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Abstract. In a hierarchical structure, an entity has access to another
if and only if the former is a superior of the later. The access control
scheme for a hierarchy represented by a partially ordered set (poset) has
been researched intensively in the past years. In this paper, we propose
a new scheme that achieves the best performance of previous schemes

and is provably secure under a comprehensive security model.

1 Introduction

In many situations, the hierarchical systems can be represented by a partially
ordered set (poset). In such a hierarchy, all users are allocated into a number of
disjoint sets of security classes p1,ps2,- -+ ,pn. A binary relation < partially orders
the set P = {p1,p2,- -+ ,Pn, }. The users in p; have access to the information
held by users in p; if and only if the relation p; < p; held in the poset (P, <).
If p; < pj, pi is called a successor of p;, and p; is called a predecessor of p;. If
there is no py such that p; < pr < pj, the p; is called an immediate successor of
pj, and p; is called an immediate predecessor of Cj.

A straightforward access control scheme for poset hierarchy is to assign each
class with a key, and let a class have the keys of all its successors. The information
belonging to a class is encrypted with the key assigned to that class, therefore the
predecessors have access to the information of their successors. This is awkward

because the classes in higher hierarchy have to store a large number of keys. In
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the past two decades, many schemes based on cryptography have been proposed
to ease the key management in the hierarchy. Generally, these schemes are aimed

to fully or partly achieve the following goals:

— Support any arbitrary poset. It is desirable that any arbitrary poset is sup-
ported. Some schemes only support special cases of poset such as a tree.
Such schemes are considered restrictive in application.

— Be secure under attacks. The schemes are supposed to withstand attacks.
For example, a user may try to derive the key of a class that is not his/her
successor. The schemes should be secure under all possible attacks.

— Require small storage space. Any scheme needs a user in a class to store a
certain amount of secret or public parameters for key derivation. All the
schemes tried to reduce the amount of parameters stored.

— Support dynamic poset structures. The structure of a hierarchy may change.
Classes may be added to or deleted from the hierarchy. In these cases the
users in the classes (not only the ones added and deleted) need to update
the parameters they store. It is desirable that when a change takes place,
the number of classes involved in updating their parameters is as small as

possible.

Several hierarchical access control schemes have been proposed in the last two
decades. [1-3] are direct access schemes based on the RSA problem. In a direct
access scheme, a predecessor can derive the key of a successor directly from
the public parameters of that successor. These scheme are proven secure under
a general security model. The disadvantages of this group of schemes include
large storage spaces and lack of dynamics. [4-6] are indirect access schemes
based on one-way functions. In these schemes, to derive the key of a successor,
a predecessor has to derive the key of each class between them. The indirect
schemes achieve smaller storage spaces and better dynamics. However, [4] only
supports tree hierarchies. None of the indirect access schemes provided formal
security proof under a general secure model, except in [5] a sketch was given, but
[7] indicated that there are problems in real implementation of the scheme in
[5]. For these existing hierarchical access control schemes, to achieve the above
four requirements simultaneously is still a challenge.

In this paper, we propose a new scheme that is superior to the previous

schemes in that it provides both good performance and provable security, and



is easy to implement. When we talk about security of the hierarchical access

control scheme, we refer to the following security model:

Definition 1. A hierarchical access control scheme for poset hierarchy is secure
if for any group of classes in the poset, it is computationally infeasible to derive
the key of any class that is not a member of that group, nor a successor of any

member of that group.

Our scheme is an indirect access scheme, which has similar performance in stor-
age and dynamics to other indirect access schemes. The significant part of our
scheme is its formal security proof under this comprehensive security model,
which the previous indirect access schemes did not provide.

The rest of this paper is organized as follows: Section 2 presents the scheme,
Section 3 analyzes its security, Section 4 compares the performance of the schemes,

and Section 5 concludes this paper.

