
The Static Diffie-Hellman Problem

Daniel R. L. Brown Robert P. Gallant

dbrown@certicom.com rgallant@certicom.com

Certicom Research Certicom Research

June 23, 2005

Abstract

In this paper we describe an algorithm for finding the discrete log-
arithm of an arbitrary group element Q. The algorithm requires as
input a function that solves a special case of the Diffie-Hellman prob-
lem, called the static Diffie-Hellman problem for Q. Some protocols
and environments provide such a function to adversaries, in which case
the algorithm may be interpreted as an attack which finds a private
key. The algorithm can also be interpreted as a reduction relating the
hardness of computing discrete logarithms with the hardness of solving
Diffie-Hellman instances.
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1 Introduction

Let 〈G〉 be a cyclic group with generator G of prime order n, written addi-
tively. For any element Q ∈ 〈G〉 there is a unique integer q ∈ [0, n− 1] such
that Q = qG. (The group element qG is the element obtained by adding q
copies of G together. This is called scalar multiplication of G by q.) The
integer q is said to be the discrete logarithm of Q to the base G. The prob-
lem of computing the discrete logarithm of X to the base G, for a randomly
chosen element X ∈ 〈G〉, is called the discrete logarithm problem (DLP)
in 〈G〉. Groups where it is computationally difficult to solve the discrete
logarithm problem are important for cryptography.

Many cryptographic protocols depend more fundamentally on the com-
putational difficulty of the Diffie-Hellman problem (DHP). In the group 〈G〉,
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this is the problem of computing abG, given a random pair of group elements
aG and bG.

If the discrete logarithm problem is easy in a group, then the Diffie-
Hellman problem is also easy in that group. Several authors have studied
whether hardness of the discrete logarithm problem implies hardness of the
Diffie-Hellman problem.

In Section 2 we discuss an algorithm for finding the discrete logarithm
of an arbitrary element Q ∈ 〈G〉. The algorithm takes as input the group
generator G, positive integers u, v such that n = uv + 1, and a function
SDHPQ() related to Q that we will discuss shortly. The algorithm outputs
the integer q ∈ [0, n− 1] satisfying Q = qG.

The function SDHPQ takes as input an arbitrary group element X and
outputs the group element qX, where as above the integer q satisfies Q =
qG. This function is said to solve the static Diffie-Hellman problem for Q
(SDHPQ). Thus the SDHPQ function solves certain instances of the Diffie-
Hellman problem, namely those instances where one of the input elements
is Q. The static Diffie-Hellman problem is thus a special case of the Diffie-
Hellman problem.

Some cryptographic protocols provide an SDHPQ function to an adver-
sary as a normal part of their operation. Such systems include the Ford-
Kaliski server-assisted key generation protocol [7], basic ElGamal encryp-
tion [6], and Chaum and van Antwerpen’s Undeniable Signatures [2]. Some
implementations of other protocols may also provide such a function to ad-
versaries. In such cases the adverary can use our algorithm to attack the
protocol by finding the logarithm of Q, which may be a long term private
key. How this vulnerability affects the security level of a system will de-
pend on many factors, and this vulnerability is but one consideration. Such
attacks are discussed in more detail in Section 3.

The algorithm of Section 2 solves discrete logarithm challenges with the
aid of the function SDHPQ associated with the logarithm challenge Q. For
some groups, this algorithm finds the logarithm with a cost less than that
assumed possible without the aid of the helper function. In these cases the
algorithm can be interpreted as a reduction relating the difficulty of comput-
ing discrete logarithms and the difficulty of computing the SDHPQ function.
This is analagous to the work in [4, 1, 13] reducing the discrete logarithm
problem to the Diffie-Hellman problem. This reduction is discussed more
fully in Section 4.

We are not aware of any previous work relating the difficulty of com-
puting the SDHPQ function to other problems. Nor are we aware of any
previous work exploiting an SDHPQ function available in a cryptosystem to
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find the associated private key.

