
Efficient Tate Pairing Computation for

Supersingular Elliptic Curves over Binary Fields

Soonhak Kwon

Department of Mathematics, Sungkyunkwan University, Korea

shkwon@skku.edu

Abstract: After Miller’s original algorithm for the Tate pairing computation, many improved
algorithms have been suggested, to name just a few, by Galbraith et al. and Barreto et al.,
especially for the fields with characteristic three. Also Duursma and Lee found a closed formula
of the Tate pairing computation for the fields with characteristic three. In this paper, we show
that a similar argument is also possible for the finite fields with characteristic two. That is,
we present a closed formula for the Tate pairing computation for supersingular elliptic curves
defined over the binary field F2m of odd dimension. There are exactly three isomorphism
classes of supersingular elliptic curves over F2m for odd m and our result is applicable to
all these curves. Moreover we show that our algorithm and also the Duursma-Lee algorithm
can be modified to another algorithm which does not need any inverse Frobenius operation
(square root or cube root extractions) without sacrificing any of the computational merits
of the original algorithm. Since the computation of the inverse Frobenius map is not at all
trivial in a polynomial basis and since a polynomial basis is still a preferred choice for the Tate
pairing computation in many situations, this new algorithm avoiding the inverse Frobenius
operation has some advantage over the existing algorithms.

Keywords: supersingular elliptic curve, Tate pairing, divisor, automorphism, roots of unity.

1. Introduction

With increasing use of the Tate pairing in cryptographic areas, a study of efficient computation
of the Tate pairing becomes the subject of active research these days. Many cryptographic
schemes are based on the bilinear pairings arising from the rank two abelian group structure
of the points of prescribed order of the given elliptic curve. Examples of such cryptographic
protocols are, to name just a few, identity based encryption scheme by Boneh and Franklin
[10], short signature scheme by Boneh et al. [11], tripartite Diffie-Hellman key agreement
protocol by Joux [12], identity based authenticated key agreement protocol by Smart [25], and
identity based signature schemes by Hess [7], Sakai et al. [24]. In most of these applications,
the Weil pairing or Tate pairing of supersingular elliptic curves (or curves of small embedding
degrees) are essential tools. Therefore efficient computation of the Weil or Tate pairings is a
crucial factor for practical applications of the above mentioned cryptographic protocols. The
Weil pairing for a given elliptic curve is a symmetric bilinear pairing which can be thought of
two applications of the Tate pairing. Thus the Weil pairing is more slow to compute than the
Tate pairing, and consequently, it is desirable to replace the Weil pairing as the Tate pairing
whenever it is possible in many cryptographic schemes.

Recently many progresses have been made on the computation of the Tate pairing. Gal-
braith et al. [4,5] suggested a few refined techniques and ideas to speed up the computation

1

of the Tate pairing. Eisenträger et al. [13] introduced the notion of the squared Tate pairing.
Scott and Barreto [2] and Granger et al. [9] discussed properties of compressed pairings. Bar-
reto et al. [1] showed that the standard algorithm of Miller [19] can be modified to so called
the BKLS algorithm where division in a finite field can be omitted since the denominator be-
comes one after final powering. Also Duursma and Lee [3] presented a closed formula for the
computation of the Tate pairing for a finite field with characteristic three, which significantly
reduces the cost of computing and is flexible for both of software and hardware applications.

In this paper we show that an efficient closed formula can also be obtained for the com-
putation of the Tate pairing for supersingular elliptic curves over a binary field F2m with odd
dimension m. There are exactly three isomorphism classes of supersingular elliptic curves over
F2m with m odd [15] and our method is applicable to all these curves, of which two are the
most commonly used curves with embedding degree 4. Also we present a method of avoiding
inverse Frobenius operations in our and Duursma-Lee’s algorithms. When one wants to use a
polynomial basis, inverse Frobenius operation is not at all trivial unlike the case of a normal
basis and this inverse operation deteriorates the performance of the algorithms of Duursma-
Lee and ours, which need two inverse Frobenius operations in each step of the algorithms. We
propose new modified algorithms which avoid the inverse Frobenius map without affecting
the computational merits of the original algorithms.

2. Elliptic curves and Miller’s algorithm

Let E be an elliptic curve over a finite field Fq where q is a power of a prime. We may express
E as the following standard Weierstrass form

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where the coefficients a1, a2, a3, a4, a6 are in Fq. Let E(Fq) be the set of all points P =
(x, y), x, y ∈ Fq, on the curve with the point at infinity O (which is (0, 1, 0) on the corre-
sponding homogeneous equation of degree 3 over a projective plane). E(Fq) has a structure
of an abelian group and the order |E(Fq)| is bounded by the following well known relation
due to Hasse [14],

|E(Fq)| = q + 1 − Tr(ϕ), |Tr(ϕ)| ≤ 2
√

q, (1)

where Tr(ϕ) ∈ Z is the trace of the Frobenius map ϕ : E −→ E, with ϕ(x, y) = (xq, yq), and
ϕ is a zero of the characteristic polynomial h(X) = X2 − Tr(ϕ)X + q. Let l be a positive
integer and let E[l] (resp. E[l](Fq)) be the set of points P ∈ E(Fq) (resp. P ∈ E(Fq))
satisfying lP = O, where Fq is an algebraic closure of Fq. Let k be the minimal degree of the
extension satisfying E[l] ⊂ E(Fqk). Such k is called the embedding degree (or the security
multiplier) of E[l] [1,15] and is dependent on E and l. If l is prime to q, then it is well known
[14,15] that E[l] ∼= Z/l ⊕ Z/l.

A divisor D on E is a formal (finite) sum of the points P on the curve

D =
∑

np(P), np ∈ Z. (2)

We call D a zero divisor if
∑

np = 0. A principal divisor is a divisor of the form (f) =
∑

np(P),
where f is a rational function on E and P is a point of E with nP the order of multiplicity
of f at P , i.e. nP > 0 if f has a zero at P and nP < 0 if f has a pole at P . We say two
divisors D and D′ are equivalent if D−D′ is a principal divisor. It is well known [14,15] that

2

a principal divisor (f) is a zero divisor, and a divisor D =
∑

np(P) is a principal divisor if
D is a zero divisor and

∑
npP = O in the abelian group E(Fq). More precisely, there is an

isomorphism [15]

Div0/Divprin −→ E, with D =
∑

np(P) 7−→
∑

npP, (3)

where the summation in the right side is the addition of points on the elliptic curve E and Div0

(resp. Divprin) is a free abelian group generated by the zero divisors (resp. principal divisors).
Now suppose that P ∈ E[l]. Then the divisor l(P) − l(O) is a principal divisor so that there
is a rational function fP such that (fP) = l(P) − l(O). For any rational function f and any
divisor D =

∑
np(P) having disjoint supports, one naturally define f(D) =

∏
f(P)np . The

Tate pairing τl on the set E[l] is defined as follows.