2 Proposed Scheme

2.1 Preliminary

Poset Representation For a given hierarchy structure, its corresponding poset
(P, <) can be represented by a Hasse diagram, which is a graph whose nodes are
classes of P and the edges correspond to the < relation (in the rest of the paper
we use “node” and “class” interchangeably). An edge from p; € P to p; € P
is present if p; < p; and there is no pp € P such that p; < pp and pr < p;.
If p; < pj;, then p; is drawn higher than p;. Because of that, the direction of
the edges is not indicated in a Hasse diagram. Fig. 1 shows an example of poset

represented as a Hasse diagram.

Auxiliary Function We introduce a function that will be used in our scheme
below. Let p = 2q + 1 where p, g are all odd primes. Let G be the subgroup of
Zy of order q. We define a function f: G — [L, g] as follows:
ks r<q
flx) = 1)
p—x; T>q
For any z € Zy, if x € G, then —x ¢ G. So the above function is a bijection. If =
is a random variable uniformly distributed on G, f(z) is uniformly distributed

on [1,q].



Fig. 1. Example of a Hasse diagram

2.2 Key Management

The key management of the scheme consists of two procedures: the key genera-

tion and the key derivation.

Key Generation

1. The central authority (CA) chooses a group Z;, where p = 2¢ + 1, p and ¢
are both large primes. G is the subgroup of Z7 of order g.

2. From the top-level classes, the CA traverses the Hasse diagram of the hi-
erarchy with width-first algorithm. For each node p;, run the following key
assignment algorithm to assign its public parameters g;, h;; and a secret
key k;:

For example, the nodes in Fig. (1) will be assigned with the following secret key

and public parameters:



Algorithm 1 Key Assignment

set g; to be a unique generator of G

if p; does not have any immediate predecessor then

set k; to be a number chosen from [1, g] at random

else if p; has only one immediate predecessor p; then

ki = f(g,")

else

{comment: p; has more than one immediate predecessors}

let X be the set of keys of p;’s immediate predecessors

r=1l,,ex i
ki = f(g7)
for all z; € X do
hig = g;'"
end for
end if
Node ID| secret key public parameters
1 k1 -
2 ko = f(g5") g2
3 ks = f(g5") g3
4 ks = f(g5*") hag = g5, has = g3
5 ks = f(gt?) g5
6 ke = f(g5°) g6
7 kr = f(g5?) g7
8 ks = f(g8*) gs
9 ko = f(gb*") hoa = g¢°, ho5 = g4
10 |kio = f(glfgkws') hio,3 = g]fékSa hioa = Qlfgksyhlo,és = gf(?ik‘1
11 ki = f(g13*") hite = gi], i = 913
12 ki = f(913) 912

Key Derivation When a node needs to compute the key of one successor, it
finds a path from itself to the successor in the Hasse diagram of the hierarchy.
Starting from its immediate successor in the path, the node go through the

path, and computes k; of every successor p; along the path with the following

algorithm:




Algorithm 2 Key Derivation
if p; has only one predecessor p; then

ki = f(g,")

else

{comment: p; is the predecessor of p; that is on the path}
k.
ki = f(hz,J])
end if

For example, in Fig. 1, node 1 is to derive the key of node 10. It finds the

path 1 — 3 — 10, and does the following computations:

ks = f(g5")
k1o = f(hlfg,s)

The correctness of the scheme is easy to be verified by reviewing the proce-

dures in key generation and key derivation.

3 Security Analysis

3.1 Preliminary

On the group G used in our scheme, two standard assumptions, the discrete
logarithm (DL) assumption and decisional Diffie-Hellman (DDH) assumption
are believed to hold [8]. Another assumption, named group decisional Diffie-
Hellman (GDDH) assumption is proven to hold based on DDH assumption on G
too [9,10]. To be concrete, let g be a generater of G, a, b, ¢ be random variables
uniform on [1, g], X be a set of random variables uniform on [1, ¢], I be the binary
length of ¢. Suppose |X| is polynomially bounded by I. Let [] (S) indicate the
product of all elements in the set S. For any probabilistic polynomial time (in 1)
algorithms A, any polynomial @, for [ large enough, the three assumptions are

formally expressed as follows:

