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Abstrat. We give a simple and eÆient onstrution of a veri�able

random funtion (VRF) on bilinear groups. Our onstrution is diret.

In ontrast to prior VRF onstrutions [MRV99,Lys02℄, it avoids using

an ineÆient Goldreih-Levin transformation, thereby saving several fa-

tors in seurity. Our proofs of seurity are based on a deisional bilinear

DiÆe-Hellman inversion assumption, whih seems reasonable given ur-

rent state of knowledge. For small message spaes, our VRF's proofs and

keys have onstant size. By utilizing a ollision-resistant hash funtion,

our VRF an also be used with arbitrary message spaes. We show that

our sheme an be instantiated with an ellipti group of very reasonable

size. Furthermore, it an be made distributed and proative.

1 Introdution

The notion of a veri�able random funtion (VRF) was introdued by Miali,

Rabin, and Vadhan [MRV99℄. A VRF is a pseudo-random funtion that pro-

vides a non-interatively veri�able proof for the orretness of its output. Given

an input value x, the knowledge of the seret key SK enables omputing the

funtion value y = F

SK

(x) together with the proof of orretness �

x

. This proof

onvines every veri�er that the value y = F

SK

(x) is indeed orret with respet

to the publi key of the VRF. We an thus view a VRF as a ommitment to an

exponential number of random-looking bits.

Sine their introdution, VRFs have found useful appliations in protool

design. To give a few examples, in [MR01℄, VRFs were used to redue the number

of rounds for resettable zero-knowledge proofs to three in the bare model. Miali

and Rivest [MR02℄ used VRFs to onstrut a non-interative lottery system

employed in miropayments. Reently, Jareki and Shmatikov [JS04℄ onstruted

a veri�able transation esrow sheme, whih preserves users' anonymity while

enabling automati de-esrow, again with the help of VRFs.

Unfortunately, despite their utility, VRFs are not very well studied. As

of this moment, there exist only a handful of onstrutions in the standard

model: [MRV99, Lys02, Dod03℄. With the exeption of [Dod03℄, these works
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�rst onstrut a veri�able unpreditable funtion (VUF), whose output

is hard to predit but does not neessarily look random. Then, they use an in-

eÆient Goldreih-Levin hardore bit [GL89℄ to onvert a VUF into a VRF,

losing a fator in seurity along the way. The size of proofs and keys of VRFs

in [Lys02,Dod03℄ is linear in the input size, whih may be undesirable in resoure-

onstrained environments. Meanwhile, the VRF of Miali-Rabin-Vadhan [MRV99℄

operates over a large multipliative group Z

�

n

whih has to be very large to

ahieve reasonable seurity. Before the VRF value an be omputed, it requires

inputs to be mapped to primes in a ompliated fashion.

In this paper, we onstrut a simple VRF on groups equipped with bilinear

maps. We forego using the Goldreih-Levin hardore bit, thereby saving several

fators in seurity. The VRF's inputs need not be primes or odewords of some

speial enoding. For small inputs, our VRF has onstant size proofs and keys. By

utilizing a ollision-resistant hash funtion, our VRF an also be used with inputs

of arbitrary size. Our VRF onstrution an be instantiated with ellipti groups

of reasonable size, whih makes it quite pratial. In partiular, it was reently

used by Camenish, Hohenberger, and Lysyanskaya [CHL05℄ to onstrut an

eÆient o�ine anonymous e-ash sheme.

We begin in Setion 2 by formalizing the notions of a VRF and a VUF. We

also review the de�nition of bilinear groups, whih are used in our onstru-

tions. These groups, reently disovered by Joux and Nguyen [JN01℄, have the

property that deisional DiÆe-Hellman (DDH) assumption (given g; g

a

; and g

b

,

distinguish g

ab

from random) beomes easy, but omputational DiÆe-Hellman

(CDH) assumption (given g; g

a

; and g

b

, ompute g

ab

) still remains hard. This

fat gives us many useful properties like veri�ability.

Our proofs of seurity rely on two assumptions, whih we desribe in Se-

tion 3. Informally, they are:

� q-DiÆe-Hellman inversion assumption (q-DHI) states that no eÆient

algorithm an ompute g

1=x

on input

�

g; g

x

; : : : ; g

(x

q

)

�

[MSK02℄;

� q-deisional bilinear DiÆe-Hellman inversion assumption (q-DBDHI)

states that no eÆient algorithm an distinguish e(g; g)

1=x

from random even

after seeing

�

g; g

x

; : : : ; g

(x

q

)

�

[BB04a℄. (Here e(�; �) is a bilinear map, whih

we de�ne later.)

In Setion 4, we give our onstrutions and analyze their eÆieny.

First, in Setion 4.1, we onsider a signature due to Boneh and Boyen [BB04b℄.

On input x and a seret key SK, the signature is Sign

SK

(x) = g

1=(x+SK)

.

