
Designs of Efficient Secure Large Hash Values

Mridul Nandi

Applied Statistics Unit

Indian Statistical Institute, Kolkata, India

mridul r@isical.ac.in

April 20, 2005

Abstract

A double length hash function is a 2n-bit hash function based on an n-bit compression func-
tion. To increase the security level, designs of good double length hash functions are important.
In this paper we construct a class of maximally secure double length hash functions in random
oracle model based on some good permutations. This class contains recently proposed double
length hash functions [16, 25]. We also propose an efficient double length hash function and
study its security level in the random oracle model. We prove that any attack algorithm in the
random oracle model needs Ω(2n/(s2ns)) time complexity, where s is some parameter related to
the rate of the hash function. Thus there is a trade-off between the efficiency and security. We
use the notion of computable message [?] to make the security analysis of proposed hash func-
tions. We also see that the security analysis of hash functions based on random permutations
and hash functions based on random functions are very much related.

1 Introduction

A hash function is an easily computable function from the set of all finite binary strings, {0, 1}∗,
to a set of binary strings of some fixed length, {0, 1}n. Hash functions have been popularly used
in digital signatures schemes [8, 14], public key encryption schemes [6, 38] message authentication
codes [22] etc. To construct secure digital signature schemes, public key encryption schemes etc.,
people use collision resistant hash functions or preimage resistant hash functions. Intuitively, a
collision resistant hash function is a hash function, H(·), where it is hard to find two different
inputs X 6= Y (known as a collision pair) such that H(X) = H(Y). In case of preimage resistant
hash function, given a random image it is hard to find an inverse of that image.

1.1 Design of a Hash Function

Usually, a hash function is designed in two steps. We first design a small domain compression
function and then we extend the domain into the arbitrary domain, {0, 1}∗.

1. In the first step a compression function, f : {0, 1}n×{0, 1}m → {0, 1}n, is either defined from
scratch or based on other primitives, e.g. Block Cipher. The most popular hash functions
from scratch are SHA family (SHA-1, SHA-256 [31, 32]), MD-family (MD5, RIPEMD [12, 34,
35]), TIGER [1] etc. B. Preneel, R. Govaerts, and J. Vandewalle [33] classified block cipher
based compression functions. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher then a

1

compression function f : {0, 1}n × {0, 1}n → {0, 1}n (here, m = n) can be defined in the
following way :

f(h, x) = Ea(b) ⊕ c, where a, b, c ∈ {h, x, h ⊕ x, v},

Here, v is a fixed n-bit string and |h| = |x| = n. These sixty-four compression functions are
known as PGV-compression functions. Some of the PGV compression functions were proposed
earlier. For example, Davis-Meyer [?] compression function, Ex(h) ⊕ h, Miyaguchi [?] and
Preneel [?] compression function, Ex(h) ⊕ x ⊕ h.

2. The second step is a method of domain extension of compression functions. In the classical
method i.e. MD-method (Merkle-Damg̊ard) [8, 28] the input message, M , is padded unam-
biguously. The binary representation of length of the message is also padded. The padding
rule makes the input size multiple of m and at the same time, it rules out some trivial attack.
Let the padded message be M ′ = m1|| · · · ||ml, where |mi| = m, 1 ≤ i ≤ l and let h0 be a
fixed initial value. Define the hash output of the message M as follows;

H(M) = hl, where hi = f(hi−1, mi), 1 ≤ i ≤ l.

1.2 Motivation and Our Contribution

The collision attack and the preimage attack are the most popular types of attack for a hash func-
tion. The birthday attack requires O(2n/2) or O(2n) complexity to find a collision or to find a
preimage respectively on an n-bit hash function. The complexity means the number of computa-
tions of the underlying compression function f . The birthday attack on the compression function
based on a block cipher can be practically feasible, since they have small output size (eg., n = 64
or 128). Thus, in this paper we are interested in the following problem.

Problem : Given a compression function, f : {0, 1}n+m → {0, 1}n (or s compression functions
f1, · · · , fs : {0, 1}n+m → {0, 1}n), how to design a compression function F : {0, 1}N → {0, 1}2n,
where N > 2n and a hash function H : {0, 1}∗ → {0, 1}2n.

The compression function, F : {0, 1}N → {0, 1}2n, is termed as a double length compression function
and the hash function H : {0, 1}∗ → {0, 1}2n is known as a double length hash function. Designing
a secure double length compression function would be sufficient to construct a secure double length
hash function. The classical hash function is as secure as the underlying compression function. The
most natural and efficient construction of a double length hash function is the concatenated hash
function H||G, where H and G are two classical n bit hash functions based on the compression
function, f(·), with two different initial values. H and G also can be based on two different
compression functions f1 and f2. This concatenated hash functions had been popularly used in
many industries. Recently, A. Joux [17] showed that there is a collision attack on the concatenated
hash function in time complexity O(n2n/2). There were several attempts to construct a secure
block cipher based double length compression functions. Most of these have several attacks much
better than the birthday attack [15, 20, 19, 25, 16, 37].

In this paper we design several new double length hash functions and compute their security level
and the rate. Our first design is a generalization of Lucks’s [25] and Hirose’s [16] construction. Given
a permutations p(·) on the set of all N -bit strings and a compression function f : {0, 1}N → {0, 1}n,

2

define F (X) = f(X)||f(p(X)). We show that the double length function F is maximally secure
provided the permutation p does not have any fixed point (see Sect. ??). Thus, we have a class
of maximally secure double length hash functions. Next, we designed an efficient double length
hash function. This construction is very much similar to the concatenated hash function except
the mixing up the intermediate hash values. We show the collision security (or preimage security)
level of the double length hash function Ω(22n/3) (or Ω(24n/3)).