DL assumption:
1

PT[A(g’ga) = a] < Q(Z)

DDH assumption:

a b _aby _ _ a b cy_ -
|P:[Ag,9%,9°,9") = 1] = P,[A(g,9%, 9", 9°) 1]|<Q(l)



For convenience, we use the notation from [9] to simplify the expression. We
say that the probabilistic distributions (g, g%, ¢*, ¢**) and (g, g%, g°, g¢) are

polynomially indistinguishable, and denote them as
(9,9% 9" 9%) =poty (9,9% 9", 9°)
GDDH assumption:

1
1P [A(g, 1Y), g1 € x) = 1] — P [A(g, 9% g1 |S c x) = 1]| < o0

or denoted as

(9, 911, g8 € X) ~pory (9,95, 91| € &)

3.2 Security Proof

The security of our scheme is based on the above three assumptions. In the
following parts, we prove the scheme is secure under Definition 1. We suppose
the number of nodes in P is polynomially bounded by  (the binary length of |G|),
and all the algorithms considered below are polynomial time (in ) algorithms.
We choose an arbitrary node p; € P and suppose its secret key is k;. Let A
be the set of predecessors of p;. We need to prove that, even when all the nodes
in P — A—{p:} conspire, it is computationally intractable for them to derive ;.
We group the set P —.A— {p;} into three subsets: B the set of nodes in P — A
which do not have predecessors in P — A, and which is not p;; D the set of nodes
that are immediate successors of p;; R =P — A — {p;} — B —D. The followings

relations between B, D and R are direct from their definitions:

-~ BUDUR=P—A—{ps}
- BND=0,RNB=0and RND =10

— the nodes in R are successors of the nodes in B, or D, or both

An example of the above partition is as follows: in Fig. 1, suppose node 4
is the one we choose as the node p;, then A = {1,2,3},B = {5,6,7},D =
{8,9,10}, R = {11,12}.

First we consider when all nodes in B conspire, what information about k;
they can learn. Suppose the generator assigned to node p; is g¢, X is the set of

secret keys of the immediate predecessors of node p;. Let [[(S) be the product



of all elements in the set S. Let z = [[(X), then k; = ¢g7. The public parameters
of p; are

{96, g[S € X and |S| = | x| - 1}

The nodes b; € B with generators gy, i € [1,n] may share the same predeces-
sors with node p;, thus may hold a subset of {gg(s)|5 C X} as their public

parameters or secret keys. We assume that
{9, i1 V|1S C &i e [1,n]}

is all the information possibly held by nodes in B that is related to k;. So the
public parameters of p;, plus the information pertaining to k; held by B is a

subset of

{96, g1D1S c Xy U {go,. g1V IS C Xyi € [Ln)}

We have the following result showing that even all nodes in B conspire, with
the above information, they can not distinguish k; from a random number on
[1, q]. For convenient expression, the following theorem and its proof follow the

notation style similar to that in [9)].

Theorem 1. Suppose DDH and GDDH assumptions hold on the group G. Let

¢ be a random variable uniform on [1,q]. The two distributions
T S S .
Vi, = (97 {90: 1S € 2} {gn gl OIS € X € [1,m]})

and

Vi, = (96490, a1 IS € X}, g IS € i € 1}

are indistinguishable.
Proof. From GDDH assumption we have

(97 {90 9118 € X)) oty (95 {9001 )S € 2}

A polynomial time algorithm can choose z uniformly from [1, ¢] at random, and
reduce the above GDDH distribution pair to

€z S z Z\T z
Vo = (g7 {90, i1 D1S € 2,7, (97)", {(g))S]S € x})

(6] S z zZ\C z
Vi = (95490, g1 D1S © 21,67, (67)°, {9718 © X})



respectively. It follows that
Vi Rpoty Vim- (2)

Let ¢; be a random variable uniform on [1, ¢]. Since zc; is independent of z and

¢, from DDH, we have

(gtagfagif?gtzc) QJ‘poly (gt,gf7ggagfq)

