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Abstrat

A drawbak of visual ryptography shemes (VCS) is muh loss of

ontrast in the reonstruted image. This paper shows a new paradigm

of VCS in whih the original image is almost perfetly reonstruted.

A very simple non-ryptographi operation is assumed, reversing blak

and white, whih many opy mahines have these days. We �rst show

a (k; n)-VCS with reversing suh that white pixels are almost perfetly

reonstruted in addition to the perfet reonstrution of blak pixels.

The proposed sheme is fully ompatible with traditional VCS in the

following sense: Even if we do not have a opy mahine as desribed

above, we an reonstrut the seret image I exatly in the same way

as in the underlying VCS. In other words, we use a opy mahine as a

hedge to obtain better ontrast.

We next show how to onvert a perfet blak (k; n)-VCS (with re-

versing) into a perfet white (k; n)-VCS with reversing. Thirdly, we

show a perfet blak VCS for any monotone aess struture. Finally,

we show appliations of our idea to olored VCS and grey level VCS,

respetively.
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1 Introdution

1.1 Bakground

The notion of visual ryptography shemes (VCS) was introdued by Naor

and Shamir [10℄. Sine then, it has been studied by many researhers, to

name a few [1, 3, 4, 5, 8, 12℄. A VCS is a speial kind of seret sharing sheme

in whih the seret is an image I, omprised of blak and white pixels. The

di�erene is in how the seret is reonstruted. While a traditional seret

sharing sheme needs to use a omputer or ryptographi operations, a VCS

uses only the human visual system. That is, in the reonstrution phase of

a VCS, the seret image is reonstruted visually by superimposing a subset

of transparenies.

More preisely, a (k; n)-threshold VCS (or (k; n)-VCS for short) is a

method to enode a seret image I into n transparenies, where eah parti-

ipant reeives one transpareny. In the reonstrution phase, any k parti-

ipants an reover the seret image by superimposing their transparenies.

However, any k � 1 partiipants have no information on I.

However, a drawbak of VCSs is a muh loss of ontrast in the reon-

struted image. In partiular, no white pixel an be reonstruted perfetly.

For example, in a (2; 2)-VCS of [10℄, a white pixel is translated into a grey re-

gion (half blak and half white) while a blak pixel is translated into a blak

region. That is, the ontrast degrades to 1=2. (Naor and Shamir showed an

improved VCS later in [11℄. However, it works only for (2; 2)-VCS.)

On the other hand, it is known that the reonstrution of blak pixel an

be perfet for any 2 � k � n, whih was shown by Blundo et al. [7, 3℄.

Some variants of VCS also exist. Colored VCS was proposed by Verheul

and van Tilborg [12℄. They gave a general onstrution of olored (k; n)-

VCS, and it was improved by Blundo et al. [7℄. A VCS for grey level images

was shown by Blundo et al. in whih eah pixel has g grey levels ranging

from 0 (white) to g� 1 (blak) [6℄. The ontrast of the reonstruted image

of these shemes is very poor, too.

1.2 Our ontribution

In traditional VCS, no blak subpixel an be made into white beause trans-

parenies are simply superimposed in the reonstrution phase. This is the

essential reason of a muh loss of ontrast in the reonstruted image.

This paper shows a new paradigm of VCS in whih the original image is

almost perfetly reonstruted. A very simple non-ryptographi operation

is assumed, reversing blak and white, whih many opy mahines have these

days. All the blak region is reversed into white and all the white region is

reversed into blak by this operation. We all our sheme a (k; n)-VCS with

reversing.

1. We �rst show a perfet blak (k; n)-VCS with reversing suh that white

pixels are almost perfetly reonstruted in addition to the perfet
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reonstrution of blak pixels. The ost we have to pay is the size of

shares. If the size of shares is  times larger, then the grey level of

white region onverges to zero exponentially.

The proposed sheme is fully ompatible with traditional VCS in the

following sense: Even if we do not have a opy mahine as desribed above,

we an reonstrut the seret image I exatly in the same way as in the

underlying VCS. In other words, we use a opy mahine as a hedge to obtain

better ontrast. Therefore, our sheme is very attrative.

2. We next show how to onvert a perfet blak (k; n)-VCS (with reversing)

into a perfet white (k; n)-VCS with reversing. Perfet white VCSs

are muh more preferable than perfet blak VCSs beause the white

region is muh larger than the blak region in usual images.

From our �rst result, we an obtain a perfet white (k; n)-VCS with reversing

suh that the reonstrution of blak region is almost perfet in addition to

the perfet reonstrution of white pixels.

3. Thirdly, we show a perfet blak VCS for any monotone aess struture.

(Perfet blak VCSs have been known only for (k; n)-threshold ases so

far although VCS itself an be onstruted for general aess strutures

[1℄.)

