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Abstra
t

We investigate the average 
ase 
omplexity of a generalization of the 
ompa
t knapsa
k problem to

arbitrary rings: given m (random) ring elements a

1

; : : : ; a

m

2 R and a (random) target value b 2 R, �nd


oeÆ
ients x

1

; : : : ; x

m

2 S (where S is an appropriately 
hosen subset of R) su
h that

P

a

i

� x

i

= b. We


onsider 
ompa
t versions of the generalized knapsa
k where the set S is large and the number of weights

m is small. Most variants of this problem 
onsidered in the past (e.g., when R = Z is the ring of the

integers) 
an be easily solved in polynomial time even in the worst 
ase. We propose a new 
hoi
e of the

ring R and subset S that yields generalized 
ompa
t knapsa
ks that are seemingly very hard to solve on

the average, even for very small values ofm. Namely, we prove that for any unbounded fun
tionm = !(1)

with arbitrarily slow growth rate, solving our generalized 
ompa
t knapsa
k problems on the average is

at least as hard as the worst-
ase instan
e of various approximation problems over 
y
li
 latti
es. Spe
i�


worst-
ase latti
e problems 
onsidered in this paper are the shortest independent ve
tor problem SIVP

and the guaranteed distan
e de
oding problem GDD (a variant of the 
losest ve
tor problem, CVP) for

approximation fa
tors n

1+�

almost linear in the dimension of the latti
e.

Our results yield very eÆ
ient and provably se
ure one-way fun
tions (based on worst-
ase 
omplexity

assumptions) with key size and time 
omplexity almost linear in the se
urity parameter n. Previous


onstru
tions with similar se
urity guarantees required quadrati
 key size and 
omputation time. Our

results 
an also be formulated as a 
onne
tion between the worst-
ase and average-
ase 
omplexity of

various latti
e problems over 
y
li
 and quasi-
y
li
 latti
es.

Keywords: Knapsa
k problem, 
y
li
 latti
es, average-
ase 
omplexity, one-way fun
tions.

1 Introdu
tion

Few problems in the theory of 
omputational 
omplexity and its appli
ation to the foundations of 
ryptog-

raphy have been as 
ontroversial as the knapsa
k problem and its many variants, in
luding the notoriously

NP-hard subset-sum problem [28℄. The initial enthusiasm generated by the subset-sum based 
ryptosystem

of Merkle and Hellman [35℄ in the late 70's, was immediately followed by intensive 
ryptanalyti
 e�orts

that 
ulminated in the early 80's with the total break of the system in its basi
 [59℄ and iterated version

[8℄. Still, the possibility of building 
ryptographi
 fun
tions based on NP-hard problems, and the relatively

high speed at whi
h numbers 
an be added up (
ompared to modular multipli
ation and exponentiation

operations required by number theoreti
 fun
tions), prompted many resear
hers to suggest variants, �xes,

and improvements (e.g., [19, 10℄) to the initial Merkle-Hellman proposal. These e�orts, whi
h lasted for

�
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more than a de
ade, were invariably followed by atta
ks (e.g., [26, 58, 47, 51℄) that seriously questioned the

se
urity of the systems either in theory or in pra
ti
e. Re
ently, knapsa
k-like 
ryptographi
 fun
tions have

started attra
ting again 
onsiderable attention after Ajtai's dis
overy [1℄ that the generalized subset-sum

problem (over the additive group Z

n

p

of n-dimensional ve
tors modulo p) is provably hard to solve on the

average based on a worst-
ase intra
tability assumption about 
ertain latti
e approximation problems for

whi
h no polynomial time solution is known. Following [1℄, Ajtai and Dwork [3℄ also proposed a 
ryptosys-

tem with similar se
urity properties. But, unfortunately, even this proposal with strong theoreti
al se
urity

guarantees has been subje
t to pra
ti
al atta
ks [48℄.

Atta
ks to subset-sum (or more generally knapsa
k) problems 
an be 
lassi�ed into two broad 
ategories:

1. atta
ks targeted to spe
i�
 publi
 key 
ryptosystems that try to exploit the spe
ial stru
ture resulting

from the embedding of a de
ryption trapdoor (e.g., [59℄); and

2. atta
ks to generi
 subset-sum or knapsa
k instan
es that 
an be applied regardless of the existen
e of

a trapdoor (e.g., [30, 11℄).

The �rst 
lass of atta
ks is usually stronger, meaning that it gives asymptoti
ally good algorithms that

su

eed (with high probability) regardless of the value of the se
urity parameter, but only applies to spe
i�


publi
 key 
ryptosystems whose underlying knapsa
k problems are not as hard as the general 
ase. The

se
ond 
lass of atta
ks is more general but only heuristi
s: the asymptoti
 
omplexity of these atta
ks is

usually exponential, or their su

ess rate negligible as a fun
tion of the se
urity parameter. These methods

are evaluated experimentally by testing them on spe
i�
 problem instan
es (e.g., 
hallenges or randomly

generated 
iphertexts) for typi
al values of the se
urity parameter, and atta
ks 
an be usually avoided

setting the se
urity parameter to a suÆ
iently large value. Still, the e�e
tiveness of these atta
ks, even for

moderately large values of the se
urity parameter, is 
urrently 
onsidered the main pra
ti
al obsta
le in the

design of 
ryptographi
 fun
tions based on variants of the knapsa
k problem.

It is important to realize that the se
ond 
lass of atta
ks dismisses most knapsa
k 
ryptographi
 fun
tions

as pra
ti
al alternatives to number theory based fun
tions, not on the grounds of their inherent inse
urity,

but simply be
ause of the large key sizes required to avoid heuristi
s atta
ks. In fa
t (espe
ially if one drops

the more ambitious goal of designing a publi
 key 
ryptosystem, and more modestly attempts to design


ryptographi
 primitives with no trapdoors, like pseudo-random generators or one-way hash fun
tions, et
.)

there is theoreti
al eviden
e [24, 1, 3, 53℄ that subset-sum 
an indeed be a good sour
e of 
omputational

hardness, at least from an asymptoti
 point of view. The main issue a�e
ting the pra
ti
al se
urity of

knapsa
k fun
tions is eÆ
ien
y. In a typi
al knapsa
k fun
tion, the key (
orresponding to se
urity parameter

n) 
onsists of 
(n) numbers, ea
h of whi
h is n bits long. Therefore, the size of the resulting 
ryptographi


key grows as 
(n

2

). Even if all known atta
ks to knapsa
k have exponential time 
omplexity, one needs

to set n to at least a few hundreds to make heuristi
s approa
hes (most notably latti
e basis redu
tion

[32, 57, 27, 49, 50℄) ine�e
tive or too 
ostly. As a 
onsequen
e, the resulting key 
an easily rea
h megabit

sizes still without a
hieving a suÆ
ient degree of se
urity. Even if knapsa
k fun
tions 
an be still 
ompetitive

from a running time point of view, these huge key sizes are 
onsidered too big for most pra
ti
al appli
ations.

Generalized 
ompa
t knapsa
ks. The impa
t of spa
e eÆ
ien
y on the pra
ti
al se
urity of knapsa
k

based fun
tions has long been re
ognized, even before the development of ingenious latti
e based atta
ks. A

simple improvement that 
omes to mind is to use a so 
alled 
ompa
t knapsa
k: instead of using 0{1 
ombi-

nations of 
(n) input weights (resulting in 
(n

2

) key size), 
onsider a smaller (
onstant, or slowly in
reasing)

number of weights a

1

; : : : ; a

m

and 
ombine them with 
oeÆ
ients from a larger set, e.g., f0; : : : ; 2

Æn

g for some

small 
onstant Æ > 0. Noti
e that if Æ = 0, then we get the usual subset-sum problem, whi
h 
an be solved

(for m = O(log n)) in polynomial time using exhaustive sear
h. However, if Æ = 
(1) then the sear
h spa
e

be
omes exponentially large, and exhaustive sear
h is infeasible. Suggestions of this type appear already in

Merkle and Hellman's original paper [35℄ and subsequent works as a method to in
rease the bandwidth of

the s
heme. These early attempts to redu
e the key size of knapsa
k based fun
tions were subje
t to atta
ks

even more devastating than the general 
ase: in [4℄ it is observed that the problem easily redu
es to an in-

teger programming instan
e with O(m) variables, and therefore it 
an be solved in polynomial time for any


onstant value of m(n) = O(1), or even any slowly growing fun
tion m(n) = O(log n= log logn). Attempts
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to use 
ompa
t knapsa
ks to design eÆ
ient 
ryptographi
 fun
tions persisted during the 90's [52, 33℄, but

were always followed by 
ryptanalyti
 atta
ks [55, 12, 31℄.

In this paper we introdu
e and study a new 
lass of 
ompa
t knapsa
ks whi
h are both very eÆ
ient and

provably hard to solve in a strong sense similar to Ajtai's fun
tion [1℄. The one-way fun
tion proposed in [1℄


an be des
ribed as a generalization of the integer knapsa
k problem to arbitrary rings. Spe
i�
ally, for any

ring R and subset S � R, 
onsider the following problem: given ring elements a

1

; : : : ; a

m

2 R and a target

value b 2 R, �nd 
oeÆ
ients x

i

2 S su
h that

P

m

i=1

a

i

� x

i

= b, where all operations are performed in the

ring. In Ajtai's work, R is the produ
t ring

1

Z

n

p

of n-dimensional ve
tors modulo p (for some polynomially

bounded p(n) = n

O(1)

) and S = f0;1g 
onsists of the additive and multipli
ative identities of the ring.

In parti
ular, S has size 2, and the problem 
an be solved by exhaustive sear
h in polynomial time when

m = O(log n).

In this paper we study 
ompa
t versions of the generalized knapsa
k problem, where the set S has size

mu
h larger than 2, so that exhaustive sear
h is infeasible even for very small values of m. In the 
ase of

the ring Z

n

p

, the �rst idea that 
omes to mind is to use, as 
oeÆ
ients the set S = f0; 1g

n

of all binary

ve
tors, or, more generally, the set S = f0; : : : ; p

Æ

g

n

of n-dimensional ve
tors with entries mu
h smaller

than p. Unfortunately, as for the 
ase of the integer 
ompa
t knapsa
k problem des
ribed above, this

straightforward 
onstru
tion admits mu
h faster solutions than exhaustive sear
h: the resulting generalized


ompa
t knapsa
k is equivalent to n independent instan
es of the knapsa
k problem modulo p, whi
h, for any

polynomially bounded p(n) = n

O(1)

, 
an be eÆ
iently solved in the worst 
ase by dynami
 programming.

Our 
ontribution. The main 
ontribution of this paper is the study of a new 
lass of 
ompa
t knapsa
k

fun
tions f

a

(x) =

P

i

a

i

�x

i

that are 
on
eivably hard to invert in a very strong sense, even when the number

m of weights is very small. In parti
ular, we prove that, for appropriate 
hoi
e of ring R and subset S � R,

and for any unbounded fun
tion m(n) = !(1) (with arbitrarily slow growth rate) the 
ompa
t knapsa
k

fun
tion is at least as hard to invert on the average (even with nonnegligible probability) as the worst-
ase

instan
e of various latti
e problems (for the spe
ial 
lass of 
y
li
 latti
es) for whi
h no polynomial time

algorithm is known.