Boneh and Boyen proved this signature to be existentially unforgeable against

non-adaptive adversaries. By restriting inputs to have slightly superlogarith-

mi size (in seurity parameter), we are able to prove seurity against adaptive

adversaries. As a result, our proof is more involved, but neessarily less tight

than the proof of [BB04b℄. We thus obtain a VUF, whih is seure for small

inputs. This VUF an then be onverted into a VRF using the approah of prior

works [MRV99,Lys02℄. Spei�ally, we ould use the Goldreih-Levin hardore

bit [GL89℄ to onvert it into a VRF with output size 1, amplify the output size



to math the size of the input, and then follow a tree-based onstrution to get

a VRF with arbitrary input size. Needless, to say this is rather ineÆient.

Instead, we prefer to onstrut a VRF diretly (Setion 4.2), saving several

fators in seurity. We give a simple diret VRF onstrution for small inputs,

whih is seure under the q-DBDHI assumption. On input x and a seret key

SK, our VRF omputes (F

SK

(x); �(x)), where F

SK

(x) = e(g; g)

1=(x+SK)

is the

VRF value and �(x) = g

1=(x+SK)

is the proof of orretness. We an apply

a ollision-resistant hash funtion to large inputs to transform our VRF into

a VRF with unrestrited input length. By making the group size suÆiently

large, we an onstrut a VRF with inputs of size roughly 160 bits, whih is

the length of SHA-1 digests. In theory, we do not have to assume existene of

ollision-resistant hash funtions, and ould also apply a variant of a generi tree

transformation to amplify the input size. Even though keys and proofs no longer

have onstant size, they are still shorter than the keys and proofs in onstrutions

of [MRV99,Lys02℄. We analyze how large the group has to be and how our VRF

ompares with other onstrutions in Setion 4.4.

Evaluating the VRF at a single server is a performane bottlenek and a

single point of failure. Naturally, in Setion 5, we sketh how to make our VRF

distributed and proative.

In Setion 6, we analyze the q-DBDHI assumption in the generi group model

�a la Shoup [Sho97℄. We show that if the adversary an distinguish e(g; g)

1=x

from

random with probability

1

2

+ �, he will need to perform (at least) 
(

p

�p=q)

generi group operations in a group of size p.

We onlude in Setion 7.

2 De�nitions

Before presenting our results, we review some basi de�nitions and assumptions.

Let k be a seurity parameter. As ustomary, we model the protool parti-

ipants by probabilisti Turing mahines whose running time is polynomial in k

(abbreviated as PPTs). Hereafter, we use negl(k) to refer to a negligible funtion

in the seurity parameter k.

1

2.1 VRFs and VUFs

Let a : N 7! N [ f�g and b : N 7! N be any funtions for whih a(k) and b(k) are

omputable in poly(k) time (exept when a takes the value �).

2

Intuitively, a veri�able random funtion (VRF) behaves like a pseudo-

random funtion, but also provides proofs of its outputs' orretness.

De�nition 1. A funtion family F

(�)

(�) : f0; 1g

a(k)

7! f0; 1g

b(k)

is a family of

VRFs if there exists a PPT algorithm Gen and deterministi algorithms Prove

1

A funtion negl(k) : N 7! (0; 1) is negligible if for every  > 0, for all suÆiently

large k, negl(k) < 1=k



. See any standard referene, suh as [GB99℄, for details.

2

When a(k) takes the value of �, it means the VRF is de�ned for inputs of all length.



and Ver suh thatGen(1

k

) outputs a pair of keys (PK;SK); Prove

SK

(x) om-

putes

�

F

SK

(x); �

SK

(x)

�

, where �

SK

(x) is the proof of orretness; and Ver

PK

(x; y; �)

veri�es that y = F

SK

(x) using the proof �. Formally, we require:

1. Uniqueness: no values (PK; x; y

1

; y

2

; �

1

; �

2

) an satisfy Ver

PK

(x; y

1

; �

1

) =

Ver

PK

(x; y

2

; �

2

) when y

1

6= y

2

.

2. Provability: if (y; �) = Prove

SK

(x); then Ver

PK

(x; y; �) = 1.

3. Pseudorandomness: for any PPT algorithm A = (A

1

; A

2

), who does not

query its orale on x (see below),

Pr

2

6

4

b = b

0

(PK;SK) Gen(1

k

); (x; st) A

Prove(�)

1

(PK);

y

0

= F

SK

(x); y

1

 f0; 1g

b(k)

;

b f0; 1g; b

0

 A

Prove(�)

2

(y

b

; st)

3

7

5

�

1

2

+negl(k)

A veri�able unpreditable funtion (VUF) is a lose relative of a VRF.

Essentially, it is a signature sheme, whose veri�ation algorithm aepts at most

one signature for every publi key and message.

De�nition 2. A funtion family F

(�)

(�) : f0; 1g

a(k)

7! f0; 1g

b(k)

is a family of

VUFs, if it satis�es the same syntax, uniqueness and provability properties of the

VRFs, exept the pseudorandomness property is replaed by the following weaker

property:

3' . Unpreditability: for any PPT algorithm A, who does not query its orale

on x (see below),

Pr

�

y = F

SK

(x) (PK;SK) Gen(1

k

); (x; y) A

Prove(�)

(PK)

�

� negl(k)

For exat seurity bounds, we will oasionally say that F

(�)

(�) is an (s

0

(k); �

0

(k))

seure VRF (resp., VUF) if no adversary A, running in time s

0

(k), an break

the pseudorandomness (resp., unpreditability) property with �

0

(k) advantage.