2 Using a SDHPQ function to find a logarithm

In this section, we give an algorithm that finds logarithms in the group
〈G〉. The algorithm takes as input the generator G, positive integers u, v
such that the group order is n = uv + 1, and the function SDHPQ for an
arbitrary element Q ∈ 〈G〉. After u evaluations of the SDHPQ function,
and with further off-line computational work of about 2(

√
u +
√

v) group
scalar multiplications, the algorithm outputs the unique integer q ∈ [0, n−1]
satisfying Q = qG.

For Q ∈ 〈G〉, we define the SDHPQ function as follows.

Definition 1 (The SDHPQ function on 〈G〉). The function SDHPQ maps
any X ∈ 〈G〉 to the group element qX, where q is the unique integer in
[0, n − 1] such that Q = qG.

A SDHPQ function solves the static Diffie-Hellman problem for Q, which
is the set of Diffie-Hellman problems where one of the parameters is fixed
to be the point Q. Being able to compute the SDHPQ function for every
Q ∈ 〈G〉 is equivalent to being able to compute the Diffie-Hellman function
on 〈G〉.

The basic idea of the algorithm is to work with exponents. To find q, we
instead find z, where q = gz for some primitive element (generator) g of F

∗

n.
To do this, we first compute quG by evaluating the SDHPQ function u times
in an iterative fashion. We then find integers t ∈ [0, u− 1] and y ∈ [0, v − 1]
such that z = tv + y. We accomplish this by finding discrete logarithms in
subgroups of F

∗

n of order u and v, represented as subsets of 〈G〉.
Theorem 1. There is an algorithm that (1) takes as input the group gen-
erator G, positive integers u, v such that the group has order n = uv + 1,
and a SDHPQ function for some Q ∈ 〈G〉, (2) outputs the logarithm q of
Q to the base G, and (3) requires u evaluations of the SDHPQ function, at
most 2(⌈√u ⌉+⌈√v ⌉) scalar multiplications in 〈G〉, and performs 10 simple
arithmetic operations on numbers no larger than n.

Proof. Let g be a generator of the multiplicative group F
∗

n. For simplicity,
we omit the notation “mod n” for expressions over F

∗

n.
The case q = 0 is easily detected by checking that SDHPQ(G) = 0

(the group identity), so henceforth we will assume that q ∈ F
∗

n. Because
g generates F

∗

n, we have q = gz for some integer z ∈ [0, n − 2]. Since
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z ∈ [0, n−2] we can write z = tv+y for some t ∈ [0, u−1] and y ∈ [0, v−1].
We now determine the values of t and y.

We find y = z mod v as follows. Apply u iterations of SDHPQ to G to
obtain

E = SDHPu
Q(G) = quG. (1)

Because qu = gzu = gtuv+uy = (gu)y, we see qu lies in 〈gu〉, the order v
subgroup of F

∗

n. Let m = ⌈√v ⌉. Because y ∈ [0, v−1], we have y = yqm+yr

for some 0 6 yq < m and 0 6 yr < m. To find y, we find the values of yq, yr

by emulating Shanks’ Baby-Step-Giant-Step (BSGS) algorithm [14] to find
an element in each of the lists

U = {(G, 0), (guG, 1), (g2uG, 2), . . . , (g(m−1)uG,m− 1)} (2)

and

V = {(E, 0), (g−muE, 1), (g−2muE, 2), . . . , (g−(m−1)muE,m− 1)}. (3)

such that the first coordinates of the two elements are equal.1 The second
coordinate of these pairs determine i and j such that giuG = g−jmuE.
From this we have E = g(i+jm)u. Since also E = quG = guyG, we have
y = i + jm mod v.

We now find t. Compute the point

F = g−ySDHPQ(G). (4)

Since SDHPQ(G) = qG = gtv+yG we see F = gtvG = (gv)tG. To find t, we
once again use BSGS. Let k = ⌈√u ⌉ and as above find an element from
each of the sets

Q = {(G, 0), (gvG, 1), (g2vG, 2), . . . , (g(k−1)vG, k − 1)} (5)

and

W = {(F, 0), (g−kvF, 1), (g−2kvF, 2), . . . , (g−(k−1)kvF, k − 1)}, (6)

such that the first coordinates are equal. The second coordinates provide
integers h, l such that ghvG = g−lkvF . Thus F = g(h+lk)vG. Since we also
have F = (gv)tG, we have t = h + lk mod u. Finally we can now easily
determine z = tv + y, and our desired logarithm q = gz.