Our generalized knapsa
k problems are de�ned by the ring R = Z

n

p

of n-dimensional ve
tors modulo a

prime p with the 
omponentwise addition and 
onvolution produ
t operations. As in the previously dis
ussed


ompa
t variant of Ajtai's fun
tion, the set S = f0; : : : ; p

Æ

g

n


onsists of all n-dimensional ve
tors with small

entries. Surprisingly, using the 
onvolution produ
t operation (as opposed to 
omponentwise multipli
ation)

makes the problem 
onsiderably harder: solving random instan
es of our generalized 
ompa
t knapsa
ks

with nonnegligible probability is as hard as approximating the shortest independent ve
tor problem (as well

as various other latti
e problems) on 
y
li
 latti
es in the worst 
ase within fa
tors n

1+�

(for any � > 0)

almost linear in the dimension of the latti
e.

This results in strong one-way fun
tions with average-
ase se
urity guarantees based on a worst-
ase

intra
tability assumption similar to Ajtai's fun
tion [1℄ (and subsequent improvements [9, 40, 42, 44℄,) but

with a mu
h smaller key size O(m log p

n

) = !(n logn), where !(�) is an unbounded fun
tion with arbitrarily

slow growth rate. (For 
omparison, [1, 9, 40, 42, 44℄ require m(n) = 
(n logn), and key size 
(n

2

log

2

n).)

Our 
ompa
t knapsa
k fun
tions are also extremely fast, as, for appropriate 
hoi
e of the parameters,

they 
an be 
omputed in almost linear time O(n log




n) using the fast Fourier transform in the evaluation

of the 
onvolution produ
ts. Spe
i�
ally, the 
ost of evaluating our fun
tions is equivalent to 
omputing an

almost 
onstant number !(1) of FFT operations on n-dimensional ve
tors modulo a small prime p = n

O(1)

.

The almost linear time evaluation algorithm together with the substantially smaller key size, make our

generalized 
ompa
t knapsa
k fun
tion even mu
h faster than the already attra
tive subset-sum fun
tion.

In the pro
ess of establishing our hardness result, we prove various properties of our knapsa
k fun
tions

that might be of independent interest. In parti
ular, we prove that our 
ompa
t knapsa
k fun
tion f

a

(x) has

very small 
ollision probability. By a result of Impagliazzo and Zu
kerman [25℄, this is enough to guarantee

that the value f

a

(x) (for randomly 
hosen a and x) is almost uniformly distributed over Z

n

p

and independent

from a = (a

1

; : : : ; a

m

). Moreover, this is true for arbitrary small values of m(n) = !(1). Previous results of

this kind for the subset-sum fun
tion relied on the additive stru
ture of Z

n

p

alone, and requiredm = 
(n log p).

1

The produ
t ring R

n

is the set of n-tuples with entries in R, with the 
omponentwise addition and multipli
ation operations.
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Our proof makes substantial use of the multipli
ative stru
ture of the ring Z

n

p

(with the 
onvolution produ
t

operation) and the 
hara
terization of its ideals as polynomial quotient rings.

Beside the te
hni
al 
ontribution of a very eÆ
ient and provably se
ure one-way fun
tion based on a

worst-
ase 
omplexity assumption, we view the following as additional 
ontributions of this papers: the

introdu
tion of the 
lass of 
y
li
 latti
es as a sour
e of interesting 
omputational problems; 
asting a new

light on the 
omplexity of the 
ompa
t knapsa
k problem showing that if the ring is appropriately 
hosen the

problem 
an be substantially harder than the integer 
ase; and demonstrating that the te
hniques initially

developed in [1, 44℄ 
an be useful to study seemingly di�erent problems, and still produ
e the same kind of

strong worst-
ase/average-
ase se
urity guarantees. In our view all these 
ontributions are important steps

toward the development of 
ryptographi
 fun
tions that are both eÆ
ient and provably se
ure in a very

strong sense.

Related work The �rst 
onstru
tion of one-way fun
tion that is provably se
ure based on a worst-
ase


omplexity assumption was given by Ajtai in [1℄. Subsequent work [9, 40, 42, 44℄ fo
used on improving

the required worst-
ase 
omplexity assumption. In this paper, the goal is to improve the eÆ
ien
y of the

one-way fun
tion.

This paper is an almost 
omplete rewriting and substantial improvement of an extended abstra
t [39℄

presented at FOCS 2002. In parti
ular, in [39℄ the author proved that solving the generalized 
ompa
t

knapsa
k on the average when m = O(log n) is at least as hard as approximating various latti
e problems in

the worst 
ase within a fa
tor n

3+�

. Here, we prove a new regularity theorem for 
ompa
t knapsa
k fun
tions

(Theorem 4.2) and in
orporate the re
ently developed Gaussian distribution te
hniques of [44℄, to present

an improved result that holds for any fun
tion m = !(1) with arbitrarily slow growth rate, and worst-
ase

approximation fa
tors n

1+�

almost linear in the dimension of the latti
e.

For a des
ription of other related works, see Se
tion 5.

Organization The rest of the paper is organized as follows. In Se
tion 2 we re
all basi
 notation, de�nitions

and results needed in this paper. In Se
tion 3 we prove two preliminary lemmas about 
y
li
 latti
es that

will be used in the proof of our main result. In Se
tion 4 we present the main te
hni
al result of the paper:

we formally de�ne our generalized 
ompa
t knapsa
k fun
tion, and prove that inverting the fun
tion on

the average is at least as hard as the worst 
ase instan
e of various latti
e problems on 
y
li
 latti
es. In

the pro
ess, we also establish various other properties of our 
ompa
t knapsa
k fun
tions that might be of

independent interest, e.g., we bound the 
ollision probability of the fun
tion, and prove that the fun
tion is

almost regular. Se
tion 5 
on
ludes with a dis
ussion of related work, the 
omplexity of 
y
li
 latti
es, and

open problems.

2 Preliminaries

In this se
tion we introdu
e some notational 
onventions, and re
all basi
 de�nitions and results about the

statisti
al distan
e, hash fun
tions, latti
es and Gaussian probability distributions.

For any real r � 0, TrU denotes the set f0; : : : ; br
g of all positive integers not greater than r. The uniform

probability distribution over a set S is denoted U(S). We use the standard asymptoti
 notation f = O(g)

(or g = 
(f)) when lim sup

n!1

jf(n)=g(n)j < 1, f = o(g) (or g = !(f)) when lim

n!1

jf(n)=g(n)j = 0,

and f = �(g) when f = O(g) and f = 
(g).

A fun
tion f(n) is negligible (denoted f(n) = n

�!(n)

) if for every 
 there exists an n

0

su
h that jf(n)j <

1=n




for all n > n

0

. Throughout the paper, we use 
olumn notation for all ve
tors, and use (�)

T

to denote

the matrix transposition operation.

2.1 Statisti
al distan
e

The statisti
al distan
e is a measure of how two probability distributions are far apart from ea
h other, and

it is a 
onvenient tool in the analysis of randomized algorithms and redu
tions. In this subse
tion we de�ne

the statisti
al distan
e and state some simple fa
ts that will be used in the analysis of the redu
tions in this

4



paper. All the properties of the statisti
al distan
e stated in this subse
tion are easily veri�ed. For more

details the reader is referred to [43, Chapter 8℄.

De�nition 2.1 Let X and Y be two dis
rete random variables over a (
ountable) set A. The statisti
al

distan
e between X and Y is the quantity

�(X;Y ) =

1

2

X

a2A

jPrfX = ag � Pr fY = agj :

In the 
ase of 
ontinuous random variables, the statisti
al distan
e between X and Y is

�(X;Y ) =

1

2

Z

A

jÆ

X

(a)� Æ

Y

(a)jda;

where Æ

X

and Æ

Y

are the probability density fun
tions of X and Y respe
tively.

An easy 
al
ulation shows that the statisti
al distan
e �(X;Y ) equals the maximum over all sets S � A of

Pr fX 2 Sg�PrfY 2 Sg. So, for example, there is always a set S � A su
h that Pr fX 2 Sg = Pr fY 2 Sg+

�(X;Y ).

We say that two random variables X;Y are identi
ally distributed (written X � Y ) if and only if

Pr fX 2 Sg = Pr fY 2 Sg for every S � A. The reader 
an easily 
he
k that the statisti
al distan
e

satis�es the usual properties of distan
e fun
tions, i.e., �(X;Y ) � 0 (with equality if and only if X � Y ),

�(X;Y ) = �(Y;X), and �(X;Z) � �(X;Y ) + �(Y; Z).

The following proposition shows that applying a (possibly randomized) fun
tion to two distributions does

not in
rease the statisti
al distan
e.

Proposition 2.2 Let X;Y be two random variables taking values in a 
ommon set A. For any (possibly

randomized) fun
tion f with domain A, the statisti
al distan
e between f(X) and f(Y ) is at most

�(f(X); f(Y )) � �(X;Y ) (2.1)

As a 
orollary, we easily obtain the following.

Corollary 2.3 If X and Y are random variables over set A and p:A! f0; 1g is a predi
ate, then

jPr fp(X) = 1g � Pr fp(Y ) = 1gj � �(X;Y ): (2.2)

Another useful property of the statisti
al distan
e is the following.

Proposition 2.4 Let X

1

; : : : ; X

k

and Y

1

; : : : ; Y

k

be two lists of totally independent random variables. Then

�((X

1

; : : : ; X

k

); (Y

1

; : : : ; Y

k

)) �

k

X

i=1

�(X

i

; Y

i

): (2.3)

2.2 One-way hash fun
tion families

A fun
tion family ff

a

:X ! Rg

a2A

is a 
olle
tion of fun
tions (indexed by a set of keys A) with a 
ommon

domain X and range R. A (polynomial) fun
tion ensemble is a sequen
e ff

a

:X

n

! R

n

g

a2A

n

of fun
tion

families (indexed by a se
urity parameter n 2 N) su
h that log jA

n

j; log jX

n

j and log jR

n

j are all polynomial

in n. We assume that the elements of the sets A

n

; X

n

and R

n


an be eÆ
iently represented with log

2

jA

n

j,

log

2

jX

n

j and log

2

jR

n

j bits respe
tively, membership in the sets 
an be de
ided in polynomial time, and there

is a probabilisti
 polynomial time algorithm to sample from those sets with (almost) uniform distribution.

It is also 
ommon to assume that the fun
tions f

a

are eÆ
iently 
omputable, in the sense that there is a

polynomial time algorithm that on input n; a 2 A

n

and x 2 X

n

, outputs f

a

(x). All fun
tion ensembles


onsidered in this paper have these properties, namely the sets A

n

; X

n

; R

n

have eÆ
ient representations and

the fun
tions f

a

are eÆ
iently 
omputable.
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A fun
tion (ensemble) is one-way if it is (easy to 
ompute, but) 
omputationally hard to invert, i.e., no

algorithm 
an eÆ
iently solve the following fun
tion inversion problem: given a pair (a; r) 2 A

n

�R

n

, �nd

an x 2 X

n

su
h that f

a

(x) = r. One-wayness is an average-
ase 
omplexity property, i.e., it requires that the

fun
tion inversion problem is 
omputationally hard when the input (a; r) 2 A

n

�R

n

is sele
ted at random.

The exa
t de�nition, for the 
ase of fun
tion ensembles, is given below.

De�nition 2.5 A fun
tion ensemble ff

a

: X

n

! R

n

g

a2A

n

is one-way if for any probabilisti
 polynomial

time algorithm A, the probability that f

a

(A(n; a; f

a

(x))) = f

a

(x) (when a 2 A

n

and x 2 X

n

are sele
ted

uniformly at random) is negligible in n.

Noti
e that the input distribution underlying the de�nition of one-way fun
tion is not the uniform dis-

tribution over A

n

� R

n

, but rather it 
orresponds to 
hoosing the target value r 2 R

n

as the image of a

uniformly random solution x 2 X . For any fun
tion ensemble H = ff

a

: X ! Rg

a2A

, we write owf(H)

to denote the probability distribution f(a; f(x)) : a 2 A

n

; x 2 X

n

g underlying the de�nition of one-way

fun
tion, and U(A�R) to denote the uniform probability distribution over A�R. We remark that De�ni-

tion 2.5 
orresponds to the notion of strong one-way fun
tion, i.e., it is required that the su

ess probability

of any probabilisti
 polynomial time algorithm in solving the fun
tion inversion problem (when the input is


hosen a

ording to distribution owf(H)) is negligible.