Organization of the paper : We first give some basic results and definitions. We define the
random oracle model and black box model. We define a rate function or rate which is a measurement
of efficiency of a hash function. This definition differ from the definition taken in [37, 19]. But
all these definitions are equivalent. We also state some recent works. Next we state our new class
of double length hash function and study the security level in the random oracle model. We also
describe an efficient double length hash function and study it’s security property. Finally, we give
some idea of future works and conclude.

2 Preliminaries and Related Works

In this section we give a brief introduction of random function and random permutations. We also
state the behavior or an adversary in the random oracle model or in the black-box model. We also
illustrate some related and recent works in designing double length hash or compression functions.

2.1 (Independent) Random Functions and Permutations.

Random Function. A random function f : D → R taking values as a random variable such
that for any x ∈ D, f(x) has uniform distribution on R and for any k > 0 and k distinct elements
x1, · · ·xk ∈ D, the random variables f(x1), · · · , f(xk) are independently distributed.

Independent Function. We say a family of functions f1, · · · , fs : D → R are independent if
for any s subsets {x1

1, · · · , x
1
k1
}, · · · , {xs

1, · · · , x
s
ks
}, the random vectors (f1(x

1
1), · · ·, f1(x

1
k1

)), · · ·,
(fs(x

s
1), · · ·, fs(x

s
ks

)) are independently distributed. We say f1, f2, · · · fs : D → R are independent
random functions if they are random functions and independent too.

(Independent) Random Permutation. A permutation E : D → D is said to be a random
permutation if for any k > 0 and k distinct elements x1, · · · , xk ∈ D, the random variable f(xk)
condition on f(x1) = y1, · · · , f(xk−1) = yk−1 is uniformly distributed over the set D−{y1, · · · , yk−1}.
Obviously f(x1), · · · , f(xk) are not independently distributed. We say a family of permutations
E : {0, 1}k × {0, 1}n → {0, 1}n is a random permutation if for each K ∈ {0, 1}k, E(K, ·) is a
random permutation and for each s > 0, and s distinct elements K1, · · ·Ks, E(K1, ·), · · · , E(Ks, ·)
are independent function.

Proposition 1 If f : {0, 1}n+k → {0, 1}m is a random function then the family of functions
{fs}s∈{0,1}k , fs : {0, 1}n → {0, 1}m defined by fs(x) = f(x||s), where |x| = n, are independent

random functions. In particular, if f : {0, 1}N → {0, 1}n is a random function then f0, f1 :
{0, 1}N−1 → {0, 1}n, fi(X) = f(i||X), |X| = N − 1 and i = 0, 1 are two independent random
functions.

3

2.2 The model of the adversary

In this paper mainly we assume the underlying compression function is a random function unless it
is stated clearly. If the compression function is based on a block-cipher then we assume the block
cipher is a random permutations. In these model the adversary plays in some particular ways.

When we assume that the compression function, f(·), is a random function then the adver-
sary made several queries to know the output values of f . Thus he choose x1, · · ·xq adaptively
and got responses y1, · · · , yq, where yi = f(xi). We can think that yi as a realization of the
random variable f(xi) which is observed by the adversary. Define the complete list of query-
response pairs ((x1, y1), · · · , (xq, yq)) by the view of the adversary. Any output produced by
the adversary should only depend on the view. Moreover, if the adversary is finding collision
for a hash function, H(·), based on the compression function, f(·), and it outputs a pair of
distinct messages M 6= N then the values of H(M) and H(N) should be computed from the
view. When we have two or more compression functions f1, f2, · · · we have a set of lists of pairs
{((x1

1, y
1
1), · · · , (x

1
q , y

1
q)), ((x

2
1, y

2
1), · · · , (x

2
q , y

2
q)), · · ·} where the first member is the view due to the

random compression function f1 and so on. This set will be called as a view of the adversary.

In case of block cipher based construction, an adversary has access to oracles E and E−1. For
E-query he gives (a, x) and got response y such that Ea(x) = y. Similarly for E−1 query. Here,
the list of triples ((a1, x1, y1), · · · , (aq, xq, yq)) will be called as a view of the adversary. Again we
follow the similar conventions. Firstly, an adversary does not ask any oracle query in which the
response is already known. Secondly, if M is one of the output(s) produced by an adversary, then
the adversary should make necessary E/E−1 queries to compute H(M) during the whole query
process. Note that these conventions are important to make the discussion easy and to prove the
security. These assumptions are meaningful as any adversary A not obeying these conventions can
easily be modified to obtain an adversary A′ having similar computational complexity that obeys
these conventions and has the same advantage as A.

2.3 Recent Works on Double Length Hash Functions

The classical iteration is the most popular method to construct a single length hash function from
a compression function. To design a double length hash function one can use the simple method
of concatenation of two independent classical hash functions. Let Hf (IV, ·) be the classical hash
function with the initial value IV and the compression function f . The simplest method to design
a double length hash function is Hf1(IV1, M) || Hf2(IV2, M). Recently, A. Joux [17] observed that
the concatenated hash function is not secure. For any two classical hash functions H and G, H||G
has collision attack in time O(n2n/2) (see [17] for more detail). He showed a 2n/2-way collision on
H can be found in time complexity O(n.2n/2). A K-way collision is a K-set {M1. · · · , MK} such
that H(M1) = · · · = H(MK). Now, find M 6= N (by birthday paradox) from that multicollision
set such that G(M) = G(N) and thus we have H(M)||G(M) = H(N)||G(N).