1Because y can be written as y = yqm + yr for some 0 6 yq < m and 0 6 yr < m,
these elements exist.
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The computations required by this algorithm are: u queries to the
SDHPQ function, at most 2⌈√u ⌉+ 2⌈√v ⌉ scalar multiplications and table
lookups in the group 〈G〉, seven exponentiations in F

∗

n (gu, wm, g−y, gv, qk,
qt, q = gz), and three further arithmetic operations (y = i + jm, t = h + lk,
and z = tv + y).

Other than the evaluations of the SDHPQ function, the majority of the
cost in implementing this algorithm is computing and storing the set U in
(2) and the set Q in (5), followed by an iteration over each element in the set
V in (3) and in the set W in (6). In other words, the cost of this algorithm
is generally dominated by about 2(

√
u +
√

v) scalar multiplications in the
group 〈G〉. Henceforth, we will ignore the constant number of operations in
Fn and the table-lookups. If we count each query to the SDHP function as
a cost of one scalar multiplication, then the total cost of the algorithm is
approximately u + 2

√
v scalar multiplications.

In Section 4 it will be useful to know the cost of the algorithm in terms
of group operations. This amounts to estimating the cost of a scalar multi-
plication in the 〈G〉 relative to the cost of a group operation in 〈G〉. Because
so many scalar multiplications are required in the algorithm, precomputa-
tion is worthwhile. In precomputation, operations common to each scalar
multiplication are performed once and stored for re-use in each scalar mul-
tiplication. For example, simply precomputing the 2 · 16 · ⌈log2(n)⌉ values
x2yE and x2yG for each integer y ∈ [0, ⌊log2(n)⌋] and x ∈ [0, 15] allows one
to compute the scalar multiplication of E or G by an integer in [0, n− 1] in
at most log2(n)/4 group operations using standard algorithms. In this case
we may assume that the cost C of a scalar multiplication in 〈G〉 is approxi-
mately log2(n)/4 group operations. If extreme amounts of precomputation
are possible the value of C may even be a small constant such as C = 5.

Like the Pollard-ρ algorithm and the BSGS algorithm, the algorithm
of Theorem 1 is generic in the sense that it works in many groups: the
algorithm needs only to perform group addition and inversion operations and
requires that group elements have unique representations as binary strings.
We use the BSGS algorithm to find q, mainly because the resulting analysis
is simple. The Pollard-ρ algorithm [16] can also be used with straightforward
modifications. The primary advantage of the Pollard-ρ algorithm over the
BSGS algorithm is that it requires much less memory.
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3 The Algorithm as an Attack

In some real world systems, an SDHPQ oracle is available. An SDHPQ oracle
is a system entity that will compute a SDHPQ function for an adversary.
In this case, an adversary might use our algorithm to find the private key
q more quickly than by using other algorithms for the discrete logarithm
problem. To assess the cost of the attack, we model each SDHP oracle
query as taking C group operations, representing the situation where the
adversary must wait for the entity to perform a scalar multiplication when
answering an SDHP oracle query.

The minimum total cost of the algorithm is achieved when u ≈ 3
√

n, for
a total cost of about 3 3

√
n scalar multiplications. For a random prime n, we

expect n− 1 to have a factorization similar to that of random integer. The
largest prime factor of random integers is commonly of size nlog 2 ≈ n2/3, see
[10, §4.5.4]. Thus taking v to be this prime factor, so v ≈ n2/3, we have u ≈
n1/3 which is roughly optimal for minimizing the total cost of the algorithm.
In this case the algorithm has a cost of roughly Cu+2C(

√
u+
√

v) ≈ 3C 3
√

n
group operations. If the system is based on a group where solving the
discrete logarithm problem is assumed to take at least

√
n group operations,

then this attack may be faster than previously known attacks.
A class of groups of cryptographic interest where the discrete logarithm

problem is assumed to require at least O(
√

n) group operations are elliptic
curve groups. The fastest known algorithms for solving a general elliptic
curve DLP are the generic algorithms such as BSGS and Pollard-ρ, which
require O(

√
n) group operations. Therefore Theorem 1 may be relevant for

systems using elliptic curve groups.
Elliptic curves of considerable interest are those recommended by NIST.

