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Abstra
t

A drawba
k of visual 
ryptography s
hemes (VCS) is mu
h loss of


ontrast in the re
onstru
ted image. This paper shows a new paradigm

of VCS in whi
h the original image is almost perfe
tly re
onstru
ted.

A very simple non-
ryptographi
 operation is assumed, reversing bla
k

and white, whi
h many 
opy ma
hines have these days. We �rst show

a (k; n)-VCS with reversing su
h that white pixels are almost perfe
tly

re
onstru
ted in addition to the perfe
t re
onstru
tion of bla
k pixels.

The proposed s
heme is fully 
ompatible with traditional VCS in the

following sense: Even if we do not have a 
opy ma
hine as des
ribed

above, we 
an re
onstru
t the se
ret image I exa
tly in the same way

as in the underlying VCS. In other words, we use a 
opy ma
hine as a

hedge to obtain better 
ontrast.

We next show how to 
onvert a perfe
t bla
k (k; n)-VCS (with re-

versing) into a perfe
t white (k; n)-VCS with reversing. Thirdly, we

show a perfe
t bla
k VCS for any monotone a

ess stru
ture. Finally,

we show appli
ations of our idea to 
olored VCS and grey level VCS,

respe
tively.
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1 Introdu
tion

1.1 Ba
kground

The notion of visual 
ryptography s
hemes (VCS) was introdu
ed by Naor

and Shamir [10℄. Sin
e then, it has been studied by many resear
hers, to

name a few [1, 3, 4, 5, 8, 12℄. A VCS is a spe
ial kind of se
ret sharing s
heme

in whi
h the se
ret is an image I, 
omprised of bla
k and white pixels. The

di�eren
e is in how the se
ret is re
onstru
ted. While a traditional se
ret

sharing s
heme needs to use a 
omputer or 
ryptographi
 operations, a VCS

uses only the human visual system. That is, in the re
onstru
tion phase of

a VCS, the se
ret image is re
onstru
ted visually by superimposing a subset

of transparen
ies.

More pre
isely, a (k; n)-threshold VCS (or (k; n)-VCS for short) is a

method to en
ode a se
ret image I into n transparen
ies, where ea
h parti
-

ipant re
eives one transparen
y. In the re
onstru
tion phase, any k parti
-

ipants 
an re
over the se
ret image by superimposing their transparen
ies.

However, any k � 1 parti
ipants have no information on I.

However, a drawba
k of VCSs is a mu
h loss of 
ontrast in the re
on-

stru
ted image. In parti
ular, no white pixel 
an be re
onstru
ted perfe
tly.

For example, in a (2; 2)-VCS of [10℄, a white pixel is translated into a grey re-

gion (half bla
k and half white) while a bla
k pixel is translated into a bla
k

region. That is, the 
ontrast degrades to 1=2. (Naor and Shamir showed an

improved VCS later in [11℄. However, it works only for (2; 2)-VCS.)

On the other hand, it is known that the re
onstru
tion of bla
k pixel 
an

be perfe
t for any 2 � k � n, whi
h was shown by Blundo et al. [7, 3℄.

Some variants of VCS also exist. Colored VCS was proposed by Verheul

and van Tilborg [12℄. They gave a general 
onstru
tion of 
olored (k; n)-

VCS, and it was improved by Blundo et al. [7℄. A VCS for grey level images

was shown by Blundo et al. in whi
h ea
h pixel has g grey levels ranging

from 0 (white) to g� 1 (bla
k) [6℄. The 
ontrast of the re
onstru
ted image

of these s
hemes is very poor, too.

1.2 Our 
ontribution

In traditional VCS, no bla
k subpixel 
an be made into white be
ause trans-

paren
ies are simply superimposed in the re
onstru
tion phase. This is the

essential reason of a mu
h loss of 
ontrast in the re
onstru
ted image.

This paper shows a new paradigm of VCS in whi
h the original image is

almost perfe
tly re
onstru
ted. A very simple non-
ryptographi
 operation

is assumed, reversing bla
k and white, whi
h many 
opy ma
hines have these

days. All the bla
k region is reversed into white and all the white region is

reversed into bla
k by this operation. We 
all our s
heme a (k; n)-VCS with

reversing.

1. We �rst show a perfe
t bla
k (k; n)-VCS with reversing su
h that white

pixels are almost perfe
tly re
onstru
ted in addition to the perfe
t

3



re
onstru
tion of bla
k pixels. The 
ost we have to pay is the size of

shares. If the size of shares is 
 times larger, then the grey level of

white region 
onverges to zero exponentially.

The proposed s
heme is fully 
ompatible with traditional VCS in the

following sense: Even if we do not have a 
opy ma
hine as des
ribed above,

we 
an re
onstru
t the se
ret image I exa
tly in the same way as in the

underlying VCS. In other words, we use a 
opy ma
hine as a hedge to obtain

better 
ontrast. Therefore, our s
heme is very attra
tive.

2. We next show how to 
onvert a perfe
t bla
k (k; n)-VCS (with reversing)

into a perfe
t white (k; n)-VCS with reversing. Perfe
t white VCSs

are mu
h more preferable than perfe
t bla
k VCSs be
ause the white

region is mu
h larger than the bla
k region in usual images.