This means that we an obtain a VCS with reversing for any monotone

aess struture suh that the ontrast is almost ideal.

Finally, we show appliations of our idea to olored VCS and grey level

VCS, respetively.

4. We show a sheme suh that the original olored image I is almost per-

fetly reonstruted. It is assumed that there is a opy mahine whih

has three funtions, oloring a blak pixel into red, blue and yellow,

respetively.

5. We show a sheme suh that the original grey level image I is almost

perfetly reonstruted. It is assumed that there is a opy mahine

whih an make a blak pixel into grey level i for 1 � i � g � 1.

2 Preliminaries

For a random variable X, E[X℄ denotes the expeted value and Var[X℄

denotes the variane. We sometimes use + to express OR.
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2.1 Naor-Shamir (2; 2)-VCS

Naor and Shamir showed the �rst (k; n)-VCS [10℄. Fig 1 illustrates their

onstrution of (2; 2)-VCS.

In the distribution phase, eah pixel P is split into two sub-pixels in

eah of the two shares s

1

and s

2

. If P is white, then the dealer D randomly

hooses one of the �rst two rows of Fig 1. If P is blak, then D randomly

hooses one of the last two rows of Fig 1. D then gives s

1

to partiipant P

1

and s

2

to partiipant P

2

.

In the reonstrution phase, the two partiipants superimpose s

1

and s

2

.

If P is blak, then they get two blak sub-pixels; if P is white, then they get

one blak sub-pixel and one white sub-pixel.

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

s

1

+ s

2

Figure 1: Naor-Shamir 2-out-of-2 visual ryptography sheme

This sheme an be expressed by a pair of basis matries

M

0

=

 

1 0

1 0

!

; and M

1

=

 

1 0

0 1

!

(1)

The dealer D omputes the enoding matrix C of a pixel P by randomly

permuting the olumns of M

0

if P is white and by randomly permuting the

olumns of M

1

if P is blak. The �rst row is used to ompute s

1

and the

seond row is used to ompute s

2

, where 0 means white and 1 means blak.

2.2 Model

A (k; n)-visual ryptography sheme (VCS) onsists of a distribution phase

and a reonstrution phase. Let I be a seret image whih onsists of blak

and white pixels P .

In the distribution phase, a dealer D enodes eah pixel P into n shares

s

1

; � � � ; s

n

, one for eah transpareny. D then gives s

i

to partiipant P

i

for

i = 1; � � � ; n.

In the reonstrution phase, any k partiipants P

i

1

; � � � ;P

i

k

reonstrut

I by superimposing their transparenies. That is, the reonstruted pixel is

5



given by

~

P = s

i

1

+ s

i

2

+ � � �+ s

i

k

;

where + means OR. However, any k � 1 partiipants have no information

on I.

Eah s

i

onsists of m sub-pixels, where m is alled the expansion rate.

Hene s

i

is desribed by a Boolean vetor of length m

v

i

= (

i;1

; � � � ; 

i;m

);

where 

i;j

= 1 if the j-th sub-pixel in s

i

is blak. Let C = [

i;j

℄ be the n�m

Boolean matrix whih onsists of v

1

; � � � ; v

n

. We say that C is the enoding

matrix of P .

Usually, the dealer D omputes the enoding matrix C of a pixel P from

two matries M

0

and M

1

as follows: C is obtained by randomly permuting

the olumns of M

0

if P is white and by randomly permuting the olumns of

M

1

if P is blak. M

0

and M

1

are alled the basis matries.

~

P is interpreted as blak if w

H

(

~

P ) is large, and as white if w

H

(

~

P ) is

small, where w

H

(

~

P ) denotes the Hamming weight of

~

P . We de�ne the grey

level of a pixel P as

GREY(P ) = w

H

(

~

P )=m;

where P = white or blak. GREY(white) should be lose to zero and

GREY(blak) should be lose to one. In Naor-Shanir (2; 2)-VCS, the grey

levels of a blak pixel and a white pixel are

GREY(blak) = 1; GREY(white) = 1=2:

The ontrast is ideal if

GREY(white) = 0 and GREY(blak) = 1:

2.3 Perfet Blak VCS

We say that a (k; n)-VCS is perfet blak if

GREY(blak) = 1 and GREY(white) < 1:

The (n; n)-VCS shown by Naor and Shamir [10℄ is perfet blak. The ex-

pansion rate is m = 2

n�1

and they showed that it is optimum.

For any 2 � k � n, Blundo et al. showed a perfet blak (k; n)-VCS

suh that

GREY(white) = 1� 1=m

for some expansion rate m [7℄.
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3 Basi Idea

In this setion, we show a basi idea of our shemes. We present a (2; 2)-VCS

with reversing suh that GREY(white) = 1=4 in addition to GREY(blak) =

1. Sine GREY(white) = 1=2 in the Naor-Shamir (2; 2)-VCS, the ontrast is

improved in our sheme.