Complete factorizations of n − 1 for all but the largest of the NIST curves
are given in Table 1. It is evident that for all of these factorizations, some
prime factors can be collected to form a factor u ≈ 3

√
n. Furthermore, it is

also evident that much smaller values of u can be found; this will be useful
in Section 4.

For a concrete example consider when n ≈ 2160, and u ≈ 3
√

n ≈ 253. We
take the cost of a scalar multiplication in the group to be C ≈ 40 group
operations. Then the cost needed to find q using the algorithm is equivalent
to about 261 group operations.

In practice it may be impractical or impossible to query a SDHP oracle
a large number ( ≈ 3

√
n, i.e.) of times. However we stress that even for

smaller values of u (i.e. values of u much less than ≈ 3
√

n ) the algorithm
applies, and in general the algorithm will still cost less than the O(

√
n)
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K163 2 · 3 · 7 · 89 · 163 · 1141450141721 · 8405730267419952240402658413113
B163 2 · 53 · 383 · 21179 · 6799065232765820831739327781612099975633
P192 24

· 5 · 2389 · 9564682313913860059195669 · 3433859179316188682119986911
P224 22

· 36
· 5 · 17 · 2153 · 50520606258875818707470860153287666700917696099933389351507

K233 2·32
·11·233·108642473·2207506409·311893462098235579692316688834118334464906148909

B233 2 · 7 · 37 · 18979 · 38113 · 202109 · 3033517343 ·

30043507786353646304476366422610331237097041
P256 24

· 3 · 71 · 131 · 373 · 3407 · 17449 · 38189 · 187019741 · 622491383 · 1002328039319 ·

2624747550333869278416773953
K283 25

· 3 · 72
· 11 · 29 · 71 · 281 · 283 · 2671 · 338407 · 22546501513 · 192823925599 ·

116698795142641026871500401147411093537981
B283 2 · 3 · 5 · 1171 · 21557 · 709278129089 · 77278332289855843 · 270232628419903655237 ·

692755864106165926572290093
P384 2 · 32

· 72
· 13 · 1124679999981664229965379347·

3055465788140352002733946906144561090641249606160407884365391979704929268480326390471

K409 2 · 33
· 5 · 73

· 137 · 193 · 409 · 2957 · 218513 · 884595540581·
577398720414295771068959122346240935663610269238758501582529986181411789537723272519316503

B409 2 · 5 · 19 · 5197 · 2967389 · 373915204316167 · 4452775636363539023772341 ·

10586924767739866570546627965598729 · 12799224774627771513209574192269246077

Table 1: Factorizations of n− 1 for some NIST curves

group operations required by generic discrete logarithm algorithms such as
the Shank’s BSGS or Pollard-ρ algorithms. In particular for small values of
u the algorithm cost will be close to 2C

√
v, and so the algorithm may be

faster than generic algorithms even for u as small as 4C2.
In some groups used for cryptography, index calculus algorithms for solv-

ing discrete logarithms have subexponential cost. These algorithms are usu-
ally significantly faster than generic algorithms. For example, in the group
F
∗

p of units in a finite field, where p ≈ 21024, it is expected that index calcu-
lus algorithms can find discrete logarithms with a cost of about 280 group
operations.

The algorithm of Theorem 1 still applies for groups where index calculus
methods are available, but it may not always result in a faster method to
find logarithms in the group. The algorithm in Theorem 1 has a cost of at
least 3

√
n scalar multiplications (including oracle queries), as noted earlier.

If n ≈ 21024, then this cost is at least 2341 group operations, which is far
greater than the cost using index calculus methods.