From our �rst result, we 
an obtain a perfe
t white (k; n)-VCS with reversing

su
h that the re
onstru
tion of bla
k region is almost perfe
t in addition to

the perfe
t re
onstru
tion of white pixels.

3. Thirdly, we show a perfe
t bla
k VCS for any monotone a

ess stru
ture.

(Perfe
t bla
k VCSs have been known only for (k; n)-threshold 
ases so

far although VCS itself 
an be 
onstru
ted for general a

ess stru
tures

[1℄.)

This means that we 
an obtain a VCS with reversing for any monotone

a

ess stru
ture su
h that the 
ontrast is almost ideal.

Finally, we show appli
ations of our idea to 
olored VCS and grey level

VCS, respe
tively.

4. We show a s
heme su
h that the original 
olored image I is almost per-

fe
tly re
onstru
ted. It is assumed that there is a 
opy ma
hine whi
h

has three fun
tions, 
oloring a bla
k pixel into red, blue and yellow,

respe
tively.

5. We show a s
heme su
h that the original grey level image I is almost

perfe
tly re
onstru
ted. It is assumed that there is a 
opy ma
hine

whi
h 
an make a bla
k pixel into grey level i for 1 � i � g � 1.

2 Preliminaries

For a random variable X, E[X℄ denotes the expe
ted value and Var[X℄

denotes the varian
e. We sometimes use + to express OR.
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2.1 Naor-Shamir (2; 2)-VCS

Naor and Shamir showed the �rst (k; n)-VCS [10℄. Fig 1 illustrates their


onstru
tion of (2; 2)-VCS.

In the distribution phase, ea
h pixel P is split into two sub-pixels in

ea
h of the two shares s

1

and s

2

. If P is white, then the dealer D randomly


hooses one of the �rst two rows of Fig 1. If P is bla
k, then D randomly


hooses one of the last two rows of Fig 1. D then gives s

1

to parti
ipant P

1

and s

2

to parti
ipant P

2

.

In the re
onstru
tion phase, the two parti
ipants superimpose s

1

and s

2

.

If P is bla
k, then they get two bla
k sub-pixels; if P is white, then they get

one bla
k sub-pixel and one white sub-pixel.

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

s

1

+ s

2

Figure 1: Naor-Shamir 2-out-of-2 visual 
ryptography s
heme

This s
heme 
an be expressed by a pair of basis matri
es

M

0

=

 

1 0

1 0

!

; and M

1

=

 

1 0

0 1

!

(1)

The dealer D 
omputes the en
oding matrix C of a pixel P by randomly

permuting the 
olumns of M

0

if P is white and by randomly permuting the


olumns of M

1

if P is bla
k. The �rst row is used to 
ompute s

1

and the

se
ond row is used to 
ompute s

2

, where 0 means white and 1 means bla
k.

2.2 Model

A (k; n)-visual 
ryptography s
heme (VCS) 
onsists of a distribution phase

and a re
onstru
tion phase. Let I be a se
ret image whi
h 
onsists of bla
k

and white pixels P .

In the distribution phase, a dealer D en
odes ea
h pixel P into n shares

s

1

; � � � ; s

n

, one for ea
h transparen
y. D then gives s

i

to parti
ipant P

i

for

i = 1; � � � ; n.

In the re
onstru
tion phase, any k parti
ipants P

i

1

; � � � ;P

i

k

re
onstru
t

I by superimposing their transparen
ies. That is, the re
onstru
ted pixel is
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given by

~

P = s

i

1

+ s

i

2

+ � � �+ s

i

k

;

where + means OR. However, any k � 1 parti
ipants have no information

on I.

Ea
h s

i


onsists of m sub-pixels, where m is 
alled the expansion rate.

Hen
e s

i

is des
ribed by a Boolean ve
tor of length m

v

i

= (


i;1

; � � � ; 


i;m

);

where 


i;j

= 1 if the j-th sub-pixel in s

i

is bla
k. Let C = [


i;j

℄ be the n�m

Boolean matrix whi
h 
onsists of v

1

; � � � ; v

n

. We say that C is the en
oding

matrix of P .

Usually, the dealer D 
omputes the en
oding matrix C of a pixel P from

two matri
es M

0

and M

1

as follows: C is obtained by randomly permuting

the 
olumns of M

0

if P is white and by randomly permuting the 
olumns of

M

1

if P is bla
k. M

0

and M

1

are 
alled the basis matri
es.

~

P is interpreted as bla
k if w

H

(

~

P ) is large, and as white if w

H

(

~

P ) is

small, where w

H

(

~

P ) denotes the Hamming weight of

~

P . We de�ne the grey

level of a pixel P as

GREY(P ) = w

H

(

~

P )=m;

where P = white or bla
k. GREY(white) should be 
lose to zero and

GREY(bla
k) should be 
lose to one. In Naor-Shanir (2; 2)-VCS, the grey

levels of a bla
k pixel and a white pixel are

GREY(bla
k) = 1; GREY(white) = 1=2:

The 
ontrast is ideal if

GREY(white) = 0 and GREY(bla
k) = 1:

2.3 Perfe
t Bla
k VCS

We say that a (k; n)-VCS is perfe
t bla
k if

GREY(bla
k) = 1 and GREY(white) < 1:

The (n; n)-VCS shown by Naor and Shamir [10℄ is perfe
t bla
k. The ex-

pansion rate is m = 2

n�1

and they showed that it is optimum.