1. Given a compression function f : {0, 1}N → {0, 1}n with N > 2n + 1, S. Hirose [16] defined a
compression function F : {0, 1}N−1 → {0, 1}2n, where F (X) = f0(X)||f1(X) and |X| = N−1.
The functions f0 and f1 are defined like in the section 3.3. In his paper, he used block cipher
E : {0, 1}n × {0, 1}2n → {0, 1}n, to construct a secure compression function f : {0, 1}3n →
{0, 1}n. One of the example is f(x, y, z) = Ex||y(z) ⊕ z, where |x| = |y| = |z| = n.

2. In [25], a compression function, F : {0, 1}N → {0, 1}2n had been defined from a secure com-
pression function f : {0, 1}N → {0, 1}n with N > 2n. F (H ′, H ′′, M) = f(H ′, H ′′, M)||f(H ′′, H ′, M),

4

where |H ′| = |H ′′| = n and |M | = N−2n. It is easy to find a collision attack on this compres-
sion function with time complexity O(2n/2). In his paper a hash function outputting n-bits
was constructed based on two secure underlying compression functions. He proved that it
was secure against multicollision attack. But we can prove something more. In particular,
the double length hash function is secure against collision attack.

3. There were many other attempts [20, 19, 21, 37, 15] to construct an efficient double length
hash function based on a block cipher. Unfortunately, most of them have collision attacks
better than the birthday attack. We describe some of them later.

4. Recently, Nandi et. al. [] designed a double length compression function based on three inde-
pendent compression functions f1, f2, f3 : {0, 1}2n → {0, 1}n. The double length compression
function F on 3n-bits is defined as follows;

F (x1, x2, x3) = (f1(x1, x2) ⊕ f2(x2, x3))||(f3(x1, x3) ⊕ f2(x2, x3)), where
|x1| = |x2| = |x3| = n.

It was shown that the compression function has collision security Ω(22n/3) in the random
oracle model.

3 New Designs of Double Length Compression Functions

In this section, we design several double length compression functions. We study their collision
and preimage security in the random oracle model of the underlying compression functions. Thus,
we have underlying compression functions f1, f2, · · · fk : {0, 1}n × {0, 1}m → {0, 1}n. We design
a double length compression function, F : {0, 1}N → {0, 1}2n, based on f1, f2, · · · fk. We define
a measurement of the efficiency of the compression function, F (·), called the rate function of F .
Roughly, it says the number of message blocks are hashed per underlying compression function.
By a message block, we mean the size of hashed message in the underlying compression functions.
Thus, a message block has size m, since f1, f2, · · · fk : {0, 1}n × {0, 1}m → {0, 1}n.

Definition 2 (Rate Function)

Let a double length compression function, F , is based on f1, · · · , fk. Define the rate function of F
by N−2n

m×s , where s is the number of invocations of all fi’s are needed to compute F (X), X ∈ {0, 1}N .

Since F is a compression function, N > 2n. Thus, the rate function is always positive. When
the rate function is a constant, we only use the term “rate” instead of rate function.

Example 3 The underlying double length compression function of the concatenated hash function
Hf1 ||Hf2 is F (x1, x2, x3) = f1(x1, x3)||f2(x2, x3), where |x1| = |x2| = n and |x3| = m. The rate
function of F is 1/2.

Example 4 Let F (X) = f1(X)||f2(X) be a compression function with domain {0, 1}n+m. Here,
the rate function is n+m−2n

2m = 1
2 − n

2m . Obviously, we need to assume that m > n. When m = 2n,
i.e. f1, · · · , fk : {0, 1}3n → {0, 1}n, the rate of the compression function is 1

4 .

Example 5 The compression function described in [] (also in Sect. 3.3) hash rate function 1/3.

5

3.1 A Class of Double Length Compression Functions

Now, we define a class of double length compression functions. This class contains newly proposed
double length compression functions in [25, 16]. Let f : {0, 1}n+m → {0, 1}n be a compression
function with m > n and p1, p2 : {0, 1}n+m → {0, 1}n+m are some simple permutations. A permu-
tation, p, is called a simple permutation if the both permutations, p and p−1, are easy to compute.
Define a double length compression function, fp1,p2(X) = f(p1(X)||f(p2(X)), where |X| = n + m.
If we take Y = p1(X) and p = p2 ◦p−1

1 , we can write fp1,p2(X) = f id,p(Y) where id(·) is the identity
permutation. Since p1 and p2 are simple permutations, it is enough to study the security properties
of f id,p instead of studying fp1,p2 . We write, fp instead of f id,p and we say, fp is a double length
compression function based on a permutation, p. Here, we fix a compression function, f , and define
a class of double length compression functions

C = {fp : p is a simple permutation on {0, 1}n+m}

All these compression function have rate 1
2−

n
2m . In this section, we study the security properties

of the compression functions from the class, C, in the random oracle model of f . We show that a
double length compression function is secure, provided the permutation satisfies some conditions.
We first start with the example of compression function considered in [25].

Example 6 [25] p(H1, H2, M) = H2||H1||M , where |H1| = |H2| = n and |M | = m − n. Thus
fp(H1, H2, M) = f(H1, H2, M)||f(H2, H1, M).