De�nition 1 We say that an image I is reversed if all blak pixels are

reversed into white and all white pixels are reversed into blak. We denote

by P the reversed pixel of P and by I the reversed image of I.

Our sheme is desribed as follows. (See Fig 2 and Fig 3.)

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

T = s

1

+ s

2

(b) Seond run

p = :5

p = :5

p = :5

p = :5

pixel P s

0

1

s

0

2

T

0

= s

0

1

+ s

0

2

(a) First run

Figure 2: Proposed (2; 2)-VCS (1)

(Distribution phase)

1. The dealer D runs the distribution phase of Naor-Shamir (2; 2)-VCS

twie independently. Let (s

1

; s

2

) denote the shares of the �rst run and

(s

0

1

; s

0

2

) denote the shares of the seond run.
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2. Now in our sheme, the share of partiipant P

1

is (s

1

; s

0

1

), and that of

partiipant P

2

is (s

2

; s

0

2

).

(Reonstrution phase)

Step 1. Two partiipants superimpose s

1

, s

2

and obtain T = s

1

+ s

2

. Sim-

ilarly, they superimpose s

0

1

, s

0

2

and obtain T

0

= s

0

1

+ s

0

2

. They are

illustrated in the last olumns of Fig 2(a) and Fig 2(b).

Step 2. They next reverse T , T

0

and obtain T and T

0

as shown in Fig 3.

Step 3. The two partiipants superimpose T , T

0

and obtain T + T

0

.

Step 4. Finally the two partiipants reverse T + T

0

and obtain T + T

0

.

The T + T

0

is the reonstruted image of our sheme.

Now as we an see from Fig 3, we obtain that GREY(blak) = 1 and

E[GREY(white)℄ = (1=2) � 0 + (1=2) � (1=2) = 1=4:

We will show the reason below. Suppose that a pixel P is white. Then

1. T and T

0

are always blak as whown in Fig 2.

2. Therefore, T and T

0

are always white as shown in Fig 3.

3. Therefore, T + T

0

is always white.

4. Hene T + T

0

is always blak.

On the other hand, suppose that a pixel P is white. Then

1. As whown in Fig 2, T and T

0

are grey suh that a half region is blak

and the other half is white in eah one of the four ases.

2. Therefore, T and T

0

are grey suh that a half region is white and the

other half is blak in eah one of the four ases as shown in Fig 3.

3. Therefore, T+T

0

is blak with probability 1=2 and grey (half blak and

half white) with probability 1=2. This is beause (s

1

; s

2

) and (s

0

1

; s

0

2

)

are generated independently and randomly.

4. Hene T + T

0

is all white with probability 1=2 and it is grey (half blak

and half white) with probability 1=2.

4 Proposed Sheme

In this setion, we show our (k; n)-VCS with reversing. The reonstrution

of blak region is perfet and the reonstrution of white region is almost

perfet. The ost we have to pay is the size of shares. If the size of shares

is  times larger, then the grey level of white region onverges to zero expo-

nentially.
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p = :25

p = :25

p = :25

p = :25

p = 1

pixel P

T T

0

T + T

0

T + T

0

Figure 3: Proposed (2; 2)-VCS (2)

4.1 -Run (k; n)-VCS with Reversing

Suppose that there exists a perfet blak (k; n)-VCS. (Remember that there

exists a perfet blak (k; n)-VCS for any 2 � k � n.) We then onstrut a

\-run (k; n)-VCS with reversing" as follows in whih the underlying (k; n)-

VCS is run  times independently.

Let P a seret pixel to be distributed.

(Distribution phase)

1. The dealer D runs the distribution phase of the underlying perfet

blak (k; n)-VCS  times independently. Let (s

1;i

; � � � ; s

n;i

) be the set

of shares in the i-th run for i = 1; � � � ; .

2. In our sheme, the share of partiipant P

j

is (s

j;1

; � � � ; s

j;

).

(Reonstrution phase) Any k partiipants, say P

j

1

; � � � ;P

j

k

, reonstrut

P as follow.

1. For i = 1; � � � ; , they superimpose their shares and obtain

T

i

= s

j

1

;i

+ � � �+ s

j

k

;i

2. They reverse T

i

and obtain T

i

for i = 1; � � � ; .

3. They superimpose T

1

; � � � ; T



and obtain U = T

1

+ � � �+ T



.

4. We reverse U and obtain

~

P , where

~

P = U = T

1

+ � � �+ T



:

(See Fig.4.)

It is lear that any k�1 partiipants have no information on P from the

property of the original (k; n)-VCS.
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n transparenies

%

seret pixel P

.

