtion to two distributions does

not inrease the statistial distane.

Proposition 2.2 Let X;Y be two random variables taking values in a ommon set A. For any (possibly

randomized) funtion f with domain A, the statistial distane between f(X) and f(Y ) is at most

�(f(X); f(Y )) � �(X;Y ) (2.1)

As a orollary, we easily obtain the following.

Corollary 2.3 If X and Y are random variables over set A and p:A! f0; 1g is a prediate, then

jPr fp(X) = 1g � Pr fp(Y ) = 1gj � �(X;Y ): (2.2)

Another useful property of the statistial distane is the following.

Proposition 2.4 Let X

1

; : : : ; X

k

and Y

1

; : : : ; Y

k

be two lists of totally independent random variables. Then

�((X

1

; : : : ; X

k

); (Y

1

; : : : ; Y

k

)) �

k

X

i=1

�(X

i

; Y

i

): (2.3)

2.2 One-way hash funtion families

A funtion family ff

a

:X ! Rg

a2A

is a olletion of funtions (indexed by a set of keys A) with a ommon

domain X and range R. A (polynomial) funtion ensemble is a sequene ff

a

:X

n

! R

n

g

a2A

n

of funtion

families (indexed by a seurity parameter n 2 N) suh that log jA

n

j; log jX

n

j and log jR

n

j are all polynomial

in n. We assume that the elements of the sets A

n

; X

n

and R

n

an be eÆiently represented with log

2

jA

n

j,

log

2

jX

n

j and log

2

jR

n

j bits respetively, membership in the sets an be deided in polynomial time, and there

is a probabilisti polynomial time algorithm to sample from those sets with (almost) uniform distribution.

It is also ommon to assume that the funtions f

a

are eÆiently omputable, in the sense that there is a

polynomial time algorithm that on input n; a 2 A

n

and x 2 X

n

, outputs f

a

(x). All funtion ensembles

onsidered in this paper have these properties, namely the sets A

n

; X

n

; R

n

have eÆient representations and

the funtions f

a

are eÆiently omputable.
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A funtion (ensemble) is one-way if it is (easy to ompute, but) omputationally hard to invert, i.e., no

algorithm an eÆiently solve the following funtion inversion problem: given a pair (a; r) 2 A

n

�R

n

, �nd

an x 2 X

n

suh that f

a

(x) = r. One-wayness is an average-ase omplexity property, i.e., it requires that the

funtion inversion problem is omputationally hard when the input (a; r) 2 A

n

�R

n

is seleted at random.

The exat de�nition, for the ase of funtion ensembles, is given below.

De�nition 2.5 A funtion ensemble ff

a

: X

n

! R

n

g

a2A

n

is one-way if for any probabilisti polynomial

time algorithm A, the probability that f

a

(A(n; a; f

a

(x))) = f

a

(x) (when a 2 A

n

and x 2 X

n

are seleted

uniformly at random) is negligible in n.

Notie that the input distribution underlying the de�nition of one-way funtion is not the uniform dis-

tribution over A

n

� R

n

, but rather it orresponds to hoosing the target value r 2 R

n

as the image of a

uniformly random solution x 2 X . For any funtion ensemble H = ff

a

: X ! Rg

a2A

, we write owf(H)

to denote the probability distribution f(a; f(x)) : a 2 A

n

; x 2 X

n

g underlying the de�nition of one-way

funtion, and U(A�R) to denote the uniform probability distribution over A�R. We remark that De�ni-

tion 2.5 orresponds to the notion of strong one-way funtion, i.e., it is required that the suess probability

of any probabilisti polynomial time algorithm in solving the funtion inversion problem (when the input is

hosen aording to distribution owf(H)) is negligible.

The funtion families H = ff

a

: X ! Rg

a2A

onsidered in this paper have the property that the input

size log jX j is stritly bigger than the output size log jRj, i.e., the funtions \ompress" the size of the

input by a fator log jX j= log jRj. Suh funtions have many important appliations in omputer siene and

ryptography, and are generially alled hash funtions. In order to be useful, hash funtions must satisfy

some additional properties. A typial requirement is that if a 2 A and x 2 X are hosen uniformly at

random, the distribution of f

a

(x) 2 R is almost uniform and independent from a. In other words, owf(H)

is statistially lose to the uniform distribution U(A�R).

De�nition 2.6 Let H = ff

a

: X ! Rg

a2A

be a hash funtion family. We say that H is �-regular if

the statistial distane between owf(H) and the uniform distribution over U(A�R) is at most �. A hash

funtion ensemble fH

n

g is alled almost regular if H

n

is �(n)-regular for every n, for some negligible funtion

�(n) = n

�!(1)

.

We remark that if a funtion is �-regular for � = 0, then the funtion maps the uniform input distribution

to the uniform output distribution. So, de�nition 2.6 is a generalization of the standard notion of regular

funtion.

2.3 Latties

An n-dimensional lattie

2

is the set of all integer ombinations f

P

n

i=1

x

i

b

i

:x

i

2 Zg of n linearly independent

vetors b

1

; : : : ;b

n

in R

n

. The set of vetors b

1

; : : : ;b

n

is alled a basis for the lattie, and an be ompatly

represented by the matrix B = [b

1

j : : : jb

n

℄ 2 R

n�n

having the basis vetors as olumns. The lattie

generated by B is denoted L(B). Notie that L(B) = fBx:x 2 Z

n

g, where Bx is the usual matrix-vetor

multipliation. For any basis B, we de�ne the fundamental parallelepiped P(B) = fBx:8i:0 � x

i

< 1g. The

following lemma shows how to sample lattie points uniformly at random from the fundamental parallelepiped

assoiated to a given sublattie.

Lemma 2.7 ([43, Proposition 8.2℄) There is a probabilisti polynomial time algorithm that on input a

lattie basis B and a full rank sublattie S � L(B), outputs a lattie point x 2 L(B)\P(S) hosen uniformly

at random.

The dual of a lattie L(B) (denoted L(B)

�

) is the lattie generated by the matrix B

�T

, and onsists of

all vetors that have integer salar produt with all lattie vetors.

For any vetor x = (x

1

; : : : ; x

n

)

T

, de�ne the yli rotation rot(x) = (x

n

; x

1

; : : : ; x

n�1

)

T

, and the orre-

sponding irulant matrix Rot(x) = [x; rot(x); rot

2

(x); : : : ; rot

n�1

(x)℄. A lattie L(B) is yli if it is losed

2

For simpliity, is this paper we restrit all de�nitions to full dimensional latties.
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under the rotation operation, i.e., if x 2 L(B) implies rot(x) 2 L(B). It is easy to see that a lattie is

yli if and only if L(B) = rot(L(B)). The yli lattie generated by a vetor x is the lattie L(Rot(x))

generated by the irulant matrix of x, and it is the smallest yli lattie ontaining x.

The onvolution produt of two vetors x and y is the vetor

x
 y = Rot(x) � y

with entries de�ned by the equation

(x 
 y)

k

=

X

i+j=k mod n

x

i

� y

j

:

It an be easily veri�ed that the onvolution produt is assoiative and ommutative, i.e., it satis�es the

equational axioms x 
 (y 
 z) = (x 
 y) 
 z, and x 
 y = y 
 x. Moreover, it distributes over the vetor

addition operation: (x+ y) 
 z = x
 z+ y 
 z. Therefore, (R

n

;+;
) is a ommutative ring with identity

e

1

= (1; 0; : : : ; 0)

T

.

The Eulidean norm of a vetor x is the quantity kxk =

p

P

i

x

2

i

. Other norms used in this paper are

the `

1

norm kxk

1

=

P

i

jx

i

j and the max norm kxk

1

= max

i

jx

i

j. These norms and the onvolution produt

are related by the following inequalities, valid for any n-dimensional vetors x;y 2 R

n

:

kxk � kxk

1

�

p

nkxk

kxk

1

� kxk �

p

nkxk

1

kx
 yk

1

� kxk � kyk

kx
 yk

1

� kxk

1

� kyk

1

:

The minimum distane of a lattie L(B), denoted �

1

(L(B)), is the minimum distane between any two

(distint) lattie points and equals the length of the shortest nonzero lattie vetor:

�

1

(L(B)) = minfdist(x;y) : x 6= y 2 L(B)g = minfkxk : x 2 L(B) n f0gg:

The notion of minimum distane an be generalized to de�ne the ith suessive minimum �

i

as the smallest

radius r suh that the losed sphere

�

B(r) = fx: kxk � rg ontains i linearly independent lattie points:

�

i

(L(B)) = minfr : dim(span(L(B) \

�

B(r))) � ig

Another important onstant assoiated to a lattie is the overing radius. The overing radius �(L(B)) of a

lattie is the maximum distane dist(x;L(B)) when x ranges over the linear span of B:

�(L(B)) = maxfdist(x;L(B)) : x 2 R

n

g:

A sublattie of L(B) is a lattie L(S) suh that L(S) � L(B). We always assume that sublatties have full

rank, i.e., dim(span(S)) = dim(span(B)).

