
Fault attack on the
DVB Common Scrambling Algorithm

Kai Wirt

Technical University Darmstadt
Department of Computer Science

Darmstadt, Germany
wirt@informatik.tu-darmstadt.de

Abstract. The Common Scrambling Algorithm (CSA) is used to en-
crypt streams of video data in the Digital Video Broadcasting (DVB)
system. The algorithm uses a combination of a stream and a block cipher,
apparently for a larger security margin. However these two algorithms
share a common key.
In this paper we present a fault attack on the block cipher which can be
launched without regarding the stream cipher part. This attack allows us
to reconstruct the common key and thus breaks the complete Algorithm.

Keywords: block cipher, cryptanalysis, fault attack, dvb, paytv

1 Introduction

The DVB Common Scrambling Algorithm is used to secure MPEG-2 transport
streams. These are used for example for digitally transmitted Pay-TV in Europe.
The algorithm was specified by ETSI and adopted by the DVB consortium in
May 1994. However the exact origin and date of the design is unclear. Interest-
ingly, licensees were not allowed to implement the algorithm in software and it
was only available under a Non-Disclosure Agreement from an ETSI custodian.
As was pointed out, this was due to “security reasons”. Only very little infor-
mation like an ETSI Technical Report [Eur96] and patent applications [Bew98],
[WAJ98] were available to the public until 2002. In the fall of 2002 a Windows
program called FreeDec which implemented the CSA in software was released
and quickly reverse–engineered. The results were published on a web site [Pse03]
and details on the algorithm became available to the public.

For keying the CSA, so called control words are used. These control words
are generated from encrypted control messages contained in the DVB trans-
port stream by a conditional access mechanism. Examples for these mechanisms
are Irdeto, Betacrypt, Nagravision, Cryptoworks and many others. They vary
between broadcasters and are usually implemented on a smart card which is
required to view encrypted pay tv transmissions.

The actual key for the CSA is called common key and is usually changed every
10–120 seconds. The great relevance of CSA lies in the fact, that every encrypted



digital Pay-TV transmission in Europe is secured using CSA. A practical break
of CSA would thus affect all broadcasters which would have to exchange the
hardware used to decrypt the transport streams.

The scrambling algorithm is a combination of two cryptographic primitives:
a 64-bit block cipher and a stream cipher which both are keyed with the same
common key. Thus a key recovery attack on one of the two primitives would
break the complete algorithm.

In this paper we present a fault attack on the block cipher part which allows
the recovery of the key.

The rest of this paper is organized as follows. In Section 2 we present the
notation used in this paper, section 3 gives a short overview over side-channel
attacks and sections 4 and 5 describe CSA resp. the block cipher part. Our
Attack is presented in section 6 and final remarks are given in section 7. Tables
and figures are combined in an appendix.

2 Definitions

In the rest of this paper we use the following notation:

K the common key. A 64 bit key used for both the stream and the
block cipher

ki denotes the i-th bit of K
KE denotes the running key which is derived through the key schedule

of the block cipher
si denotes the value held in register i

sj
i is the value held in register i at round j

pi, ci denote a plain text resp. cipher text byte
x is the faulted value x

3 Side-Channel attacks

Conventional attacks try to find weaknesses in a cipher construction itself. There
are various methods to do so, like observing the distribution of ciphertexts or
attacking the structure of a cipher with algebraic methods. In contrast, side
channel attacks are used to find weaknesses in an actual implementation of a
cipher system. They are more powerful than conventional attacks, because of the
fact, that the attacker can get additional information by observing side channels
like the time required to encrypt certain plaintexts or the power usage of the
encryption device.

One certain type of side channel attacks are so called fault attacks, where the
attacker introduces errors in the encryption or decryption process. The attacker
then gains informations on the Key by observing the difference between the



actual and the faulty result. There are various results showing, that these attacks
are very powerful and feasible like [BDJ97] and [ABF+02].

Fault attacks are often combined with observations on other side channels,
because the faults have to be introduced at specific points in the encryption/
decryption process or at a specific register value. To simplify things one specifies
what values can be affected when by the attacker.

This type of side channel attacks was first applied to symmetric crypto sys-
tems by Eli Biham and Adi Shamir in [BS97]. Our attack is a variant using a
slightly different setting, than in [BS97] and [BDJ97]. In the setting we inves-
tigate in this paper, the attacker is capable of changing the value of a specific
register to a random value in one specific round. However, we will show, that
if the attacker is only able to introduce a random error, where the exact error
location is evenly distributed over the whole decryption process (i.e. the setting
used by Boneh et. al) our attack still works.