.

.

&

n transparenies

(Distribution phase)

stak k sheets T

1

! reverse T

1

&

U = T

1

+ � � �+ T



! reverse U

%

stak k sheets T



! reverse T



(Reonstrution phase)

Figure 4: Proposed VCS

4.2 Contrast

It is easy to see that GREY(blak) = 1 beause the original VCS is perfet

blak. We now show that both E[GREY(white)℄ and Var[GREY(white)℄

onverge to zero.

Theorem 1 Suppose that GREY(white) = q < 1 in the original perfet

blak VCS. Then in our -run VCS with reversing,

(1) E[GREY(white)℄ = q



.

(2) Var[GREY(white)℄ � q



(1� q



).

Proof . (1) Let P be a white pixel. Eah T

i

is desribed by a Boolean vetor

of length m

A

i

= (a

i;1

; � � � ; a

i;m

);

where m is the expansion rate. Similarly, the reonstruted pixel

~

P is de-

sribed by a Boolean vetor

W = (w

1

; � � � ; w

m

):

Now sine

w

j

= a

1;j

+ � � �+ a

;j

;

it holds that

w

j

= a

1;j

� � � � � a

;j

10



from De Morgan's law. Therefore,

E[w

H

(W )℄ = E[

X

j

w

j

℄ =

X

j

E(w

j

) =

X

j

E[a

1;j

� � � � � a

;j

℄

=

X

j

Pr(a

1;j

= � � � = a

;j

= 1)

=

X

j

Pr(a

1;j

= 1)� � � � � Pr(a

;j

= 1)

=

X

j

q



= mq



:

Consequently, E[GREY(white)℄ = E[w

H

(W )℄=m = q



.

(2) It is easy to see that (w

1

+ � � � + w

m

) � m beause w

j

= 0 or w

j

= 1.

Therefore,

(w

1

+ � � �+ w

m

)

2

� m(w

1

+ � � �+ w

m

) = m

m

X

j=1

w

j

Hene

Var[w

H

(W )℄ = E[w

H

(W )

2

℄�E[w

H

(W )℄

2

= E[(

X

j

w

j

)

2

℄�m

2

q

2

� mE[

X

j

w

j

℄�m

2

q

2

= mE[w

H

(W )℄�m

2

q

2

= m

2

q



(1� q



)

Consequently, Var[GREY(white)℄ = Var[w

H

(W )℄=m

2

� q



(1� q



).

2

Therefore,

lim

!1

E[GREY(white)℄ = 0 and lim

!1

Var[GREY(white)℄ = 0:

This means that we an obtain asymptotially ideal ontrast by letting 

large.

If we use the Naor-Shamir (2; 2)-VCS, we obtain the following orollary.

Corollary 1 There exists a perfet blak (2; 2)-VCS with reversing suh that

E[GREY(white)℄ = (1=2)



Var[GREY(white)℄ � (1=2)



f1� (1=2)



g

with the expansion rate m = 2, where  is any positive integer.

For general (k; n)-VCS, we obtain the following orollary from [7℄.
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Corollary 2 For any 2 � k � n, there exists a perfet blak (k; n)-VCS

with reversing suh that

E[GREY(white)℄ = (1� 1=m)



Var[GREY(white)℄ � (1� 1=m)



f1� (1� 1=m)



g

for any positive integer , where m is the expansion rate given by [7℄.

4.3 Example

As an example, we present a 3-Run (2; 2)-VCS.

(Distribution phase) The dealer D runs the distribution phase of Naor-

Shamir (2; 2)-VCS three times independently. Let (s

1

; s

2

) be the shares of

the �rst run, (s

0

1

; s

0

2

) be the shares of the seond run and (s

00

1

; s

00

2

) be the set

of shares of the third run.

Then the share of partiipant P

1

is (s

1

; s

0

1

; s

00

1

) and that of partiipant

P

2

is (s

2

; s

0

2

; s

00

2

).

(Reonstrution phase)

1. We superimpose s

1

and s

2

, and then obtain T = s

1

+ s

2

. Similarly, we

obtain T

0

= s

0

1

+ s

0

2

and T

00

= s

00

1

+ s

00

2

.

2. We reverse T; T

0

and T

00

, and obtain T ; T

0

and T

00

.

3. We superimpose T ; T

0

, T

00

and obtain U = T + T

0

+ T

00

.

4. We reverse U and obtain

~

P .

(Contrast): We an then see that GREY(blak) = 1 and

E[GREY(white)℄ = (1=4) � (1=2) + (3=4) � 0 = 1=8:

5 Disussion

5.1 Compatibility

The proposed sheme is fully ompatible with traditional VCS in the fol-

lowing sense: even if we do not have a opy mahine in the reonstrution

phase, we an reonstrut the seret image I exatly in the same way as in

the underlying VCS.