For any 2 � k � n, Blundo et al. showed a perfe
t bla
k (k; n)-VCS

su
h that

GREY(white) = 1� 1=m

for some expansion rate m [7℄.
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3 Basi
 Idea

In this se
tion, we show a basi
 idea of our s
hemes. We present a (2; 2)-VCS

with reversing su
h that GREY(white) = 1=4 in addition to GREY(bla
k) =

1. Sin
e GREY(white) = 1=2 in the Naor-Shamir (2; 2)-VCS, the 
ontrast is

improved in our s
heme.

De�nition 1 We say that an image I is reversed if all bla
k pixels are

reversed into white and all white pixels are reversed into bla
k. We denote

by P the reversed pixel of P and by I the reversed image of I.

Our s
heme is des
ribed as follows. (See Fig 2 and Fig 3.)

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

T = s

1

+ s

2

(b) Se
ond run

p = :5

p = :5

p = :5

p = :5

pixel P s

0

1

s

0

2

T

0

= s

0

1

+ s

0

2

(a) First run

Figure 2: Proposed (2; 2)-VCS (1)

(Distribution phase)

1. The dealer D runs the distribution phase of Naor-Shamir (2; 2)-VCS

twi
e independently. Let (s

1

; s

2

) denote the shares of the �rst run and

(s

0

1

; s

0

2

) denote the shares of the se
ond run.
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2. Now in our s
heme, the share of parti
ipant P

1

is (s

1

; s

0

1

), and that of

parti
ipant P

2

is (s

2

; s

0

2

).

(Re
onstru
tion phase)

Step 1. Two parti
ipants superimpose s

1

, s

2

and obtain T = s

1

+ s

2

. Sim-

ilarly, they superimpose s

0

1

, s

0

2

and obtain T

0

= s

0

1

+ s

0

2

. They are

illustrated in the last 
olumns of Fig 2(a) and Fig 2(b).

Step 2. They next reverse T , T

0

and obtain T and T

0

as shown in Fig 3.

Step 3. The two parti
ipants superimpose T , T

0

and obtain T + T

0

.

Step 4. Finally the two parti
ipants reverse T + T

0

and obtain T + T

0

.

The T + T

0

is the re
onstru
ted image of our s
heme.

Now as we 
an see from Fig 3, we obtain that GREY(bla
k) = 1 and

E[GREY(white)℄ = (1=2) � 0 + (1=2) � (1=2) = 1=4:

We will show the reason below. Suppose that a pixel P is white. Then

1. T and T

0

are always bla
k as whown in Fig 2.

2. Therefore, T and T

0

are always white as shown in Fig 3.

3. Therefore, T + T

0

is always white.

4. Hen
e T + T

0

is always bla
k.

On the other hand, suppose that a pixel P is white. Then

1. As whown in Fig 2, T and T

0

are grey su
h that a half region is bla
k

and the other half is white in ea
h one of the four 
ases.

2. Therefore, T and T

0

are grey su
h that a half region is white and the

other half is bla
k in ea
h one of the four 
ases as shown in Fig 3.

3. Therefore, T+T

0

is bla
k with probability 1=2 and grey (half bla
k and

half white) with probability 1=2. This is be
ause (s

1

; s

2

) and (s

0

1

; s

0

2

)

are generated independently and randomly.

4. Hen
e T + T

0

is all white with probability 1=2 and it is grey (half bla
k

and half white) with probability 1=2.

4 Proposed S
heme

In this se
tion, we show our (k; n)-VCS with reversing. The re
onstru
tion

of bla
k region is perfe
t and the re
onstru
tion of white region is almost

perfe
t. The 
ost we have to pay is the size of shares. If the size of shares

is 
 times larger, then the grey level of white region 
onverges to zero expo-

nentially.

8



p = :25

p = :25

p = :25

p = :25

p = 1

pixel P

T T

0

T + T

0

T + T

0

Figure 3: Proposed (2; 2)-VCS (2)

4.1 
-Run (k; n)-VCS with Reversing

Suppose that there exists a perfe
t bla
k (k; n)-VCS. (Remember that there

exists a perfe
t bla
k (k; n)-VCS for any 2 � k � n.) We then 
onstru
t a

\
-run (k; n)-VCS with reversing" as follows in whi
h the underlying (k; n)-

VCS is run 
 times independently.

Let P a se
ret pixel to be distributed.

(Distribution phase)

1. The dealer D runs the distribution phase of the underlying perfe
t

bla
k (k; n)-VCS 
 times independently. Let (s

1;i

; � � � ; s

n;i

) be the set

of shares in the i-th run for i = 1; � � � ; 
.

2. In our s
heme, the share of parti
ipant P

j

is (s

j;1

; � � � ; s

j;


).

(Re
onstru
tion phase) Any k parti
ipants, say P

j

1

; � � � ;P

j

k

, re
onstru
t

P as follow.

1. For i = 1; � � � ; 
, they superimpose their shares and obtain

T

i

= s

j

1

;i

+ � � �+ s

j

k

;i

2. They reverse T

i

and obtain T

i

for i = 1; � � � ; 
.