Definition 1. Let P ∈ E[l](Fq) and Q ∈ E[l](Fqk). The Tate pairing is a map

τl : E[l](Fq) × E[l](Fqk) −→ {ζl}, with τl(P, Q) = fP (DQ)
qk

−1

l ,

where fP is a rational function satisfying (fP) = l(P)−l(O) and DQ is a zero divisor equivalent

to (Q)− (O) such that DQ and (fP) have disjoint supports. Also {ζl} is the group of l-th roots

of unity in F
×

qk .

It is well known that τl is a non-degenerate bilinear pairing. That is, for any P 6= O ∈ E[l](Fq),
there exists a point Q ∈ E[l](Fqk) such that τl(P, Q) 6= 1. Also we have τl(P1 + P2, Q) =
τl(P1, Q)τl(P2, Q) and τl(P, Q1 + Q2) = τl(P, Q1)τl(P, Q2). Non-degeneracy is not a trivial
result and a proof can be found in [6,17]. It is also easy to verify τld(P, Q) = τl(P, Q) for
P, Q ∈ E[l] and d > 0 with ld dividing |E(Fq)|.

An effective algorithm for finding a rational function fP satisfying (fP) = l(P)− l(O) with
P ∈ E[l] is found by Miller [15,19]. Let us briefly explain the idea of Miller. For any zero
divisor D and D′, the isomorphism in (3) implies that there exist points P and P ′ such that

D = (P) − (O) + (f), D′ = (P ′) − (O) + (f ′),

for some rational functions f and f ′. Then one easily checks that

D + D′ = (P + P ′) − (O) + (ff ′
ℓP,P ′

ℓP+P ′

), (4)

where ℓP,P ′ is an equation of a line intersecting P and P ′, and ℓP is an equation of a vertical
line intersecting P and −P . This can be verified using the relation

(
ℓP,P ′

ℓP+P ′

) = (ℓP,P ′) − (ℓP+P ′)

= (P) + (P ′) + (−P − P ′) − 3(O) − {(P + P ′) + (−P − P ′) − 2(O)}
= (P) + (P ′) − (P + P ′) − (O).

(5)

Thus the right side of (4) is

(P + P ′) − (O) + (ff ′
ℓP,P ′

ℓP+P ′

) = (P + P ′) − (O) + (ff ′) + (P) + (P ′) − (P + P ′) − (O)

= (P) + (P ′) − 2(O) + (ff ′) = D + D′.

3

An elliptic curve E over Fq is called supersingular if Tr(ϕ) ≡ 0 (mod p) where ϕ is the
Frobenius map and p is the characteristic of Fq. If an elliptic curve E over Fq is supersingular,
then it is well known [15] that for any l dividing |E(Fq)|, the embedding degree k is bounded
by 6. More precisely, we have E[l] ⊂ E(Fqk) with k = 2, 3, 4, 6. It is also well known [15]
that the embedding degree k = 6 is attained when the characteristic of Fq is three and the
embedding degree k = 4 is attained when the characteristic of Fq is two.

3. BKLS algorithm and the algorithm of Duursma and Lee

Barreto, Kim, Lynn, and Scott [1] showed that, for some supersingular curves with embedding
degree k = 2, 4, 6, one can speed up the computation of the Tate pairing by observing that
the denominators ℓQ appearing in the Miller’s algorithm can be omitted using the idea of the
distortion map φ introduced in [18], where φ is a suitably chosen nontrivial automorphism of
the given supersingular elliptic curve. That is, since the line X−α intersecting Q = (α, β) ∈ Fq

and −Q has only X-coordinate and since this X-coordinate has the value in Fqk/2 after

applying φ to Q, it becomes one after taking the final power by qk
−1
l because l|qk/2 + 1 and

qk − 1 = (qk/2 − 1)(qk/2 + 1). Therefore omitting ℓQ does not affect the final pairing value
and this greatly simplifies the Miller’s algorithm since the costly operation of division is not
necessary. By the similar reasoning, Barreto et al. [1] also showed that it is not necessary to
evaluate the Tate pairing at O, the point at infinity, since the image of O is already in the

field Fq before taking the final power by qk
−1
l . To summarize, the BKLS algorithm can be

explained as follows.

Theorem 2. (Barreto et al. [1]) Let E be a supersingular elliptic curve over Fq with embedding

degree k = 2, 4, 6 and suppose that there is a suitable distortion map φ for E. Let l be a positive

integer dividing |E(Fq)| with gcd(l, q) = 1 and let {ζl} be the group of l-th roots of unity in

F
×

qk . Then the modified Tate pairing

τl : E[l](Fq) × E[l](Fq) −→ {ζl}, with τl(P, Q) = fP (φ(Q))
qk

−1

l ,

is a non-degenerate bilinear pairing, where fP is a rational function with denominator one,

i.e. a polynomial, satisfying (fP) = l(P) − l(O).

The crucial difference between the above pairing with a distortion map φ and the conventional
Tate pairing is that this new pairing is symmetric as long as E[l](Fq) is a cyclic group, while
the original Tate pairing is not. The reason is that, in this new pairing, both of the points P
and Q are in the same cyclic group E[l](Fq) generated by a point R of order l. Thus there
are integers a and b satisfying P = aR and Q = bR so that we have

τl(P, Q) = τl(aR, bR) = τl(R, R)ab = τl(bR, aR) = τl(Q, P). (6)

Efficient computation of the Tate pairing is closely related with efficient computation of the
scalar multiplication lP of a given point P since one has to find a rational function fP satisfying
(fP) = l(P) − l(O). Usually a binary representation of l is used for the field F2m or the field
Fp with p a prime. A (balanced) ternary representation of l is an optimal choice for F3m and
both of the algorithms of BKLS [1] and Duursma-Lee [3] made careful studies for this case.