Some standards, such as DSA in FIPS 186-2 and ANSI X9.30 and Diffie-
Hellman in ANSI X9.42, use a group 〈G〉 that is a much smaller subgroup
of the group F

∗

p. Generally, the size 〈G〉 is chosen so that generic DLP algo-
rithms in 〈G〉 have approximately the same cost as index calculus algorithms
in F

∗

p. In cases like this Theorem 1 may may provide a faster attack on the
system than is currently known.
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Some systems using hardware modules for protecting private keys might
provide an SDHP oracle to an adversary. For example, a smart card is a
highly constrained environment, and sometimes all hashing and key deriva-
tion is done outside the security boundary of the smart card, usually on the
smart card reader. A smart card (holding a user’s private key q) used in an
encryption scheme may be presented with a recipient public key R and the
card may simply return the element qR to the reader, where the subsequent
encryption processing is performed. In this case, a malicious smart card
reader could use the smart card as an SDHP oracle.

We now discuss certain protocols that provide a SDHP oracle to an
adversary.

3.1 ElGamal Encryption

ElGamal encryption, in its original form (see [6], or [14, §8.4.2]) makes an
SDHP oracle available. ElGamal encryption of message m to an entity with
public key Q = gq results in a ciphertext c = (c1, c2) = (gx,mgqx). In a
chosen ciphertext attack against an encryption scheme, an adversary can
select any ciphertext and obtain its decryption. For ElGamal encryption,
if this adversary chooses c = (gx, c2), then it obtains m = c2/g

qx. The
adversary can compute gqx = c2/m, which solves SDHPQ for instance gx.
Therefore with just a little arithmetic a chosen ciphertext adversary can use
the ElGamal decryption oracle as an SDHP oracle.

ElGamal encryption is already known to be vulnerable to chosen cipher-
text attacks. The known attacks mainly allow information to be learned
about previously encrypted messages, but they do not leak anything about
the private key. Finding the private key q is a serious break of the system,
because all encryption is compromised. When using the victim as an SDHP
oracle in this manner the private key q can be found with about 3

√
n cost,

assuming the adversary knows a factor u ≈ 3
√

n of n−1. The attack requires
u decryption queries to the victim, which when u ≈ 3

√
n may be too large

to allow for a realistic attack. However as mentioned before smaller values
of u can be used and may give a practical attack.

Two countermeasures to this attack on ElGamal encryption are to use a
key derivation function or to use symmetric encryption rather than simple
multiplication to transform the message. Such countermeasures are incorpo-
rated in more modern variants of the DH-based encryption, such as DHAES
and ECIES [11].

A second, more fundamental, kind of countermeasure is to add integrity
to the ciphertext. The integrity serves to ensure that a valid ciphertext
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can only be created by an entity that knows the ephemeral private key
x associated with the ephemeral public key gx. If the decryptor reveals
gqx, an entity who already knows x does not learn anything new, because
gqx is computable from the static public key gq and the ephemeral private
key x. In our attack the adversary chooses ephemeral public keys gx for
which it does not know the corresponding ephemeral private key x. This
countermeasure is also part of DHAES and ECIES. Cramer and Shoup’s
public-key encryption scheme [3] also includes this countermeasure. The
original rationale for including integrity in the ciphertext is to prevent chosen
ciphertext attacks by making them no more effective than passive attacks.

Incidentally, the original description of the Diffie-Hellman key agreement
protocol [5] did not use key derivation function. Therefore, if an adversary
has some means of obtaining the DH shared secret key, our attack may be
possible.

3.2 Ford-Kaliski Key Retrieval

In the Ford-Kaliski key retrieval scheme [7], which is currently being stan-
dardized in [8] and [9], an SDHP oracle is available. Part of this scheme (see
Figure 1) requires the server to compute cq for any value c sent to it by a
client, where q is a long-term key. The server thus provides an SDHP oracle
to an adversary, so the security of q is potentially weakened by an adversary
using our attack.