3. They superimpose T

1

; � � � ; T




and obtain U = T

1

+ � � �+ T




.

4. We reverse U and obtain

~

P , where

~

P = U = T

1

+ � � �+ T




:

(See Fig.4.)

It is 
lear that any k�1 parti
ipants have no information on P from the

property of the original (k; n)-VCS.
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n transparen
ies

%

se
ret pixel P

.

.

.

&

n transparen
ies

(Distribution phase)

sta
k k sheets T

1

! reverse T

1

&

U = T

1

+ � � �+ T




! reverse U

%

sta
k k sheets T




! reverse T




(Re
onstru
tion phase)

Figure 4: Proposed VCS

4.2 Contrast

It is easy to see that GREY(bla
k) = 1 be
ause the original VCS is perfe
t

bla
k. We now show that both E[GREY(white)℄ and Var[GREY(white)℄


onverge to zero.

Theorem 1 Suppose that GREY(white) = q < 1 in the original perfe
t

bla
k VCS. Then in our 
-run VCS with reversing,

(1) E[GREY(white)℄ = q




.

(2) Var[GREY(white)℄ � q




(1� q




).

Proof . (1) Let P be a white pixel. Ea
h T

i

is des
ribed by a Boolean ve
tor

of length m

A

i

= (a

i;1

; � � � ; a

i;m

);

where m is the expansion rate. Similarly, the re
onstru
ted pixel

~

P is de-

s
ribed by a Boolean ve
tor

W = (w

1

; � � � ; w

m

):

Now sin
e

w

j

= a

1;j

+ � � �+ a


;j

;

it holds that

w

j

= a

1;j

� � � � � a


;j

10



from De Morgan's law. Therefore,

E[w

H

(W )℄ = E[

X

j

w

j

℄ =

X

j

E(w

j

) =

X

j

E[a

1;j

� � � � � a


;j

℄

=

X

j

Pr(a

1;j

= � � � = a


;j

= 1)

=

X

j

Pr(a

1;j

= 1)� � � � � Pr(a


;j

= 1)

=

X

j

q




= mq




:

Consequently, E[GREY(white)℄ = E[w

H

(W )℄=m = q




.

(2) It is easy to see that (w

1

+ � � � + w

m

) � m be
ause w

j

= 0 or w

j

= 1.

Therefore,

(w

1

+ � � �+ w

m

)

2

� m(w

1

+ � � �+ w

m

) = m

m

X

j=1

w

j

Hen
e

Var[w

H

(W )℄ = E[w

H

(W )

2

℄�E[w

H

(W )℄

2

= E[(

X

j

w

j

)

2

℄�m

2

q

2


� mE[

X

j

w

j

℄�m

2

q

2


= mE[w

H

(W )℄�m

2

q

2


= m

2

q




(1� q




)

Consequently, Var[GREY(white)℄ = Var[w

H

(W )℄=m

2

� q




(1� q




).

2

Therefore,

lim


!1

E[GREY(white)℄ = 0 and lim


!1

Var[GREY(white)℄ = 0:

This means that we 
an obtain asymptoti
ally ideal 
ontrast by letting 


large.

If we use the Naor-Shamir (2; 2)-VCS, we obtain the following 
orollary.

Corollary 1 There exists a perfe
t bla
k (2; 2)-VCS with reversing su
h that

E[GREY(white)℄ = (1=2)




Var[GREY(white)℄ � (1=2)




f1� (1=2)




g

with the expansion rate m = 2, where 
 is any positive integer.

For general (k; n)-VCS, we obtain the following 
orollary from [7℄.
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Corollary 2 For any 2 � k � n, there exists a perfe
t bla
k (k; n)-VCS

with reversing su
h that

E[GREY(white)℄ = (1� 1=m)




Var[GREY(white)℄ � (1� 1=m)




f1� (1� 1=m)




g

for any positive integer 
, where m is the expansion rate given by [7℄.

4.3 Example

As an example, we present a 3-Run (2; 2)-VCS.

(Distribution phase) The dealer D runs the distribution phase of Naor-

Shamir (2; 2)-VCS three times independently. Let (s

1

; s

2

) be the shares of

the �rst run, (s

0

1

; s

0

2

) be the shares of the se
ond run and (s

00

1

; s

00

2

) be the set

of shares of the third run.

Then the share of parti
ipant P

1

is (s

1

; s

0

1

; s

00

1

) and that of parti
ipant

P

2

is (s

2

; s

0

2

; s

00

2

).

(Re
onstru
tion phase)

1. We superimpose s

1

and s

2

, and then obtain T = s

1

+ s

2

. Similarly, we

obtain T

0

= s

0

1

+ s

0

2

and T

00

= s

00

1

+ s

00

2

.

2. We reverse T; T

0

and T

00

, and obtain T ; T

0

and T

00

.

3. We superimpose T ; T

0

, T

00

and obtain U = T + T

0

+ T

00

.

4. We reverse U and obtain

~

P .