2.2 Bilinear Groups

Our onstrutions utilize bilinear maps. We briey review their properties below.

Let G and G

1

be two (multipliative) yli groups of prime order p. Let g

be a generator of G . We shall all a mapping bilinear if it is linear with respet

to eah of its variables. Formally:

De�nition 3. An (admissible) bilinear map e : G � G 7! G

1

is a map with the

following properties:

1. Bilinear: for all u; v 2 G and x; y 2 Z; we have e(u

x

; v

y

) = e(u; v)

xy

.

2. Non-degenerate: e(g; g) 6= 1.

3. Computable: there is an eÆient algorithm to ompute e(u; v) for all

u; v 2 G .



We say that a group G is bilinear if the group ation in G is eÆiently

omputable and there exists a group G

1

and an admissible bilinear map e :

G � G 7! G

1

. Heneforth, we shall use G

�

to stand for G nf1

G

g.

Bilinear maps provide an algorithm for solving the deisional DiÆe-Hellman

problem (DDH) in G

3

; this property omes in handy for onstruting a veri�a-

tion algorithm for our VRF. Suh maps an be onstruted from Weil and Tate

pairings on ellipti urves or abelian varieties [BF01,JN01,Gal01℄.

3 Complexity Assumptions

We now state the hardness assumptions on whih our onstrutions are based.

In what follows, we let G be a bilinear group of prime order p, and let g be its

generator.

3.1 DiÆe-Hellman Inversion Assumption

Our VUF onstrution relies on the DiÆe-Hellman inversion (DHI) assumption,

whih was originally proposed in [MSK02℄.

The q-DHI problem in G asks: given the tuple

�

g; g

x

; : : : ; g

(x

q

)

�

2 (G

�

)

q+1

as

input, ompute g

1=x

. An algorithm A has advantage � in solving q-DHI in G if

Pr

h

A(g; g

x

; : : : ; g

(x

q

)

) = g

1=x

i

� �;

where probability is taken over the oin tosses of A and the random hoie of

x 2 Z

�

p

.

4

De�nition 4. (q-DHI assumption) We say that (t; q; �)-DHI assumption holds

in G if, no t-time algorithm A has advantage at least � in solving the q-DHI

problem in G .

Boneh and Boyen [BB04a℄ pointed out that the q-DHI assumption implies

the (q+1)-generalized DiÆe-Hellman assumption (GDH), on whih many ryp-

tographi onstrutions are based (e.g., [NR97,BS02,STW96℄ as well as the VUF

in [Lys02℄). Therefore, seurity of our VUF rests on an equivalent omplexity

assumption to the one made before.

3.2 Deisional Bilinear DiÆe-Hellman Inversion Assumption

In order to onstrut a VRF diretly, we need to make a deisional bilinear DiÆe-

Hellman inversion assumption (DBDHI). It was previously used in [BB04a℄ to

onstrut a seletive-ID seure identity based enryption sheme.

3

Spei�ally, to determine whether (g; g

x

; g

y

; g

z

) is a DDH tuple, we an hek if

e(g

x

; g

y

) = e(g; g

z

):

4

To simplify the notation, from now on, we assume that algorithms impliitly get a

desription of the bilinear group (G ; Æ; p), on whih they operate, as input.



The q-DBDHI problem asks: given the tuple

�

g; g

x

; : : : ; g

(x

q

)

�

as input, dis-

tinguish e(g; g)

1=x

from random. Formally, an algorithm A has advantage � in

solving the q-DBDHI problem if

�

�

�

Pr

h

A(g; g

x

; : : : ; g

(x

q

)

; e(g; g)

1=x

) = 1

i

� Pr

h

A(g; g

x

; : : : ; g

(x

q

)

; � ) = 1

i

�

�

�

� �;

where the probability is taken over the internal oin tosses of A and hoies of

x 2 Z

�

p

and � 2 G

1

.

De�nition 5. (q-DBDHI assumption) We say that the (t; q; �)-DBDHI assump-

tion holds in G if no t-time algorithm A has advantage at least � in solving the

q-DBDHI problem in G .

Clearly, q-DBDHI is a stronger assumption than q-DHI. To provide more

on�dene in its validity, we analyze this assumption in the generi group model

in Setion 6.

4 Our Construtions

In Setion 4.1, we show that a signature sheme due to Boneh and Boyen [BB04b℄

is in fat a VUF for small inputs. We ould then use a Goldreih-Levin hardore

bit to onvert the resulting VUF into a VRF. However, the generi transfor-

mation is rather ineÆient, so we hoose to forego it. Instead, in Setion 4.2,

we onstrut our VRF diretly for inputs of small size. We then show how to

extend the VRF input size in Setion 4.3. Finally, we evaluate our onstrution's

eÆieny in Setion 4.4.

Fix input length a(k), output length b(k), and seurity s(k). For notational

onveniene, we will usually omit the seurity parameter k, writing, for example,

a or s, instead of a(k) or s(k). Let G (jG j = p) be a bilinear group, whose order

p is a k-bit prime. Let g be a generator of G . Throughout, we shall assume that

messages an be enoded as elements of Z

�

p

.