This is done as follows. Suppose that k partiipants do not have a

opy mahine in the reonstrution phase. They just superimpose their

transparenies and then obtain T

1

as the reonstruted image. (See step 1

of the proposed reonstrution phase shown in Se.4.1.) Note that T

1

is the

reonstruted image obtained by the underlying traditional (k; n)-VCS.

In other words, we use a opy mahine as a hedge to obtain better

ontrast. Therefore, our sheme is very attrative.

12



Figure 5: Original image

5.2 Complexity

The reonstrution phase of the -run (k; n)-VCS with reversing requires

 + 1 reversing operations and superimposing k � 1 transparenies. The

size of shares beome  times larger than that of the original VCS.

6 Comparison

We show a omparison of (2; 2)-VCS (with reversing) among the Naor-

Shamir sheme, our perfet blak VCS with reversing and our perfet white

VCS with reversing.

Fig.5 is the original image. Fig.6 is the reonstruted image by Naor-

Shamir (2; 2)-VCS.

� Fig.7 � Fig.9 are the reonstruted images by our perfet blak 2; 3; 4-

run (2; 2)-VCS, respetively.

� Fig.10 � Fig.13 are the reonstruted images by our perfet white

1; 2; 3; 4-run (2; 2)-VCS, respetively.

7 Perfet White VCS

7.1 Conversion from Perfet Blak VCS

We say that a (k; n)-VCS is perfet white if

GREY(white) = 0 and GREY(blak) > 0:

In usual pitures, the white region is muh larger than the blak region.

Therefore, perfet white VCSs are muh preferable than perfet blak VCSs.

However, no perfet white VCS has been known.

In this setion, we show that a perfet white (k; n)-VCS with reversing

is easily obtained from a perfet blak (k; n)-VCS (with reversing).

13



Figure 6: Naor-Shamir (2; 2)-VCS

Figure 7: Proposed 2-run perfet blak VCS

Figure 8: Proposed perfet blak 3-run VCS
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Figure 9: Proposed perfet blak 4-run VCS

Figure 10: 1-run perfet white VCS

Figure 11: 2-run perfet white VCS

15



Figure 12: 3-run perfet white VCS

Figure 13: 4-run perfet white VCS
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Theorem 2 Suppose that there exists a perfet blak (k; n)-VCS with re-

versing suh that E[GREY(white)℄ = p. Then there exists a perfet white

(k; n)-VCS with reversing suh that E[GREY(blak)℄ = 1� p.

Proof . We desribe a perfet white (k; n)-VCS.

In the distribution phase,

1. the dealer D �rst reverses the original image I and obtains I.

2. D then applies the distribution phase of the perfet blak (k; n)-VCS

with reversing to I.

In the reonstrution phase,

1. a quali�ed subset of partiipants apply step 1 � step 3 of the reon-

strution phase for the perfet blak (k; n)-VCS with reversing and

obtain a reonstruted image I

0

.

2. They �nally reverse I

0

and obtain I

0

.

Then it is easy to see that the above sheme is a perfet white (k; n)-VCS

suh that E[GREY(blak)℄ = 1� p.

2

7.2 Almost Ideal Contrast with Perfet White

We an obtain a perfet white (k; n)-VCS with reversing suh that

E[GREY(blak)℄! 1

by applying Theorem 2 to our onstrution shown in Se.4.1.

In this ase, we an redue the number of reversing from  + 1 to  by

terminating at step 3 of the reonstrution phase. The U of step 3 is the

reonstruted image. This proess is illustrated in Fig.14.

7.3 Example

As an example, we show how to onvert the perfet blak (2; 2)-VCS of

Se.2.1 into a perfet white (2; 2)-VCS with reversing. (See Fig 15.)

In the distribution phase:

1. the dealer D �rst reverses the original image I. Hene eah white pixel

is reversed into blak and eah bak pixel is reversed into white.

2. D then applies the distribution phase of the perfet blak (2; 2)-VCS.

Partiipant P

1

obtains a share s

1

and partiipant P

2

obtains a share

s

2

.

17



n transparenies

%

Image I ! reverse

�

I

.

.

.

&

n transparenies

(Distribution phase)

stak k sheets T

1

! reverse T

1

&

U = T

1

+ � � �+ T



(=reonstruted image)

%

stak k sheets T



! reverse T



(Reonstrution phase)

Figure 14: Perfet white VCS

In the reonstrution phase:

1. the two partiipants superimpose s

1

and s

2

and obtains s

1

+ s

2

.

2. They �nally reverse s

1

+ s

2

and obtain s

1

+ s

2

.

From Fig 15, we see that a perfet white (2; 2)-VCS is obtained suh that

GREY(blak) = 1=2.