(Contrast): We 
an then see that GREY(bla
k) = 1 and

E[GREY(white)℄ = (1=4) � (1=2) + (3=4) � 0 = 1=8:

5 Dis
ussion

5.1 Compatibility

The proposed s
heme is fully 
ompatible with traditional VCS in the fol-

lowing sense: even if we do not have a 
opy ma
hine in the re
onstru
tion

phase, we 
an re
onstru
t the se
ret image I exa
tly in the same way as in

the underlying VCS.

This is done as follows. Suppose that k parti
ipants do not have a


opy ma
hine in the re
onstru
tion phase. They just superimpose their

transparen
ies and then obtain T

1

as the re
onstru
ted image. (See step 1

of the proposed re
onstru
tion phase shown in Se
.4.1.) Note that T

1

is the

re
onstru
ted image obtained by the underlying traditional (k; n)-VCS.

In other words, we use a 
opy ma
hine as a hedge to obtain better


ontrast. Therefore, our s
heme is very attra
tive.

12



Figure 5: Original image

5.2 Complexity

The re
onstru
tion phase of the 
-run (k; n)-VCS with reversing requires


 + 1 reversing operations and superimposing k
 � 1 transparen
ies. The

size of shares be
ome 
 times larger than that of the original VCS.

6 Comparison

We show a 
omparison of (2; 2)-VCS (with reversing) among the Naor-

Shamir s
heme, our perfe
t bla
k VCS with reversing and our perfe
t white

VCS with reversing.

Fig.5 is the original image. Fig.6 is the re
onstru
ted image by Naor-

Shamir (2; 2)-VCS.

� Fig.7 � Fig.9 are the re
onstru
ted images by our perfe
t bla
k 2; 3; 4-

run (2; 2)-VCS, respe
tively.

� Fig.10 � Fig.13 are the re
onstru
ted images by our perfe
t white

1; 2; 3; 4-run (2; 2)-VCS, respe
tively.

7 Perfe
t White VCS

7.1 Conversion from Perfe
t Bla
k VCS

We say that a (k; n)-VCS is perfe
t white if

GREY(white) = 0 and GREY(bla
k) > 0:

In usual pi
tures, the white region is mu
h larger than the bla
k region.

Therefore, perfe
t white VCSs are mu
h preferable than perfe
t bla
k VCSs.

However, no perfe
t white VCS has been known.

In this se
tion, we show that a perfe
t white (k; n)-VCS with reversing

is easily obtained from a perfe
t bla
k (k; n)-VCS (with reversing).

13



Figure 6: Naor-Shamir (2; 2)-VCS

Figure 7: Proposed 2-run perfe
t bla
k VCS

Figure 8: Proposed perfe
t bla
k 3-run VCS
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Figure 9: Proposed perfe
t bla
k 4-run VCS

Figure 10: 1-run perfe
t white VCS

Figure 11: 2-run perfe
t white VCS
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Figure 12: 3-run perfe
t white VCS

Figure 13: 4-run perfe
t white VCS
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Theorem 2 Suppose that there exists a perfe
t bla
k (k; n)-VCS with re-

versing su
h that E[GREY(white)℄ = p. Then there exists a perfe
t white

(k; n)-VCS with reversing su
h that E[GREY(bla
k)℄ = 1� p.

Proof . We des
ribe a perfe
t white (k; n)-VCS.

In the distribution phase,

1. the dealer D �rst reverses the original image I and obtains I.

2. D then applies the distribution phase of the perfe
t bla
k (k; n)-VCS

with reversing to I.

In the re
onstru
tion phase,

1. a quali�ed subset of parti
ipants apply step 1 � step 3 of the re
on-

stru
tion phase for the perfe
t bla
k (k; n)-VCS with reversing and

obtain a re
onstru
ted image I

0

.

2. They �nally reverse I

0

and obtain I

0

.

Then it is easy to see that the above s
heme is a perfe
t white (k; n)-VCS

su
h that E[GREY(bla
k)℄ = 1� p.

2

7.2 Almost Ideal Contrast with Perfe
t White

We 
an obtain a perfe
t white (k; n)-VCS with reversing su
h that

E[GREY(bla
k)℄! 1

by applying Theorem 2 to our 
onstru
tion shown in Se
.4.1.

In this 
ase, we 
an redu
e the number of reversing from 
 + 1 to 
 by

terminating at step 3 of the re
onstru
tion phase. The U of step 3 is the

re
onstru
ted image. This pro
ess is illustrated in Fig.14.

7.3 Example

As an example, we show how to 
onvert the perfe
t bla
k (2; 2)-VCS of

Se
.2.1 into a perfe
t white (2; 2)-VCS with reversing. (See Fig 15.)

In the distribution phase:

1. the dealer D �rst reverses the original image I. Hen
e ea
h white pixel

is reversed into bla
k and ea
h ba
k pixel is reversed into white.

2. D then applies the distribution phase of the perfe
t bla
k (2; 2)-VCS.

Parti
ipant P

1

obtains a share s

1

and parti
ipant P

2

obtains a share

s

2

.
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n transparen
ies

%

Image I ! reverse

�

I

.

.

.

&

n transparen
ies

(Distribution phase)

sta
k k sheets T

1

! reverse T

1

&

U = T

1

+ � � �+ T




(=re
onstru
ted image)

%

sta
k k sheets T




! reverse T




(Re
onstru
tion phase)

Figure 14: Perfe
t white VCS

In the re
onstru
tion phase:

1. the two parti
ipants superimpose s

1

and s

2

and obtains s

1

+ s

2

.