In many algorithmi problems on point latties the quality of a solution is measured with respet to some

spei� lattie parameter, e.g., the length �

1

of the shortest nonzero vetor, or the radius �

n

of the smallest

sphere ontaining n linearly independent lattie vetors. For example, the (n)-approximate shortest vetor

problem asks to �nd a nonzero vetor in a lattie L(B) of length at most (n) � �

1

(L(B)), where n is the

rank of the lattie. For tehnial reasons, in this paper we onsider generalized versions of various lattie

problems where the quality of the solution is measured with respet to an arbitrary funtion of the lattie

�(L(B)). The �rst of these problems is the following generalization of the shortest independent vetor

problem introdued in [42℄.

De�nition 2.8 The generalized independent vetors problem GIVP

�



, given an n-dimensional lattie B,

asks for a set of n linearly independent lattie vetors S � L(B) suh that kSk � (n) � �(L(B)).
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The shortest independent vetors problem SIVP



(studied in [7℄ and used in [1, 9, 40, 42, 44℄ as a soure

of omputational hardness) is a speial ase of GIVP

�



where � = �

n

. Another problem that will play a

fundamental role in this paper is the following.

De�nition 2.9 The guaranteed distane deoding problem (GDD

�



), given a lattie B and a target point

t 2 span(B), asks for a lattie point x 2 L(B) suh that dist(t;x) � (n) � �(L(B)), where n is the rank of

the lattie.

This time it is natural to set � = � to the overing radius of the lattie, beause for any lattie basis B

and target t 2 R

n

, there is always a lattie point within distane �(L(B)) from t. GDD

�



is an interesting

variant of the losest vetor problem CVP, where the quality of the solution is measured with respet to the

worst possible distane max

t2R

n

dist(t;L(B)) rather then the distane of the given target dist(t;L(B)).

The GDD

�



and GIVP

�



are easily related by the following theorem, whose proof is impliit in [43,

Theorem 7.9℄.

Theorem 2.10 For any  > 2, there is a polynomial time redution from GIVP

�



to GDD

�



. Moreover,

the redution is lattie preserving, in the sense that all the alls made to the GDD orale are of the form

(B; t) where B is the input GIVP lattie.

Proof: Let B an input GIVP

�



instane. We build a set of n = dim(B) linearly independent vetors

s

1

; : : : ; s

n

2 L(B) of length ks

i

k � l = (n) � �(L(B)) indutively as follows. For any i = 1; : : : ; n,

� let t 2 span(B) be a vetor orthogonal to s

1

; : : : ; s

i�1

of length ktk = l=2,

� all the GDD

�



orale on input (B; t) to �nd a lattie vetor s

i

2 L(B) within distane (n) ��(L(B)) =

l= < l=2 from t.

Notie that eah s

i

is linearly independent from s

1

; : : : ; s

i�1

beause the distane of s

i

from span(s

1

; : : : ; s

i�1

)

is at least ktk� ks

i

� tk > 0. Moreover, by triangle inequality, the length of s

i

is at most ktk+ ks

i

� tk < l.

2

Most lattie problems an be meaningfully restrited to yli latties, or other speial lasses of latties.

For example, the losest vetor or GDD problem for yli latties is: given a yli lattie L(B), a target

vetor t, and a real parameter r > 0, �nd a lattie point x 2 L(B) within distane r from the target t.

Our generalized ompat knapsak funtions are at least as hard to invert on the average as the worst-ase

instane of approximating various lattie problems (e.g., SIVP or GDD) over yli latties in the worst

ase within almost linear fators n

1+�

, for arbitrarily small � > 0. Lattie preserving redutions, as the one

given in Theorem 2.10, are partiularly useful in the ontext of this paper beause they allow to redue a

(worst-ase) lattie problem over a given lass of latties (e.g., yli latties) to another (worst-ase) lattie

problem over the same lass of latties. In partiular, Theorem 2.10 implies that there is a redution from

GIVP over yli latties to GDD over yli latties.

2.4 Gaussian distributions

We use the Gaussian distribution tehniques reently introdued in [44℄ to simplify and improve the results

desribed in a preliminary version of this paper [39℄. In this subsetion we reall all the required de�nitions

and results from [44℄. For any vetors ;x and any s > 0, let

�

s;

(x) = e

��k(x�)=sk

2

be a Gaussian funtion entered in  saled by a fator of s. The total measure assoiated to �

s;

is

R

x2R

n

�

s;

(x)dx = s

n

. So,

R

x2R

n

(�

s;

(x)=s

n

)dx = 1 and �

s;

=s

n

is a probability density funtion. As noted

in [44℄, �

s;

=s

n

an be expressed as the sum of n orthogonal 1-dimensional Gaussian distributions, and

eah of them an be eÆiently approximated with arbitrary preision using standard tehniques. So, the

distribution �

s;

=s

n

an be eÆiently approximated. For simpliity, in this paper we work with real numbers

and assume we an sample from �

s;

=s

n

exatly. In pratie, when only �nite preision is available, �

s;

=s

n

8



an be approximated by piking a �ne grid, and piking points from the grid with probability approximately

proportional to �

s;

=s

n

. All our arguments an be made rigorous by seleting a suÆiently �ne grid.

Funtions are extended to sets in the usual way; e.g., �

s;

(A) =

P

x2A

�

s;

(x) for any ountable set A.

For any s;  and lattie �, de�ne the disrete probability distribution (over the lattie �)

D

�;s;

(x) =

�

s;

(x)

�

s;

(�)

;

where x 2 �. Intuitively, D

�;s;

is the onditional probability

3

that (�

s;

=s

n

) = x given (�

s;

=s

n

) 2 �. For

brevity, we sometimes omit s or  from the notation �

s;

and D

�;s;

. When  or s are not spei�ed, we

assume that they are the origin and 1 respetively.

In [44℄ Gaussian distributions are used to de�ne a new lattie invariant, alled the smoothing parameter,

de�ned as follows.

De�nition 2.11 For an n-dimensional lattie �, and positive real � > 0, the smoothing parameter �

�

(�) is

the smallest s suh that �

1=s

(�

�

n f0g) � �.

In [44℄ many important properties of the smoothing parameter are established. Here we only need the

following three bounds. The �rst one shows that the smoothing parameter is the amount of Gaussian noise

that needs to be added to a lattie in order to get an almost uniform distribution.

Lemma 2.12 ([44, Lemma 4.1℄) Let �

s

=s

n

mod B be the distribution obtained by sampling a point aord-

ing to the probability density funtion �

s

=s

n

and reduing the result modulo B. For any lattie L(B), the sta-

tistial distane between �

s

=s

n

mod B and the uniform distribution over P(B) is at most

1

2

�

1=s

(L(B)

�

nf0g).

In partiular, if s � �

�

(L(B)), then the distane �(�

s

=s

n

mod B; U(P(B))) is at most �=2.

The seond property shows that if s is suÆiently large, then the seond moment of the distribution

D

�;s;

is essentially the same as the one of the ontinuous Gaussian distribution �

;s

=s

n

.

Lemma 2.13 ([44, Lemma 4.2, Equation (2)℄) For any n-dimensional lattie �, point  2 R

n

, unit

vetor u, and positive real s > 0 suh that �

1=s

(�

�

n f0g) < 1,

�

�

�

�

�

Exp

x�D

�;s;

�

hx� ;ui

2

�

�

s

2

2�

�

�

�

�

�

� s

2

�

�

2=s

(�

�

n f0g)

1� �

1=s

(�

�

n f0g)

:

The last property bounds the smoothing parameter in terms of �

n

.