For a field with characteristic three, Fq with q = 3m, Duursma and Lee [3] noticed that
one can obtain a faster Tate pairing computation if one use q3 + 1 = 33m + 1 instead of using

4

l dividing q3 + 1, since the ternary expansion of q3 + 1 is trivial. That is, if one write gQ as a
rational function satisfying

3(Q) − 3(O) = (3Q) − (O) + (gQ),

then, by repeated applications of the above equation, one has

33m(P) − 33m(O) = (33mP) − (O) + (g33m−1

P g33m−2

3P · · · g3
33m−2P g33m−1P).

It is shown [3] that the rational function

f =
3m∏

i=1

g33m−i

3i−1P = g33m−1

P g33m−2

3P · · · g3
33m−2P g33m−1P (7)

can be used for a computation of the Tate pairing as

τl(P, Q) = f(φ(Q))3
3m

−1. (8)

Duursma and Lee showed that the value f(φ(Q)) =
∏3m

i=1{g3i−1P (φ(Q))}33m−i
has certain

cyclic property with regard to the polynomials g33m−i

3i−1P
so that they found a nice closed formula

[3] for f as a product of m (not 3m) polynomials.

4. Tate pairing computation for binary fields with closed formulas

4.1. Supersingular elliptic curves over binary fields

For cryptographic purposes, it is natural to think of elliptic curves defined over F2m with m
odd or more strongly a prime. There are exactly three isomorphism classes of supersingular
elliptic curves over F2m when m is odd [15]. Namely they are

Y 2 + Y = X3, Y 2 + Y = X3 + X, Y 2 + Y = X3 + X + 1. (9)

Among them, the curves

Eb : Y 2 + Y = X3 + X + b, b = 0, 1 (10)

have the embedding degree (or security multiplier) k = 4 while the curve Y 2 + Y = X3 has
k = 2. Thus we are mainly interested in the curves Eb though our method is also applicable
to the curve Y 2 +Y = X3. The Frobenius map ϕ : Eb −→ Eb with ϕ(x, y) = (x2, y2) is a root
of the characteristic polynomial

h(X) = X2 ± 2X + 2 = (X − ϕ)(X − ϕ̄).

We also have the order |Eb(F2m)| of the group of rational points Eb(F2m) as

|Eb(F2m)| = 2m + 1 − Tr(ϕm),

where Tr(ϕm) = ϕm + ϕ̄m and ϕm(x, y) = (x2m
, y2m

). Letting cj = Tr(ϕj), one can find
the values of cj using the following second order liner recurrence relations (or Lucas type
sequences) arising from the characteristic polynomial h(X),

cj = 2(∓cj−1 − cj−2), j ≥ 0, (11)

5

with c0 = 2 and c1 = ∓2. From the above relations, it is straightforward to see [15] that
Eb(F2m) is a cyclic group of order

|Eb(F2m)| = 2m + 1 + (−1)b
√

2 · 2m, if m ≡ 1, 7 (mod 8)

= 2m + 1 − (−1)b
√

2 · 2m, if m ≡ 3, 5 (mod 8).
(12)

4.2. Closed formula of the Tate pairing for F2m

As in the characteristic three case of Duursma and Lee [3], we want to derive a closed formula
for the Tate pairing computation using the simple equality for our binary case,

22m + 1 = (2m + 1 + 2
m+1

2)(2m + 1 − 2
m+1

2).

Let P = (α, β) be a point on the curve Eb : Y 2 + Y = X3 + X + b, b = 0, 1. Then one has
−P = (α, β + 1) and 2P = (α4 + 1, α4 + β4). Thus we get

22P = (α24

, β24

+ 1) = −ϕ4(P), 23P = (α26

+ 1, α26

+ β26

+ 1), 24P = (α28

, β28

),

where ϕ4 + 4 = 0, i.e. h(X) = X2 ± 2X + 2 divides X4 + 4. Using this cyclic property, one
finds easily

2i−1P = (α22i−2

+ i − 1, β22i−2

+ (i − 1)α22i−2

+ ǫi)

= (α(2i−2) + i − 1, β(2i−2) + (i − 1)α(2i−2) + ǫi),
(13)

where α(j) (resp. β(j)) is defined as α(j) = α2j
(resp. β(j) = β2j

) and ǫi is defined as

ǫi = 0 if i ≡ 1, 2 (mod 4) and ǫi = 1 if i ≡ 3, 4 (mod 4). (14)

For an effective Tate pairing computation, the following distortion map (nontrivial automor-
phism) is chosen [1] for Eb,

φ : Eb −→ Eb, with φ(x, y) = (x + s2, y + sx + t), (15)

where s2 + s + 1 = 0 and t2 + t + s = 0. That is,

F2(s) = F22 , F2(t) = F24 , s = t5, t4 + t + 1 = 0, (16)

and t is a generator of the cyclic group F
×

24 of order 15. Therefore if P is a point of order l in
F2m with m odd, then φ(P) ∈ E(F24m) but φ(P) 6∈ E(F22m), and the two points P and φ(P)
generate all points of order l as a Z/l module.

For any point Q on the curve Eb, let us write gQ as a rational function satisfying

2(Q) − 2(O) = (2Q) − (O) + (gQ).

By the Miller’s formula in (4), we have gQ = ℓQ,Q/ℓ2Q and the denominator ℓ2Q can be
omitted by the result of Barreto et al. [1]. Now for a given point P ∈ Eb(F2m), one repeatedly
has

2(P) − 2(O) = (2P) − (O) + (gP),

22(P) − 22(O) = 2{(2P) − (O)} + (g2
P) = (22P) − (O) + (g2

P g2P),

23(P) − 23(O) = 2{(22P) − (O)} + (g22

P g2
2P) = (23P) − (O) + (g22

P g2
2P g22P),

· · ·
22m(P) − 22m(O) = (22mP) − (O) + (g22m−1

P g22m−2

2P · · · g2
22m−2P g22m−1P).

6

Letting

fP =
2m∏

i=1

g22m−i

2i−1P = g22m−1

P g22m−2

2P · · · g2
22m−2P g22m−1P , (17)

we have

22m(P) − 22m(O) = (22mP) − (O) + (fP) and (P) − (O) = (P) − (O) + (1).