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

s

1

+ s

2

s

1

+ s

2

Figure 15: Perfet white 2-out-of-2 visual ryptography sheme

8 Perfet Blak VCS for General Aess Struture

Perfet blak VCSs have been known only for (k; n)-threshold ases so far

although VCS itself an be onstruted for general aess strutures [1℄. In

18



this setion, we show a perfet blak VCS for any monotone aess struture.

This means that we an obtain a VCS with reversing for any monotone aess

struture suh that the ontrast is almost ideal.

8.1 Aess Struture

Let P = f1; : : : ; ng be a set of partiipants. In a generalized seret sharing

sheme, quali�ed subsets of P an reover the seret. Let

�

4

= fA � P j A an determine sg:

Then � is alled an aess struture and A is alled an aess set. However,

any B 62 � has no information on s.

De�nition 2 � is said to be monotone if

A 2 �; A � A

0

) A

0

2 �:

There exists a seret sharing sheme for � if and only if � is monotone

[9, 2℄. For an aess struture �, de�ne

�

0

4

= fA � P j A is a minimal aess set.g:

�

0

is alled a minimal aess struture.

In what follows, we assume that � is monotone.

8.2 General Constrution

Naor and Shamir showed a perfet blak (k; k)-VCS suh that the expansion

rate is m = 2

k�1

and GREY(white) = 1 � 1=2

k�1

[10℄. The basis matries

(M

0

k

;M

1

k

) are given as follows.

M

0

k

=

0

B

�

j j j



1



2

� � � 

2

k�1

j j j

1

C

A

=

0

B

�

�e

k;1

�

.

.

.

�e

k;k

�

1

C

A

; (2)

M

1

k

=

0

B

�

j j j



0

1



0

2

� � � 

0

2

k�1

j j j

1

C

A

=

0

B

B

�

�e

0

k;1

�

.

.

.

�e

0

k;k

�

1

C

C

A

; (3)

where f

1

; 

2

; � � � ; 

2

k�1

g is the set of all even weight binary vetors of lengh

k and f

0

1

; 

0

2

; � � � ; 

0

2

k�1

g is the set of all odd weight binary vetors of lengh

k.

Now by employing the above VCS, we show a perfet blak VCS for any

minimal aess struture �

0

= fA

1

; � � � ; A

t

g.

De�ne k

j

= jA

j

j and suppose that A

j

= fj

1

; � � � ; j

k

j

g. A pair of basis

matries (L

0

; L

1

) for �

0

are then onstruted as follows.
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Constrution of L

0

. For 1 � j � t, onstrut a n� 2

k

j

�1

matrix

E

j

=

0

B

B

B

B

B

B

B

B

�

.

.

.

e

k

j

;1

.

.

.

e

k

j

;k

j

.

.

.

1

C

C

C

C

C

C

C

C

A

;

as follows:

� The j

u

th row of E

j

is the uth row of M

0

k

j

for 1 � u � k

j

.

� The other rows of E

j

are (1; � � � ; 1).

Then de�ne

L

0

= (E

1

; � � � ; E

t

):

Constrution of L

1

. For 1 � j � t, onstrut a n� 2

k

j

�1

matrix

E

0

j

=

0

B

B

B

B

B

B

B

B

�

.

.

.

e

0

k

j

;1

.

.

.

e

0

k

j

;k

j

.

.

.

1

C

C

C

C

C

C

C

C

A

;

as follows:

� The j

u

th row of E

0

j

is the uth row of M

1

k

j

for 1 � u � k

j

.

� The other rows of E

j

are (1; � � � ; 1).

Then de�ne

L

1

= (E

0

1

; � � � ; E

0

t

):

The expansion rate is m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1�

1

m

in this VCS.

We show an example for �

0

= ff1; 2g; f2; 3; 4gg. First,

M

0

2

=

 

10

10

!

; M

1

2

=

 

10

01

!

M

0

3

=

0

B

�

0011

0101

0110

1

C

A

; M

1

3

=

0

B

�

0011

0101

1001

1

C

A
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Therefore,

L

0

=

0

B

B

B

�

10 1111

10 0011

11 0101

11 0110

1

C

C

C

A

; L

1

=

0

B

B

B

�

10 1111

01 0011

11 0101

11 1001

1

C

C

C

A

The expansion rate is m = 2

2�1

+ 2

3�1

= 6 and GREY(white) = 1� 1=m =

5=6.

Theorem 3 The above L

0

and L

1

are a pair of basis matries of a perfet

blak VCS for �

0

suh that the expansion rate is m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1� 1=m.

Proof . Let f0; 1g the set of serets. Then a seret sharing sheme is known

for any �

0

= fA

1

; � � � ; A

t

g as follows, where A

j

= fj

1

; � � � ; j

k

j

g.