The fun
tion families H = ff

a

: X ! Rg

a2A


onsidered in this paper have the property that the input

size log jX j is stri
tly bigger than the output size log jRj, i.e., the fun
tions \
ompress" the size of the

input by a fa
tor log jX j= log jRj. Su
h fun
tions have many important appli
ations in 
omputer s
ien
e and


ryptography, and are generi
ally 
alled hash fun
tions. In order to be useful, hash fun
tions must satisfy

some additional properties. A typi
al requirement is that if a 2 A and x 2 X are 
hosen uniformly at

random, the distribution of f

a

(x) 2 R is almost uniform and independent from a. In other words, owf(H)

is statisti
ally 
lose to the uniform distribution U(A�R).

De�nition 2.6 Let H = ff

a

: X ! Rg

a2A

be a hash fun
tion family. We say that H is �-regular if

the statisti
al distan
e between owf(H) and the uniform distribution over U(A�R) is at most �. A hash

fun
tion ensemble fH

n

g is 
alled almost regular if H

n

is �(n)-regular for every n, for some negligible fun
tion

�(n) = n

�!(1)

.

We remark that if a fun
tion is �-regular for � = 0, then the fun
tion maps the uniform input distribution

to the uniform output distribution. So, de�nition 2.6 is a generalization of the standard notion of regular

fun
tion.

2.3 Latti
es

An n-dimensional latti
e

2

is the set of all integer 
ombinations f

P

n

i=1

x

i

b

i

:x

i

2 Zg of n linearly independent

ve
tors b

1

; : : : ;b

n

in R

n

. The set of ve
tors b

1

; : : : ;b

n

is 
alled a basis for the latti
e, and 
an be 
ompa
tly

represented by the matrix B = [b

1

j : : : jb

n

℄ 2 R

n�n

having the basis ve
tors as 
olumns. The latti
e

generated by B is denoted L(B). Noti
e that L(B) = fBx:x 2 Z

n

g, where Bx is the usual matrix-ve
tor

multipli
ation. For any basis B, we de�ne the fundamental parallelepiped P(B) = fBx:8i:0 � x

i

< 1g. The

following lemma shows how to sample latti
e points uniformly at random from the fundamental parallelepiped

asso
iated to a given sublatti
e.

Lemma 2.7 ([43, Proposition 8.2℄) There is a probabilisti
 polynomial time algorithm that on input a

latti
e basis B and a full rank sublatti
e S � L(B), outputs a latti
e point x 2 L(B)\P(S) 
hosen uniformly

at random.

The dual of a latti
e L(B) (denoted L(B)

�

) is the latti
e generated by the matrix B

�T

, and 
onsists of

all ve
tors that have integer s
alar produ
t with all latti
e ve
tors.

For any ve
tor x = (x

1

; : : : ; x

n

)

T

, de�ne the 
y
li
 rotation rot(x) = (x

n

; x

1

; : : : ; x

n�1

)

T

, and the 
orre-

sponding 
ir
ulant matrix Rot(x) = [x; rot(x); rot

2

(x); : : : ; rot

n�1

(x)℄. A latti
e L(B) is 
y
li
 if it is 
losed

2

For simpli
ity, is this paper we restri
t all de�nitions to full dimensional latti
es.
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under the rotation operation, i.e., if x 2 L(B) implies rot(x) 2 L(B). It is easy to see that a latti
e is


y
li
 if and only if L(B) = rot(L(B)). The 
y
li
 latti
e generated by a ve
tor x is the latti
e L(Rot(x))

generated by the 
ir
ulant matrix of x, and it is the smallest 
y
li
 latti
e 
ontaining x.

The 
onvolution produ
t of two ve
tors x and y is the ve
tor

x
 y = Rot(x) � y

with entries de�ned by the equation

(x 
 y)

k

=

X

i+j=k mod n

x

i

� y

j

:

It 
an be easily veri�ed that the 
onvolution produ
t is asso
iative and 
ommutative, i.e., it satis�es the

equational axioms x 
 (y 
 z) = (x 
 y) 
 z, and x 
 y = y 
 x. Moreover, it distributes over the ve
tor

addition operation: (x+ y) 
 z = x
 z+ y 
 z. Therefore, (R

n

;+;
) is a 
ommutative ring with identity

e

1

= (1; 0; : : : ; 0)

T

.

The Eu
lidean norm of a ve
tor x is the quantity kxk =

p

P

i

x

2

i

. Other norms used in this paper are

the `

1

norm kxk

1

=

P

i

jx

i

j and the max norm kxk

1

= max

i

jx

i

j. These norms and the 
onvolution produ
t

are related by the following inequalities, valid for any n-dimensional ve
tors x;y 2 R

n

:

kxk � kxk

1

�

p

nkxk

kxk

1

� kxk �

p

nkxk

1

kx
 yk

1

� kxk � kyk

kx
 yk

1

� kxk

1

� kyk

1

:

The minimum distan
e of a latti
e L(B), denoted �

1

(L(B)), is the minimum distan
e between any two

(distin
t) latti
e points and equals the length of the shortest nonzero latti
e ve
tor:

�

1

(L(B)) = minfdist(x;y) : x 6= y 2 L(B)g = minfkxk : x 2 L(B) n f0gg:

The notion of minimum distan
e 
an be generalized to de�ne the ith su

essive minimum �

i

as the smallest

radius r su
h that the 
losed sphere

�

B(r) = fx: kxk � rg 
ontains i linearly independent latti
e points:

�

i

(L(B)) = minfr : dim(span(L(B) \

�

B(r))) � ig

Another important 
onstant asso
iated to a latti
e is the 
overing radius. The 
overing radius �(L(B)) of a

latti
e is the maximum distan
e dist(x;L(B)) when x ranges over the linear span of B:

�(L(B)) = maxfdist(x;L(B)) : x 2 R

n

g:

A sublatti
e of L(B) is a latti
e L(S) su
h that L(S) � L(B). We always assume that sublatti
es have full

rank, i.e., dim(span(S)) = dim(span(B)).

In many algorithmi
 problems on point latti
es the quality of a solution is measured with respe
t to some

spe
i�
 latti
e parameter, e.g., the length �

1

of the shortest nonzero ve
tor, or the radius �

n

of the smallest

sphere 
ontaining n linearly independent latti
e ve
tors. For example, the 
(n)-approximate shortest ve
tor

problem asks to �nd a nonzero ve
tor in a latti
e L(B) of length at most 
(n) � �

1

(L(B)), where n is the

rank of the latti
e. For te
hni
al reasons, in this paper we 
onsider generalized versions of various latti
e

problems where the quality of the solution is measured with respe
t to an arbitrary fun
tion of the latti
e

�(L(B)). The �rst of these problems is the following generalization of the shortest independent ve
tor

problem introdu
ed in [42℄.

De�nition 2.8 The generalized independent ve
tors problem GIVP

�




, given an n-dimensional latti
e B,

asks for a set of n linearly independent latti
e ve
tors S � L(B) su
h that kSk � 
(n) � �(L(B)).
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The shortest independent ve
tors problem SIVP




(studied in [7℄ and used in [1, 9, 40, 42, 44℄ as a sour
e

of 
omputational hardness) is a spe
ial 
ase of GIVP

�




where � = �

n

. Another problem that will play a

fundamental role in this paper is the following.

De�nition 2.9 The guaranteed distan
e de
oding problem (GDD

�




), given a latti
e B and a target point

t 2 span(B), asks for a latti
e point x 2 L(B) su
h that dist(t;x) � 
(n) � �(L(B)), where n is the rank of

the latti
e.

This time it is natural to set � = � to the 
overing radius of the latti
e, be
ause for any latti
e basis B

and target t 2 R

n

, there is always a latti
e point within distan
e �(L(B)) from t. GDD

�




is an interesting

variant of the 
losest ve
tor problem CVP, where the quality of the solution is measured with respe
t to the

worst possible distan
e max

t2R

n

dist(t;L(B)) rather then the distan
e of the given target dist(t;L(B)).

The GDD

�




and GIVP

�




are easily related by the following theorem, whose proof is impli
it in [43,

Theorem 7.9℄.

Theorem 2.10 For any 
 > 2, there is a polynomial time redu
tion from GIVP

�





to GDD

�




. Moreover,

the redu
tion is latti
e preserving, in the sense that all the 
alls made to the GDD ora
le are of the form

(B; t) where B is the input GIVP latti
e.

Proof: Let B an input GIVP

�





instan
e. We build a set of n = dim(B) linearly independent ve
tors

s

1

; : : : ; s

n

2 L(B) of length ks

i

k � l = 

(n) � �(L(B)) indu
tively as follows. For any i = 1; : : : ; n,

� let t 2 span(B) be a ve
tor orthogonal to s

1

; : : : ; s

i�1

of length ktk = l=2,

� 
all the GDD

�




ora
le on input (B; t) to �nd a latti
e ve
tor s

i

2 L(B) within distan
e 
(n) ��(L(B)) =

l=
 < l=2 from t.

Noti
e that ea
h s

i

is linearly independent from s

1

; : : : ; s

i�1

be
ause the distan
e of s

i

from span(s

1

; : : : ; s

i�1

)

is at least ktk� ks

i

� tk > 0. Moreover, by triangle inequality, the length of s

i

is at most ktk+ ks

i

� tk < l.

2

Most latti
e problems 
an be meaningfully restri
ted to 
y
li
 latti
es, or other spe
ial 
lasses of latti
es.

For example, the 
losest ve
tor or GDD problem for 
y
li
 latti
es is: given a 
y
li
 latti
e L(B), a target

ve
tor t, and a real parameter r > 0, �nd a latti
e point x 2 L(B) within distan
e r from the target t.

Our generalized 
ompa
t knapsa
k fun
tions are at least as hard to invert on the average as the worst-
ase

instan
e of approximating various latti
e problems (e.g., SIVP or GDD) over 
y
li
 latti
es in the worst


ase within almost linear fa
tors n

1+�

, for arbitrarily small � > 0. Latti
e preserving redu
tions, as the one

given in Theorem 2.10, are parti
ularly useful in the 
ontext of this paper be
ause they allow to redu
e a

(worst-
ase) latti
e problem over a given 
lass of latti
es (e.g., 
y
li
 latti
es) to another (worst-
ase) latti
e

problem over the same 
lass of latti
es. In parti
ular, Theorem 2.10 implies that there is a redu
tion from

GIVP over 
y
li
 latti
es to GDD over 
y
li
 latti
es.

2.4 Gaussian distributions

We use the Gaussian distribution te
hniques re
ently introdu
ed in [44℄ to simplify and improve the results

des
ribed in a preliminary version of this paper [39℄. In this subse
tion we re
all all the required de�nitions

and results from [44℄. For any ve
tors 
;x and any s > 0, let

�

s;


(x) = e

��k(x�
)=sk

2

be a Gaussian fun
tion 
entered in 
 s
aled by a fa
tor of s. The total measure asso
iated to �

s;


is

R

x2R

n

�

s;


(x)dx = s

n

. So,

R

x2R

n

(�

s;


(x)=s

n

)dx = 1 and �

s;


=s

n

is a probability density fun
tion. As noted

in [44℄, �

s;


=s

n


an be expressed as the sum of n orthogonal 1-dimensional Gaussian distributions, and

ea
h of them 
an be eÆ
iently approximated with arbitrary pre
ision using standard te
hniques. So, the

distribution �

s;


=s

n


an be eÆ
iently approximated. For simpli
ity, in this paper we work with real numbers

and assume we 
an sample from �

s;


=s

n

exa
tly. In pra
ti
e, when only �nite pre
ision is available, �

s;


=s

n
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an be approximated by pi
king a �ne grid, and pi
king points from the grid with probability approximately

proportional to �

s;


=s

n

. All our arguments 
an be made rigorous by sele
ting a suÆ
iently �ne grid.