One possibility to inject such errors is to do it by laser. It is possible to target
at a specific part of the device performing the cryptographic operations and thus
affect for example a certain register. We believe that changing the value stored
in such a register to a random value is possible. Moreover we believe that using
short flashes of the laser and precise equipment it is possible to do so in a certain
round. We therefor believe, that the presented attack is an actual threat to the
common scrambling algorithm. An overview and further references on how to
realize fault attacks can be found in [BS03] where the first fault attack on the
Advanced Encryption Standard is given.

4 Overview over CSA

The common scrambling algorithm can be seen as a cascade of two different
cryptographic primitives, namely a block cipher and a stream cipher. Both ci-
phers use the same 64-bit key K, which is called the common key. In this section
we will describe how the block and the stream cipher are combined, whereas the
next section is focussing on the block cipher.

In the encryption process a m-byte packet is first divided into blocks (DBi)
of 8 bytes each. It is possible that the length of the packet is not a multiple of
8 bytes. If so, the last block is called residue.

The sequence of 8-byte blocks is encrypted in reverse order with the block
cipher in CBC mode. The initialization vector is always equal to zero. Note, that
the residue is left untouched in this encryption step.

The last output of the chain IB0 is then used as a nonce for the stream
cipher. The first m − 8 bytes of keystream generated by the stream cipher are
XORed to the encrypted blocks (IBi)i≥1 followed by the residue to produce the
scrambled blocks SBi.

Figure 1 on page 8 depicts the descrambling process.
Note, that since we are interested in introducing errors in the decryption

process of the block cipher and in comparing the actual decrypted output with



the faulty output we can completly ignore the chaining mode and the stream
cipher part taking only the decryption process of the last block cipher applica-
tion into account. For more details on the overall design and an analysis of the
stream cipher as well as an overview of properties of the block cipher we refer
to [WW04].

5 The DVB CSA block cipher

CSA uses an iterated block cipher that operates bytewise on 64-bit blocks of
data. In each round of the cipher the same round transformation is applied to
the internal state. We will denote this transformation by φ. φ takes the 8-byte
vector representing the current internal state, along with a single byte of the
running key, to produce the next internal state. This round transformation is
applied 56 times.

The key schedule Let ρ be the bit permutation on 64-bit strings as defined in
table 2 on page 8. The 448-bit running key KE = (kE

0 , . . . , kE
447) is recursively

computed as follows:

kE
0,...,63 = k0,...,63

kE
64i,...,64i+63 = ρ(kE

64(i−1),...,64i−1)⊕ 0x0i0i0i0i0i0i0i0i for all 1 ≤ i ≤ 6

where the expression 0x0i0i0i0i0i0i0i0i is to be interpreted as a hexadecimal
constant.

The round function The round transformation uses two non-linear permuta-
tions on the set of all byte values π and π′. These permutations are related by
another permutation σ, i.e. π′ = σ ◦ π. The bit permutation σ maps bit 0 to 1,
bit 1 to 7, bit 2 to 5, bit 3 to 4, bit 4 to 2, bit 5 to 6, bit 6 to 0 and bit 7 to 3.
See table 4 on page 9 for the actual values described by π.

Let S = (s0, . . . , s7) be the vector of bytes representing the internal state of
the block cipher in an arbitrary round. The function φ taking the internal state
S from round i to round i + 1 is given by

φ(s0, . . . , s7, k) = (s1, s2 ⊕ s0, s3 ⊕ s0, s4 ⊕ s0,

s5, s6 ⊕ π′(k ⊕ s7), s7, s0 ⊕ π(k ⊕ s7))

. The inverse round transformation for the decryption of a message block is then

φ−1(s0, . . . , s7, k) = (s7 ⊕ π(s6 ⊕ k), s0,

s7 ⊕ s1 ⊕ π(s6 ⊕ k), s7 ⊕ s2 ⊕ π(s6 ⊕ k),
s7 ⊕ s3 ⊕ π(s6 ⊕ k), s4, s5 ⊕ π′(s6 ⊕ k), s6)



Encryption/Decryption A plaintext P = (p0, . . . , p7) is encrypted according
to

S0 = P

Sr = φ(Sr−1, (k8r, . . . , k8r+7)) for all 1 ≤ r ≤ 56
C = S56

which yields the ciphertext C = (c0, . . . , c7). For decrypting this ciphertext the
inverse round transformation is used and therefor the following operations have
to be carried out:

S0 = C

Sr = φ−1(Sr−1, (k448−8r, . . . , k455−8r)) for all 1 ≤ r ≤ 56
P = S56

6 Fault attack on the block cipher

Our attack consists of two steps which we will describe in this section. The first
step is a fault attack on the decryption of the last block from the block cipher
part of CSA which yields the last eight round keys i.e. the bits kE

384 . . . kE
447. The

second step is the reconstruction of the common key K = kE
0 . . . kE

63 from these
keybits.