A polynomial time (in /) algorithm can choose X’ that is a set of random variables
uniform on [1, ¢], and whose order is polynomially bounded by [, and reduce the
above DDH distribution pair to

C S 4 zZ\C 4
Vi = (9540091118 € g7 (97)°, (91 € x})

2 c S z z\C1 z
Vi = (95490, 918 © X} 67, (97)° {(97)TS)]S € })

respectively. It follows that
Vim ~poty Vim (3)

Similarly, by choosing z and ¢ uniformly from [1,¢] at random, a polynomial

time (in 1) algorithm can reduce the GDDH distribution pair

(9 490 A1k © XY) mpety (7,91 S NS € }).

to

Vin = (95400 91118 © X} 67, (97) A (07T © ¥})

c S . N .
‘/E)I: (gt’{ghg;{( )|SCX}7gt7<gt) 7{(915)H(S)|SCX}>

respectively. It follows that
Vim Rpoty Vi (4)

From (2), (3) and (4), We conclude
Vi ~poty Viy
ie.,

x S z z
(97 490 9118 © X}, g7 {911 € X))

Spety (95 {00 11918 € 2,07, {671 € ).



By choosing z;, @ € [1,n] uniformly from [1, g] at random, a polynomial time

algorithm can reduce V4, and V} to
(s Lo 115 © 2} g™, (1O € 2. € L]}

(97 90 a1l € 2, g7 (g7 Os € i € [1,m]})
It follows that
%n Rpoly ‘/Zn-

This completes our proof a

Then we consider when the nodes in B and D conspire, what information about
k: they can learn. The nodes d; € D assigned with generator gq4,, @ € [1, m] may

hold a subset of the following information pertaining to k;:

{gdwgszﬁ € [17m]}'

The following theorem shows that even all nodes in B and D conspire, they can

not derive k;:

Theorem 2. [t is intractable for any polynomial time (in 1) algorithm to derive

g7 from
S S . )|
T = {9, g1 1S c XY U {gs,, gl DIS € X0 € [1,0]} U {ga,, 979 i € [1om]},

i.e., for any polynomial time (in 1) algorithm A, any polynomial Q, if | is suffi-
ciently large, then )
P [AQZ)=f(¢))] < ==.

Proof. For convenience, let
V= {9,918 € X} U {gn,. g1 VIS € XLi € [1,n)).

Step 1. Assume that there exist a polynomial time (in [) algorithm B, a
polynomial ()7 and a number L, for [ > L

P BV, g4,95") = f(g7)] > (5)

where g4 is a generator of G.
Let ¢ be a random variable uniform on [1,¢], Q=2(1) = 2Q1(!). Suppose [ is

large enough. We consider the following two cases



Algorithm 3 C(g4,95)

choose a generator of G as g:

choose a set of n distinct generators of G as B

choose a set of random variables uniform on [1,¢] as X
compute V with g, B and X

return B(V, g4, 95)

— Case 1: P,[B(V,g4.9,“") = £(95)] > 555
Notice that ¢ is a random variable independent of V. Let z € [1, ¢], we define
the following algorithm C(gq4, g7):
The algorithm C is a polynomial time (in !) algorithm. Since z = f(g5) for

some ¢ € [1, q] (though we do not know ¢), we have

P.[C(gb, 67) = 2] = P.[BOYV, 9a, 95°7) = f(g0)]

1
p—

Q2(1)

This contradicts the DL assumption.
~ Case 2: PL[B(V, g4, 9,“) = [(99)] < ks

From this inequality and (5), we have

P[BOV, 94, 93") = F(gF)] = Pr[BOYV, 94,95 7) = 1(99)]

11

() Q1)

_— (6)
@0

Let z € G, we define the algorithm D(V, z) in Algorithm 4.

Algorithm 4 D(V, z)
choose a generator of G as g
if B(V,ga,94”) = f(z) then

return 1

else
return 0
end if




D is a polynomial time (in ) algorithm. From (6), we have

PT[D(vaf) = 1] - PT[D(vaf) = 1]
= P [B(V.ga, 93") = f(g8)] = P[BOV, 94, 937) = F(45)]

1
> .