Thus the equation (4) of the Miller’s formula again says

(22m + 1){(P) − (O)} = (fP ℓP), (18)

because 22mP = −P . Note that the line ℓP can also be omitted in the actual computation
by the BKLS algorithm. Therefore after adjusting the irrelevant factors, we can say that

(fP) = (22m + 1){(P) − (O)} = 22m+1
l · {l(P) − l(O)} = 22m+1

l (f ′

P), (19)

where f ′

P is a rational function satisfying l(P)− l(O) = (f ′

P). Thus we have the Tate pairing

τl(P, Q) = f ′

P (φ(Q))
2
4m

−1

l = f ′

P (φ(Q))
2
2m

+1

l
(22m

−1) = fP (φ(Q))2
2m

−1. (20)

From the equation (17), the rational function fP is just a product of the functions of the form
g2i−1P and, in view of the BKLS algorithm, the rational function g2i−1P can be regarded as
the tangent line at the point 2i−1P . Thus all we have to do is to find an explicit expression
of fP =

∏2m
i=1 g22m−i

2i−1P
.

Lemma 3. Let P = (α, β), Q = (x, y) be points in Eb(F2m). Then one has the value of

{g2i−1P (φ(Q))}22m−i
= {g2i−1P (x + s2, y + sx + t)}22m−i

as

{g2i−1P (φ(Q))}22m−i
= α(i−1)x(−i) + β(i−1) + y(−i) + s(α(i−1) + x(−i)) + t + b,

where gR(X, Y) = ℓR,R is an equation of the tangent line at R.

Proof. The tangent line at P = (α, β) on the curve Eb : Y 2 + Y = X3 + X + b is Y =
(α2 + 1)X + β2 + b. Thus we have 2(P) − 2(O) = (2P) − (O) + (gP

ℓ2P
) where

gP (x, y) = (α2 + 1)x + β2 + b − y, (21)

and ℓ2P is the vertical line intersecting 2P and −2P . Since ℓ2P can be removed in view of the
BKLS algorithm [1], we are mainly interested in the computations of the lines g2i−1P . Using
the equation (13), one has

g2i−1P (x, y) = (α(2i−1) + i)x + β(2i−1) + (i − 1)α(2i−1) + ǫi + b − y.

Therefore, by applying the distortion map φ to the point Q = (x, y), we get

g2i−1P (x+s2, y+sx+t) = (α(2i−1)+i)(x+s2)+β(2i−1)+(i−1)α(2i−1)+ǫi+b−(y+sx+t). (22)

7

Taking 22m−i-th power of both sides of the above equality,

{g2i−1P (φ(Q))}22m−i

= (α(i−1) + i)(x(2m−i) + s(2m−i+1)) + β(i−1) + (i − 1)α(i−1) + ǫi + b

− (y(2m−i) + s(2m−i)x(2m−i) + t(2m−i))

= α(i−1)x(2m−i) + {i − s(2m−i)}x(2m−i) + {s(2m−i+1) + i − 1}α(i−1)

+ β(i−1) + b − y(2m−i) + {is(2m−i+1) + ǫi − t(2m−i)}.

(23)

From s2 + s + 1 = 0, we have s(2) = s4 = s, s(3) = s2 = s + 1, s(4) = s, · · · . That is,

s(j) = s + 1 if j = odd and s(j) = s if j = even. (24)

The coefficients i− s(2m−i) (resp. i− 1 + s(2m−i+1)) of x(2m−i) (resp. α(i−1)) in the equation
(23) have a unique value equal to s independent of the choices of i because i and 2m−i always
have the same parity. For example, when i is odd, i − s(2m−i) = 1 + s + 1 = s and also when
i is even, i − s(2m−i) = 0 + s = s. That is, for any i, we get

i − s(2m−i) = s = i − 1 + s(2m−i+1). (25)

From t2 = t+s, we have t(2) = t2
2

= t+s+s2 = t+1, t(3) = t2
3

= t+s+1, t(4) = t+s+s2+1 =
t, t(5) = t2 = t + s, · · · . Therefore, for any j ≥ 0, we have

t(4j) = t, t(4j+1) = t + s, t(4j+2) = t + 1, t(4j+3) = t + s + 1. (26)

Now using the equations (14),(24),(26), it is trivial to show that the last term of the equation
(23) has the value

is(2m−i+1) + ǫi − t(2m−i) = t (27)

independent of the choices of i. This can be proved as follows. Since the extension degree m
is odd, we have m ≡ 1 (mod 4) or m ≡ 3 (mod 4). In any case, we get 2m ≡ 2 (mod 4) and
letting 2m = 4j + 2 for some j,

is(2m−i+1) + ǫi − t(2m−i) = is(4j+3−i) + ǫi − t(4j+2−i). (28)

By taking i (mod 4) and noticing that our field has characteristic two, we easily get the
equation (27). Since x, y, α, β are all in F2m , the values x(j), y(j), α(j), β(j) are determined up
to the residue classes of j (mod m) and x(j) with j ∈ Z (resp. y(j), α(j), β(j)) is understood as

x(j) = x2j′

where j′, 0 ≤ j′ ≤ m−1, is a unique integer satisfying j′ ≡ j (mod m). Therefore
we get

{g2i−1P (φ(Q))}22m−i
= α(i−1)x(−i) + sx(−i) + sα(i−1) + β(i−1) + y(−i) + t + b

= α(i−1)x(−i) + β(i−1) + y(−i) + s(α(i−1) + x(−i)) + t + b.

Theorem 4. One has the Tate pairing τl(P, Q) = fP (φ(Q))2
2m

−1 where

fP (φ(Q)) =

m∏

i=1

{α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b}.

8

Proof. By the equation (17) and (20), we have fP (φ(Q)) =
∏2m

i=1{g2i−1P (φ(Q))}22m−i
and

since all x(j), y(j), α(j), β(j) are determined up to the residue classes of j (mod m),

fP (φ(Q)) =
m∏

i=1

{g2i−1P (φ(Q))}22m−i
2m∏

i=m+1

{g2i−1P (φ(Q))}22m−i

=
m∏

i=1

{g2i−1P (φ(Q))}22m−i
m∏

i=1

{g2i−1P (φ(Q))}22m−i

=
m∏

i=1

{α(i−1)x(−i) + β(i−1) + y(−i) + s(α(i−1) + x(−i)) + t + b}2

=
m∏

i=1

{α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b}.