Collision and Preimage Attack : By using the birthday attack, find H, G and M1, M2, such that
(H, M1) 6= (G, M2) and f(H, H, M1) = f(G, G, M2). Now, it is easy to check that fp(H, H, M1) =
fp(G, G, M2). Here, we need O(2n/2) many queries for the birthday attack. If an image y||y is
given to the adversary where |y| = n then by using the birthday attack, find H, M such that
f(H, H, M) = y. Now, fp(H, H, M) = y||y and complexity of this attack is O(2n). The reason for
having the above attacks is that the permutation p has many fixed points.

Definition 7 X is called a fixed point of a function p(·), if p(X) = X. We write Fp for the set of
all fixed points of p.

In the above example, Fp = {H||H||M : |H| = n, |M | = m− n} is the set of fixed points of the
permutation p and |Fp| > 2n. Thus, one can find a collision (or a preimage) on the compression
function, f , from the fixed point set. Similarly, for any permutation, p, with |Fp| > 2n, we can
apply the birthday attack on Fp for the compression function, f(·). Let X 6= Y have been returned
by the birthday attack algorithm, such that f(X) = f(Y). Thus, fp(X) = f(X)||f(p(X)) =
f(Y)||f(p(Y)) = fp(Y) since p(X) = X and p(Y) = Y . Thus, we have a collision attack with
complexity O(2n/2) on all double length compression functions fp with |Fp| > 2n}. In the light of
the above discussion, one should use a permutation, p, which does not have many fixed points. In
fact, there are many permutations where the set of fixed points are the empty set. We give two
classes of examples of that kind, in below.

Example 8 Let A be a non-zero N -bit string. Then define a permutation p : {0, 1}N → {0, 1}N

such that p(X) = X ⊕ A. In particular, if A = 11 · · · 1 then p(M) = M , where M is the bit-wise
complement of M . It is easy to check that Fp is the empty set.

6

Example 9 We can think any N -bit string by an integer modulo 2N . Let p(X) = X + A(mod
2N) where A 6= 0. For simplicity, we also use the notation X + A to denote the modulo addition
X +A(mod 2N). Note that, p(X) 6= X for all X. Moreover, if A 6= 2N−1 then p(p(X)) = X +2A 6=
X. Thus, the set of fixed point for p ◦ p (in notation, p2) is also empty.

Suppose, fp is a double length compression function based on a permutation, p, where Fp

is the empty set. Then a collision, fp(X) = fp(Y) with X 6= Y implies f(X) = f(Y) and
f(p(X)) = f(p(Y)), where X 6= Y . Thus, {X, Y } and {p(X), p(Y)} are collision sets of f . Now,
we have the following two cases.

• Case-1 : {X, Y } = {p(X), p(Y)}. Since p does not have any fixed point, we have Y = p(X)
and X = p(Y). Thus, we should have a collision set {X, p(X)}, where p(X) 6= X and
p(p(X)) = X. Let Ω(K1(n)) (or in short K1) be the complexity of the best attack for the
above event.

• Case-2 : {X, Y } 6= {p(X), p(Y)}. Let Ω(K2(n)) (or in short K2) be the complexity of the
best attack.

Thus a collision on fp reduces to the one of the above two events and hence the complexity of
best collision attack is min{K1, K2}. If p2 does not have any fixed point then we can exclude the
first case also. We summarize the above discussion into following proposition.

Proposition 10 The complexity of the best collision attack on fp is min {Ω(K1(n)), Ω(K2(n))}
where p is a permutation with no fixed point and K1 and K2 are defined as above. Moreover, if the
permutation, p2, does not have any fixed point (like in the Example 2) then the best collision attack
on fp is Ω(K2(n)).

Now we give some evidences why K1 and K2 would be large for a good compression function,
f . Suppose an adversary tries to find two collision sets {X, Y } 6= {p(X), p(Y)}. After finding a
collision set {X, Y }, he does not have any freedom to choose for the second collision set and he is
forced to check whether {p(X), p(Y)} is a collision set or not. Thus K2 would be large and may
be almost same to 2n for a good underlying compression function. Next, an adversary tries to find
a related collision set {X, p(X)}. After fixing one message X, p(X) is completely determined (and
also vice-versa) and hence the adversary has to check equality of two values, f(X) and f(p(X)),
instead of comparing several values like in the birthday attack. Thus we would expect that K2 to
be large. In the random oracle model of f , we can prove that, K1(n) = K2(n) = 2n

Theorem 11 Under the assumption of the random oracle model of f , K1(n) = K2(n) = 2n. Thus,
for any permutation p where Fp is the empty set, any attack algorithm finding collision requires
Ω(2n) many queries of f in the random oracle model of f .

The second part of theorem is immediate from Proposition ??. Before proving the first part of
Theorem, we first introduce a new notion called computable message. A set of pairs, {(x1, y1), · · · , (xq, yq)}
is called view of a function, f , if f(xi) = yi, 1 ≤ i ≤ q. Similarly, Q = (Q1, · · · ,Qk) is called view
of f1, · · · , fk, where Qi is the view of fi. Intuitively, a computable message, X of F is a message
so that F (X) can be computed from a set of query-response pairs of the underlying compression
functions.

7

Definition 12 (Computable Message)

Let the double length compression function, F , be based on the compression functions, f1, · · · , fk.
Let Qj = {(xj

1, y
j
1), · · · , (xqj

, yqj
)} be the view of fj, 1 ≤ j ≤ k. Let Q = (Q1, · · · ,Qk) be the view

of the underlying compression functions f1, · · · , fk. We say, an input X is computable message of
F with respect to the view Q, if the value of F (X) can be computed from Q.