Q2(1)

That means D can distinguish the two distributions:
(V,g¢) and (V,g7).
This contradicts to Theorem 1.

Combining Case 1 and Case 2, we conclude that for any polynomial time (in )

algorithm B, any polynomial @, for sufficiently large [,

P, [BOYV, 94,95 ") = f(g7)] < (7)

1
Q)
Step 2. Assume there exist a polynomial time (in I) algorithm A, a polyno-

mial Q and a number L such that for [ > L,
Py A (Vo Agangi i € Lml}) = F(gb)] >

Let BV, ga.95'%")) = AWV, {95,957 |i € [1,m]}) where 21, -+, 2, are ran-

dom variables uniform on [1, ¢], and m is polynomially bounded by I. We have
Py BV, g4, g}y = F(g8)| = Pr [AOV, {97, (927 9D)i € [1,m]} = f(g?
T ( 7gdvgd ) f(gt) T ( 7{9(17(9(1) |7’€[ 7m]} f(gt)

1

>

~ Q(

Q)

This contradicts (7). Therefore for any polynomial time (in 1) algorithm A, any
polynomial @, for sufficiently large [,

P [A (V, {9a,, 95} € [Lm]}) = f(gf)} <357

PJAT) = 9] < 5

This completes our proof. O

Finally, we consider when all the nodes in B, D, and R conspire, whether

they are able to derive k,. Since all the nodes in R are successors of B or D



or both, the information held by R can be derived by a polynomial time (in [)
algorithm from the information held by B and D. Thus if BUD UR can derive
k,, then B U D can derive k,. This contradicts to Theorem (2). Therefore we

conclude that the scheme is secure under the security model defined in Definition

(1).

4 Performance Analysis

4.1 Storage Requirement

Our scheme is an indirect access scheme, and has similar storage requirement
with other indirect schemes. In a hierarchy with N nodes where each node has
at most M predecessors, the storage space required for a single node is about M
for our scheme and other indirect schemes. For the direct schemes, to store the
public information of one node, the maximum storage is about N numbers, or
the product of the n numbers. In a real situation, N would be much greater than
M, and N will increase as the scale of the hierarchy increases, while M usually
keeps constant. So the indirect schemes achieves require less storage than the

direct schemes.

4.2 Dynamics

As an indirect hierarchical access scheme, the operation of adding, deleting a
node or link in our scheme is similar to other indirect access schemes. When
a node is added or deleted, or a link is added to or deleted from a node, only
the nodes that are successors of that node will be impacted, i.e., the secret key
and public parameters of those nodes need to be updated. The direct schemes
are quite different. In Akl-Taylor scheme, when a node is added or deleted,
all the nodes except for its successors have to update their secret keys and
public parameters. In Harn-Lin scheme, when a node is added or deleted, all its
predecessors will be impacted. In addition, for these two schemes, to prevent a
deleted node to access its former successors, the keys of these successors have to
be changed too. In a practical hierarchy, there are much more low level nodes
than high level nodes, and it is more likely that the low level nodes will change.
Therefore in an indirect scheme, less nodes are impacted than in a direct scheme
when the hierarchy structure changes. The indirect schemes are more suitable

than direct schemes for a dynamic hierarchy.



4.3 Performance Summary

In summary, in view of performance in storage and dynamics, although our
scheme does not improve previous indirect schemes, it inherits their perfor-

mances, which are better than those of the direct schemes.

5 Conclusion

In this paper we proposed a new access control scheme for poset hierarchy. This
scheme is concrete and practical for implementation. It supports any arbitrary
poset, achieves the best performance of previous schemes, and provides a for-
mal security proof under a comprehensive security model. None of the previous
schemes achieved the properties as fully as ours does. Our scheme provides a so-
lution with both practice and theoretical significance for the hierarchical access

control problem.
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