Fun
tions are extended to sets in the usual way; e.g., �

s;


(A) =

P

x2A

�

s;


(x) for any 
ountable set A.

For any s; 
 and latti
e �, de�ne the dis
rete probability distribution (over the latti
e �)

D

�;s;


(x) =

�

s;


(x)

�

s;


(�)

;

where x 2 �. Intuitively, D

�;s;


is the 
onditional probability

3

that (�

s;


=s

n

) = x given (�

s;


=s

n

) 2 �. For

brevity, we sometimes omit s or 
 from the notation �

s;


and D

�;s;


. When 
 or s are not spe
i�ed, we

assume that they are the origin and 1 respe
tively.

In [44℄ Gaussian distributions are used to de�ne a new latti
e invariant, 
alled the smoothing parameter,

de�ned as follows.

De�nition 2.11 For an n-dimensional latti
e �, and positive real � > 0, the smoothing parameter �

�

(�) is

the smallest s su
h that �

1=s

(�

�

n f0g) � �.

In [44℄ many important properties of the smoothing parameter are established. Here we only need the

following three bounds. The �rst one shows that the smoothing parameter is the amount of Gaussian noise

that needs to be added to a latti
e in order to get an almost uniform distribution.

Lemma 2.12 ([44, Lemma 4.1℄) Let �

s

=s

n

mod B be the distribution obtained by sampling a point a

ord-

ing to the probability density fun
tion �

s

=s

n

and redu
ing the result modulo B. For any latti
e L(B), the sta-

tisti
al distan
e between �

s

=s

n

mod B and the uniform distribution over P(B) is at most

1

2

�

1=s

(L(B)

�

nf0g).

In parti
ular, if s � �

�

(L(B)), then the distan
e �(�

s

=s

n

mod B; U(P(B))) is at most �=2.

The se
ond property shows that if s is suÆ
iently large, then the se
ond moment of the distribution

D

�;s;


is essentially the same as the one of the 
ontinuous Gaussian distribution �


;s

=s

n

.

Lemma 2.13 ([44, Lemma 4.2, Equation (2)℄) For any n-dimensional latti
e �, point 
 2 R

n

, unit

ve
tor u, and positive real s > 0 su
h that �

1=s

(�

�

n f0g) < 1,

�

�

�

�

�

Exp

x�D

�;s;


�

hx� 
;ui

2

�

�

s

2

2�

�

�

�

�

�

� s

2

�

�

2=s

(�

�

n f0g)

1� �

1=s

(�

�

n f0g)

:

The last property bounds the smoothing parameter in terms of �

n

.

Lemma 2.14 ([44, Lemma 3.3℄) For any n-dimensional latti
e � and positive real � > 0,

�

�

(�) �

r

ln(2n(1 + 1=�))

�

� �

n

(�):

In parti
ular, for any super-logarithmi
 fun
tion !(logn) there is a negligible fun
tion �(n) su
h that �

�

(�) �

p

!(logn) � �

n

.

3 Two lemmas about 
y
li
 latti
es

In this se
tion we prove two preliminary lemmas about 
y
li
 latti
es that will be used in the proof of

our main results in the next se
tion. The results are presented here be
ause their formulation is largely

independent from the spe
i�
 redu
tion in whi
h they are used, and might be of independent interest.

The �rst lemma gives an eÆ
ient algorithm to sele
t a full rank 
y
li
 sublatti
e generated by a single

short ve
tor from an arbitrary 
y
li
 input latti
e.

3

We are 
onditioning on an event that has probability 0; this 
an be made rigorous by standard te
hniques.
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Lemma 3.1 There exists a polynomial time algorithm that on input a full rank n-dimensional latti
e S,


omputes a ve
tor 
 2 L(S) su
h that k
k

1

� 2 � n � kSk and Rot(
) has full rank.

Proof: Let S = kSk. We use Babai's nearest plane algorithm [6℄ to �nd a ve
tor 
 2 L(S) within Eu
lidean

distan
e (

p

n=2) � S from nSe

1

. Noti
e that the `

1

norm of 
 is at most

k
k

1

� k(nS � e

1

)k

1

+ k(
� nSe

1

)k

1

� nS +

p

nk
� nSe

1

k

� 1:5 � nS:

It remains to show that Rot(
) is nonsingular, or equivalently, the n-dimensional volume of P(Rot(
)) is

nonzero. Noti
e that P(Rot(
)) is an almost 
ubi
 parallelepiped obtained by perturbing the main verti
es

of a hyper
ube of size l = nS by at most � = (

p

n=2)S. In [41℄ it is shown that, for all � <

p

1� 1=n � l=

p

n,

the minimal volume of any su
h parallelepiped is (1� �)

n

l

n

. In parti
ular the volume is nonzero.

4

Sin
e

� =

p

n

2

S <

p

nS

r

1�

1

n

=

r

1�

1

n

�

l

p

n

;

the volume of P(Rot(
)) is nonzero, and the matrix Rot(
) has full rank. 2

In [44℄, Lemma 2.13 is used to prove that the expe
ted squared norm kd � 
k

2

(when d is 
hosen

a

ording to distribution D

�;s;


) is at most s

2

� n. In this paper we will need a bound on the expe
ted value

of the 
onvolution produ
t k(d � 
) 
 xk

2

. It immediately follows from the result in [44℄ and inequality

kx 
 yk �

p

nkxk � kyk that for any ve
tor x, the expe
tation of k(d � 
) 
 xk

2

is at most s

2

� n

2

� kxk

2

.

Below, we use Lemma 2.13 to dire
tly prove a stronger bound.

Lemma 3.2 For any n-dimensional latti
e �, positive reals � � 1=3, s � 2�

�

(�) and ve
tors 
;x 2 R

n

,

Exp

d�D

�;s;


�

k(d� 
)
 xk

2

�

� s

2

� n � kxk

2

:

Proof: Let e

1

; : : : ; e

n

be the standard basis of R

n

. Noti
e that (d� 
)
x = x
 (d� 
) = Rot(x) � (d� 
),

and e

T

i

� Rot(x) = (rot

i

(
~
x))

T

, where
~
x = (x

n

; : : : ; x

1

)

T

is the reverse of x. By linearity of expe
tation, we

have

Exp

d�D

�;s;


�

k(d� 
)
 xk

2

�

=

n

X

i=1

Exp

d�D

�;s;


�

he

i

; (d� 
)
 xi

2

�

:

For every i = 1; : : : ; n,

he

i

; (d� 
)
 xi = e

T

i

�Rot(x) � (d� 
)

= hrot

i

(
~
x);d� 
i

= kxkhu

i

;d� 
i

where u

i

= rot

i

(
~
x)=kxk is a unit ve
tor. So,

Exp

d�D

�;s;


�

k(d� 
)
 xk

2

�

= kxk

2

�

n

X

i=1

Exp

d�D

�;s;


�

hu

i

;d� 
i

2

�

:

Using the assumption s � 2�

�

(�) and applying Lemma 2.13, we get that for all i = 1; : : : ; n,

Exp

d�D

�;s;


�

hu

i

;d� 
i

2

�

� s

2

�

1

2�

+

�

1� �

�

� s

2

�

1

2�

+

1=3

1� 1=3

�

� s

2

:

Adding up for all i and substituting in the previous equation we get

Exp

d�D

�;s;


�

k(d� 
)
 xk

2

�

� s

2

kxk

2

n:

2

4

The minimal volume (1� �)

n

l

n

is a
hieved by the intuitive solution that shortens ea
h edge by �. Interestingly, as shown in

[41℄, when � = l=

p

n there are better ways to 
hoose the perturbations that result in a singular parallelepiped with zero volume.
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4 Generalized 
ompa
t knapsa
ks

The hash fun
tion families 
onsidered in this paper, as well as previous works [1, 9, 40, 42, 44℄, are all spe
ial


ases of the following general de�nition.

De�nition 4.1 For any ring R, subset S � R and integer m � 1, the generalized knapsa
k fun
tion family

H(R;S;m) = ff

a

: S

m

! Rg

a2R

m

is de�ned by

f

a

(x) =

m

X

i=1

x

i

� a

i

;

for all a 2 R

m

and x 2 S

m

, where

P

i

x

i

�a

i

is 
omputed using the ring addition and multipli
ation operations.

In this paper we 
onsider the ring R = (F

n

p(n)

;+;
) of n-dimensional ve
tors over the �nite �eld F

p(n)

with p(n) = n

O(1)

elements, with the usual ve
tor addition operation and 
onvolution produ
t 
. For brevity,

we will denote this ring simply as F

n

p(n)

. We remark that for any prime p, the �eld F

p

is isomorphi
 to the

ring Z

p

of integers modulo p. Here we use notation F

n

p

instead of Z

n

p

both be
ause some of our results are

valid even when p is not a prime, and also to emphasize that F

n

p

is the ring of ve
tors with the 
onvolution

produ
t operation, rather than the 
omponentwise multipli
ation of the produ
t ring Z

n

p

.

As for S, we 
onsider the set S = D

n

� F

n

p

of ve
tors with entries in an appropriately sele
ted subset of

F

p

. We want to study the hash fun
tion family H(F

n

p

; D

n

;m), and prove that it is both almost regular and

one-way.

The rest of the se
tion is organized as follows. In Subse
tion 4.1 we prove that H(F

n

p

; D

n

;m) is almost

regular. In Subse
tion 4.2 we introdu
e and start studying a new worst-
ase latti
e problem that will be

instrumental to prove our main results. In Subse
tion 4.3 we give a redu
tion from solving this problem in

the worst 
ase to the problem of inverting fun
tions H(F

n

p

; D

n

;m) on the average. Finally, in Subse
tion 4.4

we establish relations between inverting H(F

n

p

; D

n

;m) on the average, and solving various other worst-
ase

problems on 
y
li
 latti
es, like SIVP and GDD

�

.

4.1 Regularity lemma

For any ring R of size jRj � 2

n

, a ne
essary 
ondition for the hash fun
tion family H(R; f0; 1g;m) to be

almost regular is m � 
(log jRj) � 
(log n), be
ause when m � o(log jRj), almost a tiny fra
tion of the

elements of R 
an be expressed as the sum of a subset of fa

1

; : : : ; a

m

g. In this subse
tion we prove that the

hash fun
tion family H(F

n

p

; D

n

;m) is almost regular already when m = !(1) is an unbounded fun
tion with

arbitrarily slow growth rate. Our proof is quite di�erent from the standard proof for the subset-sum fun
tion

H(R; f0; 1g;m). In parti
ular, while the proof for H(R; f0; 1g;m) only relies on the additive stru
ture of R,

our proof makes full use of the ring properties of F

n

p

and the 
hara
terization of its ideals as quotients of

polynomial rings.

Theorem 4.2 For any �nite �eld F, subset D � F, and integers n;m, the hash fun
tion family H(F

n

; D

n

;m)

is �-regular for

� =

1

2

p

(1 + jFj=jDj

m

)

n

� 1:

In parti
ular, for any p(n) = n

O(1)

, jD

n

j = n


(1)

and m(n) = !(1), the fun
tion ensemble H(F

n

p(n)

; D

n

n

;m(n))

is almost regular.

The proof of the theorem is based on the following lemma of Impagliazzo and Zu
kerman.