For example, when F = fp, an input X is computable message of F with respect to {(x1, y1), · · · , (xq, yq)},
view of f , if X = xi and p(X) = xj for some i, j ∈ [1, q]. Thus, fp(X) = f(xi)||f(xj) = yi||yj ,
which can be computed from Q.

Proof of Theorem ??: Since f is a random oracle, for {X, Y } 6= {p(X), p(Y)} we have,

Pr [f(X) = f(Y) and f(p(X)) = f(p(Y))]

= Pr [f(p(X)) = f(p(Y)) | f(X) = f(Y)] × Pr [f(X) = f(Y)]

= Pr [f(p(X)) = f(p(Y))] × Pr [f(X) = f(Y)]

= 1/22n.

The second equality holds because the compression function f is assumed to be a random
function and {X, Y } 6= {p(X), p(Y)}. If an adversary can ask at most q many queries then he
can have at most q many computable messages and hence at most

(

q
2

)

2-sets {X, Y }. Hence the
probability that the adversary finds X 6= Y with {X, Y } 6= {p(X), p(Y)} such that f(X) = f(Y)
and f(p(X)) = f(p(Y)) is at most

(

q
2

)

/22n. Thus, to have a significant success probability, q should
be Ω(2n).

Similarly, from a set of q queries one can get O(q) many pairs of the form (X, p(X)) and for
fixed X, Pr[f(X) = f(p(X))] = 1/2n provided p(X) 6= X. Thus success probability is at most q/2n

and hence q = Ω(2n) to have significant success probability. Thus, both the assumptions 1 and 2
are true in the random oracle model of f .

Remark 13 We can relax the condition that the set of fixed point of the permutation is the empty
set. We can choose a permutation where |Fp| << 2n/2 so that there are no two elements X 6= Y ∈
Fp such that p(X) = p(Y). Then also, we can prove the same statement.

3.2 A class of secure double length hash functions

Till now, we have proved that a double length compression function, fp, based on a permutation
having no fixed point, is maximally secure provided the underlying compression function, f , satisfies
some reasonable assumptions or f is assumed to be a random oracle. Thus, the classical hash
function based on this double length compression function is also maximally secure. We have
also seen in Example ?? that if the permutation, p(·), has many fixed points then there is a
collision attack (also preimage) better than the birthday attack on the double length compression
function based on the permutation p. But, it may happen that the classical hash function based
on this insecure compression function can be secure. In Example ??, if we start the iteration
with an initial value satisfying some condition (described momentarily) then the hash functions
becomes maximally secure. Recall that, fp(H1, H2, M) = f(H1, H2, M)||f(H2, H1, M), where M
is a message block and H1 and H2 are chaining variables of the classical iteration. If we start with
an initial value H0

1 ||H
0
2 such that H0

1 6= H0
2 then it is hard to find a message block M such that

f(H0
1 , H0

2 , M) = H1
1 ||H

1
2 where H1

1 = H1
2 because there are 2n many outputs with H1

1 = H1
2 where

as the total number of possible outputs is 22n. Thus, the complexity would be roughly Ω(2n). Also

8

it would be hard to find H1 6= H2 and G1 6= G2 and M such that fp(H1, H2, M) = fp(G1, G2, M).
Now we define a good permutation and prove the maximal security of the hash function based on a
good permutation.

Definition 14 (Good Permutation)

Let p be a permutation on the set of (n + m)-bits strings. Define Fp[2n] = {Z ∈ {0, 1}2n : ∃
M ∈ {0, 1}m−n such that Z||M ∈ Fp }. It is a projection of Fp onto the the first 2n-bits of it. We
say the permutation, p(·), is good if 22n/|Fp[2n]| = Ω(2n). In other words, |Fp[2n]| << 2n.

Now we define the following attack. Find M and H /∈ Fp[2n], such that fp(H, M) ∈ Fp[2n]
where, |M | = m− n and |H| = 2n. Let the complexity of the best attack be Ω(K3(n)) (or in short
K3).

Proposition 15 In the random oracle model, K3(n) = 2n provided the permutation p(·) is good.

Proof. We have already seen that after q many queries the adversary can have at most q many
computable message for fp. Given a computable message H||M with H /∈ Fp[2n], we have
p(H||M) 6= H||M (see the definition of Fp[2n] in Definition 3.3) and hence fp(H||M) is uni-
formly distributed over the set {0, 1}2n. But |Fp[2n]| < 2n since the permutation p(·) is good.
Thus we have, Pr[fp(H||M) ∈ Fp[2n]]≤ 1/2n. Since we have at most q computable message the
success probability of the adversary is less than q/2n. This proves the fact that K3(n) = 2n under
the random oracle model of f(·).

Theorem 16 The classical hash function, Hfp

, based on a good permutation and an initial value
H0 /∈ Fp[2n] has collision security min{K1, K2, K3}. Thus, in the random oracle model of f , Hfp

is maximally secure against collision attack for a good permutation p(·).

Proof. Let (M, M ′) be a collision on Hfp

and H0 /∈ Fp[2n]. We denote Hi and Gi for internal hash
values while computing the final hash value for messages M = M1||M2 · · · and M ′ = M ′

1||M
′
2 · · ·

respectively. Now we have one of the following :

1. There is an i such that Hi /∈ Fp[2n] but fp(Hi||Mi+1) ∈ Fp[2n] or there is a j such that
Gj /∈ Fp[2n] but fp(Gj ||M

′
j+1) ∈ Fp[2n].