� Suppose that s = 0. Then for 1 � j � t, the dealer D hooses random

bits b

j;1

; � � � ; b

j;k

j

suh that

0 = b

j;1

� � � � � b

j;k

j

and gives b

j;u

to partiipant j

u

for 1 � u � k

j

.

� Suppose that s = 1. Then for 1 � j � t, D hooses random bits

b

0

j;1

; � � � ; b

0

j;k

j

suh that

1 = b

0

j;1

� � � � � b

0

j;k

j

and gives b

0

j;u

to partiipant j

u

for 1 � u � k

j

.

Now in our VCS, b

j;u

is enoded to e

k

j

;u

for L

0

and b

0

j;u

is enoded to

e

0

k

j

;u

for L

1

. Further, (M

0

k

;M

1

k

) is the basis matries of a perfet blak

(k; k)-VCS. Therefore, it is easy to see that L

0

and L

1

are a pair of basis

matries of a perfet blak VCS for �

0

.

It is lear that m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1� 1=m.

2

8.3 For Speial Aess Struture

If we apply the above onstrution to �

0

= ff1; 2g; f2; 3g; f3; 4gg, then we

obtain a VCS suh that m = 6 and GREY(white) = 5=6. In this subsetion,

we present a perfet blak VCS suh that m = 4 and GREY(white) = 3=4.

Remember that the basis matries of a perfet blak (2; 2)-VCS is given

as follows.

M

0

=

 

1 0

1 0

!

=

 

e

1

e

2

!
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M

1

=

 

1 0

0 1

!

=

 

e

0

1

e

0

2

!

On the other hand, a seret sharing sheme for �

0

is known as follows.

Let f0; 1g be the set of serets. The dealer D hooses random bits b

1

; � � � ; b

4

suh that

s = b

1

� b

2

(4)

= b

3

� b

4

(5)

Let

v

1

= b

1

; v

2

= b

2

; v

3

= (b

1

; b

3

); v

4

= b

4

;

where v

i

is a share of partiipant i.

Now we show a perfet blak VCS for �

0

. Let d

1

= (b

1

; b

2

; b

1

; x)

T

, where

x means that eq.(4) is not used for partiipant 4. Let d

2

= (x; x; b

3

; b

4

))

T

,

where x means that eq.(5) is not used for partiipant 1 and partiipant 2.

De�ne

G = (d

1

; d

2

) =

0

B

B

B

�

b

1

; x

b

2

; x

b

1

; b

3

x; b

4

1

C

C

C

A

The basis matries L

0

and L

1

for �

0

are then onstruted as follows.

(Constrution of L

0

): In G,

� Substitute e

1

= (1; 0) into b

1

and b

3

.

� Substitute e

2

= (1; 0) into b

2

and b

4

.

� Substitute (1; 1) into x.

(Constrution of L

1

): In G,

� Substitute e

0

1

= (1; 0) into b

1

and b

3

.

� Substitute e

0

2

= (0; 1) into b

2

and b

4

.

� Substitute (1; 1) into x.

That is,

L

0

=

0

B

B

B

�

1011

1011

1010

1110

1

C

C

C

A

; L

1

=

0

B

B

B

�

1011

0111

1010

1101

1

C

C

C

A

It is easy to see that L

0

and L

1

are the basis matries of a perfet blak

VCS for �

0

. The expansion rate is m = 4 and GREY(white) = 3=4.
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9 Appliation to Colored VCS

Verheul and van Tilborg proposed a model for olored VCS and gave a

general onstrution for olored (k; n)-VCS [12℄. Blundo et al. improved

this onstrution [7℄. However, the ontrast of the reonstruted images by

these shemes is very poor.

In this setion, we show that if there exists an almost ideal ontrast

(k; n)-VCS with reversing, then there exists a olored (k; n)-VCS with re-

versing suh that the original image I is almost perfetly reonstruted.

9.1 Proposed Sheme

Any olor is realized by mixing three primary olors, red; blue and yellow,

appropriately. The proposed olored VCS is based on this priniple.

We assume that there is a olor opy mahine whih has three oloring

funtions Color

red

;Color

blue

;Color

yelow

as follows.

� Color

red

: A blak pixel is made into red.

� Color

blue

: A blak pixel is made into blue.

� Color

yellow

: A blak pixel is made into yellow.

(All white pixels remain white.)

Suppose that there exists an almost ideal ontrast (k; n)-VCS with re-

versing denoted by �. Then the proposed sheme is desribed as follows.

For simpliity, suppose that the seret image I onsists of 7 olors whih are

obtained by simply mixing the primary three olors.

(Distribution Phase)

1. The dealer D deomposes I into three images I

red

; I

blue

and I

yellow

,

where I

x

is the omponent of I of olor x.