2. They �nally reverse s

1

+ s

2

and obtain s

1

+ s

2

.

From Fig 15, we see that a perfe
t white (2; 2)-VCS is obtained su
h that

GREY(bla
k) = 1=2.

p = :5

p = :5

p = :5

p = :5

pixel P

s

1

s

2

s

1

+ s

2

s

1

+ s

2

Figure 15: Perfe
t white 2-out-of-2 visual 
ryptography s
heme

8 Perfe
t Bla
k VCS for General A

ess Stru
ture

Perfe
t bla
k VCSs have been known only for (k; n)-threshold 
ases so far

although VCS itself 
an be 
onstru
ted for general a

ess stru
tures [1℄. In
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this se
tion, we show a perfe
t bla
k VCS for any monotone a

ess stru
ture.

This means that we 
an obtain a VCS with reversing for any monotone a

ess

stru
ture su
h that the 
ontrast is almost ideal.

8.1 A

ess Stru
ture

Let P = f1; : : : ; ng be a set of parti
ipants. In a generalized se
ret sharing

s
heme, quali�ed subsets of P 
an re
over the se
ret. Let

�

4

= fA � P j A 
an determine sg:

Then � is 
alled an a

ess stru
ture and A is 
alled an a

ess set. However,

any B 62 � has no information on s.

De�nition 2 � is said to be monotone if

A 2 �; A � A

0

) A

0

2 �:

There exists a se
ret sharing s
heme for � if and only if � is monotone

[9, 2℄. For an a

ess stru
ture �, de�ne

�

0

4

= fA � P j A is a minimal a

ess set.g:

�

0

is 
alled a minimal a

ess stru
ture.

In what follows, we assume that � is monotone.

8.2 General Constru
tion

Naor and Shamir showed a perfe
t bla
k (k; k)-VCS su
h that the expansion

rate is m = 2

k�1

and GREY(white) = 1 � 1=2

k�1

[10℄. The basis matri
es

(M

0

k

;M

1

k

) are given as follows.

M

0

k

=

0

B

�

j j j




1




2

� � � 


2

k�1

j j j

1

C

A

=

0

B

�

�e

k;1

�

.

.

.

�e

k;k

�

1

C

A

; (2)

M

1

k

=

0

B

�

j j j




0

1




0

2

� � � 


0

2

k�1

j j j

1

C

A

=

0

B

B

�

�e

0

k;1

�

.

.

.

�e

0

k;k

�

1

C

C

A

; (3)

where f


1

; 


2

; � � � ; 


2

k�1

g is the set of all even weight binary ve
tors of lengh

k and f


0

1

; 


0

2

; � � � ; 


0

2

k�1

g is the set of all odd weight binary ve
tors of lengh

k.

Now by employing the above VCS, we show a perfe
t bla
k VCS for any

minimal a

ess stru
ture �

0

= fA

1

; � � � ; A

t

g.

De�ne k

j

= jA

j

j and suppose that A

j

= fj

1

; � � � ; j

k

j

g. A pair of basis

matri
es (L

0

; L

1

) for �

0

are then 
onstru
ted as follows.
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Constru
tion of L

0

. For 1 � j � t, 
onstru
t a n� 2

k

j

�1

matrix

E

j

=

0

B

B

B

B

B

B

B

B

�

.

.

.

e

k

j

;1

.

.

.

e

k

j

;k

j

.

.

.

1

C

C

C

C

C

C

C

C

A

;

as follows:

� The j

u

th row of E

j

is the uth row of M

0

k

j

for 1 � u � k

j

.

� The other rows of E

j

are (1; � � � ; 1).

Then de�ne

L

0

= (E

1

; � � � ; E

t

):

Constru
tion of L

1

. For 1 � j � t, 
onstru
t a n� 2

k

j

�1

matrix

E

0

j

=

0

B

B

B

B

B

B

B

B

�

.

.

.

e

0

k

j

;1

.

.

.

e

0

k

j

;k

j

.

.

.

1

C

C

C

C

C

C

C

C

A

;

as follows:

� The j

u

th row of E

0

j

is the uth row of M

1

k

j

for 1 � u � k

j

.

� The other rows of E

j

are (1; � � � ; 1).

Then de�ne

L

1

= (E

0

1

; � � � ; E

0

t

):

The expansion rate is m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1�

1

m

in this VCS.

We show an example for �

0

= ff1; 2g; f2; 3; 4gg. First,

M

0

2

=

 

10

10

!

; M

1

2

=

 

10

01

!

M

0

3

=

0

B

�

0011

0101

0110

1

C

A

; M

1

3

=

0

B

�

0011

0101

1001

1

C

A
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Therefore,

L

0

=

0

B

B

B

�

10 1111

10 0011

11 0101

11 0110

1

C

C

C

A

; L

1

=

0

B

B

B

�

10 1111

01 0011

11 0101

11 1001

1

C

C

C

A

The expansion rate is m = 2

2�1

+ 2

3�1

= 6 and GREY(white) = 1� 1=m =

5=6.