5. Efficient field arithmetic for the computation of fP (φ(Q))

The computation of fP (φ(Q)) involves multiplications in F24m . A natural way to do this
is to use a basis for F24m over F2m and transforms a multiplication in F24m into several
multiplications in F2m . Since the extension degree is 4, we may use an optimal normal basis
of type I but we will stick to the polynomial basis {1, t, t2, t3} for F24m with the minimal
polynomial of t as X4 + X + 1 over F2m . Using s2 = t2 + t + 1, we may express the element
α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b as

α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b = w + zt + (z + 1)t2,

where
z = α(i) + x(−i+1), w = z + α(i)x(−i+1) + β(i) + y(−i+1) + b. (29)

Letting C = c0 + c1t + c2t
2 + c3t

3, ci ∈ F2m , be the partial product in the computation of
fP (φ(Q)), we have

C · (w + zt + (z + 1)t2) = (c0 + c1t + c2t
2 + c3t

3)(w + zt + (z + 1)t2)

= c′0 + c′1t + c′2t
2 + c′3t

3,
(30)

where

c′0 = c0w + (c2 + c3)(z + 1) + c3

c′1 = c0w + (c1 + c2 + c3)w + (c0 + c2 + c3)(w + z + 1) + c3(z + 1) + c0 + c3

c′2 = c0w + (c1 + c2 + c3)w + (c0 + c2 + c3)(w + z + 1) + (c1 + c2)(w + z + 1) + c1

c′3 = (c1 + c2 + c3)w + (c1 + c2)(w + z + 1) + c2.

(31)

Therefore one needs only 6 multiplications for the computation of C · (w + zt + (z + 1)t2).

Table 1. An algorithm for computing fP (φ(Q))
—————————————————————————

Input: P = (α, β), Q = (x, y)
Output: C = fP (φ(Q))

9

C ← 1
for (i = 1 to m ; i + +)
α ← α2, β ← β2

z ← α + x, w ← z + αx + β + y + b
C ← C · (w + zt + (z + 1)t2)
x ← x2m−1

, y ← y2m−1

end for
————————————————————————–

Assuming that we are using a normal basis for F2m over F2, the Frobenius maps in Table 1
contribute a negligible cost. Moreover the map x ← x2m−1

is just a left cyclic shifting by one
position of the vector x with respect to a normal basis while x ← x2 is a right cyclic shifting by
one position. All these Frobenius maps are especially useful if one wants an efficient hardware
implementation. If we ignore the costs of Frobenius maps and F2m-additions, we find that
exactly 7 F2m-multiplications are needed in each round of the for-loop, where the computation
of w needs one multiplication in F2m and the computation of C needs 6 multiplications in
F2m by the equation (31). Compare our result with the similar result in F3m case of Duursma
and Lee where each step of the algorithm in [3] requires 17 F3m-multiplications with trace
computation technique [2] and can be reduced to 14 F3m-multiplications [8] with loop unfolding
technique.

It should be mentioned that one can also use a normal basis for F24m over F2m instead
of using {1, t, t2, t3} with t4 + t + 1 = 0. Letting t3 = γ, one has γ5 = 1 and the minimal
polynomial of γ over F2m is X4 + X3 + X2 + X + 1. Therefore we have a normal basis
{γ, γ2, γ22

, γ23} = {γ, γ2, γ3, γ4} of type I over F2m . Using the relation t = 1
t3+1

= 1
γ+1 = γ3 +

γ, one may reformulate the equations (30) and (31) with respect to the basis {γ, γ2, γ3, γ4}. In
this case, the number of necessary additions in F2m slightly increases, however the expressions
of the coefficients of C in (31) have more regular patterns which are particularly useful for a
hardware implementation.

Computing the final powering by 22m−1 is a formidable task. However in some situations
like a signature verification, one only needs to determine whether τl(P, Q) = τl(P

′, Q′) without
having to know the exact value of τl(P, Q) = fP (φ(Q))2

2m
−1. In this case, it suffices to check

whether fP (φ(Q))2
2m

fP ′(φ(Q′)) = fP (φ(Q))fP ′(φ(Q′))2
2m

and the cost of this operation is
much cheaper than the cost of the exponentiation by 22m − 1. Replacing 22m by 33m, the
same technique is also applicable to the Duursma-Lee algorithm [3].

6. Algorithms without inverse Frobenius operations for polynomial basis arith-

metic in F2m and F3m

Many computational evidence [8,20] imply that a more efficient field arithmetic can be ob-
tained for low characteristic finite fields by using a polynomial basis than a normal basis,
especially for software purposes. Though a Gaussian normal basis of low complexity [26] is a
good choice for a fast arithmetic, such basis does not appear quite frequently when compared
with a polynomial basis of low hamming weight (like trinomial or pentanomial). In the case
of the Tate pairing computation, the same phenomenon that a polynomial basis wins over a
normal basis has been observed by Granger, Page, and Stam [8]. Granger et al. [8] showed
that, even though a cube root operation (inverse Frobenius operation for characteristic three)
in a polynomial basis is quite costly, an algorithm for the Tate pairing computation with a

10

polynomial basis outperforms a method with a normal basis since one needs many operations
of multiplication while only two cube root operations are needed in each step of the Duursma-
Lee algorithm [3,8] and since the cost of a multiplication with a normal basis is quite expensive
than that of a polynomial basis in general situations. With a small amount of precomputa-
tion, Granger et al. [8] showed that a cube root operation in F3m has roughly the same cost
as 2/3 multiplication in F3m . The same method in [8] can be applied to our characteristic two

case so that we can show that the cost of one square root operation is roughly equal to the
cost of 1/2 multiplication with a precomputation. It should be mentioned that a general case
without a precomputation is not so simple and one needs at least O(m2 log2 m) additions in
F2 to find a square root in F2m as is observed by Barreto et al. [2], though the complexity
can be reduced to O(m2) additions in F2 if we use a low weight polynomial like a trinomial
or a pentanomial.