Note, that since we are only interested in the decryption of the last block
from the block cipher part the stream cipher and the chaining mode used with
the block cipher are irrelevant as pointed out before.

6.1 Step 1

The attacker starts by introducing a random error in the last round of the
decryption process in s55

6 which changes this value to s55
6 . Since these two values

appear unchanged in the decrypted plaintext the attacker can calculate

s55
6 = s56

7 = p7

s55
6 = s56

7 = p7

g(kE
440...447) := π(s55

6 ⊕ kE
440...447)⊕ π(s55

6 ⊕ kE
440...447) = s56

0 ⊕ s56
0 = p0 ⊕ p0

from the faulted and the actual output.
Now we verify for every possible round key k′ if g(k′) = g(kE

440...447). Ta-
ble 1 on the next page shows, how many possible round keys are expected to
fulfill this equation. As we can see, we can expect that the number of possible
round keys is approximately two for every introduced error. Therefor if we re-
peat the attack for two or three different errors, the round key can be uniquely
determined.



After recovery of the round keys for the rounds i . . . 56 the attacker introduces
an error at round i−1 of the decryption process and uses the known round keys
to perform i rounds of the encryption process with the plaintext and the faulted
plaintext. Doing so, the attacker gets the values

si−1
6 = si

7

si−1
6 = si

7

g(kE
8(i−1) . . . kE

8(i−1)+7) := π(si−1
6 ⊕ kE

8(i−1) . . . kE
8(i−1)+7)

⊕ π(si−1
6 ⊕ kE

8(i−1) . . . kE
8(i−1)+7) = si

0 ⊕ si
0

He can thus retrieve the keybits kE
8(i−1) . . . kE

8(i−1)+7 as pointed out above and
therefor iteratively recover the required 8 round keys.

To perform this basic version of our attack, the attacker has to introduce
approximately two errors per round key, that sums up to a total of 16 errors.
Additionally to uniquely determine one round key the attacker has to evaluate
g(k’) for all 256 different values of k′ for every introduced error. Therefor the
overall complexity is 16 error introductions and 8 ·2 ·256 = 4096 evaluations of g.

Another possibility to recover the round keys is, that the attacker takes every
possible key retrieved through the equation g(k′) = g(kE

8(i−1) . . . kE
8(i−1)+7) into

account. With this method, the attacker does not have to repeat the error intro-
duction. From table 1 we conclude, that the attack is only little more expensive.
The wrong round keys can then be either discovered in the second step of the
attack, or by testing all calculated common keys for the correct one.

In this version the number of required error introductions decreases to 8.
However the attacker now has to evalute the g-function approximately

∑7
i=0 2i ·

256 = 65280 times which leaves him with 256 possible keys.

Table 1. Probability for the number of round keys for the attack

Possible number of keys 0 1 2 3 4 5 6 7 8 > 8
Probability 0.61 0.00 0.31 0.00 0.07 0.00 0.01 0.00 0.00 0.00

6.2 Step 2

The second step of the attack is the recovery of the common key from the key bits
kE
384 . . . kE

447. This is a straightforward task, because of the simple key schedule.
The attacker can reconstruct the unknown bits according to

kE
64(i−1),...,64i−1 = ρ−1(kE

64i,...,64i+63 ⊕ 0x0i0i0i0i0i0i0i0i) for all 6 ≥ i ≥ 1

where ρ−1 is the inverse key bit permutation which is given in Table 3 on page 9
and the value 0x0i0i0i0i0i0i0i0i has to be interpreted as a hexadecimal constant.



The common key K is then given by

K = kE
0..63

Since the stream and the block cipher parts of CSA share the common key
this attack breaks the complete CSA - Cipher.

6.3 Improvements

The presented attack allows a time-memory tradeoff. It is possible to calculate a
table which contains all the possible round keys for every combination of s6, s6

and g(k). This table uses approximately 28 · 28 · 28 · 2 = 225 bytes.
Using this improvement the attack requires only one table lookup per intro-

duced error, resp. per possible round key in the above scenarios.