Client Server
b ∈R [1, n − 1]
c = gb

π
c−−−→

s = cq

s←−−−
z = sb−1modn

Figure 1: Ford-Kaliski Key Retrieval

The generator gπ in Figure 1 is derived from user password π. The value
z = gd

π depends on a user secret and on a server secret, and is called a
hardened password. In practice, cryptographic keys will be derived from z.
The protocol prevents dictionary attacks against the user’s password because
z is derived from a strong secret q kept by the server. If q is revealed, then
the user becomes vulnerable to dictionary searches.
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In early drafts of [8] and [9], elliptic curve groups are allowed with this
protocol, so our attack may be relevant to the protocol as described there.
Recent versions of these draft standards have incorporated measures specif-
ically designed to counter our attack.

3.3 Chaum and van Antwerpen’s Undeniable Signatures

Another scheme in which an SDHP oracle is available is Chaum and van
Antwerpen’s undeniable signature scheme [2]. In this scheme, the signer has
private key q and computes her signature on message m as s = mq. The
groups suggested for use in [2] are F

∗

p where p is a strong prime. Therefore,
this protocol is not affected by the attack, because index calculus methods
solve the DLP faster than our attack. However if the protocol is implemented
with other groups such as elliptic curve groups or DSA groups, which is
reasonable because they make the scheme much more efficient, then our
attacks may be viable. A very simple countermeasure to this attack is to
hash the message before exponentiating.

4 The Algorithm as a Reduction

In Diffie-Hellman (DH) key agreement [5], Alice and Bob exchange gx and
gy and then compute a shared secret gxy, using their respective knowledge
of x and y. Hardness of the DHP is necessary to ensure that an adversary
who sees gx and gy cannot easily compute the shared secret gxy.

In the static variant of DH key agreement, Alice has a static private key
q, meaning she always uses x = q. It is unclear how this reuse affects her
security. If the instances of the DHP are arranged in a square matrix indexed
by 〈G〉 × 〈G〉, as in Figure 2(a), then Alice is more concerned about the
hardness of the Diffie-Hellman problem instances in the single row defined
by x = q (Figure 2(b).) Even if the DHP is hard for almost all instances,
it is possible that it is easy when restricted to Alice’s row, and so hardness
of the DHP may not be sufficient to ensure security for Alice. The static

Diffie-Hellman problem (SDHP) is to solve this subset of the instances of
the DHP that Alice would be concerned with:

Problem 1 (SDHP). Given fixed g and gq, and random gy, find gqy.

It is not apparent from existing results that computing the SDHPQ func-
tion is hard if q is unknown. In this section we discuss a version of this state-
ment that is implied by Theorem 1. Algorithms used in previous reductions
of this sort have required an input function computing the Diffie-Hellman
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g . . . gy . . .
...

. . .
...

. . .

gx . . . gxy . . .
...

. . .
...

. . .

(a) DHP

gq . . . gqy . . .

(b) SDHP

Figure 2: The SDHP as a single row of the DHP matrix

secret corresponding to any pair of group elements, and subsequently finds
logarithms of arbitrary elements in the group. Our algorithm works when
the input function can only compute Diffie-Hellman secrets when one of the
inputs is fixed to be a group element Q, but as a consequence can only
compute the discrete logarithm corresponding to Q.

den Boer [4] shows that if n − 1 is smooth, then DLP 6P DHP, where
6P indicates a polynomial-cost reduction. The intuition is that given a
DHP-oracle, one can basically perform the Pohlig-Hellman algorithm in the
exponent space, to find a discrete logarithm in the multiplicative group F

∗

n,
which in turn provides a logarithm in 〈G〉.

Maurer and Wolf [12] show that if a certain auxiliary group exists, then
DLP 6P DHP. The auxiliary group has smooth order and its elements
are represented using elements from 〈G〉. This work can be thought of as
extending den Boer’s work in the same way that Lenstra’s elliptic curve
factoring method extends Pollard’s p− 1 factoring method.

Boneh and Lipton [1] proved that there is always a subexponential-cost
reduction DLP 6 DHP. One consequence is that the DHP can be solved in
subexponential time only if the DLP can be solved in subexponential time.

Muzereau, Smart and Vercauteren [15] find auxiliary elliptic curves for
some NIST recommended elliptic curves, and give exact estimates of the
difficulty of the DHP in comparison to the assumed difficulty of the DLP
for these curves.