4.1 A Veri�able Unpreditable Funtion

In order to build the intuition for our next proof, we �rst desribe how to on-

strut a simple VUF (Gen;Sign;Ver), whih is seure for small (superlogarith-

mi) inputs.

Algorithm Gen(1

k

): Chooses a seret s 2

r

Z

�

p

and sets the seret key to

SK = s and a publi key to PK = g

s

.

Algorithm Sign

SK

(x): Outputs the signature Sign

SK

(x) = g

1=(x+SK)

. Note

that the proof is embedded in the output value so we do not need to inlude

it expliitly.



Algorithm Ver

PK

(x; y): Outputs 1 if e(g

x

� PK; y) = e(g; g); otherwise, out-

puts 0. Indeed, if the VRF value y was orretly omputed, we have:

e(g

x

� PK; y) = e(g

x

g

s

; g

1=(x+s)

) = e(g; g):

Boneh and Boyen [BB04b℄ proved this sheme to be existentially unforgeable

against non-adaptive adversaries for inputs of arbitrary size. In our proof,

we restrit inputs to have slightly superlogarithmi size in k (just like [MRV99℄

do); that is, we set a(k) = log s(k) = 
(log k). This enables us to enumerate all

possible messages in s(k) time and to respond to adversary's queries adaptively.

Further, the proof of [BB04b℄ is based on a q-strong DiÆe-Hellman assumption

(q-SDH), whih is implied by a weaker q-DHI assumption used in our proof.

Correspondingly, our proof is more involved but neessarily less tight than the

proof of [BB04b℄.

Theorem 1. Suppose the (s(k); 2

a(k)

; �(k))-DHI assumption holds in a bilinear

group G (jG j = p). Let the input size be a(k) and output size be b(k) = log

2

p.

Then (Gen;Sign;Ver) is a (s

0

(k); �

0

(k)) veri�able unpreditable funtion, where

s

0

(k) = s(k)=(2

a(k)

� poly(k)) and �

0

(k) = �(k) � 2

a(k)

.

Proof. It is easy to see that uniqueness and provability properties of De�nition 2

are satis�ed. We thus onentrate on residual unpreditability.

We shall use a shortut and write q = 2

a(k)

. Suppose there exists an adversary

A, running in time s

0

(k), whih guesses the value of the funtion at an unseen

point with non-negligible probability �

0

(k). We shall onstrut an algorithm B

that by interating with A breaks the q-DHI assumption with non-negligible

probability.

Input to the redution: Algorithm B is given a tuple

�

g; g

�

; : : : ; g

(�

q

)

�

2

(G

�

)

q+1

, for some unknown � 2 Z

�

p

. Its goal is to ompute g

1=�

.

Key generation: We guess that A will output a forgery on message x

0

2

r

f0; 1g

a(k)

. We are right with probability 1=2

a(k)

; error probability an be

dereased by repeating the algorithm suÆiently many times. Let � = � �

x

0

.

5

We don't know what � is beause � is seret. However, we an use the

Binomial Theorem to ompute

�

g

�

; : : : ; g

(�

q

)

�

from

�

g

�

; : : : ; g

(�

q

)

�

. Beause

a(k) = log(s(k)), we an enumerate all possible inputs in s(k) time. Let f(z)

be the polynomial

f(z) =

Y

w2f0;1g

a

;w 6=x

0

(z + w) =

q�1

X

j=0



j

z

j

(for some oeÆients 

0

; : : : ; 

q�1

).

We an ompute

h = g

f(�)

=

q�1

Y

j=0

�

g

(�

j

)

�



j

and h

�

=

q

Y

j=1

�

g

(�

j

)

�



j�1

:

5

For the sake of readability, we slightly abuse the notation. We should really have

written � = ��  (x

0

), where  : f0; 1g

a(k)

7! Z

�

p

.



Finally, we set h to be the generator and give PK = h

�

to A. The seret

key is SK = �, whih we don't know ourselves.

Responding to orale queries: Without loss of generality, we assume that A

never repeats a query. Consider the ith query (1 � i < q) on message x

i

. If

x

i

= x

0

, then we fail. Otherwise, we must ompute Sign

SK

(x

i

) = h

1=(x

i

+�)

.

Let f

i

(z) be the polynomial

f

i

(z) = f(z)=(z + x

i

) =

q�2

X

j=0

d

j

z

j

(for some oeÆients d

0

; : : : ; d

q�2

).

We an ompute

g

f

i

(�)

=

q�2

Y

j=0

�

g

(�

j

)

�

d

j

= h

1=(x

i

+�)

and return it as the signature.

Outputting the forgery: Eventually,A outputs a forgery (x

�

; �

�

). If x

�

6= x

0

,

then our simulation failed. Beause the signature is unique, we must have

�

�

= h

1=(x

0

+�)

= g

f(�)=(x

0

+�)

. Compute

f(z)=(z + x

0

) =

q�2

X

j=0



j

z

j

+



�1

z + x

0

;

where 

�1

6= 0. Hene,

0

�

�

�

�

q�2

Y

j=0

�

g

(�

i

)

�

�

i

1

A

1=

�1

= g

1=(x

0

+�)

= g

1=�

:

Let �

0

(k) = �(k) � 2

a(k)

and s

0

(k) = s(k)=(2

a(k)

� poly(k)). To �nish the

proof, note that algorithm B sueeds with probability �

0

(k)=2

a(k)

= �(k).