Lemma 4.3 ([25, Claim 2℄) Let V; V

0

be independent and identi
ally distributed random variables taking

values in a �nite set S. If V; V

0

have 
ollision probability Pr fV = V

0

g � (1 + 4�

2

)=jSj, then the statisti
al

distan
e between V and the uniform distribution over S is at most �.
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Proof: For 
ompleteness, we give a sket
h of the proof. Let � be the statisti
al distan
e between V and

the uniform distribution. By de�nition of statisti
al distan
e, there is a set X � S su
h that Pr fV 2 Xg =

jX j=jSj+ �. Therefore the 
ollision probability satis�es

Pr fV = V

0

g = Pr

�

V = V

0

V; V

0

2 X

	

Pr fV 2 Xg

2

+Pr

�

V = V

0

V; V

0

=2 X

	

Pr fV =2 Xg

2

�

Pr fV 2 Xg

2

jX j

+

PrfV =2 Xg

2

jSj � jX j

=

1

jSj

+

�

2

jSj

jX j(jSj � jX j)

whi
h is minimized when jX j = jSj=2. Substituting jX j = jSj=2, we get that the 
ollision probability is at

least (1 + 4�

2

)=jSj. 2

We also need the following simple lemma.

Lemma 4.4 Let R be a �nite ring, and z

1

; : : : ; z

m

2 R a sequen
e of arbitrary ring elements. If a

1

; : : : ; a

m

2

R are independently and uniformly distributed ring elements, then

P

a

i

� z

i

is uniformly distributed over the

ideal hz

1

; : : : ; z

m

i generated by z

1

; : : : ; z

m

. In parti
ular, for any z

1

; : : : ; z

m

2 R and randomly 
hosen

a

1

; : : : ; a

m

2 R, the probability that

P

a

i

� z

i

= 0 is exa
tly 1=jhz

1

; : : : ; z

m

ij.

Proof: Let z

1

; : : : ; z

m

2 R be arbitrary ring elements, and, for any b 2 R, de�ne A

b

= f(a

1

; : : : ; a

m

) 2

R

m

:

P

a

i

� z

i

= bg. Noti
e that the probability that

P

i

a

i

� z

i

= b (over the random 
hoi
e of a

1

; : : : ; a

m

)

equals jA

b

j=jRj

m

. If b =2 hz

1

; : : : ; z

m

i, then A

b

= ; and Pr f

P

a

i

� z

i

= bg = 0. It remains to prove that all

b 2 hz

1

; : : : ; z

m

i have the same probability. Let b =

P

a

i

� z

i

an arbitrary element of hz

1

; : : : ; z

m

i. We 
laim

that jA

b

j = jA

0

j. It is easy to see that a

0

2 A

b

if and only if a

0

� a 2 A

0

. Sin
e a

0

7! a

0

� a is a bije
tion

between A

b

and A

0

, it follows that jA

b

j = jA

0

j. This proves that all b 2 R have the same probability

jA

b

j=jRj

m

= jA

0

j=jRj

m

, and 
ompletes the proof of the lemma. 2

We are now ready to prove the theorem.

Proof [of Theorem 4.2℄: We want to prove that owf(H(F

n

; D

n

;m)) is very 
lose to the uniform distribu-

tion over (F

n

)

m

�F

n

. We �rst bound the 
ollision probability of two independent 
opies of owf(H(F

n

; D

n

;m)).

Let ((a

1

; : : : ; a

m

);

P

i

a

i


x

i

) and ((a

0

1

; : : : ; a

0

m

);

P

i

a

0

i


x

i

) be two independent samples 
hosen a

ording to

the distribution owf(H(F

n

; D

n

;m)). By de�nition, the elements a

i

; a

0

i

2 F

n

and x

i

;x

0

i

2 D

n

are all 
hosen

independently and uniformly at random from their respe
tive sets. Therefore, the 
ollision probability is

Pr

(

8i:a

i

= a

0

i

^

m

X

i=1

a

i


 x

i

=

m

X

i=1

a

0

i


 x

0

i

)

= Pr f8i:a

i

= a

0

i

g

�Pr

�

P

m

i=1

a

i


 x

i

=

P

m

i=1

a

0

i


 x

0

i

8i:a

i

= a

0

i

	

=

1

jFj

mn

� Pr

(

m

X

i=1

a

i

� (x

i

� x

0

i

) = 0

)

:

By Lemma 4.4, the probability (over the random 
hoi
e of a

1

; : : : ; a

m

) that

P

i

a

i


 (x

i

� x

0

i

) = 0 equals

1=jI j where I = hx

1

� x

0

1

; : : : ;x

m

� x

0

m

i is the ideal generated by x

1

� x

0

1

; : : : ;x

m

� x

0

m

. Let I be the set of

all ideals of (F

n

;+;
). Conditioning on the value of I , the 
ollision probability 
an be expressed as

1

jFj

mn

� Pr

(

m

X

i=1

a

i

� (x

i

� x

0

i

) = 0

)

=

1

jFj

nm

�

X

I2I

Pr fhx

1

� x

0

1

; : : : ;x

m

� x

0

m

i = Ig

jI j

�

1

jFj

nm

�

X

I2I

Pr fhx

1

� x

0

1

; : : : ;x

m

� x

0

m

i � Ig

jI j

=

1

jFj

n(m+1)

�

X

I2I

jFj

n

jI j

�

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 Ig :
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In the rest of the proof, we regard F

n

as the ring of univariate polynomials F[�℄ modulo �

n

� 1. Sin
e F is

a �eld, F[�℄ is a prin
ipal ideal domain, i.e., all ideals in F[�℄ are of the form hQ(�)i for some polynomial

Q(�) 2 F[�℄. It follows that all ideals I 2 I of the quotient ring F[�℄=(�

n

� 1) are of the form hQ(�)i where

Q(�) is a fa
tor of �

n

� 1. (To see this, given an ideal I 2 I, sele
t a representative for ea
h element of I ,

and let Q(�) be the greatest 
ommon divisor of all these representatives and the polynomial �

n

� 1.) Let

(�

n

� 1) = Q

1

(�) � Q

2

(�) � � � � � Q

r

(�) be the fa
torization of (�

n

� 1) into irredu
ible polynomials over F,

and for any subset S � f1; : : : ; rg, let Q

S

(�) = �

i2S

Q

i

(�). The ideals of R are I = fhQ

S

i:S � f1; : : : ; rgg.

For any ideal hQ

S

i 2 I, we have jhQ

S

ij = jFj

n�deg Q

S

and

Pr f(x

i

� x

0

i

) 2 hQ

S

ig = Pr fx

i

� x

0

i

mod Q

S

g � max

b

Pr fx

i

mod Q

S

= bg �

1

jDj

deg(Q

S

)

:

Therefore,

jFj

n

jhQ

S

ij

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 hQ

S

ig �

jFj

n

jFj

n�deg Q

S

�

1

jDj

degQ

S

�

m

=

�

jFj

jDj

m

�

degQ

S

and, adding up over all ideals,

X

hQ

S

i2I

jFj

n

jhQ

S

ij

m

Y

i=1

Pr f(x

i

� x

0

i

) 2 hQ

S

ig �

X

S

�

jFj

jDj

m

�

degQ

S

=

r

Y

i=1

 

1 +

�

jFj

jDj

m

�

degQ

i

!

�

�

1 +

jFj

jDj

m

�

n

:

This proves that the 
ollision probability is at most

(1 + jFj=jDj

m

)

n

jFj

n(m+1)

:

Now observe that random variable owf(H(F

n

; D

n

;m)) takes values in the set (F

n

)

m

�F

n

, whi
h has size

jFj

n(m+1)

. Therefore, by Lemma 4.3, the statisti
al distan
e between owf(H(F

n

; D

n

;m)) and the uniform

distribution over (F

n

)

m

� F

n

is at most

� =

1

2

s

�

1 +

jFj

jDj

m

�

n

� 1:

2

4.2 The worst 
ase problems

We want to show that inverting our generalized 
ompa
t knapsa
k fun
tion H(F

n

; D

n

;m) (on the average

and with nonnegligible probability) is at least as hard as solving GDD

�




(as well as various other related

problems) over 
y
li
 latti
es in the worst 
ase. Following [42℄, this is done in two steps. First, all relevant

worst-
ase latti
e problems are redu
ed to an intermediate worst-
ase problem, and then the intermediate

problem is redu
ed to the problem of inverting fun
tions in H(F

n

; D

n

;m) on the average. In [42℄, the goal

is to redu
e the worst-
ase problem GIVP




to the problem of inverting

5

H(Z

n

p

; f0;1g;m) on the average,

and the intermediate problem is an in
remental version of GIVP, where given a latti
e basis B, a set of

suÆ
iently long linearly independent latti
e ve
tors S, and a hyperplane H , the goal is to �nd a latti
e

ve
tor not in H shorter than kSk by some 
onstant fa
tor.

5

In fa
t, [42℄ only requires an algorithm that �nds 
ollisions f

a

(x) = f

a

(x

0

), an easier problem than inverting the fun
tion

f

a

.
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De�nition 4.5 The in
remental generalized shortest independent ve
tor problem In
GIVP

�


;


is: given

a latti
e basis B, a hyperplane H, and a set of linearly independent latti
e ve
tors S su
h that kSk >


(n) � �(L(B)), �nd a latti
e ve
tor s 2 L(B) nH su
h that ksk � kSk=
.

In [42℄ it is shown that GIVP

�




is polynomial time redu
ible to In
GIVP

�


;2

. The redu
tion given in

[42℄ has also the additional property that all 
alls made by the redu
tion to the In
GIVP ora
le are of the

form (B;S; H) where B is the GIVP input latti
e basis. If a redu
tion between latti
e problems has this

property, then we say that the redu
tion is latti
e preserving. Latti
e preserving redu
tions are parti
ularly

useful in the 
ontext of our paper be
ause they allow to redu
e a (worst-
ase) latti
e problem over a given


lass of latti
es (e.g., 
y
li
 latti
es) to another (worst-
ase) latti
e problem over the same 
lass of latti
es.

Theorem 4.6 ([42℄, Theorem 6.3) There is a polynomial time latti
e preserving redu
tion from GIVP

�




to In
GIVP

�


;2

.

Here we 
onsider a di�erent intermediate problem, whi
h is an in
remental version of GDD, where one is

given a GDD instan
e (B; t), a set of n linearly independent ve
tors S � L(B), and a suÆ
iently large real

parameter r, and the goal is to �nd a latti
e ve
tor whose distan
e from the target is smaller than kSk+ r

by some 
onstant fa
tor.

De�nition 4.7 The in
remental guaranteed distan
e de
oding problem (In
GDD

�


;


), given an n-dimensional

latti
e B, a set of n linearly independent ve
tors S � L(B), a target t 2 R

n

, and a real r > 
(n) � �(L(B)),

asks for a latti
e ve
tor s 2 L(B) su
h that ks� tk � (kSk+ r)=
.

We want to prove a result similar to Theorem 4.6, but for the GDD problem and its in
remental variant

In
GDD.

Theorem 4.8 For any 
 > 8, there is a polynomial time latti
e preserving redu
tion from GDD

�




to

In
GDD

�


;


.

Proof: The redu
tion works in three stages. We �rst solve the GDD problem assuming we have ora
les

to solve both In
GDD and GIVP. Next, we use Theorem 4.6 to redu
e GIVP to In
GIVP. Finally, we

redu
e In
GIVP to In
GDD, so that the originalGDD problem 
an be solved using an ora
le for In
GDD

alone. All the redu
tions are latti
e preserving, and therefore their 
ombination is latti
e preserving too.