2. There are Hi, Gj /∈ Fp[2n] with Hi 6= Gj such that f(Hi, Mi+1) = f(Gj , M
′
j+1) and f(p(Hi, Mi+1)) =

f(p(Gj , M
′
j+1)). Let X = Hi||Mi+1 and Y = Gj ||M

′
j+1. Since Hi 6= Gj , X 6= Y . Also we

have X, Y /∈ Fp since Hi, Gj /∈ Fp[2n]. Thus either {X, Y } 6= {p(X), p(Y)} or {X, p(X)} is a
collision set for the compression function f .

In the first case, the adversary requires K3 many queries of f whereas in the second case the
adversary requires min{K2, K3} many queries of f . Thus the adversary needs min{K1, K2, K3}
complexity. By Propositions ??, Hfp

is maximally secure under the random oracle model of f .

3.3 An efficient double length hash function

Let a compression function f : {0, 1}n × {0, 1}m → {0, 1}n with m ≥ n. To understand the
design in a simpler way, we assume that m = n, that is f : {0, 1}2n → {0, 1}n. For i > 0, define
f (i) : {0, 1}(i+1)n → {0, 1}n by using the classical iteration. Thus, for x0|| · · · ||xi with |xj | = n,
0 ≤ j ≤ i and h0 = x0.

9

f (i)(x0|| · · · ||xi) = hi, where, hj = f(hj−1, xj), 1 ≤ j ≤ i.

We say f (i) by the i-iterated compression function. Now we can observe that the multicollision
on this compression function is not as easy as the classical hash function, since we restrict the
number of message blocks Any ri-way collision on f (i) reduces to at least r-way collision on the
underlying compression function f (by using pigeon-hole principle). Thus, if we assume that (r+1)-
way collision on f is infeasible then we can have at most ri-way collision on f (i). Recall that, in
the random oracle model of f , r-way collision requires Ω(2n(r−1)/r) queries. Now we summarize
this by the following lemma.

Lemma 17 (ri+1)-way collision on f (i) reduces to at least (r+1)-way collision on f . In particular,
when f is a random function, the complexity of (ri + 1)-way collision attack on f (i) is Ω(2nr/(r+1))
and the complexity of ni + 1-way collision attack on f (i) is Ω(2n).

Like the concatenation of two independent hash functions we can define the concatenation of two
independent i-iterated compression functions. Thus, given two independent compression functions,

f1 and f2, we can define a double length compression function, F (i)(X) = f
(i)
1 (X)||f

(i)
2 (X), |X| =

n(i + 1). Obviously, in this construction, we need to assume i ≥ 2. Otherwise, for i = 1, it does
not compress the input. Now we can study the security property of this concatenated compression
function in the random oracle model.

Lemma 18 If f is a random function then for any two distinct (i + 1)-block inputs X and
Y , Pr[f (i)(X) = f (i)(Y)] ≤ i/2n. If f1 and f2 are two independent random functions then
Pr[F (i)(X) = F (i)(Y)] = i2/22n.

Proof. Let j be the round number where collision of f occurs. Call this event by Cj . Thus,
f (i)(X) = f (i)(Y) implies ∪i

j=1Cj . Now, Pr[Cj] ≤ 1/2n (?). Thus, Pr[∪i
j=1Cj] ≤ i/2n.

Pr[F (i)(X) = F (i)(Y)] = Pr[f
(i)
1 (X) = f

(i)
1 (Y), f

(i)
2 (X) = f

(i)
2 (Y)]

= Pr[f
(i)
1 (X) = f

(i)
1 (Y)] × Pr[f

(i)
2 (X) = f

(i)
2 (Y)]

= i2/22n.

The second equality follows from the fact that f1 and f2 are independent random functions and
the last equality is immediate from Lemma 18.

Thus to find the collision probability for any adversary we need to compute the number of pairs
(X, Y) he can get from any possible set of queries. Note that the adversary should compute the
F -values of both X and Y . Now we state the computable message which means the message whose
hash value can be computed from the set of queries the adversary made. We fix i ≥ 2.

Definition 19 (Computable message) Let Qj be the set of query response tuples for the random

function fj, j = 1, 2. X is said to be a computable message for f
(i)
j (also for F (i)) with respect to

Qj if the value of f
(i)
j (X) (or F (i)) can be computed from Qj (or Q1 ∪Q2 respectively).

More precisely, if X = x0|| · · · ||xi then X is computable for f
(i)
1 with respect to Q1 if (x0||x1, h1),

(h1||x2, h2),· · ·,(hi−1||xi, hi) ∈ Q1. Thus the f
(i)
1 -value of X is hi. Similarly one can define com-

putable messages for f
(i)
2 . A message X is computable with respect to Q1 ∪Q2 for the compression

function F (i), if X is computable for both f (i) with respect to Qj , j = 1, 2.

10

Let q be the number of queries. We assume that q = o(2n). Thus there is no n-way collision on
both f1 and f2. Note that, the complexity of n-way collision on a random function is Ω(2n(n−1)/n) =

Ω(2n). Thus we can have at most ni−1-way collision on f
(i−1)
1 or f

(i−1)
2 . The number of computable

messages for F (i) is at most qni−1. Thus, total number of pairs of the form (X, Y) where X 6= Y
are (i + 1)-block inputs and both X and Y are computable messages is at most q2n2(i−1)/2. Thus,
probability that we have a collision among these pairs is bounded by i2q2n2(i−1)/22n+1. To have
non-negligible probability we need q = Ω(2n/i2ni−1). Thus we have the following theorem :

Theorem 20 If f1 and f2 are two independent random functions then the complexity for finding
a collision on F (i) requires Ω(2n/(i2ni−1)) queries.