Theorem 3 The above L

0

and L

1

are a pair of basis matri
es of a perfe
t

bla
k VCS for �

0

su
h that the expansion rate is m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1� 1=m.

Proof . Let f0; 1g the set of se
rets. Then a se
ret sharing s
heme is known

for any �

0

= fA

1

; � � � ; A

t

g as follows, where A

j

= fj

1

; � � � ; j

k

j

g.

� Suppose that s = 0. Then for 1 � j � t, the dealer D 
hooses random

bits b

j;1

; � � � ; b

j;k

j

su
h that

0 = b

j;1

� � � � � b

j;k

j

and gives b

j;u

to parti
ipant j

u

for 1 � u � k

j

.

� Suppose that s = 1. Then for 1 � j � t, D 
hooses random bits

b

0

j;1

; � � � ; b

0

j;k

j

su
h that

1 = b

0

j;1

� � � � � b

0

j;k

j

and gives b

0

j;u

to parti
ipant j

u

for 1 � u � k

j

.

Now in our VCS, b

j;u

is en
oded to e

k

j

;u

for L

0

and b

0

j;u

is en
oded to

e

0

k

j

;u

for L

1

. Further, (M

0

k

;M

1

k

) is the basis matri
es of a perfe
t bla
k

(k; k)-VCS. Therefore, it is easy to see that L

0

and L

1

are a pair of basis

matri
es of a perfe
t bla
k VCS for �

0

.

It is 
lear that m = 2

jA

1

j�1

+ � � �+2

jA

t

j�1

and GREY(white) = 1� 1=m.

2

8.3 For Spe
ial A

ess Stru
ture

If we apply the above 
onstru
tion to �

0

= ff1; 2g; f2; 3g; f3; 4gg, then we

obtain a VCS su
h that m = 6 and GREY(white) = 5=6. In this subse
tion,

we present a perfe
t bla
k VCS su
h that m = 4 and GREY(white) = 3=4.

Remember that the basis matri
es of a perfe
t bla
k (2; 2)-VCS is given

as follows.

M

0

=

 

1 0

1 0

!

=

 

e

1

e

2

!

21



M

1

=

 

1 0

0 1

!

=

 

e

0

1

e

0

2

!

On the other hand, a se
ret sharing s
heme for �

0

is known as follows.

Let f0; 1g be the set of se
rets. The dealer D 
hooses random bits b

1

; � � � ; b

4

su
h that

s = b

1

� b

2

(4)

= b

3

� b

4

(5)

Let

v

1

= b

1

; v

2

= b

2

; v

3

= (b

1

; b

3

); v

4

= b

4

;

where v

i

is a share of parti
ipant i.

Now we show a perfe
t bla
k VCS for �

0

. Let d

1

= (b

1

; b

2

; b

1

; x)

T

, where

x means that eq.(4) is not used for parti
ipant 4. Let d

2

= (x; x; b

3

; b

4

))

T

,

where x means that eq.(5) is not used for parti
ipant 1 and parti
ipant 2.

De�ne

G = (d

1

; d

2

) =

0

B

B

B

�

b

1

; x

b

2

; x

b

1

; b

3

x; b

4

1

C

C

C

A

The basis matri
es L

0

and L

1

for �

0

are then 
onstru
ted as follows.

(Constru
tion of L

0

): In G,

� Substitute e

1

= (1; 0) into b

1

and b

3

.

� Substitute e

2

= (1; 0) into b

2

and b

4

.

� Substitute (1; 1) into x.

(Constru
tion of L

1

): In G,

� Substitute e

0

1

= (1; 0) into b

1

and b

3

.

� Substitute e

0

2

= (0; 1) into b

2

and b

4

.

� Substitute (1; 1) into x.

That is,

L

0

=

0

B

B

B

�

1011

1011

1010

1110

1

C

C

C

A

; L

1

=

0

B

B

B

�

1011

0111

1010

1101

1

C

C

C

A

It is easy to see that L

0

and L

1

are the basis matri
es of a perfe
t bla
k

VCS for �

0

. The expansion rate is m = 4 and GREY(white) = 3=4.
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9 Appli
ation to Colored VCS

Verheul and van Tilborg proposed a model for 
olored VCS and gave a

general 
onstru
tion for 
olored (k; n)-VCS [12℄. Blundo et al. improved

this 
onstru
tion [7℄. However, the 
ontrast of the re
onstru
ted images by

these s
hemes is very poor.

In this se
tion, we show that if there exists an almost ideal 
ontrast

(k; n)-VCS with reversing, then there exists a 
olored (k; n)-VCS with re-

versing su
h that the original image I is almost perfe
tly re
onstru
ted.

9.1 Proposed S
heme

Any 
olor is realized by mixing three primary 
olors, red; blue and yellow,

appropriately. The proposed 
olored VCS is based on this prin
iple.

We assume that there is a 
olor 
opy ma
hine whi
h has three 
oloring

fun
tions Color

red

;Color

blue

;Color

yelow

as follows.

� Color

red

: A bla
k pixel is made into red.

� Color

blue

: A bla
k pixel is made into blue.

� Color

yellow

: A bla
k pixel is made into yellow.

(All white pixels remain white.)

Suppose that there exists an almost ideal 
ontrast (k; n)-VCS with re-

versing denoted by �. Then the proposed s
heme is des
ribed as follows.