Let (B; t) be a GDD

�




instan
e, and assume we have a

ess to both an In
GDD

�


;


ora
le and a GIVP

�


;2

one. First we use theGIVP

�


;2

ora
le on input B to �nd a set of linearly independent latti
e ve
tors S � L(B)

su
h that kSk � 
(n) � �(L(B)). Then, we perform a binary sear
h on the value of r until we �nd a value

su
h that the In
GDD ora
le su

essfully solves instan
e (B;S; t; r), but fails on input (B;S; t; r=2). Let

s 2 L(B) be the solution returned by the ora
le on input (B;S; t; r). We know that r=2 � 
(n) � �(L(B))

be
ause In
GDD failed on input (B;S; t; r=2). Therefore

dist(s; t) �

kSk+ r




�


(n) � �(L(B)) + 2
(n) � �(L(B))




�

3





(n) � �(L(B)):

By Theorem 4.6, the GIVP

�




ora
le needed in the previous redu
tion, 
an be implemented given an

In
GIVP

�


;2

ora
le. It remains to show that there is a latti
e preserving redu
tion from In
GIVP

�


;2

to

In
GDD

�


;


for any 
 > 8. The redu
tion is very simple and works as follows. Let (B;S; H) be the

In
GIVP

�


;2

input instan
e. Let t be a ve
tor orthogonal to H of length kSk=4, and r = kSk. Noti
e

that, sin
e (B;S; H) is a valid In
GIVP

�


;2

instan
e, we have r = kSk > 
(n) � �(L(B)). This proves that

(B;S; t; r) is a valid instan
e of In
GDD

�


;


. Let s be the solution returned by the In
GDD

�


;


ora
le on

input (B;S; t; r). We know that s 2 L(B) and

dist(s; t) �

kSk+ r




=

2kSk




<

kSk

4

:
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Therefore, s =2 H be
ause

dist(s; H) � dist(t; H)� dist(s; t) > ktk �

kSk

4

� 0:

Moreover, by the triangle inequality,

ksk � ktk+ dist(s; t) <

kSk

4

+

kSk

4

=

kSk

2

:

This proves that s is a solution to the original In
GIVP

�


;2

problem. 2

4.3 The main redu
tion

In this se
tion we redu
e the worst-
ase problem In
GDD

�


;


on 
y
li
 latti
es to the problem of inverting

the 
ompa
t knapsa
k fun
tions owf(H(F

n

p(n)

; D

n

;m(n))) on the average.

Theorem 4.9 For any 
onstants 


0

> 2
 and Æ > 0, negligible fun
tion �(n) = n

�!(1)

, and polynomially

bounded fun
tions m(n) = !(1) and p(n) � (


0

�m(n) � n

2:5

)

1=(1�Æ)

, there is a probabilisti
 polynomial time

redu
tion from solving In
GDD

�

�


(n);


within a fa
tor 
(n) = 


0

�m(n) �n � p(n)

Æ

in the worst 
ase over 
y
li


latti
es (with high probability), to solving random instan
es of owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))) on the average

(with nonnegligible probability).

Proof: For any equation Q = (q

1

; : : : ;q

m(n)

;q

0

) 2 F

n�m(m)

p(n)

� F

n

p(n)

, let

�(Q) =

8

<

:

X = (x

1

; : : : ;x

m(n)

):8i:x

i

2 Tp

Æ

U

n

^

m(n)

X

i=1

q

i


 x

i

= q

0

mod p(n)

9

=

;

be the 
orresponding set of solutions. Let F be an ora
le that on input an instan
eQ of the knapsa
k fun
tion

inversion problem sele
ted at random a

ording to distribution owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))), outputs a

solution F(Q) 2 �(Q) with nonnegligible probability. Let �(n) be the probability that F(

~

Q) 2 �(

~

Q) when

~

Q is sele
ted uniformly at random from F

n�m(m)

p(n)

� F

n

p(n)

. Sin
e p(n) = n

O(1)

, jTp(n)

Æ

Uj � p(n)

Æ

= n


(1)

and

m(n) = !(1), by Theorem 4.2 the probability distribution owf(H(F

n

p(n)

; Tp(n)

Æ

U

n

;m(n))) is statisti
ally


lose to the uniform one U(F

n�m(m)

p(n)

� F

n

p(n)

). Therefore, �(n) is nonnegligible too. We use F to solve

problem In
GDD

�


;


over 
y
li
 latti
es in the worst 
ase, with nonnegligible probability 
(�(n)). Sin
e we

are solving In
GDD

�


;


in the worst 
ase, the su

ess probability of the redu
tion 
an be made exponentially


lose to 1 using standard repetition te
hniques.

Let (B;S; t; r) be a valid In
GDD

�


;


instan
e su
h that the latti
e L(B) is 
y
li
. We know that L(S) is

a (not ne
essarily 
y
li
) full rank sublatti
e of L(B), and r > 
(n) ��

�(n)

(L(B)) for some negligible fun
tion

�(n) = n

�!(1)

. The goal of the redu
tion is to �nd a latti
e ve
tor s 2 L(B) within distan
e (r + kSk)=


from the target t. The redu
tion works as follows:

1. Use Lemma 3.1 to �nd a ve
tor 
 2 L(S) � L(B) of length k
k

1

� 2 � n � kSk su
h that Rot(
) has full

rank.

2. For i = 0; : : : ;m(n), do the following

(a) Use Lemma 2.7 to generate a uniformly random latti
e ve
tor v

i

2 L(B) \ P(Rot(
)).

(b) Generate a random noise ve
tor y

i

with probability density y

i

� �

s

=s

n

for s = 2r=
(n), and let

y

0

i

= y

i

mod B.

(
) Compute a

i

= bp(n) � Rot

�1

(
)(v

i

+ y

0

i

)
.

3. Compute b = bp(n) �Rot

�1

(
)t
.
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4. De�ne the equation

Q = (a

1

mod p(n); : : : ; a

m

mod p(n); a

0

+ b mod p(n)) (4.4)

and invoke F(Q) to �nd a potential solution X = (x

1

; : : : ;x

m(n)

), where x

i

2 Tp(n)

Æ

U

n

for all i =

1; : : : ;m(n).

5. Let x

0

= �e

1

, and return the ve
tor

s =

m(n)

X

i=0

�

v

i

+ y

0

i

�



 a

i

p(n)

� y

i

�


 x

i

+



 b

p(n)

:

The 
orre
tness of the redu
tion is based on the following two lemmas. The �rst lemma shows that if the

ora
le F su

essfully outputs a solution to equation Q, then the redu
tion outputs a latti
e ve
tor s 2 L(B).

Lemma 4.10 If (x

1

; : : : ;x

m(n)

) is a valid solution to equation (4.4), then s 2 L(B) is a latti
e ve
tor.

Proof: Assume (x

1

; : : : ;x

m(n)

) is a valid solution to equation (4.4), i.e.,

m(n)

X

i=1

a

i


 x

i

� (a

0

+ b) mod p(n):

Using the distributive and asso
iative properties of 
, ve
tor s 
an be rewritten as the sum

s =

m(n)

X

i=0

(v

i

+ y

0

i

� y

i

)
 x

i

� 



P

m(n)

i=0

a

i


 x

i

� b

p(n)

:

We 
laim that all terms in the summation belong to the latti
e L(B). First of all noti
e that for any i � 0,

the ve
tor v

i

+ y

0

i

�y

i

belongs to the latti
e L(B) be
ause v

i

2 L(B) and y

0

i

� y

i

modulo L(B). Using the


y
li
ity of L(B), we get that all 
olumns of Rot(v

i

+ y

0

i

� y

i

) belong to the latti
e, and

(v

i

+ y

0

i

� y

i

)
 x

i

= Rot(v

i

+ y

0

i

� y

i

) � x

i

2 L(B)

be
ause x

i

has integer entries. For the last term, we use the fa
t that (x

1

; : : : ;x

m(n)

) is a solution to the

linear equation (4.4) and a

0


 x

0

= �a

0

, yielding

X

i�0

a

i


 x

i

� b =

X

i�1

a

i


 x

i

� (a

0

+ b) � 0 mod p(n):

Therefore (

P

i�0

a

i


 x

i

� b)=p(n) is an integer ve
tor, and





P

i�0

a

i


 x

i

� b

p(n)

= Rot(
) �

P

i�0

a

i


 x

i

� b

p(n)

2 L(Rot(
)) � L(B):

2

The se
ond lemma shows that the input Q to the ora
le F is almost uniformly distributed, and therefore

F(Q) is su

essful with probability very 
lose to �(n).

Lemma 4.11 For any s � �

�(n)

(L(B)), the statisti
al distan
e of equation (4.4) from the uniform distribu-

tion is at most

1

2

(m(n) + 1) � �(n):

In parti
ular, for any polynomially bounded m(n) = n

O(1)

, and negligible fun
tion �(n) = n

�!(1)

, the distri-

bution of equation (4.4) is within negligible distan
e from the uniform distribution U(F

n�m(m)

p(n)

� F

n

p(n)

).
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Proof: We �rst bound the distan
e of ea
h a

i

mod p(n) from the uniform distribution over F

n

p(n)

. Noti
e

that

a

i

mod p(n) = bp(n) �Rot

�1

(
)(v

i

+ y

0

i

)
 mod p(n)

= bp(n) �Rot

�1

(
)((v

i

+ y

0

i

) mod Rot(
))
:

So, if y

0

i

were distributed uniformly at random over P(B), then (v

i

+ y

0

i

) mod Rot(
) would be uniform

over P(Rot(
)), and a

i

mod p(n) would also have perfe
tly uniform distribution over F

n

p(n)

. Therefore, by

Proposition 2.2 the statisti
al distan
e between a

i

mod p(n) and the uniform distribution over F

n

p(n)

is at

most as big as the statisti
al distan
e between y

0

i

and the uniform distribution over P(B). Noti
e that y

0

i

has distribution �

s

=s

n

mod P(B). Using the assumption s � �

�

(L(B)) and Lemma 2.12, we get that

�(a

i

mod p(n); U(F

n

p(n)

)) � �(y

0

i

; U(P(B))) � �(n)=2:

Now 
onsider equation Q. Sin
e the elements of Q are independently distributed, by Proposition 2.4 we

have

�(Q; U(F

n�m(m)

p(n)

� F

n

p(n)

)) �

m(n)

X

i=1

�(a

i

mod p(n); U(F

n

p(n)

)) + �(a

0

+ b mod p(n); U(F

n

p(n)

)):

The last term satis�es

�(a

0

+ b mod p(n); U(F

n

p(n)

)) = �(a

0

mod p(n); (U(F

n

p(n)

)� b) mod p(n)) = �(a

0

mod p(n); U(F

n

p(n)

)):

Therefore,

�(Q; U(F

n�m(m)

p(n)

� F

n

p(n)

)) �

m(n)

X

i=0

�(a

i

mod p(n); U(F

n

p(n)

)) � (m(n) + 1) � �(n)=2:

2

We are now ready to prove the 
orre
tness of the redu
tion. Namely, we want to prove that for any rank

n latti
e basis B, full rank subset S � L(B), target t, and r > 
(n) ��

�

(L(B)), the redu
tion outputs a latti
e

ve
tor s 2 L(B) su
h that ks� tk � (r + kSk)=
 with nonnegligible probability 
(�(n)). By Lemma 4.10,

s 2 L(B) is satis�ed whenever ora
le F returns a valid solution X = F(Q) 2 �(Q). Therefore, the su

ess

probability of the redu
tion is at least

Pr

�

s 2 L(B); ks� tk �

r + kSk




�

� Pr

�

X 2 �(Q); ks� tk �

r + kSk




�

= Pr fX 2 �(Q)g � Pr

n

ks� tk �

r+kSk




X 2 �(Q)

o

: (4.5)

Let

~

Q 2 U(F

n�(m(n)+1)

p(n)

) be an equation distributed uniformly at random. Noti
e that s = 2r=
(n) >

2�

�(n)

(L(B)) > �

�(n)

(L(B)). So, by Lemma 4.11, �(Q;

~

Q) is negligible. Therefore, the �rst probability in

(4.5) satis�es

Pr fX 2 �(Q)g = Pr fF(Q) 2 �(Q)g

� Pr

n

F(

~

Q) 2 �(

~

Q)

o

��(Q;

~

Q)

= �(n)� n

�!(1)

� 
(�(n)):

We bound the se
ond probability in (4.5) using Markov's inequality:

Pr

n

ks� tk �

r+kSk




X 2 �(Q)

o

= 1� Pr

n

ks� tk >

r+kSk




X 2 �(Q)

o

� 1� 
 �

Exp

�

ks� tk X 2 �(Q)

�

r + kSk

: (4.6)
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We will prove that the 
onditional expe
tation Exp

�

ks� tk X 2 �(Q)

�

is at most 2(1+1=m(n)) � (kSk+

r)=


0

, so that, for all suÆ
iently large m(n) � 4
=(


0

� 2
), the 
onditional probability in (4.5) is at least

1�

2





0

�

1 +

1

m(n)

�

�




0

� 2


2


0

= 
(1):

This proves that (4.5) (and therefore also the su

ess probability of the redu
tion) is at least 
(�(n)) �
(1) =


(�(n)).