Its running time is dominated by answering orale queries, and eah query

takes (2

a(k)

� 2) � poly(k) time to answer. Therefore, B will run in roughly

s

0

(k) � 2

a(k)

poly(k) = s(k) time.

ut

Remark 1. The seurity redution of Theorem 1 is not tight. It allows to on-

strut VUFs with input roughly a(k) = 
(log s(k)). In theory, this means that

the input size we an ahieve might be only slightly superlogarithmi in k (similar

to [MRV99℄). First, it might be reasonable to assume subexponential hardness

of the q-DHI assumption whih will immediately allow one to support input of

size k


(1)

. Also, by utilizing a ollision-resistant hash funtion, we will anyway

only need to onstrut VUFs with relatively small input size suh as 160 bits.

Indeed, in Setion 4.4, we show that our onstrution seems to yield a pratial

and seure VUF for inputs of arbitrary length already when k = 1; 000 bits.



4.2 A Veri�able Random Funtion

Our main ontribution is a diret onstrution of a veri�able random funtion

from a slightly stronger q-DBDHI assumption. The VRF (Gen;Prove;Ver) is

as follows.

Algorithm Gen(1

k

): Chooses a seret s 2

r

Z

�

p

and sets the seret key to

SK = s and the publi key to PK = g

s

.

Algorithm Prove

SK

(x): We let Prove

SK

(x) =

�

F

SK

(x); �

SK

(x)

�

where

F

SK

(x) = e(g; g)

1=(x+SK)

is the VRF output and �

SK

(x) = g

1=(x+SK)

is

the proof of orretness.

AlgorithmVer

PK

(x; y; �): To verify whether y was omputed orretly, hek

if e(g

x

� PK; �) = e(g; g) and whether y = e(g; �). If both heks sueed,

output 1; otherwise, output 0.

We an prove this sheme to be seure (in the sense of De�nition 1) for small

inputs (superlogarithmi in k). We then show how to onvert it into a VRF with

unrestrited input size.

Theorem 2. Suppose the (s(k); 2

a(k)

; �(k))-deisional BDHI assumption holds

in a bilinear group G (jG j = p). Let the input size be a(k) and the output size

be b(k) = log

2

p. Then (Gen;Prove;Ver), as de�ned above, is a (s

0

(k); �

0

(k))

veri�able random funtion, where s

0

(k) = s(k)=(2

a(k)

�poly(k)) and �

0

(k) = �(k) �

2

a(k)

.

Proof. It is trivial to show that uniqueness and provability properties of De�ni-

tion 1 are satis�ed. We thus onentrate on the pseudorandomness property.

We shall use q = 2

a(k)

as a shortut. For sake of ontradition, suppose there

exists an algorithm A = (A

1

; A

2

), whih runs in time s

0

(k), and an distinguish

between F

SK

(x) = e(g; g)

1=(x+s)

(for some x) and a random element in G

1

with

probability at least 1=2 + �

0

(k). We shall onstrut an algorithm B that uses A

to break the q-DBDHI assumption in G .

Input to the redution: Algorithm B is given a tuple (g; g

�

; : : : ; g

(�

q

)

; � ) 2

(G

�

)

q+1

� G

1

, where � is either e(g; g)

1=�

2 G

1

or a random element in G

1

.

Its goal is to output 1 if � = e(g; g)

1=�

and 0 otherwise.

Key generation: We guess that A will hoose to distinguish the VRF value

on message x

0

2 f0; 1g

a(k)

. Let � = ��x

0

(see footnote 5). We generate the

publi and private keys for algorithm A as in the proof of Theorem 1. Using

the Binomial Theorem, we ompute the tuple

�

g

�

; : : : ; g

(�

q

)

�

. We de�ne

f(z) =

Y

w2f0;1g

a

;w 6=x

0

(z + w) =

q�1

X

j=0



j

z

j

:

This enables us to ompute the new base

h = g

f(�)

=

q�1

Y

j=0

�

g

(�

j

)

�



j

:



Finally, we give PK = h

�

=

Q

q

j=1

�

g

(�

j

)

�



j�1

as the publi key to A. The

seret key is SK = �, whih we don't know.

Responding to orale queries: Consider the ith query (1 � i < q) on mes-

sage x

i

. If x

i

= x

0

, we fail. Otherwise, we must respond with the orrespond-

ing proof �

SK

(x

i

) and a VRF value F

SK

(x

i

).

As in Theorem 1, we de�ne

f

i

(z) = f(z)=(z + x

i

) =

q�2

X

j=0

d

j

z

j

(for some oeÆients d

0

; : : : ; d

q�2

).

We an thus ompute

�

SK

(x

i

) =

q�2

Y

j=0

�

g

(�

j

)

�

d

j

= h

1=(�+x

i

)

and

F

SK

(x

i

) = e(h; �

SK

(x

i

)) = e(h; h)

1=(�+x

i

)

;

and return them to algorithm A.