4.1 Hardness of the SDHP

Maurer and Wolf [13, §3] discuss how strongly one can connect the DHP to
the DLP:

As mentioned already, it is obvious that the DH problem is at
most as hard as the DL problem. The strongest form of the
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converse statement would be that no more efficient way exists
for solving the DH problem than to solve the DL problem first.
In a strict sense, this would mean that given gu and gv , it is only
possible to obtain guv when computing u or v first. However, it
appears that such a statement can be proved only by giving an
efficient algorithm that, when given gu, gv , and guv, computes
u or v. Of course such an algorithm can only exist for groups
for which it is easy to compute discrete logarithms because this
algorithm itself can be used to compute the discrete logarithm
of a group element a efficiently when giving as input a, gs (in
random order), and as.

A less strict version is that for groups for which the DH prob-
lem can be solved efficiently for all instances (or at least a non-
negligible fraction) it is possible to compute discrete logarithms
efficiently. It was shown that this is true for certain classes of
groups.

Instead of considering all instances of the DHP, or a non-negligible fraction
thereof, the SDHP involves a negligible fraction of instances. So, according
to the notion of strength that Maurer and Wolf discuss above, by considering
fewer instances, we are establishing a stronger form of converse statement,
namely a tighter connection between the DHP and DLP.

If we assume that finding q is hard in the sense that it cannot be found
with computational cost less than

√
n group operations in 〈G〉, then our

reduction implies the SDHP is hard. The bound on the difficulty of the
SDHP given by our result depends on the relative size of u and v. In
the following, we have selected u so that the resulting lower bound on the
difficulty of the SDHP is as large as possible. Weaker results are obtained
for other values of u.

Corollary 2. Assume that the conditions of Theorem 1 hold, that a scalar
multiplication has cost C, that u = 9C2, and that C > 4. If the private key
q cannot be found with computational cost less than

√
n, then any algorithm

that solves SDHP has a computational cost of at least
√

n

27C2
− 1. (7)

Proof. Suppose that an algorithm can compute any SDHP query with com-
putational cost equivalent to at most W group operations. From Theorem 1
and our assumption, we can find q with cost:

uW + 2C(⌈
√

u ⌉+ ⌈
√

v ⌉). (8)
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By assumption, the cost of finding q is at least
√

n, so:

uW + 2C(⌈
√

u ⌉+ ⌈
√

v ⌉) >
√

n

and thus

W > (
√

n− 2C(⌈
√

u ⌉+ ⌈
√

v ⌉))/u
>
√

n/u− 2C(
√

u + 1 +
√

n/u + 1)/u

=
√

n(1− 2C/
√

u)/u− 2C(
√

u + 2)/u

=
√

n(1− (2C)/(3C))/(9C2)− 2C(3C + 2)/(9C2) (9)

=
√

n/(27C2)− (6C + 4)/(9C)

>
√

n/(27C2)− (6C + C)/(9C)

>
√

n/(27C2)− 1. �

To see what this means in practice, consider when the group is an elliptic
curve group of prime order n ≈ 2160. Then we take C = log2(n)/4 ≈ 40,
if we wish to consider a cost model in which storage is expensive. Assume
that a private key q cannot be found with computational cost less than 280.
Then, computing the value of SDHP without access to q cannot be done
with computational cost less than

280

27 · 402 − 1 ≈ 280/215.398... ≈ 264. (10)

This is a lower bound on the hardness of the SDHP given a lower bound
on the hardness of finding q. Ideally, one would like a lower bound of 280,
because the best known generic attacks on the SDHP still cost this much.