It remains to bound the expe
ted length of s� t. By triangle inequality,

ks� tk �

m(n)

X

i=0













(v

i

+ y

0

i

�



 a

i

p(n)

)
 x

i













+

m(n)

X

i=0

ky

i


 x

i

k+













t�



 b

p(n)













: (4.7)

Noti
e that

v

i

+ y

0

i

�



 a

i

p(n)

=



 (w � bw
)

p(n)

where w = p(n)Rot

�1

(
)(v

i

+ y

0

i

). Sin
e k
k

1

� 2nkSk by 
onstru
tion and kw � bw
k

1

� 1=2 for any

ve
tor w,

kv

i

+ y

0

i

�



 a

i

p(n)

k

1

�

k
k

1

� kw � bw
k

1

p(n)

�

nkSk

p(n)

: (4.8)

Similarly, we have













t�



 b

p(n)













1

�

nkSk

p(n)

: (4.9)

Multiplying (4.8) by x

i

and using kx

i

k

1

� n � p(n)

Æ

, we get













(v

i

+ y

0

i

�



 a

i

p(n)

)
 x

i













1

�













v

i

+ y

0

i

�



 a

i

p(n)













1

� kx

i

k

1

�

n

2

kSk

p(n)

1�Æ

:

Substituting these bounds in (4.7) and using the relation kzk �

p

nkzk

1

(valid for any n-dimensional ve
tor

z) we obtain

ks� tk � (m(n) + 1) �

n

2:5

kSk

p(n)

1�Æ

+

n

1:5

kSk

p(n)

+

m(n)

X

i=0

ky

i


 x

i

k

� (m(n) + 2) �

n

2:5

kSk

p(n)

1�Æ

+

m(n)

X

i=0

ky

i


 x

i

k:

Assuming p(n) � (


0

�m(n) � n

2:5

)

1=(1�Æ)

, the �rst term in the last expression is at most

(m(n) + 2) �

n

2:5

kSk

p(n)

1�Æ

�

�

1 +

1

m(n)

�

�

2kSk




0

:

�

1 +

2

m(n)

�

�

kSk




0

:

We want to prove that the 
onditional expe
tation of the se
ond term satis�es

Exp

h

P

m(n)

i=0

ky

i


 x

i

k X 2 �(Q)

i

�

�

1 +

1

m(n)

�

�

2r




0

:

We 
onsider the 
onditional expe
tation, given Q, X and y

0

i

(for i = 0; : : : ;m(n)). The 
laim follows by

averaging over all possible values of Q, X and y

0

i

su
h that X 2 �(Q).
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Given y

0

i

, ve
tor y

i

must ne
essarily belong to the set y

0

i

+ L(B), but it is otherwise random and

independent from Q and X. So, the 
onditional distribution of y

i

is

Pr

�

y

i

y

0

i

;Q;X

	

= Pr

�

y

i

y

0

i

	

=

�

s

(y

i

)

�

s

(y

0

i

+ L(B))

=

�

s;�y

0

i

(y

i

� y

0

i

)

�

s;�y

0

i

(L(B))

:

In other words, the 
onditional distribution of (y

i

� y

0

i

) 2 L(B) is D

L(B);s;�y

0

i

. Re
all that s = 2r=
(n) >

2�

�(n)

(L(B)). So, by Lemma 3.2,

Exp

�

ky

i


 x

i

k

2

y

0

i

�

= Exp (y

i

� y

0

i

) � D

L(B);s;�y

0

i

k((y

i

� y

0

i

)� (�y

0

i

))
 x

i

k

2

� s

2

kx

i

k

2

n

� s

2

n

2

� p(n)

2Æ

:

By 
onvexity, we get

Exp

�

ky

i


 x

i

k y

0

i

�

� n � s � p(n)

Æ

:

Finally, adding up for all values of i and using the de�nition of s = 2r=
(n) and 
(n) = 


0

m(n) � n � p(n)

Æ

,

we get

m(n)

X

i=0

Exp

�

ky

i


 x

i

k y

0

i

�

� (m(n) + 1) � n � s � p(n)

Æ

=

2r(m(n) + 1) � n � p(n)

Æ


(n)

=

�

1 +

1

m(n)

�

2r




0

:

This 
on
ludes the proof that the 
onditional expe
tation Exp

�

ks� tk X 2 �(Q)

�

is at most 2(1 +

1=m(n))(kSk+ r)=


0

, and the redu
tion su

eeds with nonnegligible probability 
(�(n)). 2

By 
hoosing a small enough Æ > 0 in the previous theorem, we obtain the following 
orollary.

Corollary 4.12 For any 
 > 0, � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist a 
onstant

Æ > 0 su
h that there is a redu
tion from solving In
GDD

�


;


in the worst 
ase within a fa
tor 
(n) = n

1+�

to inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability.

Proof: Let 


0

= 3
 and Æ be any 
onstant stri
tly smaller than minf�= log

n

p(n); 1� 2:5= log

n

p(n)g. Noti
e

that

p(n)

1�Æ

= n

(1�Æ) log

n

p(n)

� n

2:5+
(1)

> 


0

m(n)n

2:5

:

Therefore, by Theorem 4.9, inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average is at least as hard as solving

In
GDD

�


;


in the worst 
ase, for


(n) = 


0

m(n)np(n)

Æ

� n

1+o(1)+Æ log

n

p(n)

� n

1+�

:

2

4.4 Other latti
e problems

In Subse
tion 4.3 we have shown that inverting the generalized 
ompa
t knapsa
k fun
tionsH(F

n

p

; Tp

Æ

U; !(1))

on the average is at least as hard as solving the In
GDD problem over 
y
li
 latti
es in the worst 
ase.

In this subse
tion we relate the 
omplexity of inverting the 
ompa
t knapsa
k fun
tions to other standard

worst-
ase latti
e problems.

Corollary 4.13 For any � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist a 
onstant Æ > 0

su
h that inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability is at least as hard

as solving any of the following problems in the worst 
ase within a fa
tor 
(n) = n

1+�

:
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� the guaranteed distan
e de
oding problem GDD

�




over 
y
li
 latti
es

� the generalized independent ve
tor problem GIVP

�




over 
y
li
 latti
es.

Proof: Both redu
tions easily follow by 
ombining Corollary 4.12 with Theorem 4.8 and Theorem 2.10. 2

Finally, using known relations between � and �

n

(see Lemma 2.14) and �

n

� 2� (see [43, Theorem 7.9℄),

we 
an relate the hardness of breaking one-way fun
tion H(F

n

p

; Tq

Æ

U; !(1)) to the standard version of the

latti
e problems GDD

�

and SIVP.

Corollary 4.14 For any � > 0, p(n) = n

2:5+�(1)

and m(n) = !(1) � n

o(1)

, there exist Æ > 0 su
h that

inverting H(F

n

p(n)

; Tp(n)

Æ

U;m(n)) on the average with nonnegligible probability is at least as hard as solving

any of the following problems in the worst 
ase for 
(n) = n

1+�

:

� the guaranteed distan
e de
oding problem GDD

�




over 
y
li
 latti
es

� the generalized independent ve
tor problem SIVP




over 
y
li
 latti
es.

5 Con
lusions and open problems

We have introdu
ed a new 
lass of very eÆ
ient one-way fun
tions with strong se
urity guarantees. Namely,

our fun
tions are provably hard to invert (on the average), based on a worst-
ase intra
tability assumption.

The assumption is that no polynomial time algorithm 
an approximate SIVP, GDD

�

, or other related latti
e

problems, in the worst 
ase over 
y
li
 latti
es within a fa
tor n

1+�

almost linear in the dimension of the

latti
e.

This is similar to the result proved in [1, 44℄ and related works, but with the following di�eren
es. On

the positive side,

� our fun
tion has almost linear (in the se
urity parameter) key size n

1+�

, mu
h smaller than the

quadrati
 key size 
(n

2

) required by [1, 44℄

� our fun
tion 
an be evaluated in almost linear time n

1+�

, mu
h faster (for the same value of the se
urity

parameter) than the 
(n

2

) time (linear in the key size) required by [1, 44℄.

These major eÆ
ien
y improvements do not 
ome for free. The pri
e of redu
ing the key size and 
omputation

time is that

� we need to assume that the latti
e problems SIVP, GDD

�

, et
., are hard to approximate in the worst


ase, even when the input latti
e is 
y
li
,

� we assume that the latti
e problems SIVP, GDD

�

, et
., are hard to approximate in the worst 
ase

within fa
tors n

1+�

slightly bigger than the fa
tors !(n logn) required in [44℄,

� we prove that our 
ompa
t knapsa
k fun
tion is one-way, a weaker se
urity property than the 
ollision

resistan
e property proved in [44℄.

In this se
tion we elaborate on all these issues: the 
omplexity of latti
e problems on 
y
li
 latti
es, the

possibility of redu
ing the required inapproximability fa
tor, and the 
onstru
tion of 
ryptographi
 primitives

other than one-way fun
tions.

Cy
li
 latti
es From a theoreti
al point of view, the main di�eren
e between our one-way fun
tions and

those studied in [1, 44℄ and related papers, is that our fun
tions are based on the worst-
ase intra
tability

of latti
e problems on a 
lass of latti
es with a spe
ial stru
ture: namely, 
y
li
 latti
es.

Many latti
e problems are known to be NP-hard even in their approximation versions for suÆ
iently

small approximation fa
tors. For example, the shortest ve
tor problem SVP is NP-hard (under randomized

redu
tions) to approximate within any 
onstant fa
tor [2, 38, 29℄, while the 
losest ve
tor problem CVP is

NP-hard to approximate even within quasi polynomial fa
tors n

O(1= log logn)

[61, 5, 13℄. These results support
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the 
onje
ture that latti
e problems are hard to solve in the worst 
ase, at least for arbitrary latti
es. It is

natural to ask whether latti
e problems remain hard even when the input latti
e is 
y
li
.

Very little is known about the 
omputational 
omplexity of latti
e problems on 
y
li
 latti
es. In fa
t, as

far as we know 
y
li
 latti
es have re
eived little or no attention so far. From an algorithmi
 point of view, it

is not 
lear how to exploit the 
y
li
 stru
ture of the latti
e in state of the art latti
e algorithms, e.g., latti
e

basis redu
tion. The only algorithmi
 results related to 
y
li
 latti
es we are aware of are [34, 23, 60, 15℄.