For simpli
ity, suppose that the se
ret image I 
onsists of 7 
olors whi
h are

obtained by simply mixing the primary three 
olors.

(Distribution Phase)

1. The dealer D de
omposes I into three images I

red

; I

blue

and I

yellow

,

where I

x

is the 
omponent of I of 
olor x.

That is, ea
h pixel of I

x

has 
olor x or white, and I is re
onstru
ted

by sta
king I

red

; I

blue

and I

yellow

.

2. For ea
h I

x

, 
onvert I

x

into a bla
k-white image I

B

x

in su
h a way that

all pixels of 
olor x are made into bla
k, and all white pixel remain

white.

3. For ea
h I

B

x

, apply the distribution phase of �.

(Re
onstru
tion Phase)

1. Apply the re
onstru
tion phase of � to re
over I

B

x

for ea
h 
olor x.

Let

~

I

B

x

be the re
overed image of I

B

x

.

2. Apply the 
oloring fun
tion Color

x

of the 
opy ma
hine to the bla
k-

white image

~

I

B

x

for ea
h 
olor x. Then we obtain a mono-
olor image

~

I

x

su
h that all bla
k pixels are made into 
olor x, and all white pixel

remain white.
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I

red

! mono
olor I

B

red

! distribution phase of �

%

I ! I

blue

! mono
olor I

B

blue

! distribution phase of �

&

I

yellow

! mono
olor I

B

yellow

! distribution phase of �

(Distribution phase)

re
onstru
tion of �!

~

I

B

red

! 
oloring

~

I

red

&

re
onstru
tion of �!

~

I

B

blue

! 
oloring

~

I

blue

! sta
k ! re
onstru
tion

%

re
onstru
tion of �!

~

I

B

yellow

! 
oloring

~

I

yellow

(Re
onstru
tion phase)

Figure 16: Proposed Colored VCS

3. Finally sta
k

~

I

red

;

~

I

blue

and

~

I

yellow

.

This pro
ess is illustrated in Fig.16.

Sin
e � a
hieves almost ideal 
ontrast,

~

I

x

is an almost prefe
t re
onstru
-

tion image of I

x

for ea
h 
olor x. Therefore, we 
an re
onstru
t I almost

perfe
tly.

10 Appli
ation to Grey Level Images

In a grey level image, ea
h pixel has g grey levels ranging from 0 (white) to

g � 1 (bla
k). A VCS for grey level images was shown by Blundo et al. [6℄.

In this se
tion, we show that if there exists an almost ideal 
ontrast

(k; n)-VCS with reversing, then there exists a (k; n)-VCS with reversing for

grey level images su
h that the original image I is almost perfe
tly re
on-

stru
ted.

We assume that there is a 
opy ma
hine whi
h 
an make a bla
k pixel

into grey level i for 1 � i � g � 1. Suppose that there exists an almost

ideal 
ontrast (k; n)-VCS with reversing denoted by �. Then the proposed

s
heme is des
ribed as follows.

(Distribution Phase)

1. The dealer D de
omposes I into g images I

0

; I

1

; � � � ; I

g�1

, where I

i

is

the 
omponent of I of grey level i.

That is, ea
h pixel of I

i

has grey level i or 0, and I is re
onstru
ted

by sta
king I

0

; I

1

; � � � ; I

g�1

.
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Figure 17: Proposed Grey Level VCS

2. For ea
h I

i

with 1 � i � g� 1, 
onvert I

i

into a bla
k-white image I

B

i

in su
h a way that all pixels of grey level i are made into bla
k, and

all white pixel remain white.

3. For ea
h I

B

i

, apply the distribution phase of �.

(Re
onstru
tion Phase)

1. Apply the re
onstru
tion phase of � to re
over I

B

i

for ea
h grey level

i. Let

~

I

B

i

be the re
overed image of I

B

i

.

2. Apply the grey level fun
tion of the 
opy ma
hine to ea
h bla
k-white

image

~

I

B

i

. Then we obtain a two-level grey image

~

I

i

su
h that all bla
k

pixels are made into grey level i, and all white pixel remain white.

3. Finally sta
k I

0

; I

1

; � � � ; I

g�1

.

This pro
ess is illustrated in Fig.17.

Sin
e � a
hieves almost ideal 
ontrast,

~

I

i

is an almost prefe
t re
on-

stru
tion of I

i

for ea
h grey level i. Therefore, we 
an re
onstru
t I almost

perfe
tly.

11 Con
lusion

We �rst showed a (k; n)-VCS with reversing su
h that white pixels are almost

perfe
tly re
onstru
ted in addition to the perfe
t re
onstru
tion of bla
k

pixels. The proposed s
heme is fully 
ompatible with traditional VCS.
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We next showed how to 
onvert a perfe
t bla
k (k; n)-VCS (with revers-

ing) into a perfe
t white (k; n)-VCS with reversing. Thirdly, we showed a

perfe
t bla
k VCS for any monotone a

ess stru
ture. Finally, we showed

appli
ations of our idea to 
olored VCS and grey level VCS, respe
tively.

It will be a further work to �nd another simple non-
ryptographi
 oper-

ation whi
h 
an a
hieve almost ideal 
ontrast.
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