Lemma 2.14 ([44, Lemma 3.3℄) For any n-dimensional lattie � and positive real � > 0,

�

�

(�) �

r

ln(2n(1 + 1=�))

�

� �

n

(�):

In partiular, for any super-logarithmi funtion !(logn) there is a negligible funtion �(n) suh that �

�

(�) �

p

!(logn) � �

n

.

3 Two lemmas about yli latties

In this setion we prove two preliminary lemmas about yli latties that will be used in the proof of

our main results in the next setion. The results are presented here beause their formulation is largely

independent from the spei� redution in whih they are used, and might be of independent interest.

The �rst lemma gives an eÆient algorithm to selet a full rank yli sublattie generated by a single

short vetor from an arbitrary yli input lattie.

3

We are onditioning on an event that has probability 0; this an be made rigorous by standard tehniques.
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Lemma 3.1 There exists a polynomial time algorithm that on input a full rank n-dimensional lattie S,

omputes a vetor  2 L(S) suh that kk

1

� 2 � n � kSk and Rot() has full rank.

Proof: Let S = kSk. We use Babai's nearest plane algorithm [6℄ to �nd a vetor  2 L(S) within Eulidean

distane (

p

n=2) � S from nSe

1

. Notie that the `

1

norm of  is at most

kk

1

� k(nS � e

1

)k

1

+ k(� nSe

1

)k

1

� nS +

p

nk� nSe

1

k

� 1:5 � nS:

It remains to show that Rot() is nonsingular, or equivalently, the n-dimensional volume of P(Rot()) is

nonzero. Notie that P(Rot()) is an almost ubi parallelepiped obtained by perturbing the main verties

of a hyperube of size l = nS by at most � = (

p

n=2)S. In [41℄ it is shown that, for all � <

p

1� 1=n � l=

p

n,

the minimal volume of any suh parallelepiped is (1� �)

n

l

n

. In partiular the volume is nonzero.

4

Sine

� =

p

n

2

S <

p

nS

r

1�

1

n

=

r

1�

1

n

�

l

p

n

;

the volume of P(Rot()) is nonzero, and the matrix Rot() has full rank. 2

In [44℄, Lemma 2.13 is used to prove that the expeted squared norm kd � k

2

(when d is hosen

aording to distribution D

�;s;

) is at most s

2

� n. In this paper we will need a bound on the expeted value

of the onvolution produt k(d � ) 
 xk

2

. It immediately follows from the result in [44℄ and inequality

kx 
 yk �

p

nkxk � kyk that for any vetor x, the expetation of k(d � ) 
 xk

2

is at most s

2

� n

2

� kxk

2

.

Below, we use Lemma 2.13 to diretly prove a stronger bound.

Lemma 3.2 For any n-dimensional lattie �, positive reals � � 1=3, s � 2�

�

(�) and vetors ;x 2 R

n

,

Exp

d�D

�;s;

�

k(d� )
 xk

2

�

� s

2

� n � kxk

2

:

Proof: Let e

1

; : : : ; e

n

be the standard basis of R

n

. Notie that (d� )
x = x
 (d� ) = Rot(x) � (d� ),

and e

T

i

� Rot(x) = (rot

i

(
~
x))

T

, where
~
x = (x

n

; : : : ; x

1

)

T

is the reverse of x. By linearity of expetation, we

have

Exp

d�D

�;s;

�

k(d� )
 xk

2

�

=

n

X

i=1

Exp

d�D

�;s;

�

he

i

; (d� )
 xi

2

�

:

For every i = 1; : : : ; n,

he

i

; (d� )
 xi = e

T

i

�Rot(x) � (d� )

= hrot

i

(
~
x);d� i

= kxkhu

i

;d� i

where u

i

= rot

i

(
~
x)=kxk is a unit vetor. So,

Exp

d�D

�;s;

�

k(d� )
 xk

2

�

= kxk

2

�

n

X

i=1

Exp

d�D

�;s;

�

hu

i

;d� i

2

�

:

Using the assumption s � 2�

�

(�) and applying Lemma 2.13, we get that for all i = 1; : : : ; n,

Exp

d�D

�;s;

�

hu

i

;d� i

2

�

� s

2

�

1

2�

+

�

1� �

�

� s

2

�

1

2�

+

1=3

1� 1=3

�

� s

2

:

Adding up for all i and substituting in the previous equation we get

Exp

d�D

�;s;

�

k(d� )
 xk

2

�

� s

2

kxk

2

n:

2

4

The minimal volume (1� �)

n

l

n

is ahieved by the intuitive solution that shortens eah edge by �. Interestingly, as shown in

[41℄, when � = l=

p

n there are better ways to hoose the perturbations that result in a singular parallelepiped with zero volume.
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4 Generalized ompat knapsaks

The hash funtion families onsidered in this paper, as well as previous works [1, 9, 40, 42, 44℄, are all speial

ases of the following general de�nition.

De�nition 4.1 For any ring R, subset S � R and integer m � 1, the generalized knapsak funtion family

H(R;S;m) = ff

a

: S

m

! Rg

a2R

m

is de�ned by

f

a

(x) =

m

X

i=1

x

i

� a

i

;

for all a 2 R

m

and x 2 S

m

, where

P

i

x

i

�a

i

is omputed using the ring addition and multipliation operations.

In this paper we onsider the ring R = (F

n

p(n)

;+;
) of n-dimensional vetors over the �nite �eld F

p(n)

with p(n) = n

O(1)

elements, with the usual vetor addition operation and onvolution produt 
. For brevity,

we will denote this ring simply as F

n

p(n)

. We remark that for any prime p, the �eld F

p

is isomorphi to the

ring Z

p

of integers modulo p. Here we use notation F

n

p

instead of Z

n

p

both beause some of our results are

valid even when p is not a prime, and also to emphasize that F

n

p

is the ring of vetors with the onvolution

produt operation, rather than the omponentwise multipliation of the produt ring Z

n

p

.

As for S, we onsider the set S = D

n

� F

n

p

of vetors with entries in an appropriately seleted subset of

F

p

. We want to study the hash funtion family H(F

n

p

; D

n

;m), and prove that it is both almost regular and

one-way.

The rest of the setion is organized as follows. In Subsetion 4.1 we prove that H(F

n

p

; D

n

;m) is almost

regular. In Subsetion 4.2 we introdue and start studying a new worst-ase lattie problem that will be

instrumental to prove our main results. In Subsetion 4.3 we give a redution from solving this problem in

the worst ase to the problem of inverting funtions H(F

n

p

; D

n

;m) on the average. Finally, in Subsetion 4.4

we establish relations between inverting H(F

n

p

; D

n

;m) on the average, and solving various other worst-ase

problems on yli latties, like SIVP and GDD

�

.

4.1 Regularity lemma

For any ring R of size jRj � 2

n

, a neessary ondition for the hash funtion family H(R; f0; 1g;m) to be

almost regular is m � 
(log jRj) � 
(log n), beause when m � o(log jRj), almost a tiny fration of the

elements of R an be expressed as the sum of a subset of fa

1

; : : : ; a

m

g. In this subsetion we prove that the

hash funtion family H(F

n

p

; D

n

;m) is almost regular already when m = !(1) is an unbounded funtion with

arbitrarily slow growth rate. Our proof is quite di�erent from the standard proof for the subset-sum funtion

H(R; f0; 1g;m). In partiular, while the proof for H(R; f0; 1g;m) only relies on the additive struture of R,

our proof makes full use of the ring properties of F

n

p

and the haraterization of its ideals as quotients of

polynomial rings.

Theorem 4.2 For any �nite �eld F, subset D � F, and integers n;m, the hash funtion family H(F

n

; D

n

;m)

is �-regular for

� =

1

2

p

(1 + jFj=jDj

m

)

n

� 1:

In partiular, for any p(n) = n

O(1)

, jD

n

j = n


(1)

and m(n) = !(1), the funtion ensemble H(F

n

p(n)

; D

n

n

;m(n))

is almost regular.

The proof of the theorem is based on the following lemma of Impagliazzo and Zukerman.