6.1. Avoiding square root extraction

In this section, we briefly remark that a close examination of the algorithm in Table 1 reveals
that one may derive a new algorithm for the Tate pairing computation which does not need
any inverse Frobenius operation (like square root or cube root extractions). Our method is
also applicable to the characteristic three case of Duursma an Lee [3] and will be explained
later. Let us first study the binary case here. From Theorem 4, we know that

fP (φ(Q)) =

m∏

i=1

{α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b}. (32)

We define Ai as the conjugates of the terms in the product of the above formula by

A
(m−i)
i = A2m−i

i = α(i)x(−i+1) + β(i) + y(−i+1) + s2(α(i) + x(−i+1)) + t2 + b

so that

fP (φ(Q)) =
m∏

i=1

A2m−i

i = A2m−1

1 A2m−2

2 · · ·Am = (· · · (((A1)
2A2)

2A3)
2 · · ·)2Am. (33)

Since Ai is in F24m , we get A
(4m)
i = Ai. Therefore, using the fact α, β, x, y ∈ F2m , we have

Ai = (A
(m−i)
i)2

3m+i
= α(2i)x(1) + β(2i) + y(1) + s(3m+1+i)(α(2i) + x(1)) + t(3m+1+i) + b

= α(2i)x2 + β(2i) + y2 + s(i)(α(2i) + x2) + t(m−1+i) + b,
(34)

because s(j) is determined up to j (mod 2) with 3m + 1 ≡ 0 (mod 2) and t(j) is determined
up to j (mod 4) with 3m + 1 ≡ m − 1 (mod 4) as is clear from the equations (24) and (26).
Using the cyclic property of t(j) in the equation (26), it is not difficult to see that, for all
indices 1 ≤ i ≤ m, Ai can be written as Ai = Ai(t) = w + zt + (z + 1)t2 for some z and w in
F2m . Thus, similarly as in the equations (30) and (31), one needs 6 F2m-multiplications for
computing C ·Ai(t) with respect to the basis {1, t, t2, t3} for any C ∈ F24m . We now have the
following algorithm for computing fP (φ(Q)) which avoids inverse Frobenius operations.

Table 2. An algorithm for computing fP (φ(Q)) avoiding inverse Frobenius operation
—————————————————————————

11

Input: P = (α, β), Q = (x, y)
Output: C = fP (φ(Q))
C ← 1
u ← x2, v ← x2, y ← y2

for (i = 1 to m ; i + +)
α ← α4, β ← β4

A(t) ← α(v + 1) + u + β + y + b + m−1
2 + (α + v)t + (α + v + 1)t2

C ← C2 · A(t)
u ← u + v + 1, v ← v + 1
end for

————————————————————————–

Note that the coefficients of Ai(t) depend on the values of s(i) and t(m−1+i) and they are
recursively computed by the relation (24) and (26). We have the initial values s(1) = s2 =
t2 + t + 1 and t(m) = t2 + m−1

2 and thus we get

A1(t) = αx + β + y + (t2 + t + 1)(α + x) + t2 + m−1
2 + b

= α(x + 1) + x + β + y + b + m−1
2 + (α + x)t + (α + x + 1)t2,

A2(t) = αx + β + y + (t2 + t)(α + x) + t + 1 + m−1
2 + b

= αx + 1 + β + y + b + m−1
2 + (α + x + 1)t + (α + x)t2,

A3(t) = α(x + 1) + (x + 1) + β + y + b + m−1
2 + (α + x)t + (α + x + 1)t2,

A4(t) = αx + β + y + b + m−1
2 + (α + x + 1)t + (α + x)t2.

Using the intermediate values u, v with the relations u ← u+v+1, v ← v +1, the pair covers
all the possible values (u, v) = (x, x), (1, x+1), (x+1, x), (0, x+1) and the algorithm in Table
2 is justified. In each step of the above algorithm, one needs 7 F2m-multiplications which is
same to the algorithm in Table 1. Since the operation C ← C2 needs 4 squaring operations in
F2m and since the operations α ← α4, β ← β4 need the same 4 squaring operations, the total
number of necessary squaring is 8 in this new algorithm. On the other hand, the algorithm
in Table 1 needs 2 squaring and 2 square root operations. Therefore our new algorithm in
Table 2 is a more optimal choice if one is interested in the implementation with a polynomial
basis since this new algorithm uses 6 Frobenius operations instead of using 2 inverse Frobenius
operations.

6.2. Avoiding cube root extraction from the algorithm of Duursma and Lee

Duursma and Lee [3] found a close formula for the following supersingular elliptic curves
defined over F3m with m prime to 6,

Eb : Y 2 = X3 − X + b, b = ±1. (35)

For the above mentioned curves, the following distortion map (nontrivial automorphism) is
used,

φ : Eb −→ Eb, with φ(x, y) = (ρ − x, σy), (36)

where σ2 + 1 = 0 and ρ3 − ρ− b = 0. That is, F3(σ) = F32 and F3(ρ) = F33 . A closed formula
of Duursma and Lee says that, for P = (α, β) and Q = (x, y) in E[l](F3m), the Tate pairing

12

can be written as τl(P, Q) = fP (φ(Q))3
3m

−1 where

fP (φ(Q)) =

m∏

i=1

{−σβ(i)y(−i+1) − (α(i) + x(−i+1) − ρ + b)2}, (37)

and fP is a rational function satisfying (fP) = (33m + 1){(P) − (O)}. Now define the inter-
mediate values µ and λ as

µ = α(i) + x(−i+1) + b ∈ F3m and λ = −σβ(i)y(−i+1) − µ2 ∈ F32m .

Then the formula (37) to compute fP (φ(Q)) is realized by the following algorithm [2,3,8].