The �rst paper [34℄ shows how the solution of 
ertain latti
e problems 
an be speeded up by a fa
tor n when

the latti
e is 
y
li
. This is a quite modest improvement sin
e the running time of the best algorithms to

solve these problems over general latti
es is exponential in the dimension n of the latti
e. A more interesting

algorithmi
 result is given in [23, 60, 15℄. The problem 
onsidered in [23℄ (and solved building on previous

algorithms from [60, 15℄) is the following: given the auto
orrelation x 
 x of a ve
tor x, retrieve x. This

problem (whi
h arises from appli
ations in n-dimensional 
rystallography) is related to 
y
li
 latti
es by the

fa
t that the auto
orrelation of x 
an be expressed as a ve
tor in the 
y
li
 latti
e generated by x. This

problem is quite di�erent from the worst-
ase 
omputational problems on 
y
li
 latti
es 
onsidered in this

paper, and it is not 
lear if the te
hniques of [23, 60, 15℄ 
an be used to speed up the solution of more

general problems, like SIVP or GDD over 
y
li
 latti
es. Based on the 
urrent state of knowledge, it seems

reasonable to 
onje
ture that approximation problems on 
y
li
 latti
es are 
omputationally hard, at least in

the worst 
ase and for small polynomial approximation fa
tors. In order to further support this 
onje
ture,

it would be ni
e to prove NP-hardness results for latti
e problems when restri
ted to 
y
li
 latti
es.

We remark that our de�nition of 
y
li
 latti
es is analogous to the de�nition of 
y
li
 
odes, one of the

most useful and widely studied 
lasses of 
odes in 
oding theory. Still, no polynomial time algorithm is known

for many 
omputational problems on 
y
li
 
odes (or latti
es). A very re
ent result somehow suggesting

that no su
h polynomial time algorithm may exist is the proof in [20℄ that the nearest 
odeword problem

(the 
oding analogue of the 
losest ve
tor problem for latti
es) for appropriately shortened Reed-Solomon


odes is NP-hard. Reed-Solomon 
odes are a well known 
lass of 
y
li
 
odes, so the result in [20℄ seems to

suggest that the nearest 
odeword problem is hard even when the 
ode is 
y
li
. Unfortunately, shortening

the Reed-Solomon 
ode (as done in [20℄) destroys the 
y
li
 stru
ture of the 
ode, so, the results in [20℄ do no

imply the NP-hardness of the nearest 
odeword problem over 
y
li
 
odes. We leave, as an open problem, to

prove hardness results for any latti
e or 
oding problem over 
y
li
 latti
es or 
odes. Is the shortest ve
tor

problem on 
y
li
 latti
es NP-hard? Is the shortest independent ve
tor problem on 
y
li
 latti
es NP-hard?

What about the 
losest ve
tor problem on 
y
li
 latti
es? Is the 
losest ve
tor problem NP-hard even for

�xed families of 
y
li
 latti
es as shown (for arbitrary latti
es) in [36, 14, 54℄?

It is worth noting that �nding shortest ve
tors and sets of linearly independent ve
tors seem mu
h more


losely related problems for 
y
li
 latti
es than for general latti
es. The intuition is that ea
h short ve
tor

x, also gives short ve
tors rot(x),rot

2

(x), et
. If these ve
tors are linearly independent, than we have found

a set of short linearly independent ve
tors. Formalizing this intuition giving redu
tions between SVP and

SIVP (in both dire
tions) when restri
ted to 
y
li
 latti
es is left as an open problem.

Average-
ase/worst-
ase 
onne
tion. As done in [1, 9, 16, 40, 42, 44℄ for the 
ase of the shortest

ve
tor problem, our results too 
an be interpreted as a 
onne
tion between the worst-
ase and average-
ase


omplexity of various latti
e problems.

In [1, 9, 16, 40, 42, 44℄ it is shown that �nding small nonzero integer solutions to a random linear equation

Ax = 0 mod p on the average is at least as hard as solving SIVP and other latti
e problems in the worst


ase. Sin
e the integer solutions to the equation

�(A) = fx:Ax = 0 mod pg

form a latti
e, the result in [1, 9, 16, 40, 42, 44℄ 
an be formulated as a redu
tion from solving SIVP in the

worst 
ase to solving SVP on the average.

In this paper we have shown that inverting our generalized 
ompa
t knapsa
k fun
tions on the average

is at least as hard as the worst 
ase instan
e of GDD, as well as other latti
es problems, over 
y
li
 latti
es.

We now show how inverting the 
ompa
t knapsa
k fun
tion 
an also be formulated as a latti
e problem.

A 
ompa
t knapsa
k fun
tion a

1

; : : : ; a

m

impli
itly de�nes a latti
e in dimension O(m � n) given by the set
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of all (y

1

; : : : ;y

m

) su
h that

P

a

i


 y

i

= 0. In fa
t, using matrix notation, one 
an 
onsider the weights

a

1

; : : : ; a

m

as a 
ompa
t representation of an n�m � n matrix

A = [Rot(a

1

)j : : : jRot(a

m

)℄

whi
h de�nes a latti
e �(A) = fx:Ax = 0 mod pg in the usual way. Up to a permutation of the 
oordinates,

it is immediate to see that the latti
e asso
iated to matrix A above is quasi-
y
li
 of order m, i.e., it is

invariant under shifts rot

m

by m positions. Inverting the subset-sum fun
tion 
an be formulated as a 
losest

ve
tor problem instan
e as follows. Given a

1

; : : : ; a

m

, and knapsa
k target b, we �rst 
ompute an arbitrary

solution z = (z

1

; : : : ; z

m

) to the equation

P

a

i


 z

i

= b. (These ve
tors z

i

are not required to belong to

S = D

n

, and 
an be eÆ
iently found.) Then, �nding small ve
tors x = (x

1

; : : : ;x

m

) su
h that

P

a

i


x

i

= b

is equivalent to �nding latti
e ve
tors (x

1

� z

1

; : : : ;x

m

� z

m

) 2 �(A) 
lose to (z

1

; : : : ; z

m

).

So, our result 
an be interpreted as follows: ifGDD on n-dimensional 
y
li
 latti
es is hard to approximate

within n

1+�

fa
tors in the worst 
ase, then GDD on !(n) dimensional !(1)-
y
li
 latti
es is hard to solve

on the average.

Cryptographi
 appli
ations. From a pra
ti
al point of view, it would be ni
e to prove that our fun
tion

satis�es stronger se
urity guarantees than one-wayness. In prin
iple, one-way fun
tions are known to be

suÆ
ient to build many other useful 
ryptographi
 primitives, like pseudo-random generators [18, 21℄, uni-

versal one-way hash fun
tions [46℄, 
ommitment s
hemes [45℄, digital signatures s
hemes [56℄, or private key

en
ryption s
hemes [17℄. However, these generi
 
onstru
tions are rather ineÆ
ient, so with their use most

of the eÆ
ien
y bene�ts of our 
ompa
t knapsa
k fun
tion would be lost. We leave as an open problem the


onstru
tion of provably se
ure pseudo-random generators, universal one-way hash fun
tions, 
ommitment

s
hemes, digital signature s
hemes, or private key en
ryption s
hemes with eÆ
ien
y 
omparable to our one-

way fun
tion, and based on similar worst-
ase intra
tability assumptions. We remark that [24℄ showed that

if the subset-sum fun
tion is one-way, then it is also a good pseudorandom generator or a universal one-way

hash fun
tion (depending on whether it stret
hes or 
ompresses the size of the input.) An interesting open

problem is whether similar results 
an be proved for the generalized 
ompa
t knapsa
k fun
tion.

Another interesting open problem is whether the generalized 
ompa
t knapsa
k fun
tion is 
ollision resis-

tant. Collision resistant fun
tions are a strong variant of one-way hash fun
tions for whi
h no 
onstru
tion

based on arbitrary one-way fun
tions is known. Still, [16, 40, 44℄ showed that under the assumption that

SIVP is hard to approximate in the worst 
ase within almost linear fa
tors !(n logn), the generalized subset-

sum fun
tion over Z

n

p

is not only one-way, but also 
ollision resistant. Unfortunately, te
hni
al di�eren
es

between our proof and the one in [44℄ make it hard to establish the same result for the 
ompa
t knapsa
k

fun
tion. Proving or disproving that our generalized 
ompa
t knapsa
k fun
tions are 
ollision resistant is

left as an open problem.

Finally, and probably the hardest of the open problems 
on
erning the 
ryptographi
 appli
ability of our

te
hniques, is to build a publi
-key en
ryption s
heme (or a trapdoor fun
tion) with eÆ
ien
y and se
urity

guarantees similar to our 
ompa
t knapsa
k fun
tion. Building publi
-key en
ryption s
hemes seems a mu
h

harder problem than building one-way fun
tions or private key en
ryptions. Still, we believe that designing

publi
-key en
ryption s
hemes with eÆ
ien
y and se
urity properties similar to our one-way fun
tion may

not be so out of rea
h. We remark that the 
lass of 
y
li
 latti
es used in this paper is related to (although

di�erent from) the 
lass of \
onvolutional modular latti
es" used by NTRU [22℄, 
ommer
ial publi
-key


ryptosystem based on latti
es. Spe
i�
ally, the latti
es used by NTRU 
an be des
ribed as quasi-
y
li


latti
es of order 2, i.e., latti
es that are invariant under 
y
li
 shifts by 2 positions. Unfortunately, no proof

of se
urity is known for NTRU (even based on nontrivial average-
ase 
omplexity assumptions). Still, based

on the similarities between NTRU and other latti
e based 
ryptosystems [37℄, we hope that, as Ajtai's one-

way fun
tion [1℄ inspired the design of publi
-key 
ryptosystems [3, 53℄, our work will provide a starting point

for the design of eÆ
ient and provably se
ure 
ryptosystems based on 
y
li
 latti
es. Proving the se
urity of

NTRU, or �nding alternative ways to build publi
-key 
ryptosystems with eÆ
ien
y and se
urity properties

similar to our one-way fun
tion is left as an open problem.

Improving the 
onne
tion fa
tor. The worst-
ase inapproximability fa
tor for SIVP and GDD

�

re-

quired by our one-way fun
tion is n

1+�

, for arbitrarily small � > 0. This is slightly worse than the
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!(n logn) = n

1+o(1)

fa
tor required in [44℄ for the 
ase of general latti
es. An interesting open question

is whether this n

1+�

fa
tor 
an be improved. We remark that the worst-
ase problems solved by our redu
-

tion are somehow harder than SIVP and GDD

�

. Our redu
tion allows to solve GIVP

�

and GDD

�

within

almost linear fa
tors, and then uses known relations between the smoothing parameter � and standard latti
e

parameters like �

n

and �. An interesting question is whether better relations between �; �

n

and � 
an be

proved in the 
ase of 
y
li
 latti
es.

For the 
ase of GDD, we showed how to solve GDD

�

n

within almost linear fa
tors n

1+�

, and then used

the inequality � � �

n

=2 to express our result in terms of GDD

�

. Sin
e � 
an be larger than �

n

by

p

n=2

(even for the 
ase of 
y
li
 latti
es), our redu
tion may approximate GDD

�

within fa
tors mu
h smaller

than n

1+�

, potentially as low as n

0:5+�

, depending on the input latti
e. We leave as an open problem to

prove that the generalized 
ompa
t knapsa
k fun
tion is as hard to invert as approximating GDD

�

over


y
li
 latti
es in the worst 
ase within fa
tors 
(n) = n

0:5+�

.
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