Challenge: Eventually, A outputs a message x

�

on whih it wants to be hal-

lenged. If x

�

6= x

0

, then we fail. Otherwise, A laims to be able to distinguish

e(h; h)

1=(�+x

0

)

= e(h; h)

1=�

from a random element in G

1

. Reall that

f(z) =

q�1

X

i=0



i

z

i

:

Beause f(z) is not divisible by (z + x

0

), we have:

f

0

(z) = f(z)=(z + x

0

)�



z + x

0

=

q�2

X

j=0



j

z

j

(for some  6= 0 and oeÆients 

0

; : : : ; 

q�2

):

Let �

0

be

�

0

=

0

�

q�1

Y

i=0

q�2

Y

j=0

e

�

g

(�

i

)

; g

(�

j

)

�



i



j

1

A

�

 

q�2

Y

m=0

e

�

g; g

(�

t

)

�

� 

m

!

= e

�

g

f(�)

; g

f

0

(�)

�

� e

�

g



; g

f

0

(�)

�

(1)

= e(g; g)

(f(�)

2

� 

2

)=�

:

Set �

�

= �

(

2

)

��

0

. Notie that if � = e(g; g)

1=�

, then �

�

= e(g

f(�)

; g

f(�)=�

) =

e(h; h)

1=�

. Meanwhile, if � is uniformly distributed, then so is �

�

. We give

�

�

to algorithm A.

Note: It may seem as though omputing �

0

is very expensive. However,

from Equation (1), we see that the omputation only takes two bilinear map

evaluations.



Guess: Algorithm A makes some more queries to whih we respond as before.

Finally, A outputs a guess b 2 f0; 1g. We return b as our guess as well.

The running time of the redution is dominated by simulating orale queries.

Per every query, we must perform one bilinear map evaluation (this takes poly(k)

time) and (2

a

� 2) multipliations and exponentiations (this takes 2

a

� poly(k)

time). Beause A an make at most s

0

(k) queries, the running time of B is alto-

gether s

0

(k)(2

a(k)

�poly(k)). The advantage of B in this experiment is �

0

(k)=2

a(k)

.

Setting s

0

(k) = s(k)=(2

a(k)

�poly(k)) and �

0

(k) = �(k) �2

a(k)

ompletes the proof.

ut

We an view the VRF output F

SK

(x) = h

1=(x+SK)

as a pseudorandom fun-

tion (PRF) on the group G

1

, whose generator is h = e(g; g). By Theorem 2, this

PRF is seure (for small inputs) under the deisional bilinear DiÆe-Hellman

inversion assumption.

6

To the best of our knowledge, this is the �rst PRF in

the standard model, whih does not proess its inputs bit-by-bit. This PRF also

admits eÆient zero-knowledge proofs for statements of the form \y = F

SK

(x)"

and \y 6= F

SK

(x)" given a ommitment to the seret key SK (see [CL04℄ for an

overview of these tehniques).

4.3 Extending the Input Size

We onstruted a VRF (Gen;Prove;Ver), whih is provably seure for inputs

of small size a(k) = 
(log(k)). We now explain how to handle inputs of arbitrary

size.

Hashing the Input. Notie that if we have a VRF Prove

SK

(�) : f0; 1g

a(k)

7!

f0; 1g

b(k)

and a ollision-resistant hash funtion H(�) : f0; 1g

�

7! f0; 1g

a(k)

,

then their omposition Prove

SK

(H(�)) : f0; 1g

�

7! f0; 1g

b(k)

is trivially seure.

Although our seurity redution is relatively loose, we an make the size of a

bilinear group large enough (we give exat numbers in Setion 4.4) to have inputs

of length roughly a(k) = 160 bits, the length of SHA-1 digests. Restrition to

small inputs is therefore not limiting beause we an always hash longer inputs.

Tree Constrution. Although, we reommend using the previous onstrution

(by making the group large enough), in theory, we ould always use the (ineÆ-

ient) generi tree onstrution to extend the input length. Then, we do not have

to assume the existene of a ollision-resistant hash funtion; having a universal

hash funtion suÆes.

We shall use the following proposition:

6

In fat, we no longer need to use bilinear maps for a PRF. So, we an replae the

q-DBDHI assumption by a q-DDHI assumption: given the tuple

�

h; h

x

; : : : ; h

(x

q

)

�

2

(G

�

1

)

q+1

as input, distinguish h

1=x

from random [CHL05℄.



Proposition 1 ([MRV99℄). If there is a VRF with input length a(k), output

length 1, and seurity s(k), then there is a VRF with unrestrited input length,

output length 1 and seurity at least min(s(k)

1=5

; 2

a(k)=5

).

The onstrution �rst onverts a VRF with output length 1 into a VRF with

output length (a�1). This transformation loses a fator of a in seurity. Beause

our VRF has output length muh larger than 1, we an omit this step. Instead,

we apply a universal hash funtion to VRF's output and let the VRF's value be

the �rst (a � 1) bits of hash funtion's output (it is easily seen that these bits

will be pseudo-random as well).