That is, eah pixel of I

x

has olor x or white, and I is reonstruted

by staking I

red

; I

blue

and I

yellow

.

2. For eah I

x

, onvert I

x

into a blak-white image I

B

x

in suh a way that

all pixels of olor x are made into blak, and all white pixel remain

white.

3. For eah I

B

x

, apply the distribution phase of �.

(Reonstrution Phase)

1. Apply the reonstrution phase of � to reover I

B

x

for eah olor x.

Let

~

I

B

x

be the reovered image of I

B

x

.

2. Apply the oloring funtion Color

x

of the opy mahine to the blak-

white image

~

I

B

x

for eah olor x. Then we obtain a mono-olor image

~

I

x

suh that all blak pixels are made into olor x, and all white pixel

remain white.
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I

red

! monoolor I

B

red

! distribution phase of �

%

I ! I

blue

! monoolor I

B

blue

! distribution phase of �

&

I

yellow

! monoolor I

B

yellow

! distribution phase of �

(Distribution phase)

reonstrution of �!

~

I

B

red

! oloring

~

I

red

&

reonstrution of �!

~

I

B

blue

! oloring

~

I

blue

! stak ! reonstrution

%

reonstrution of �!

~

I

B

yellow

! oloring

~

I

yellow

(Reonstrution phase)

Figure 16: Proposed Colored VCS

3. Finally stak

~

I

red

;

~

I

blue

and

~

I

yellow

.

This proess is illustrated in Fig.16.

Sine � ahieves almost ideal ontrast,

~

I

x

is an almost prefet reonstru-

tion image of I

x

for eah olor x. Therefore, we an reonstrut I almost

perfetly.

10 Appliation to Grey Level Images

In a grey level image, eah pixel has g grey levels ranging from 0 (white) to

g � 1 (blak). A VCS for grey level images was shown by Blundo et al. [6℄.

In this setion, we show that if there exists an almost ideal ontrast

(k; n)-VCS with reversing, then there exists a (k; n)-VCS with reversing for

grey level images suh that the original image I is almost perfetly reon-

struted.

We assume that there is a opy mahine whih an make a blak pixel

into grey level i for 1 � i � g � 1. Suppose that there exists an almost

ideal ontrast (k; n)-VCS with reversing denoted by �. Then the proposed

sheme is desribed as follows.

(Distribution Phase)

1. The dealer D deomposes I into g images I

0

; I

1

; � � � ; I

g�1

, where I

i

is

the omponent of I of grey level i.

That is, eah pixel of I

i

has grey level i or 0, and I is reonstruted

by staking I

0

; I

1

; � � � ; I

g�1

.
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I

1

! monotone I

B

1

! distribution phase of �

%

I ! I

2

! monotone I

B

2

! distribution phase of �

&

I

3

! monotone I

B

3

! distribution phase of �

(Distribution phase)

reonstrution of �!

~

I

B

1

! grey leveling

~

I

1

&

reonstrution of �!

~

I

B

2

! grey leveling

~

I

2

! stak ! reonstrution

%

reonstrution of �!

~

I

B

3

! grey leveling

~

I

3

(Reonstrution phase)

Figure 17: Proposed Grey Level VCS

2. For eah I

i

with 1 � i � g� 1, onvert I

i

into a blak-white image I

B

i

in suh a way that all pixels of grey level i are made into blak, and

all white pixel remain white.

3. For eah I

B

i

, apply the distribution phase of �.

(Reonstrution Phase)

1. Apply the reonstrution phase of � to reover I

B

i

for eah grey level

i. Let

~

I

B

i

be the reovered image of I

B

i

.

2. Apply the grey level funtion of the opy mahine to eah blak-white

image

~

I

B

i

. Then we obtain a two-level grey image

~

I

i

suh that all blak

pixels are made into grey level i, and all white pixel remain white.

3. Finally stak I

0

; I

1

; � � � ; I

g�1

.

This proess is illustrated in Fig.17.

Sine � ahieves almost ideal ontrast,

~

I

i

is an almost prefet reon-

strution of I

i

for eah grey level i. Therefore, we an reonstrut I almost

perfetly.

11 Conlusion

We �rst showed a (k; n)-VCS with reversing suh that white pixels are almost

perfetly reonstruted in addition to the perfet reonstrution of blak

pixels. The proposed sheme is fully ompatible with traditional VCS.
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We next showed how to onvert a perfet blak (k; n)-VCS (with revers-

ing) into a perfet white (k; n)-VCS with reversing. Thirdly, we showed a

perfet blak VCS for any monotone aess struture. Finally, we showed

appliations of our idea to olored VCS and grey level VCS, respetively.

It will be a further work to �nd another simple non-ryptographi oper-

ation whih an ahieve almost ideal ontrast.
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