Table 3. Duursma-Lee algorithm for computing fP (φ(Q))
—————————————————————————

Input: P = (α, β), Q = (x, y)
Output: C = fP (φ(Q))
C ← 1
for (i = 1 to m ; i + +)
α ← α3, β ← β3

µ = α + x + b, λ = −σβy − µ2

C ← C · (λ − µρ − ρ2)
x ← x1/3, y ← y1/3

end for
————————————————————————–

One needs 2 cube root operations in each step of the above algorithm. However it is not so
difficult, by using the same technique of the previous section, to show that one can have a new
algorithm where 2 cube root operations (inverse Frobenius) are replaced by 8 cube operations
(Frobenius) without affecting the number of multiplications in F3m , which are quite useful in
polynomial basis arithmetic. Let us define Ai ∈ F36m as the conjugates of the terms in the
product formula (37) by

A
(m−i)
i = A3m−i

i = −σβ(i)y(−i+1) − (α(i) + x(−i+1) − ρ + b)2 (38)

so that

fP (φ(Q)) =
m∏

i=1

A3m−i

i = A3m−1

1 A3m−2

2 · · ·Am = (· · · (((A1)
3A2)

3A3)
3 · · ·)3Am. (39)

Since Ai is in F36m , we get A
(6m)
i = Ai. From the equation (38), using the fact α, β, x, y ∈ F3m ,

we have

Ai = (A
(m−i)
i)3

5m+i
= −σ(5m+i)β(2i)y(1) − (α(2i) + x(1) − ρ(5m+i) + b)2

= (−1)i+1σβ(2i)y(1) − (α(2i) + x(1) − ρ + (m + 1 − i)b)2,
(40)

because the relations σ2 + 1 = 0, ρ3 − ρ − b = 0 imply

σ(j) = (−1)jσ and ρ(j) = ρ + jb. (41)

13

Letting µ = α(2i) + x(1) + (m + 1− i)b ∈ F3m and λ = (−1)i+1σβ(2i)y(1) − µ2 ∈ F32m from the
equation (40), one finds that

Ai = λ − µρ − ρ2. (42)

Therefore the modified algorithm is given as follows.

Table 4. A modified Duursma-Lee algorithm without cube root operations
—————————————————————————

Input: P = (α, β), Q = (x, y)
Output: C = fP (φ(Q))
C ← 1
x ← x3, y ← y3, d ← mb
for (i = 1 to m ; i + +)
α ← α9, β ← β9

µ = α + x + d, λ = σβy − µ2

C ← C3 · (λ − µρ − ρ2)
y ← −y, d ← d − b
end for

————————————————————————-

In each step of the above algorithm, the number of necessary multiplications in F3m is same to
that of the algorithm in Table 3. Since the cube operation C ← C3 with respect to the basis
{1, ρ, ρ2} over F32m costs 6 cube operations in F3m and since the operations α ← α9, β ← β9

cost 4 cube operations in F3m , the total number of necessary Frobenius operations in each
step of the above algorithm is 10. Note that the Duursma-Lee algorithm in Table 3 needs 2
Frobenius operations plus 2 inverse Frobenius operations. Therefore our modified algorithm
uses 8 Frobenius operations instead of using 2 inverse Frobenius operations. In a polynomial
basis, it is safe to believe [8] that the cost of 4 cube operations is cheaper than the cost of one
cube root operation.

It should be mentioned that our technique of avoiding inverse Frobenius operations can
also be applied to the refined algorithm of Granger et al. [9], where the for-loop in Table 3 is
unrolled so that it has m−1

2 steps and a multiplication of two λ − µρ − ρ2 is executed before
being multiplied to the partial product C. The only thing we have to do is to redefine Ai in
the equation (39) appropriately so that the multiplication AiAi+1 is performed before being
multiplied to C.

7. Tate pairing computation for Y 2 + Y = X3

Among the three isomorphism classes of supersingular elliptic curves over a binary field F2m

with m = odd, Eb : Y 2 + Y = X3 + X + b, b = 0, 1 and E : Y 2 + Y = X3, the curve
Y 2 + Y = X3 has the embedding degree k = 2. Though the curve Y 2 + Y = X3 is not
so interesting in terms of the bandwidth, i.e. the imbedding degree k = 2, we will discuss
a method of efficient Tate pairing computation with a closed formula. Note that a similar
formula (like the cases of characteristic two and three) is not available for a prime field Fp with
p 6= 2, 3 and one has the same embedding degree k = 2 for this prime field case. Although
the curve E : Y 2 + Y = X3 is not discussed by Barreto et al. in the BKLS algorithm [1],
we will show that a similar technique about the irrelevant denominators is also applicable for
this curve. It seems that this technique is applicable to quite a many class of elliptic curves
with nontrivial automorphisms over low characteristic finite fields.

14

Let P = (α, β) be a point on the curve E : Y 2 + Y = X3. Then one has −P = (α, β + 1)
and 2P = (α4, β4 + 1) = −ϕ2(P). Thus we get

22P = (α24

, β24

) = ϕ4(P),

where ϕ4 − 4 = 0, i.e. h(X) = X2 + 2 divides X4 − 4. Using this property, it is easy to show
inductively

2i−1P = (α22i−2

, β22i−2

+ i − 1) = (α(2i−2), β(2i−2) + i − 1). (43)

For an effective Tate pairing computation, we will use the following distortion map (nontrivial
automorphism) for E,

φ : E −→ E, with φ(x, y) = (x + 1, y + x + t), (44)

where t ∈ F22 with t2 + t + 1 = 0. It is clear that the proposed map φ is an automorphism
since the following equality can be easily checked,

(y + x + t)2 + (y + x + t) = (x + 1)3. (45)

Lemma 5. With the above distortion map, the line X − u intersecting R = (u, v) and −R =
(u, v + 1) with R ∈ E(F2m) can be omitted without altering the pairing value.

Proof. The line X −u evaluated at the point φ(Q) with Q = (x, y) ∈ E(F2m) is x+ 1−u. By

applying the final powering by 22m
−1

l = (2m − 1) (2m+1)
l , one has (x+1−u)

2
2m

−1

l = 1 because
x, u ∈ F2m and l divides |E(F2m)| = 2m + 1.

Lemma 6. Let P = (α, β), Q = (x, y) be points in E(F2m) with E : Y 2 + Y = X3. Then one

has the value of {g2i−1P (φ(Q))}2m−i
= {g2i−1P (x + 1, y + x + t)}2m−i

as

{g2i−1P (x + 1, y + x + t)}2m−i
= α(i−1)x(−i) + (α + β)(i−1) + (x + y)(−i) + t.