The rest of the transformation proeeds as usual. We onstrut a binary trie

whose nodes are labeled with strings of length (a� 1). The root is labeled with

0

a�1

and the hildren of node y are labeled with VRF values on inputs (y Æ 0)

and (y Æ1). Computing the VRF value on input x 2 f0; 1g

�

amounts to traing a

path through the trie to the leaf orresponding to x. The VRF value is the label

of the leaf, and the proof of orretness is a tuple of VRF proofs|one proof per

eah node on the path traed by x.

7

We also note that both of the aforementioned tehniques an be used to

onvert the VUF in Setion 4.1 into a VUF with unrestrited input length.

4.4 EÆieny

We now ompare the eÆieny of our onstrution with that of prior VRF on-

strutions. We �x inputs to be a(k) = 160 bits, the length of SHA-1 digests, and

let q = 2

a(k)

.

Our VRF. Aording to Theorem 2, if (s(k); q; �(k))-DBDHI holds on G , then

our VRF is seure against adversaries running in time s

0

(k) = s(k)=(2

a(k)

�

poly(k)) that have advantage �

0

(k) = �(k) � 2

a(k)

. To be generous, we instantiate

�

0

(k) = 2

�80

, s

0

(k) = 2

80

, and poly(k) = 2

30

. Then, we have: �(k) = 2

�240

and s(k) = 2

270

. Suppose no better algorithm exists for breaking the q-DBDHI

assumption than a generi group algorithm. Then, by Theorem 3 (whih we

prove in Setion 6), for these seurity parameters a bilinear group must have

size:

p �

2(s(k) + q + 3)

2

q

�(k)

=

2

�

2

270

+ 2

160

+ 3

�

2

2

160

2

�240

� 2

940

:

Therefore, making the group size be a 1,000 bit prime seems suÆient to guar-

antee seurity of the VRF that takes 160 bit inputs. Proofs and keys onsist of a

single group element and will roughly be 125 bytes eah. We an generate suh

groups using the standard parameter generator of [BF01℄.

7

The inputs have to be pre�x-free for this tree onstrution to work. This an be

aomplished using tehniques of [MRV99℄.



VRF by Miali-Rabin-Vadhan [MRV99℄. This VRF operates over a mul-

tipliative group Z

�

n

, where n = pq is a k-bit RSA modulus. The fastest general-

purpose fatoring algorithm today is the number �eld sieve [BLZ94℄; it takes

approximately O

�

e

1:9223(k

1=3

(log k)

2=3

)

�

time to fator a k bit number. The RSA

based VUF (not even a VRF) onstruted in [MRV99℄ has seurity s

0

(k) =

s(k)=(2

a(k)

� poly(k)) where s(k) is hardness of RSA. Letting s

0

(k) = 2

80

and

poly(k) = 2

30

as before, we obtain an RSA seurity lower bound s(k) = 2

80

�

(2

160

� 2

30

) = 2

270

. Beause RSA is only seure as long as we annot fator n, to

get 270 bits of seurity, we need n to be a k-bit number, where

1:9223k

1=3

(log k)

2=3

= 270:

Hene, n must be at least 14; 383 bits long if we want to use this VUF on

160 bit inputs. After following the tree onstrution, proofs for 160 bit inputs

will have size 280 kilobytes.

VRF by Dodis [Dod03℄ and VUF by Lysyanskaya [Lys02℄. These on-

strutions work on ellipti urve groups, whose size is usually a 160 bit prime.

At the bare minimum, 160 bit messages yield keys and proofs of size 160 � 160 =

25; 600 bits, whih is about 3.2 kilobytes. In fat, they will probably have larger

size due to use of error-orreting odes and other enoding expansions.

To summarize, none of the prior VRF onstrutions ome lose to the 1,000

bit proofs and keys of our onstrution. If our VRF is used with the generi

tree onstrution, its keys and proofs onsist of jxj group elements (one group

element per input bit) when the input is x 2 f0; 1g

�

. This is less than the jxj

2

group elements (jxj group elements per input bit) needed by the VRF of [Lys02℄.

5 Distributed VRF

We point out that our VUF/VRF onstrutions an be easily made distributed

(or even proative). Indeed, both of the onstrutions simply amount to a seure

omputation of the funtion �

SK

(x) = g

1=(x+SK)

when the servers have shares of

the seret SK. Beause it is well known how to do multiparty addition, inversion,

and exponentiation [BIB89, BoGW88℄, this extension follows immediately. We

notie however that unlike the onstrution of Dodis [Dod03℄, our distributed

VUF/VRF is interative.

6 Generi Seurity of the q-DBDHI Assumption

In this setion, we examine the q-DBDHI assumption in the generi group model

of Shoup [Sho97℄. We proeed to derive a lower bound on the omputational

omplexity of a generi adversary who breaks this assumption.

In the generi group model, elements of G and G

1

are enoded as unique

random strings. We de�ne an injetive funtion � : Z

p

7! f0; 1g

�

, whih maps



a 2 Z

p

to the string representation �(g

a

) of g

a

2 G . Similarly, we de�ne a

funtion �

1

: Z

p

7! f0; 1g

�

for G

1

. The enodings are suh that non-group

operations are meaningless. There exist three orales whih ompute the group

ation in G , the group ation in G

1

, and the bilinear pairing e : G � G 7! G

1

from elements' enodings.