Lemma 4.3 ([25, Claim 2℄) Let V; V

0

be independent and identially distributed random variables taking

values in a �nite set S. If V; V

0

have ollision probability Pr fV = V

0

g � (1 + 4�

2

)=jSj, then the statistial

distane between V and the uniform distribution over S is at most �.
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Proof: For ompleteness, we give a sketh of the proof. Let � be the statistial distane between V and

the uniform distribution. By de�nition of statistial distane, there is a set X � S suh that Pr fV 2 Xg =

jX j=jSj+ �. Therefore the ollision probability satis�es

Pr fV = V

0

g = Pr

�

V = V

0

V; V

0

2 X

	

Pr fV 2 Xg

2

+Pr

�

V = V

0

V; V

0

=2 X

	

Pr fV =2 Xg

2

�

Pr fV 2 Xg

2

jX j

+

PrfV =2 Xg

2

jSj � jX j

=

1

jSj

+

�

2

jSj

jX j(jSj � jX j)

whih is minimized when jX j = jSj=2. Substituting jX j = jSj=2, we get that the ollision probability is at

least (1 + 4�

2

)=jSj. 2

We also need the following simple lemma.

Lemma 4.4 Let R be a �nite ring, and z

1

; : : : ; z

m

2 R a sequene of arbitrary ring elements. If a

1

; : : : ; a

m

2

R are independently and uniformly distributed ring elements, then

P

a

i

� z

i

is uniformly distributed over the

ideal hz

1

; : : : ; z

m

i generated by z

1

; : : : ; z

m

. In partiular, for any z

1

; : : : ; z

m

2 R and randomly hosen

a

1

; : : : ; a

m

2 R, the probability that

P

a

i

� z

i

= 0 is exatly 1=jhz

1

; : : : ; z

m

ij.

Proof: Let z

1

; : : : ; z

m

2 R be arbitrary ring elements, and, for any b 2 R, de�ne A

b

= f(a

1

; : : : ; a

m

) 2

R

m

:

P

a

i

� z

i

= bg. Notie that the probability that

P

i

a

i

� z

i

= b (over the random hoie of a

1

; : : : ; a

m

)

equals jA

b

j=jRj

m

. If b =2 hz

1

; : : : ; z

m

i, then A

b

= ; and Pr f

P

a

i

� z

i

= bg = 0. It remains to prove that all

b 2 hz

1

; : : : ; z

m

i have the same probability. Let b =

P

a

i

� z

i

an arbitrary element of hz

1

; : : : ; z

m

i. We laim

that jA

b

j = jA

0

j. It is easy to see that a

0

2 A

b

if and only if a

0

� a 2 A

0

. Sine a

0

7! a

0

� a is a bijetion

between A

b

and A

0

, it follows that jA

b

j = jA

0

j. This proves that all b 2 R have the same probability

jA

b

j=jRj

m

= jA

0

j=jRj

m

, and ompletes the proof of the lemma. 2

We are now ready to prove the theorem.

Proof [of Theorem 4.2℄: We want to prove that owf(H(F

n

; D

n

;m)) is very lose to the uniform distribu-

tion over (F

n

)

m

�F

n

. We �rst bound the ollision probability of two independent opies of owf(H(F

n

; D

n

;m)).

Let ((a

1

; : : : ; a

m

);

P

i

a

i


x

i

) and ((a

0

1

; : : : ; a

0

m

);

P

i

a

0

i


x

i

) be two independent samples hosen aording to

the distribution owf(H(F

n

; D

n

;m)). By de�nition, the elements a

i

; a

0

i

2 F

n

and x

i

;x

0

i

2 D

n

are all hosen

independently and uniformly at random from their respetive sets. Therefore, the ollision probability is

Pr

(

8i:a

i

= a

0

i

^

m

X

i=1

a

i


 x

i

=

m

X

i=1

a

0

i


 x

0

i

)

= Pr f8i:a

i

= a

0

i

g

�Pr

�

P

m

i=1

a

i


 x

i

=

P

m

i=1

a

0

i


 x

0

i

8i:a

i

= a

0

i

	

=

1

jFj

mn

� Pr

(

m

X

i=1

a

i

� (x

i

� x

0

i

) = 0

)

:

By Lemma 4.4, the probability (over the random hoie of a

1

; : : : ; a

m

) that

P

i

a

i


 (x

i

� x

0

i

) = 0 equals

1=jI j where I = hx

1

� x

0

1

; : : : ;x

m

� x

0

m

i is the ideal generated by x

1

� x

0

1

; : : : ;x

m

� x

0

m

. Let I be the set of

all ideals of (F

n

;+;
). Conditioning on the value of I , the ollision probability an be expressed as

1

jFj

mn

� Pr

(

m

X

i=1

a

i

� (x

i

� x

0

i

) = 0

)

=

1

jFj

nm

�

X

I2I

Pr fhx

1

� x

0

1

; : : : ;x

m

� x

0

m

i = Ig

jI j

�

1

jFj

nm

�

X

I2I

Pr fhx

1

� x

0

1

; : : : ;x

m

� x

0

m

i � Ig

jI j

=

1

jFj

n(m+1)

�

X

I2I

jFj

n

jI j

�

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 Ig :

12



In the rest of the proof, we regard F

n

as the ring of univariate polynomials F[�℄ modulo �

n

� 1. Sine F is

a �eld, F[�℄ is a prinipal ideal domain, i.e., all ideals in F[�℄ are of the form hQ(�)i for some polynomial

Q(�) 2 F[�℄. It follows that all ideals I 2 I of the quotient ring F[�℄=(�

n

� 1) are of the form hQ(�)i where

Q(�) is a fator of �

n

� 1. (To see this, given an ideal I 2 I, selet a representative for eah element of I ,

and let Q(�) be the greatest ommon divisor of all these representatives and the polynomial �

n

� 1.) Let

(�

n

� 1) = Q

1

(�) � Q

2

(�) � � � � � Q

r

(�) be the fatorization of (�

n

� 1) into irreduible polynomials over F,

and for any subset S � f1; : : : ; rg, let Q

S

(�) = �

i2S

Q

i

(�). The ideals of R are I = fhQ

S

i:S � f1; : : : ; rgg.

For any ideal hQ

S

i 2 I, we have jhQ

S

ij = jFj

n�deg Q

S

and

Pr f(x

i

� x

0

i

) 2 hQ

S

ig = Pr fx

i

� x

0

i

mod Q

S

g � max

b

Pr fx

i

mod Q

S

= bg �

1

jDj

deg(Q

S

)

:

Therefore,

jFj

n

jhQ

S

ij

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 hQ

S

ig �

jFj

n

jFj

n�deg Q

S

�

1

jDj

degQ

S

�

m

=

�

jFj

jDj

m

�

degQ

S

and, adding up over all ideals,

X

hQ

S

i2I

jFj

n

jhQ

S

ij

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 hQ

S

ig �

X

S

�

jFj

jDj

m

�

degQ

S

=

r

Y

i=1

 

1 +

�

jFj

jDj

m

�

degQ

i

!

�

�

1 +

jFj

jDj

m

�

n

:

This proves that the ollision probability is at most

(1 + jFj=jDj

m

)

n

jFj

n(m+1)

:

Now observe that random variable owf(H(F

n

; D

n

;m)) takes values in the set (F

n

)

m

�F

n

, whih has size

jFj

n(m+1)

. Therefore, by Lemma 4.3, the statistial distane between owf(H(F

n

; D

n

;m)) and the uniform

distribution over (F

n

)

m

� F

n

is at most

� =

1

2

s

�

1 +

jFj

jDj

m

�

n

� 1:

2

4.2 The worst ase problems

We want to show that inverting our generalized ompat knapsak funtion H(F

n

; D

n

;m) (on the average

and with nonnegligible probability) is at least as hard as solving GDD

�



(as well as various other related

problems) over yli latties in the worst ase. Following [42℄, this is done in two steps. First, all relevant

worst-ase lattie problems are redued to an intermediate worst-ase problem, and then the intermediate

problem is redued to the problem of inverting funtions in H(F

n

; D

n

;m) on the average. In [42℄, the goal

is to redue the worst-ase problem GIVP



to the problem of inverting

5

H(Z

n

p

; f0;1g;m) on the average,

and the intermediate problem is an inremental version of GIVP, where given a lattie basis B, a set of

suÆiently long linearly independent lattie vetors S, and a hyperplane H , the goal is to �nd a lattie

vetor not in H shorter than kSk by some onstant fator.