One additional possibility is, that the adversary does not calculate all 8 round
keys. He can also retrieve only some of the last round keys and then perform an
exhaustive search on the missing bits. Since 64 bits are enough to reconstruct
the common key the costs of an exhaustive search can be reduced to 264−8·j ,
where j is the number of round keys calculated. Clearly, this variant requires
2 · j introduced errors and j · 2 · 256 evaluations of the g-function in the basic
setting.

6.4 Evenly distributed errors

In the case that the attacker is not able to introduce errors at a specific register at
a certain round, but only an error evenly distributed over the whole decryption
process, i.e. the error can affect either register at either round, the presented
attack still works. This is due to the fact, that the attacker can determine if the
error has affected the desired value by comparing the values si

7 and si
7. If these

values are not equal and si
1 = si

1, s
i
5 = si

5 and si
2⊕si

2 = si
3⊕si

3 = si
4⊕si

4 = si
0⊕si

0

the correct register and the correct round have been modified.
Assuming that the errors are evenly distributed this should occur every 56 ·8

tries. Therefor the costs for the attack in terms of the number of introduced
errors only increase by a constant factor.

One further improvement would be, that the attacker records all the faulted
outputs, even if the wrong round and/or register have been altered. Before intro-
ducing an error targeting the next round key, the attacker then checks if one of
the recorded values is a modification of the correct register in this round. With
this method the number of required faults can be decreased.

7 Conclusion

In this paper we presented a fault attack on the DVB common scrambling algo-
rithm. Although the overall design, especially the combination of the stream and



the block cipher makes simple attacks difficult [WW04] it is possible to easily
break the cipher using a fault attack. This again proves, that it is important to
include countermeasures against fault attacks like the verification of the result of
the encryption respectively decryption process in an implementation of a crypto-
graphic system. Additional countermeasures against the presented attack should
include different keys for the stream and the block cipher part, a nonlinear key
schedule and modifications on the round function of the block cipher to make
the recovery of the round key more difficult.

A Appendix

SB0Header Residue

IB0

SB1

IB1

Stream 
cipher 

init CB1

SB2

IB2

CB2

SB3

IB3

CB3

SBn-1

IBn-1

CBn-1

...

...

DB0 DB1 DB2 ... DBn-2

Block 
cipher 
decry
ption

CK

Block 
cipher 
decry
ption

CK

Block 
cipher 
decry
ption

CK

CK

Block 
cipher 
decry
ption

CK

IV

DBn-1

Block 
cipher 
decry
ption

CK

CBn

Residue

Fig. 1. Combination of block- and stream cipher

Table 2. Key bit permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ(i) 17 35 8 6 41 48 28 20 27 53 61 49 18 32 58 63

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ρ(i) 23 19 36 38 1 52 26 0 33 3 12 13 56 39 25 40

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ρ(i) 50 34 51 11 21 47 29 57 44 30 7 24 22 46 60 16

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

ρ(i) 59 4 55 42 10 5 9 43 31 62 45 14 2 37 15 54



Table 3. Inverse key bit permutation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ(i) 23 20 60 25 49 53 3 42 2 54 52 35 26 27 59 62

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ρ(i) 47 0 12 17 7 36 44 16 43 30 22 8 6 38 41 56

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ρ(i) 13 24 33 1 18 61 19 29 31 4 51 55 40 58 45 37

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

ρ(i) 5 11 32 34 21 9 63 50 28 39 14 48 46 10 57 15

Table 4. S-Box of the block cipher. Output arranged row-wise; lower nibble on horizonal, upper
on vertical

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x00 0x3A 0xEA 0x68 0xFE 0x33 0xE9 0x88 0x1A 0x83 0xCF 0xE1 0x7F 0xBA 0xE2 0x38 0x12

0x01 0xE8 0x27 0x61 0x95 0x0C 0x36 0xE5 0x70 0xA2 0x06 0x82 0x7C 0x17 0xA3 0x26 0x49

0x02 0xBE 0x7A 0x6D 0x47 0xC1 0x51 0x8F 0xF3 0xCC 0x5B 0x67 0xBD 0xCD 0x18 0x08 0xC9

0x03 0xFF 0x69 0xEF 0x03 0x4E 0x48 0x4A 0x84 0x3F 0xB4 0x10 0x04 0xDC 0xF5 0x5C 0xC6