Remark 21 If we look the proof more closely then we can find a better security bound. If q =O(2n(r−1)/r)
for some r (determined later) then we do not have any (r + 1)-way collision on fi and hence the
number of computable message for F (i) is at most ri−1.q. Thus to find a collision on F (i) we need
q = 2n/ri−1. Thus, we can choose r such that 2n(r−1)/r = 2n/ri−1. Thus, r log r = n/(i − 1) and
denote that r by r0. Thus, the security bound for collision attack on F (i) is Ω(2n/ri−1

0).

Efficiency of the compression function. The rate function of the compression function, F (i),
is ((i + 1)n− 2n)/2ni = 1

2 −
1
2i . Thus, the rate of the compression function is close to 1/2 provided

i is large. So we have a trade-off between the security level and the efficiency.

Now we define a double length hash function Hs : ({0, 1}n)∗ → {0, 1}2n, s ≥ 2. We can
define the hash function on arbitrary domain by applying some standard padding rule. Let
M = m1|| · · · ||ml be l-block message. Let l = (s − 1).b + r, where 0 ≤ r < s − 1. Thus, we
divide the message M = M1|| · · · ||Mb||Mb+1, where |Mi| = (s − 1)n, 1 ≤ i ≤ b and |Mb+1| = rn.
In case of r = 0 we do not have any message block Mb+1. Let H0 be an initial two block message
that is |H0| = 2n. Now define the hash function Hs(H0, M) as follows;

11

Algorithm Hs(H0, m1|| . . . ||ml)

Hi = F s(Hi−1, Mi), i = 1 to b

If r > 0 then H = F r+1(Hb, Mq+1)

If r = 0 then H = Hb

Return H

Thus, the hash function is the classical iterated hash function by using two underlying compres-
sion functions F (s) and F (r+1). Thus any collision on H(s) reduces to the collision on one of the
compression function. But from theorem 20 we know that collision on f (i) is infeasible and hence
the hash function is secure against collision attack. More precisely we have the following theorem :

Theorem 22 For any s ≥ 2, collision on H(s) requires Ω(2n/s2ns−1) complexity.

3.3.1 (2nd) Preimage security of the new hash function.

Similar to the previous section we can study the (2nd) preimage security. Recall that we say a
message X is computable from the set of queries Q if f (i)(X) can be computed from the set Q. We
already observed that if q is the maximum number of queries and at most r-way collision is possible
then we can have q.ri−1 computable messages. Now given M , F (i)(M) is a 2n-bit random string.
We have already observed that Pr[F (M) = F (N)] = i2/22n, where M 6= N . So, if q = o(2n)
then the number of computable message for N is at most ni−1.q. Thus, there will be a computable
message N 6= M such that F (i)(M) = F (i)(N) is bounded by qni−1/i222n. Thus complexity for any
attack algorithm of 2nd preimage attack is Ω(22n/i2ni−1). The security level for preimage attack
is same as that of 2nd preimage.

4 Conclusion

This paper deals with several new double length compression functions. We first introduce a class of
double length compression function which contains recently known constructions [16, 25]. We study
their security level in the random oracle model. Finally, we designed a double length compression
function with rate close to 1/2 (the rate of concatenated hash function). The design is very much
similar to the concatenated hash functions. It has almost maximal security level.

References

[1] R. Anderson, E. Biham, Tiger: A new fast hash function. Fast Software Encryption, LNCS
1039, D. Gollmann, Ed., Springer-Verlag, 1996, pp.89-97.

[2] M. Bellare and T. Kohno. Hash function balance and its impact on birthday attacks. Advances
in Cryptology - Eurocrypt’04, Lecture Notes in Computer Science Vol. 3027, Springer-Verlag,
2004.

[3] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby and C. Lemuet. Collisions of SHA-0 and
Reduced SHA-1. To be appeared in Eurocrypt-05, 2005.

[4] J. Black, M. Cochran and T. Shrimpton. On the Impossibility of Highly Efficient Blockcipher-
Based Hash Functions. To appear in Eurocrypt-05, 2005. ePrint Archive, 2004. Available at
http://eprint.iacr.org/2004/062.

12

[5] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based Hash-
Function Constructions from PGV. Advances in Cryptology - Crypto’02, Lecture Notes in Com-
puter Science, Vol. 2442, Springer-Verlag, pp. 320-335, 2002.

[6] R. Cramer and V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
Advances in Cryptology - Eurocrypt’00, Lecture Notes in Computer Science, Vol. 2442, Springer-
Verlag, pp. 275-288 , 2000.

[7] J. Daemen and V. Rijmen. The Design of Rijndael: AES. The Advanced Encryption Standard.
Springer, 2002.

[8] I. B. Damgȧrd. Collision Free Hash Functions and Public Key Signature Schemes. Advances in
Cryptology - Eurocrypt’87, Lecture Notes in Computer Sciences, Vol. 304, Springer-Verlag, pp.
203-216, 1987.

[9] C. Debaert and H. Gilbert. RIPEMDL and RIPEMDR improved variants of MD4 are not
collision free. Fast Software Encryption- 2002, no. 2355, Lecture Notes in Computer Science, pp.
52-65, Springer- Verlag, 2002.