5

In fat, [42℄ only requires an algorithm that �nds ollisions f

a

(x) = f

a

(x

0

), an easier problem than inverting the funtion

f

a

.
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De�nition 4.5 The inremental generalized shortest independent vetor problem InGIVP

�

;

is: given

a lattie basis B, a hyperplane H, and a set of linearly independent lattie vetors S suh that kSk >

(n) � �(L(B)), �nd a lattie vetor s 2 L(B) nH suh that ksk � kSk=.

In [42℄ it is shown that GIVP

�



is polynomial time reduible to InGIVP

�

;2

. The redution given in

[42℄ has also the additional property that all alls made by the redution to the InGIVP orale are of the

form (B;S; H) where B is the GIVP input lattie basis. If a redution between lattie problems has this

property, then we say that the redution is lattie preserving. Lattie preserving redutions are partiularly

useful in the ontext of our paper beause they allow to redue a (worst-ase) lattie problem over a given

lass of latties (e.g., yli latties) to another (worst-ase) lattie problem over the same lass of latties.

Theorem 4.6 ([42℄, Theorem 6.3) There is a polynomial time lattie preserving redution from GIVP

�



to InGIVP

�

;2

.

Here we onsider a di�erent intermediate problem, whih is an inremental version of GDD, where one is

given a GDD instane (B; t), a set of n linearly independent vetors S � L(B), and a suÆiently large real

parameter r, and the goal is to �nd a lattie vetor whose distane from the target is smaller than kSk+ r

by some onstant fator.

De�nition 4.7 The inremental guaranteed distane deoding problem (InGDD

�

;

), given an n-dimensional

lattie B, a set of n linearly independent vetors S � L(B), a target t 2 R

n

, and a real r > (n) � �(L(B)),

asks for a lattie vetor s 2 L(B) suh that ks� tk � (kSk+ r)=.

We want to prove a result similar to Theorem 4.6, but for the GDD problem and its inremental variant

InGDD.

Theorem 4.8 For any  > 8, there is a polynomial time lattie preserving redution from GDD

�



to

InGDD

�

;

.

Proof: The redution works in three stages. We �rst solve the GDD problem assuming we have orales

to solve both InGDD and GIVP. Next, we use Theorem 4.6 to redue GIVP to InGIVP. Finally, we

redue InGIVP to InGDD, so that the originalGDD problem an be solved using an orale for InGDD

alone. All the redutions are lattie preserving, and therefore their ombination is lattie preserving too.

Let (B; t) be a GDD

�



instane, and assume we have aess to both an InGDD

�

;

orale and a GIVP

�

;2

one. First we use theGIVP

�

;2

orale on input B to �nd a set of linearly independent lattie vetors S � L(B)

suh that kSk � (n) � �(L(B)). Then, we perform a binary searh on the value of r until we �nd a value

suh that the InGDD orale suessfully solves instane (B;S; t; r), but fails on input (B;S; t; r=2). Let

s 2 L(B) be the solution returned by the orale on input (B;S; t; r). We know that r=2 � (n) � �(L(B))

beause InGDD failed on input (B;S; t; r=2). Therefore

dist(s; t) �

kSk+ r



�

(n) � �(L(B)) + 2(n) � �(L(B))



�

3



(n) � �(L(B)):

By Theorem 4.6, the GIVP

�



orale needed in the previous redution, an be implemented given an

InGIVP

�

;2

orale. It remains to show that there is a lattie preserving redution from InGIVP

�

;2

to

InGDD

�

;

for any  > 8. The redution is very simple and works as follows. Let (B;S; H) be the

InGIVP

�

;2

input instane. Let t be a vetor orthogonal to H of length kSk=4, and r = kSk. Notie

that, sine (B;S; H) is a valid InGIVP

�

;2

instane, we have r = kSk > (n) � �(L(B)). This proves that

(B;S; t; r) is a valid instane of InGDD

�

;

. Let s be the solution returned by the InGDD

�

;

orale on

input (B;S; t; r). We know that s 2 L(B) and

dist(s; t) �

kSk+ r



=

2kSk



<

kSk

4

:
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Therefore, s =2 H beause

dist(s; H) � dist(t; H)� dist(s; t) > ktk �

kSk

4

� 0:

Moreover, by the triangle inequality,

ksk � ktk+ dist(s; t) <

kSk

4

+

kSk

4

=

kSk

2

:

This proves that s is a solution to the original InGIVP

�

;2

problem. 2

4.3 The main redution

In this setion we redue the worst-ase problem InGDD

�

;

on yli latties to the problem of inverting

the ompat knapsak funtions owf(H(F

n

p(n)

; D

n

;m(n))) on the average.

Theorem 4.9 For any onstants 

0

> 2 and Æ > 0, negligible funtion �(n) = n

�!(1)

, and polynomially

bounded funtions m(n) = !(1) and p(n) � (

0

�m(n) � n

2:5

)

1=(1�Æ)

, there is a probabilisti polynomial time

redution from solving InGDD

�

�

(n);

within a fator (n) = 

0

�m(n) �n � p(n)

Æ

in the worst ase over yli

latties (with high probability), to solving random instanes of owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))) on the average

(with nonnegligible probability).

Proof: For any equation Q = (q

1

; : : : ;q

m(n)

;q

0

) 2 F

n�m(m)

p(n)

� F

n

p(n)

, let

�(Q) =

8

<

:

X = (x

1

; : : : ;x

m(n)

):8i:x

i

2 Tp

Æ

U

n

^

m(n)

X

i=1

q

i


 x

i

= q

0

mod p(n)

9

=

;

be the orresponding set of solutions. Let F be an orale that on input an instaneQ of the knapsak funtion

inversion problem seleted at random aording to distribution owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))), outputs a

solution F(Q) 2 �(Q) with nonnegligible probability. Let �(n) be the probability that F(

~

Q) 2 �(

~

Q) when

~

Q is seleted uniformly at random from F

n�m(m)

p(n)

� F

n

p(n)

. Sine p(n) = n

O(1)

, jTp(n)

Æ

Uj � p(n)

Æ

= n


(1)

and

m(n) = !(1), by Theorem 4.2 the probability distribution owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))) is statistially

lose to the uniform one U(F

n�m(m)

p(n)

� F

n

p(n)

). Therefore, �(n) is nonnegligible too. We use F to solve

problem InGDD

�

;

over yli latties in the worst ase, with nonnegligible probability 
(�(n)). Sine we

are solving InGDD

�

;

in the worst ase, the suess probability of the redution an be made exponentially

lose to 1 using standard repetition tehniques.

Let (B;S; t; r) be a valid InGDD

�

;

instane suh that the lattie L(B) is yli. We know that L(S) is

a (not neessarily yli) full rank sublattie of L(B), and r > (n) ��

�(n)

(L(B)) for some negligible funtion

�(n) = n

�!(1)

. The goal of the redution is to �nd a lattie vetor s 2 L(B) within distane (r + kSk)=

from the target t. The redution works as follows:

1. Use Lemma 3.1 to �nd a vetor  2 L(S) � L(B) of length kk

1

� 2 � n � kSk suh that Rot() has full

rank.

2. For i = 0; : : : ;m(n), do the following

(a) Use Lemma 2.7 to generate a uniformly random lattie vetor v

i

2 L(B) \ P(Rot()).

(b) Generate a random noise vetor y

i

with probability density y

i

� �

s

=s

n

for s = 2r=(n), and let

y

0

i

= y

i

mod B.

() Compute a

i

= bp(n) � Rot

�1

()(v

i

+ y

0

i

).

3. Compute b = bp(n) �Rot

�1

()t.

15



4. De�ne the equation

Q = (a

1

mod p(n); : : : ; a

m

mod p(n); a

0

+ b mod p(n)) (4.4)

and invoke F(Q) to �nd a potential solution X = (x

1

; : : : ;x

m(n)

), where x

i

2 Tp(n)

Æ

U

n

for all i =

1; : : : ;m(n).

5. Let x

0

= �e

1

, and return the vetor

s =

m(n)

X

i=0

�

v

i

+ y

0

i

�


 a

i

p(n)

� y

i

�


 x

i

+


 b

p(n)

:

The orretness of the redution is based on the following two lemmas. The �rst lemma shows that if the

orale F suessfully outputs a solution to equation Q, then the redution outputs a lattie vetor s 2 L(B).

Lemma 4.10 If (x

1

; : : : ;x

m(n)

) is a valid solution to equation (4.4), then s 2 L(B) is a lattie vetor.