If one instead takes a cost model in which storage is less expensive, so
that a group operation and a group element storage each cost a unit, then
a smaller value of C may be used, for example C = 5. Then the cost of
breaking the SDHP for a similar sized n is at least:

280

27 · 25 ≈ 280/675 ≈ 270.6. (11)

Asymptotically, the cost of finding q is at least O(
√

n) then the cost
breaking SDHP is O(

√
n/ log(n)2) in the storage-efficient cost model or

O(
√

n) in the storage-relaxed cost model. In other words, asymptotically
the reduction is quite tight, polynomial time and constant time, respectively,
in the two cost models.
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For the NIST curves, n−1 is not smooth. Therefore den Boer’s reduction
[4] does not apply. Muzereau, Smart and Vercauteren [15] found auxiliary
groups for most of the NIST curves, thereby explicitly demonstrating that
Maurer and Wolf’s [12] reduction can be made into an efficient reduction.2

These results establish that the DHP is almost as hard as the DLP in the
NIST groups, although a main point of our paper is that one must be careful
equating hardness of the DHP with the security of an individual private key
repeatedly used in key exchanges.

4.2 A Hierarchy of Hard Problems

The SDHP cannot be harder than the DHP, because a solver of the DHP
can be used to solve the SDHP, as follows. Suppose an algorithm A solves
the DHP with success probability p, assessed over the random choices of
x, y ∈ [1, n− 1]. To solve SDHP, choose random z and let gx = (gq)z. Then
use A to solve the DHP with probability p of finding gxy. The solution to
the SDHP is (gxy)z

−1modn. We write SDHP 6 DHP, or SDHP 6P DHP to
emphasize that this is a polynomial-time reduction.

This relationship between the SDHP and the DHP is akin to the random

self-reducibility (RSR) property of the DHP. An algorithm for solving the
DHP with probability p can be converted into algorithm for solving any
instance of the SDHP, except that is slower by factor of 1/p. To solve a
SDHP instance with probability close to 1, even if the probability p is small,
we can keep choosing z until we can solve the DHP instance. This will take
1/p attempts on average.

Conversely, an algorithm for solving the SDHP can be regarded an algo-
rithm for solving the DHP with a 1/n chance of success. Therefore random
self-reducibility can be applied. Unfortunately, it is not useful, because the
success probability is so low. We would get a DHP solver that is n times
slower than the SDHP solver and this is much slower than the O(

√
n)-time

solution to the DHP that first solves a DLP instance (using Pollard-ρ, say)
and then exponentiating.

A subtle point when comparing the SDHP and the DLP is that in Corol-
lary 2 only one instance of the discrete logarithm can be solved, the instance
gq. This leads one to consider the single-instance Discrete Logarithm Prob-

lem (SDLP), in which one is given fixed gq, with the task being to find
q. Previous work [4, 12, 1] compared the DHP and DLP, while ours com-
pares the SDHP and SDLP. Thus our work can be considered as parallel to

2Incidentally, the lower bounds in [15] for hardness of the DHP are similar to our lower
bound.
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previous work, in the sense that it works in the single-instance setting.

4.3 Analogy with the Rabin Cryptosystem

Although the RSA cryptosystem is very similar to the Rabin cryptosystem,
nobody has proven that duplicating the raw RSA private key operation is
as hard as finding the RSA private key. The RSA inversion problem, which
must be hard for RSA to be secure, is therefore potentially easier than
integer factorization.

The original Rabin cryptosystem [17] has the property that duplicating
the private key operation is almost as hard as finding the private key. How-
ever the original Rabin cryptosystem is vulnerable to active attacks. The
modern Rabin cryptosystem uses hash-based padding to protect against ac-
tive attacks. Furthermore, this padding also allows for security proofs of
the scheme in the random oracle model. Active attacks on the original
Rabin cryptosystem are analogous to our attack, and the modern padding
mechanism for Rabin cryptosystems is analogous the key derivation func-
tion mechanism for DH cryptosystems. Both these mechanisms prevent the
reduction algorithms that prove security from being turned into attacks that
hurt the security.

With DH based cryptosystems it was potentially the case that breaking
DH cryptosystems was potentially much easier than solving the DLP. In
other words, the situation was like the situation for RSA today. With the
pioneering work of den Boer’s and others, DH cryptosystems were put on a
better footing: they were based on a problem provably almost as hard as the
DLP. Our reduction can be thought of as extending this effort. Specifically,
we establish that duplicating an individual entity’s private key operation is
almost as hard as finding the individual’s private key.
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