0x04 0x16 0xAB 0xAC 0x4C 0xF1 0x6A 0x2F 0x3C 0x3B 0xD4 0xD5 0x94 0xD0 0xC4 0x63 0x62

0x05 0x71 0xA1 0xF9 0x4F 0x2E 0xAA 0xC5 0x56 0xE3 0x39 0x93 0xCE 0x65 0x64 0xE4 0x58

0x06 0x6C 0x19 0x42 0x79 0xDD 0xEE 0x96 0xF6 0x8A 0xEC 0x1E 0x85 0x53 0x45 0xDE 0xBB

0x07 0x7E 0x0A 0x9A 0x13 0x2A 0x9D 0xC2 0x5E 0x5A 0x1F 0x32 0x35 0x9C 0xA8 0x73 0x30

0x08 0x29 0x3D 0xE7 0x92 0x87 0x1B 0x2B 0x4B 0xA5 0x57 0x97 0x40 0x15 0xE6 0xBC 0x0E

0x09 0xEB 0xC3 0x34 0x2D 0xB8 0x44 0x25 0xA4 0x1C 0xC7 0x23 0xED 0x90 0x6E 0x50 0x00

0x0A 0x99 0x9E 0x4D 0xD9 0xDA 0x8D 0x6F 0x5F 0x3E 0xD7 0x21 0x74 0x86 0xDF 0x6B 0x05

0x0B 0x8E 0x5D 0x37 0x11 0xD2 0x28 0x75 0xD6 0xA7 0x77 0x24 0xBF 0xF0 0xB0 0x02 0xB7

0x0C 0xF8 0xFC 0x81 0x09 0xB1 0x01 0x76 0x91 0x7D 0x0F 0xC8 0xA0 0xF2 0xCB 0x78 0x60

0x0D 0xD1 0xF7 0xE0 0xB5 0x98 0x22 0xB3 0x20 0x1D 0xA6 0xDB 0x7B 0x59 0x9F 0xAE 0x31

0x0E 0xFB 0xD3 0xB6 0xCA 0x43 0x72 0x07 0xF4 0xD8 0x41 0x14 0x55 0x0D 0x54 0x8B 0xB9

0x0F 0xAD 0x46 0x0B 0xAF 0x80 0x52 0x2C 0xFA 0x8C 0x89 0x66 0xFD 0xB2 0xA9 0x9B 0xC0



References

[ABF+02] Christian Aumueller, Peter Bier, Wieland Fischer, Peter Hofreiter, and
Jean-Pierre Seifert. Fault attacks on rsa with crt: Concrete results and
practical countermeasures. In B. Kaliski, editor, Cryptographic Hardware
and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in Com-
puter Science, pages 260–275. Springer-Verlag, 2002.

[BDJ97] Dan Boneh, Richard A. DeMillo, and Richard J.Lipton. On the importance
of checking cryptographic protocols for faults. In W. Furny, editor, Advances
in Cryptology – Eurocrypt 1997, volume 1233 of Lecture Notes in Computer
Science, pages 37–51. Springer-Verlag, 1997.

[Bew98] Simon Bewick. Descrambling DVB data according to ETSI common scram-
bling specification. UK Patent Applications GB2322994A / GB2322995A ,
1998.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In B. Kaliski, editor, Advances in Cryptology – Crypto 1997, volume
1294 of Lecture Notes in Computer Science, pages 513–525. Springer-Verlag,
1997.

[BS03] Johannes Bloemer and Jean-Pierre Seifert. Fault based cryptanalysis of
the advanced encryption standard (aes). In R. Wright, editor, Financial
Cryptography, volume 2742 of Lecture Notes in Computer Science, pages
162–181. Springer-Verlag, 2003.

[Eur96] European Telecommunications Standards Institute. ETSI Technical Report
289: Support for use of scrambling and Conditional Access (CA) within
digital broadcasting systems, 1996.

[Pse03] Pseudononymous authors. CSA – known facts and speculations, 2003.
http://csa.irde.to.

[WAJ98] Davies Donald Watts, Rix Simon Paul Ashley, and Kuehn Gideon Jacobus.
System and apparatus for blockwise encryption and decryption of data. US
Patent Application US5799089 , 1998.

[WW04] Ralf-Phillip Weinmann and Kai Wirt. Analysis of the dvb common scram-
bling algorithm. In Eighth IFIP TC-6 TC-11 Conference on Communica-
tions and Multimedia Security, CMS 2004. Proceedings. Kluwer Academic
Publishers, 2004.