Proof: Assume (x

1

; : : : ;x

m(n)

) is a valid solution to equation (4.4), i.e.,

m(n)

X

i=1

a

i


 x

i

� (a

0

+ b) mod p(n):

Using the distributive and assoiative properties of 
, vetor s an be rewritten as the sum

s =

m(n)

X

i=0

(v

i

+ y

0

i

� y

i

)
 x

i

� 


P

m(n)

i=0

a

i


 x

i

� b

p(n)

:

We laim that all terms in the summation belong to the lattie L(B). First of all notie that for any i � 0,

the vetor v

i

+ y

0

i

�y

i

belongs to the lattie L(B) beause v

i

2 L(B) and y

0

i

� y

i

modulo L(B). Using the

yliity of L(B), we get that all olumns of Rot(v

i

+ y

0

i

� y

i

) belong to the lattie, and

(v

i

+ y

0

i

� y

i

)
 x

i

= Rot(v

i

+ y

0

i

� y

i

) � x

i

2 L(B)

beause x

i

has integer entries. For the last term, we use the fat that (x

1

; : : : ;x

m(n)

) is a solution to the

linear equation (4.4) and a

0


 x

0

= �a

0

, yielding

X

i�0

a

i


 x

i

� b =

X

i�1

a

i


 x

i

� (a

0

+ b) � 0 mod p(n):

Therefore (

P

i�0

a

i


 x

i

� b)=p(n) is an integer vetor, and




P

i�0

a

i


 x

i

� b

p(n)

= Rot() �

P

i�0

a

i


 x

i

� b

p(n)

2 L(Rot()) � L(B):

2

The seond lemma shows that the input Q to the orale F is almost uniformly distributed, and therefore

F(Q) is suessful with probability very lose to �(n).

Lemma 4.11 For any s � �

�(n)

(L(B)), the statistial distane of equation (4.4) from the uniform distribu-

tion is at most

1

2

(m(n) + 1) � �(n):

In partiular, for any polynomially bounded m(n) = n

O(1)

, and negligible funtion �(n) = n

�!(1)

, the distri-

bution of equation (4.4) is within negligible distane from the uniform distribution U(F

n�m(m)

p(n)

� F

n

p(n)

).
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Proof: We �rst bound the distane of eah a

i

mod p(n) from the uniform distribution over F

n

p(n)

. Notie

that

a

i

mod p(n) = bp(n) �Rot

�1

()(v

i

+ y

0

i

) mod p(n)

= bp(n) �Rot

�1

()((v

i

+ y

0

i

) mod Rot()):

So, if y

0

i

were distributed uniformly at random over P(B), then (v

i

+ y

0

i

) mod Rot() would be uniform

over P(Rot()), and a

i

mod p(n) would also have perfetly uniform distribution over F

n

p(n)

. Therefore, by

Proposition 2.2 the statistial distane between a

i

mod p(n) and the uniform distribution over F

n

p(n)

is at

most as big as the statistial distane between y

0

i

and the uniform distribution over P(B). Notie that y

0

i

has distribution �

s

=s

n

mod P(B). Using the assumption s � �

�

(L(B)) and Lemma 2.12, we get that

�(a

i

mod p(n); U(F

n

p(n)

)) � �(y

0

i

; U(P(B))) � �(n)=2:

Now onsider equation Q. Sine the elements of Q are independently distributed, by Proposition 2.4 we

have

�(Q; U(F

n�m(m)

p(n)

� F

n

p(n)

)) �

m(n)

X

i=1

�(a

i

mod p(n); U(F

n

p(n)

)) + �(a

0

+ b mod p(n); U(F

n

p(n)

)):

The last term satis�es

�(a

0

+ b mod p(n); U(F

n

p(n)

)) = �(a

0

mod p(n); (U(F

n

p(n)

)� b) mod p(n)) = �(a

0

mod p(n); U(F

n

p(n)

)):

Therefore,

�(Q; U(F

n�m(m)

p(n)

� F

n

p(n)

)) �

m(n)

X

i=0

�(a

i

mod p(n); U(F

n

p(n)

)) � (m(n) + 1) � �(n)=2:

2

We are now ready to prove the orretness of the redution. Namely, we want to prove that for any rank

n lattie basis B, full rank subset S � L(B), target t, and r > (n) ��

�

(L(B)), the redution outputs a lattie

vetor s 2 L(B) suh that ks� tk � (r + kSk)= with nonnegligible probability 
(�(n)). By Lemma 4.10,

s 2 L(B) is satis�ed whenever orale F returns a valid solution X = F(Q) 2 �(Q). Therefore, the suess

probability of the redution is at least

Pr

�

s 2 L(B); ks� tk �

r + kSk



�

� Pr

�

X 2 �(Q); ks� tk �

r + kSk



�

= Pr fX 2 �(Q)g � Pr

n

ks� tk �

r+kSk



X 2 �(Q)

o

: (4.5)

Let

~

Q 2 U(F

n�(m(n)+1)

p(n)

) be an equation distributed uniformly at random. Notie that s = 2r=(n) >

2�

�(n)

(L(B)) > �

�(n)

(L(B)). So, by Lemma 4.11, �(Q;

~

Q) is negligible. Therefore, the �rst probability in

(4.5) satis�es

Pr fX 2 �(Q)g = Pr fF(Q) 2 �(Q)g

� Pr

n

F(

~

Q) 2 �(

~

Q)

o

��(Q;

~

Q)

= �(n)� n

�!(1)

� 
(�(n)):

We bound the seond probability in (4.5) using Markov's inequality:

Pr

n

ks� tk �

r+kSk



X 2 �(Q)

o

= 1� Pr

n

ks� tk >

r+kSk



X 2 �(Q)

o

� 1�  �

Exp

�

ks� tk X 2 �(Q)

�

r + kSk

: (4.6)
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We will prove that the onditional expetation Exp

�

ks� tk X 2 �(Q)

�

is at most 2(1+1=m(n)) � (kSk+

r)=

0

, so that, for all suÆiently large m(n) � 4=(

0

� 2), the onditional probability in (4.5) is at least

1�

2



0

�

1 +

1

m(n)

�

�



0

� 2

2

0

= 
(1):

This proves that (4.5) (and therefore also the suess probability of the redution) is at least 
(�(n)) �
(1) =


(�(n)).

It remains to bound the expeted length of s� t. By triangle inequality,

ks� tk �

m(n)

X

i=0









(v

i

+ y

0

i

�


 a

i

p(n)

)
 x

i









+

m(n)

X

i=0

ky

i


 x

i

k+









t�


 b

p(n)









: (4.7)

Notie that

v

i

+ y

0

i

�


 a

i

p(n)

=


 (w � bw)

p(n)

where w = p(n)Rot

�1

()(v

i

+ y

0

i

). Sine kk

1

� 2nkSk by onstrution and kw � bwk

1

� 1=2 for any

vetor w,

kv

i

+ y

0

i

�


 a

i

p(n)

k

1

�

kk

1

� kw � bwk

1

p(n)

�

nkSk

p(n)

: (4.8)

Similarly, we have









t�


 b

p(n)









1

�

nkSk

p(n)

: (4.9)

Multiplying (4.8) by x

i

and using kx

i

k

1

� n � p(n)

Æ

, we get









(v

i

+ y

0

i

�


 a

i

p(n)

)
 x

i









1

�









v

i

+ y

0

i

�


 a

i

p(n)









1

� kx

i

k

1

�

n

2

kSk

p(n)

1�Æ

:

Substituting these bounds in (4.7) and using the relation kzk �

p

nkzk

1

(valid for any n-dimensional vetor

z) we obtain

ks� tk � (m(n) + 1) �

n

2:5

kSk

p(n)

1�Æ

+

n

1:5

kSk

p(n)

+

m(n)

X

i=0

ky

i


 x

i

k

� (m(n) + 2) �

n

2:5

kSk

p(n)

1�Æ

+

m(n)

X

i=0

ky

i


 x

i

k:

Assuming p(n) � (

0

�m(n) � n

2:5

)

1=(1�Æ)

, the �rst term in the last expression is at most

(m(n) + 2) �

n

2:5

kSk

p(n)

1�Æ

�

�

1 +

1

m(n)

�

�

2kSk



0

:

�

1 +

2

m(n)

�

�

kSk



0

:

We want to prove that the onditional expetation of the seond term satis�es

Exp

h

P

m(n)

i=0

ky

i


 x

i

k X 2 �(Q)

i

�

�

1 +

1

m(n)

�

�

2r



0

:

We onsider the onditional expetation, given Q, X and y

0

i

(for i = 0; : : : ;m(n)). The laim follows by

averaging over all possible values of Q, X and y

0

i

suh that X 2 �(Q).
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Given y

0

i

, vetor y

i

must neessarily belong to the set y

0

i

+ L(B), but it is otherwise random and

independent from Q and X. So, the onditional distribution of y

i

is

Pr

�

y

i

y

0

i

;Q;X

	

= Pr

�

y

i

y

0

i

	

=

�

s

(y

i

)

�

s

(y

0

i

+ L(B))

=

�

s;�y

0

i

(y

i

� y

0

i

)

�

s;�y

0

i

(L(B))

:

In other words, the onditional distribution of (y

i

� y

0

i

) 2 L(B) is D

L(B);s;�y

0

i

. Reall that s = 2r=(n) >

2�

�(n)

(L(B)). So, by Lemma 3.2,

Exp

�

ky

i


 x

i

k

2

y

0

i

�

= Exp (y

i

� y

0

i

) � D

L(B);s;�y

0

i

k((y

i

� y

0

i

)� (�y

0

i

))
 x

i

k

2

� s

2

kx

i

k

2

n

� s

2

n

2

� p(n)

2Æ

:

By onvexity, we get

Exp

�

ky

i


 x

i

k y

0

i

�

� n � s � p(n)

Æ

:

Finally, adding up for all values of i and using the de�nition of s = 2r=(n) and (n) = 

0

m(n) � n � p(n)

Æ

,

we get

m(n)

X

i=0

Exp

�

ky

i


 x

i

k y

0

i

�

� (m(n) + 1) � n � s � p(n)

Æ

=

2r(m(n) + 1) � n � p(n)

Æ

(n)

=

�

1 +

1

m(n)

�

2r



0

:

This onludes the proof that the onditional expetation Exp

�

ks� tk X 2 �(Q)

�

is at most 2(1 +

1=m(n))(kSk+ r)=

0

, and the redution sueeds with nonnegligible probability 
(�(n)). 2

By hoosing a small enough Æ > 0 in the previous theorem, we obtain the following orollary.

Corollary 4.12 For any  > 0, � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist a onstant

Æ > 0 suh that there is a redution from solving InGDD

�

;

in the worst ase within a fator (n) = n

1+�

to inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability.

Proof: Let 

0

= 3 and Æ be any onstant stritly smaller than minf�= log

n

p(n); 1� 2:5= log

n

p(n)g. Notie

that

p(n)

1�Æ

= n

(1�Æ) log

n

p(n)

� n

2:5+
(1)

> 

0

m(n)n

2:5

:

Therefore, by Theorem 4.9, inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average is at least as hard as solving

InGDD

�

;

in the worst ase, for

(n) = 

0

m(n)np(n)

Æ

� n

1+o(1)+Æ log

n

p(n)

� n

1+�

:

2

4.4 Other lattie problems

In Subsetion 4.3 we have shown that inverting the generalized ompat knapsak funtionsH(F

n

p

; Tp

Æ

U; !(1))

on the average is at least as hard as solving the InGDD problem over yli latties in the worst ase.

In this subsetion we relate the omplexity of inverting the ompat knapsak funtions to other standard

worst-ase lattie problems.

Corollary 4.13 For any � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist a onstant Æ > 0

suh that inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability is at least as hard

as solving any of the following problems in the worst ase within a fator (n) = n

1+�

:
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� the guaranteed distane deoding problem GDD

�



over yli latties

� the generalized independent vetor problem GIVP

�



over yli latties.

Proof: Both redutions easily follow by ombining Corollary 4.12 with Theorem 4.8 and Theorem 2.10. 2

Finally, using known relations between � and �

n

(see Lemma 2.14) and �

n

� 2� (see [43, Theorem 7.9℄),

we an relate the hardness of breaking one-way funtion H(F

n

p

; Tq

Æ

U; !(1)) to the standard version of the

lattie problems GDD

�

and SIVP.

Corollary 4.14 For any � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist Æ > 0 suh that

inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability is at least as hard as solving

any of the following problems in the worst ase for (n) = n

1+�

:

� the guaranteed distane deoding problem GDD

�



over yli latties

� the generalized independent vetor problem SIVP



over yli latties.

5 Conlusions and open problems

We have introdued a new lass of very eÆient one-way funtions with strong seurity guarantees. Namely,

our funtions are provably hard to invert (on the average), based on a worst-ase intratability assumption.

The assumption is that no polynomial time algorithm an approximate SIVP, GDD

�

, or other related lattie

problems, in the worst ase over yli latties within a fator n

1+�

almost linear in the dimension of the

lattie.

This is similar to the result proved in [1, 44℄ and related works, but with the following di�erenes. On

the positive side,

� our funtion has almost linear (in the seurity parameter) key size n

1+�

, muh smaller than the

quadrati key size 
(n

2

) required by [1, 44℄

� our funtion an be evaluated in almost linear time n

1+�

, muh faster (for the same value of the seurity

parameter) than the 
(n

2

) time (linear in the key size) required by [1, 44℄.

These major eÆieny improvements do not ome for free. The prie of reduing the key size and omputation

time is that

� we need to assume that the lattie problems SIVP, GDD

�

, et., are hard to approximate in the worst

ase, even when the input lattie is yli,

� we assume that the lattie problems SIVP, GDD

�

, et., are hard to approximate in the worst ase

within fators n

1+�

slightly bigger than the fators !(n logn) required in [44℄,

� we prove that our ompat knapsak funtion is one-way, a weaker seurity property than the ollision

resistane property proved in [44℄.

In this setion we elaborate on all these issues: the omplexity of lattie problems on yli latties, the

possibility of reduing the required inapproximability fator, and the onstrution of ryptographi primitives

other than one-way funtions.

Cyli latties From a theoretial point of view, the main di�erene between our one-way funtions and

those studied in [1, 44℄ and related papers, is that our funtions are based on the worst-ase intratability

of lattie problems on a lass of latties with a speial struture: namely, yli latties.

Many lattie problems are known to be NP-hard even in their approximation versions for suÆiently

small approximation fators. For example, the shortest vetor problem SVP is NP-hard (under randomized

redutions) to approximate within any onstant fator [2, 38, 29℄, while the losest vetor problem CVP is

NP-hard to approximate even within quasi polynomial fators n

O(1= log logn)

[61, 5, 13℄. These results support
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the onjeture that lattie problems are hard to solve in the worst ase, at least for arbitrary latties. It is

natural to ask whether lattie problems remain hard even when the input lattie is yli.

Very little is known about the omputational omplexity of lattie problems on yli latties. In fat, as

far as we know yli latties have reeived little or no attention so far. From an algorithmi point of view, it

is not lear how to exploit the yli struture of the lattie in state of the art lattie algorithms, e.g., lattie

basis redution. The only algorithmi results related to yli latties we are aware of are [34, 23, 60, 15℄.

The �rst paper [34℄ shows how the solution of ertain lattie problems an be speeded up by a fator n when

the lattie is yli. This is a quite modest improvement sine the running time of the best algorithms to

solve these problems over general latties is exponential in the dimension n of the lattie. A more interesting

algorithmi result is given in [23, 60, 15℄. The problem onsidered in [23℄ (and solved building on previous

algorithms from [60, 15℄) is the following: given the autoorrelation x 
 x of a vetor x, retrieve x. This

problem (whih arises from appliations in n-dimensional rystallography) is related to yli latties by the

fat that the autoorrelation of x an be expressed as a vetor in the yli lattie generated by x. This

problem is quite di�erent from the worst-ase omputational problems on yli latties onsidered in this

paper, and it is not lear if the tehniques of [23, 60, 15℄ an be used to speed up the solution of more

general problems, like SIVP or GDD over yli latties. Based on the urrent state of knowledge, it seems

reasonable to onjeture that approximation problems on yli latties are omputationally hard, at least in

the worst ase and for small polynomial approximation fators. In order to further support this onjeture,

it would be nie to prove NP-hardness results for lattie problems when restrited to yli latties.