Proof. The tangent line at P = (α, β) on the curve E : Y 2 + Y = X3 is Y = α2X + β2. Thus
we have gP (x, y) = α2x + β2 − y and using the equation (43), we get

g2i−1P (x + 1, y + x + t) = α(2i−1)(x + 1) + β(2i−1) + i − 1 − (y + x + t). (46)

Taking 2m−i-th power of the both sides of the above equality,

{g2i−1P (x+1, y+x+ t)}2m−i
= α(i−1)(x(−i) +1)+β(i−1) + i−1−(y(−i) +x(−i) + t(m−i)). (47)

Since t(1) = t2 = t + 1, one has t(2) = t4 = t, t(3) = t + 1, t(4) = t, · · · . That is,

t(j) = t + j, (48)

for any j because we are in the field with characteristic two. Thus we have t(m−i) = t + m− i
in the equation (47) and therefore

{g2i−1P (φ(Q))}2m−i
= α(i−1)(x(−i) + 1) + β(i−1) + i − 1 − (y(−i) + x(−i) + t + m − i)

= α(i−1)x(−i) + (α + β)(i−1) + (x + y)(−i) + t.

15

Theorem 7. One has the Tate pairing τl(P, Q) = fP (φ(Q))2
m
−1 where

fP (φ(Q)) =
m∏

i=1

{g2i−1P (φ(Q))}2m−i
=

m∏

i=1

{α(i−1)x(−i) + (α + β)(i−1) + (x + y)(−i) + t},

and fP is a rational function satisfying (2m + 1){(P) − (O)}.

One may derive the same algorithms as in Table 1 and 2 for this case also but we omit them
here since the method is pretty straightforward.

8. Conclusions

In this paper we showed that an efficient closed formula can be derived for the Tate pairing
computation for supersingular elliptic curves over a binary field F2m of odd dimension. There
are exactly three isomorphism classes of supersingular elliptic curves over F2m with m odd and
our method is applicable to all these curves. Each step of our algorithm requires two inverse
Frobenius operations like the characteristic three case of Duursma and Lee. To overcome
the computational complexity of the inverse Frobenius operation in a polynomial basis, we
modified our algorithm and the algorithm of Duursma and Lee, and presented another closed
formula which does not need any inverse Frobenius operation, which is especially useful for
polynomial basis arithmetic.

References

[1] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing based cryp-
tosystems,” Crypto 2002, Lecture Notes in Computer Science, vol. 2442, pp. 354–368, 2002.
[2] M. Scott and P. Barreto, “Compressed pairings,” Crypto 2004, Lecture Notes in Computer

Science, to appear, 2004.
[3] I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic curves y2 = xp −
x + d,” Asiacrypt 2003, Lecture Notes in Computer Science, vol. 2894, pp. 111–123, 2003.
[4] S. Galbraith, “Supersingular curves in cryptography,” Asiacrypt 2001, Lecture Notes in

Computer Science, vol. 2248, pp. 495–513, 2001.
[5] S. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate pairing,” ANTS 2002,

Lecture Notes in Computer Science, vol. 2369, pp. 324–337, 2002.
[6] F. Hess, “A Note on the Tate pairing of curves over finite fields,” Arch. Math. vol. 82,
pp. 28–32, 2004.
[7] F. Hess, “Efficient identity based signature schemes based on pairings,” SAC 2002, Lecture

Notes in Computer Science, vol. 2595, 310-324, 2003.
[8] R. Granger, D. Page, and M. Stam, “Hardware and software normal basis arithmetic for
pairing based cryptography in characteristic three,” preprint, available at http://eprint.iacr.
org/2004/157.pdf, 2004.
[9] R. Granger, D. Page, and M. Stam, “On small characteristic algebraic tori in pairing based
cryptography,” preprint available at http://eprint.iacr.org/2004/132.pdf, 2004.
[10] D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing,” Crypto

2001, Lecture Notes in Computer Science, vol. 2139, pp. 213–229, 2001.
[11] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” Asiacrypt

2001, Lecture Notes in Computer Science, vol. 2248, pp. 514–532, 2002.
[12] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” ANTS 2000, Lecture Notes

in Computer Science, vol. 1838, pp. 385–394, 2000.

16

[13] K. Eisenträger, K. Lauter, and P.L. Montgomery, “Improved Weil and Tate pairing for
elliptic and hyperelliptic curves,” preprint, 2004.
[14] J.H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1985.
[15] A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publisher,
1993.
[16] A.J. Menezes, T. Okamoto, and S.A. Vanstone, “Reducing elliptic curve logarithms to
logarithms in a finite field,” IEEE Trans. Information Theory, vol. 39, pp. 1639–1646, 1993.
[17] G. Frey and H. Rück, “A remark concerning m-divisibility and the discrete logarithm in
the divisor class groups of curves,” Math. Comp., vol. 62, pp. 865–874, 1994.
[18] E.R. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems,” Eurocrypt 2001, Lecture Notes in Computer Science, vol. 2045, pp. 195–210,
2001.
[19] V. Miller, “Short programs for functions on curves,” unpublished manuscript, 1986.
[20] D. Hankerson, J.L. Hernandez, and A.J. Menezes, “Software implementation of elliptic
curve cryptography over binary fields,” CHES 2000, Lecture Notes in Computer Science, vol.
1965, pp. 1–24 , 2000.
[21] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptography,”
Design, Codes and Cryptography, vol. 19, pp. 173–193, 2000.
[22] P. Gaudry, F. Hess, and N.P. Smart, “Constructive and destructive facets of Weil descent
on elliptic curves,” J. of Cryptology, vol. 15, pp. 19–46, 2002.
[23] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic curve
trace for FR-reduction,” IEICE Trans. Fundamentals, vol. E84 A, pp. 1–10, 2001.
[24] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” SICS 2000,

Symposium on Cryptography and Information Security, pp. 26–28, 2000.
[25] N.P. Smart, “An identity based authentication key agreement protocol based on pairing,”
Electronics Letters, vol. 38, pp. 630–632, 2002.
[26] S. Gao, J. von zur Gathen, and D. Panario, “Gauss periods and fast exponentiation in
finite fields,” Latin 1995, Lecture Notes in Computer Science, vol. 911, pp. 311–322, 1995.
[27] K. Rubin and A. Silverberg “Torus based cryptography,” Crypto 2003, Lecture Notes in

Computer Science, vol. 2729, pp. 349–365, 2003.

17