Theorem 3. Let A be an algorithm that solves the q-DBDHI problem. Assume

both x 2 Z

�

p

and the enoding funtions �; �

1

are hosen at random. If A makes at

most q

G

queries to orales omputing the group ation in G ; G

1

and the bilinear

mapping e : G � G 7! G

1

, then

�

�

�

�

�

Pr

"

A

�

p; �(1); �(x); : : : ; �(x

q

);

�

1

(�

0

); �

1

(�

1

)

�

= b

b

r

 f0; 1g;

�

b

 1=x; �

1�b

r

 Z

�

p

#

�

1

2

�

�

�

�

�

�

2(q

G

+ q + 3)

2

q

p

:

Proof. Instead of letting A interat with the atual orales, we play the following

game.

We maintain two lists: L = f (F

i

; s

i

) : i = 0; : : : ; t � 1g and L

0

= f (F

0

i

; s

0

i

) :

i = 0; : : : ; t

0

� 1g. Here s

i

; s

0

i

2 f0; 1g

�

are enodings and F

i

; F

0

i

2 Z

p

[X;�

0

; �

1

℄

are multivariate polynomials in X;�

0

; and �

1

. The total length of lists at step

� � q

G

in the game must be

t+ t

0

= � + q + 3: (2)

In the beginning of the game, we initialize the lists to F

0

= 1; F

1

= X; : : : ; F

q

=

X

q

and F

0

0

= �

0

; F

0

1

= �

1

. The orresponding enodings are set to arbitrary

distint strings in f0; 1g

�

. The lists have length t = q + 1 and t

0

= 2.

We start the game by providing A with enodings (s

0

; : : : ; s

q

; s

0

0

). Algorithm

A begins to issue orale queries. We respond to them in the standard fashion:

Group ation: Given a multiply/divide bit and two operands s

i

and s

j

(0 �

i; j < t), we ompute F

t

= F

i

�F

j

aordingly. If F

t

= F

l

for some l < t, we

set s

t

= s

l

. Otherwise, we set s

t

to a random string in f0; 1g

�

nfs

0

; : : : ; s

t�1

g,

and inrement t by 1. Group ation in G

1

is omputed similarly, exept we

operate on list L

0

.

Bilinear pairing: Given two operands s

i

and s

j

(0 � i; j < t), we ompute the

produt F

t

0

= F

i

F

j

. If F

t

0

= F

l

for some l < t

0

, we set s

t

0

= s

l

. Otherwise

we set it to a random string in f0; 1g

�

nfs

0

; : : : ; s

t

0

�1

g. We then inrement t

0

by 1.

After making at most q

G

queries, A halts with a guess

^

b 2 f0; 1g. We now

hoose x; y

r

 Z

�

p

and onsider �

b

 1=x; �

1�b

= y for both hoies of b. Our

simulation is perfet and reveals nothing to A about b unless the values that we

hose for indeterminates give rise to some non-trivial equality relation. Spei�-

ally, algorithm A wins the game if for any F

i

6= F

j

or any F

0

i

6= F

0

j

, either of

these hold:

1. F

i

(x; 1=x; y)� F

j

(x; 1=x; y) = 0



2. F

i

(x; y; 1=x)� F

j

(x; y; 1=x) = 0

3. F

0

i

(x; 1=x; y)� F

0

j

(x; 1=x; y) = 0

4. F

0

i

(x; y; 1=x)� F

0

j

(x; y; 1=x) = 0

Notie that A an never engineer an enoding of an element whose or-

responding polynomial would have a 1=X term unless he is expliitly given it.

Therefore, we an only get a non-trivial equality relation as a result of numerial

anellation.

For all i, deg(F

i

) � q and deg(F

0

i

) � 2q. We an use the Shwartz-Zippel

Theorem [Sh80℄ to bound the probability of a anellation. It tells us that for

all i; j, Pr[F

i

� F

j

= 0℄ � q=p and Pr[F

0

i

� F

0

j

= 0℄ � 2q=p. Thus A's advantage

is

� � 2 �

��

t

2

�

q

p

+

�

t

0

2

�

2q

p

�

< 2(q

G

+ q + 3)

2

q

p

(plugging into (2))

= O

�

q

2

G

q + q

3

p

�

:

ut

It turns out that in a generi group model algorithm A that solves the q-

DBDHI problem has advantage, whih is roughly twie as muh as an advantage

of an algorithm solving the q-SDH problem (see [BB04b℄, Setion 5). The as-

ymptoti omplexities are the same.

The following orollary is immediate.

Corollary 1. Any adversary that breaks the q-DBDHI assumption with proba-

bility

1

2

+ � (0 < � < 1=2) in generi groups of order p suh that q < o(

3

p

p)

requires 
(

p

�p=q) generi group operations.

7 Conlusion

We have presented a simple and eÆient onstrution of a veri�able random

funtion. Our VRF's proofs and keys have onstant size regardless of the size of

the input. Our proofs of seurity are based on a deisional bilinear DiÆe-Hellman

inversion assumption, whih seems reasonable given urrent state of knowledge.

We also demonstrated that our sheme an be instantiated with ellipti groups

of very reasonable size whih makes our onstrutions quite pratial.
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