We remark that our de�nition of yli latties is analogous to the de�nition of yli odes, one of the

most useful and widely studied lasses of odes in oding theory. Still, no polynomial time algorithm is known

for many omputational problems on yli odes (or latties). A very reent result somehow suggesting

that no suh polynomial time algorithm may exist is the proof in [20℄ that the nearest odeword problem

(the oding analogue of the losest vetor problem for latties) for appropriately shortened Reed-Solomon

odes is NP-hard. Reed-Solomon odes are a well known lass of yli odes, so the result in [20℄ seems to

suggest that the nearest odeword problem is hard even when the ode is yli. Unfortunately, shortening

the Reed-Solomon ode (as done in [20℄) destroys the yli struture of the ode, so, the results in [20℄ do no

imply the NP-hardness of the nearest odeword problem over yli odes. We leave, as an open problem, to

prove hardness results for any lattie or oding problem over yli latties or odes. Is the shortest vetor

problem on yli latties NP-hard? Is the shortest independent vetor problem on yli latties NP-hard?

What about the losest vetor problem on yli latties? Is the losest vetor problem NP-hard even for

�xed families of yli latties as shown (for arbitrary latties) in [36, 14, 54℄?

It is worth noting that �nding shortest vetors and sets of linearly independent vetors seem muh more

losely related problems for yli latties than for general latties. The intuition is that eah short vetor

x, also gives short vetors rot(x),rot

2

(x), et. If these vetors are linearly independent, than we have found

a set of short linearly independent vetors. Formalizing this intuition giving redutions between SVP and

SIVP (in both diretions) when restrited to yli latties is left as an open problem.

Average-ase/worst-ase onnetion. As done in [1, 9, 16, 40, 42, 44℄ for the ase of the shortest

vetor problem, our results too an be interpreted as a onnetion between the worst-ase and average-ase

omplexity of various lattie problems.

In [1, 9, 16, 40, 42, 44℄ it is shown that �nding small nonzero integer solutions to a random linear equation

Ax = 0 mod p on the average is at least as hard as solving SIVP and other lattie problems in the worst

ase. Sine the integer solutions to the equation

�(A) = fx:Ax = 0 mod pg

form a lattie, the result in [1, 9, 16, 40, 42, 44℄ an be formulated as a redution from solving SIVP in the

worst ase to solving SVP on the average.

In this paper we have shown that inverting our generalized ompat knapsak funtions on the average

is at least as hard as the worst ase instane of GDD, as well as other latties problems, over yli latties.

We now show how inverting the ompat knapsak funtion an also be formulated as a lattie problem.

A ompat knapsak funtion a

1

; : : : ; a

m

impliitly de�nes a lattie in dimension O(m � n) given by the set
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of all (y

1

; : : : ;y

m

) suh that

P

a

i


 y

i

= 0. In fat, using matrix notation, one an onsider the weights

a

1

; : : : ; a

m

as a ompat representation of an n�m � n matrix

A = [Rot(a

1

)j : : : jRot(a

m

)℄

whih de�nes a lattie �(A) = fx:Ax = 0 mod pg in the usual way. Up to a permutation of the oordinates,

it is immediate to see that the lattie assoiated to matrix A above is quasi-yli of order m, i.e., it is

invariant under shifts rot

m

by m positions. Inverting the subset-sum funtion an be formulated as a losest

vetor problem instane as follows. Given a

1

; : : : ; a

m

, and knapsak target b, we �rst ompute an arbitrary

solution z = (z

1

; : : : ; z

m

) to the equation

P

a

i


 z

i

= b. (These vetors z

i

are not required to belong to

S = D

n

, and an be eÆiently found.) Then, �nding small vetors x = (x

1

; : : : ;x

m

) suh that

P

a

i


x

i

= b

is equivalent to �nding lattie vetors (x

1

� z

1

; : : : ;x

m

� z

m

) 2 �(A) lose to (z

1

; : : : ; z

m

).

So, our result an be interpreted as follows: ifGDD on n-dimensional yli latties is hard to approximate

within n

1+�

fators in the worst ase, then GDD on !(n) dimensional !(1)-yli latties is hard to solve

on the average.

Cryptographi appliations. From a pratial point of view, it would be nie to prove that our funtion

satis�es stronger seurity guarantees than one-wayness. In priniple, one-way funtions are known to be

suÆient to build many other useful ryptographi primitives, like pseudo-random generators [18, 21℄, uni-

versal one-way hash funtions [46℄, ommitment shemes [45℄, digital signatures shemes [56℄, or private key

enryption shemes [17℄. However, these generi onstrutions are rather ineÆient, so with their use most

of the eÆieny bene�ts of our ompat knapsak funtion would be lost. We leave as an open problem the

onstrution of provably seure pseudo-random generators, universal one-way hash funtions, ommitment

shemes, digital signature shemes, or private key enryption shemes with eÆieny omparable to our one-

way funtion, and based on similar worst-ase intratability assumptions. We remark that [24℄ showed that

if the subset-sum funtion is one-way, then it is also a good pseudorandom generator or a universal one-way

hash funtion (depending on whether it strethes or ompresses the size of the input.) An interesting open

problem is whether similar results an be proved for the generalized ompat knapsak funtion.

Another interesting open problem is whether the generalized ompat knapsak funtion is ollision resis-

tant. Collision resistant funtions are a strong variant of one-way hash funtions for whih no onstrution

based on arbitrary one-way funtions is known. Still, [16, 40, 44℄ showed that under the assumption that

SIVP is hard to approximate in the worst ase within almost linear fators !(n logn), the generalized subset-

sum funtion over Z

n

p

is not only one-way, but also ollision resistant. Unfortunately, tehnial di�erenes

between our proof and the one in [44℄ make it hard to establish the same result for the ompat knapsak

funtion. Proving or disproving that our generalized ompat knapsak funtions are ollision resistant is

left as an open problem.

Finally, and probably the hardest of the open problems onerning the ryptographi appliability of our

tehniques, is to build a publi-key enryption sheme (or a trapdoor funtion) with eÆieny and seurity

guarantees similar to our ompat knapsak funtion. Building publi-key enryption shemes seems a muh

harder problem than building one-way funtions or private key enryptions. Still, we believe that designing

publi-key enryption shemes with eÆieny and seurity properties similar to our one-way funtion may

not be so out of reah. We remark that the lass of yli latties used in this paper is related to (although

di�erent from) the lass of \onvolutional modular latties" used by NTRU [22℄, ommerial publi-key

ryptosystem based on latties. Spei�ally, the latties used by NTRU an be desribed as quasi-yli

latties of order 2, i.e., latties that are invariant under yli shifts by 2 positions. Unfortunately, no proof

of seurity is known for NTRU (even based on nontrivial average-ase omplexity assumptions). Still, based

on the similarities between NTRU and other lattie based ryptosystems [37℄, we hope that, as Ajtai's one-

way funtion [1℄ inspired the design of publi-key ryptosystems [3, 53℄, our work will provide a starting point

for the design of eÆient and provably seure ryptosystems based on yli latties. Proving the seurity of

NTRU, or �nding alternative ways to build publi-key ryptosystems with eÆieny and seurity properties

similar to our one-way funtion is left as an open problem.

Improving the onnetion fator. The worst-ase inapproximability fator for SIVP and GDD

�

re-

quired by our one-way funtion is n

1+�

, for arbitrarily small � > 0. This is slightly worse than the
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!(n logn) = n

1+o(1)

fator required in [44℄ for the ase of general latties. An interesting open question

is whether this n

1+�

fator an be improved. We remark that the worst-ase problems solved by our redu-

tion are somehow harder than SIVP and GDD

�

. Our redution allows to solve GIVP

�

and GDD

�

within

almost linear fators, and then uses known relations between the smoothing parameter � and standard lattie

parameters like �

n

and �. An interesting question is whether better relations between �; �

n

and � an be

proved in the ase of yli latties.

For the ase of GDD, we showed how to solve GDD

�

n

within almost linear fators n

1+�

, and then used

the inequality � � �

n

=2 to express our result in terms of GDD

�

. Sine � an be larger than �

n

by

p

n=2

(even for the ase of yli latties), our redution may approximate GDD

�

within fators muh smaller

than n

1+�

, potentially as low as n

0:5+�

, depending on the input lattie. We leave as an open problem to

prove that the generalized ompat knapsak funtion is as hard to invert as approximating GDD

�

over

yli latties in the worst ase within fators (n) = n

0:5+�

.
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