[10] H. Dobbertin. Cryptanalysis of MD4. Fast Software Encryption, Cambridge Workshop. Lecture
Notes in Computer Science, vol 1039, D. Gollman ed. Springer-Verlag, 1996.

[11] H. Dobbertin. Cryptanalysis of MD5, Rump Session of Eurocrypt’96, 1996.
http//www.iacr.org/conferences/ec96/rump/index.html.

[12] H. Dobbertin, A. Bosselaers and B. Preneel. RIPEMD-160: A Strengthened Version of
RIPEMD, Fast Software Encryption. Lecture Notes in Computer Science 1039, D. Gollmann,
ed., Springer-Verlag, 1996.

[13] H. Finney. More problems with hash functions. The cryptographic mailing list, 24 Aug 2004.
Available at http://lists.virus.org/cryptography-0408/msg00124.html.

[14] S. Goldwasser, S. Micali and R. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks, SIAM Journal of Computing, Vol17, No2, pp. 281-308, April 1998.

[15] M. Hattori, S. Hirose and S. Yoshida. Analysis of Double Block Lengh Hash Functions. 9th IMA
International Conference Cryptographi and Coding, 2003, Lecture Notes in Computer Science,
vol-2898.

[16] S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box Model, 7th
International Conference on Information Security and Cryptology, 2004.

[17] A. Joux. Multicollision on Iterated Hash Function. Advances in Cryptology - Crypto’04, Lec-
ture Notes in Computer Science vol-3152.

[18] L. Knudsen. Some properties of an FSE 2005 Hash Proposal. Cryptology ePrint Archive, 2005.
Available at http://eprint.iacr.org/2005/082.

[19] L. R. Knudsen and B. Preneel. Hash Functions Based on Block Ciphers and Quaternary Codes.
Asiacrypt’96, pp-77-90.

[20] L. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length hash functions. Journal
of Cryptology, vol-11, no-1, winter, 1998.

13

[21] L. Knudsen and B. Preneel. Construction of Secure and Fast Hash Functions Using Nonbinary
Error-Correcting Codes. IEEE transactions on information theory, VOL-48, NO. 9, Sept-2002.

[22] H. Krawczyk, M. Bellare and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.
Internet RFC 2104, February 1997.

[23] W. Lee, M. Nandi, P. Sarkar, D. Chang, S. Lee and K. Sakurai A Generalization of PGV-Hash
Functions and Security Analysis in Black-Box Model. Information Security and Privacy: 9th
Australasian Conference, ACISP’04, Lecture Notes in Computer Science, vol-3108, 2004.

[24] W. Lee, M. Nandi, P. Sarkar, D. Chang, S. Lee and K. Sakurai PGV-style Block-Cipher-Based
Hash Families and Black-Box Analysis . IEICE transaction, vol-E88-A, no.1, Jan, 2005, pp-39-48.

[25] S. Lucks. Design principles for Iterated Hash Functions. ePrint Archive Report, 2004. Available
at http://eprint.iacr.org/2004/253.

[26] A. J. Menezes, P. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC
Press ISBN: 0-8493-8523-7, October 1996.

[27] T. Matsuo and K. Kurosawa. On Parallel Hash Functions Based on Block-Cipher. Informa-
tion Security and Privacy: 8th Australasian Conference, ACISP’03, Lecture Notes in Computer
Science, vol-2727, pp-510-521, 2003.

[28] R. Merkle. One Way Hash Functions and DES. Advances in Cryptology - Crypto’89, Lecture
Notes in Computer Sciences, Vol. 435, Springer-Verlag, pp. 428-446, 1989.

[29] M. Nandi, W. Lee, K. Sakurai and S. Lee. Security Analysis of a 2/3-rate Double Length
Compression Function in The Black-Box Model. FSE’05, 2005.

[30] M. Nandi and D. R. Stinson. Multicollision Attacks on Generalized Hash Functions. Cryptology
ePrint Archive, 2004. Available at http://eprint.iacr.org/2004/330.

[31] National Institute of Standards, FIPS 180-1, Secure Hash Standard. April 1995.

[32] NIST/NSA. FIPS 180-2 Secure Hash Standard. August, 2002.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

[33] B. Preneel, R. Govaerts and J. Vandewalle. Cryptographically secure hash functions: an
overview. ESAT Internal Report, K. U. Leuven, 1989.

[34] R. L. Rivest. MD4 message digest algorithm. Advances in Cryptology, Proceedings Crypto’90,
LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303-311.

[35] R. L. Rivest The MD5 message digest algorithm. Available online :
http://www.ietf.org/rfc/rfc1321.txt.

[36] P. Sarkar. Domain Extender for Collision Resistant Hash Functions: Improving Upon Merkle-
Damgard Iteration. ePrint Archive Report, 2002. Available at http://eprint.iacr.org/2003/173.

[37] T. Satoh, M. Haga and K. Kurosawa. Towards Secure and Fast Hash Functions. IEICE Trans.
VOL. E82-A, NO. 1 January, 1999.

[38] V. Shoup. Design and analysis of practical public-key encryption schemes secure against adap-
tive chosen ciphertext attack. SIAM Journal of Computing 33:167-226, 2003.

14

[39] D. R. Stinson. Cryptography : Theory and Practice, Second Edition, CRC Press, Inc.

[40] D. R. Stinson. Some observations on the theory of cryptographic hash functions. Eprint Archive
Report, 2001. Available at http://eprint.iacr.org/2001/020/.

[41] X. Wang and D. Feng and X. Lai and H. Yu. Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD.

15

