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Abstra
t. We give a simple and eÆ
ient 
onstru
tion of a veri�able

random fun
tion (VRF) on bilinear groups. Our 
onstru
tion is dire
t.

In 
ontrast to prior VRF 
onstru
tions [MRV99,Lys02℄, it avoids using

an ineÆ
ient Goldrei
h-Levin transformation, thereby saving several fa
-

tors in se
urity. Our proofs of se
urity are based on a de
isional bilinear

DiÆe-Hellman inversion assumption, whi
h seems reasonable given 
ur-

rent state of knowledge. For small message spa
es, our VRF's proofs and

keys have 
onstant size. By utilizing a 
ollision-resistant hash fun
tion,

our VRF 
an also be used with arbitrary message spa
es. We show that

our s
heme 
an be instantiated with an ellipti
 group of very reasonable

size. Furthermore, it 
an be made distributed and proa
tive.

1 Introdu
tion

The notion of a veri�able random fun
tion (VRF) was introdu
ed by Mi
ali,

Rabin, and Vadhan [MRV99℄. A VRF is a pseudo-random fun
tion that pro-

vides a non-intera
tively veri�able proof for the 
orre
tness of its output. Given

an input value x, the knowledge of the se
ret key SK enables 
omputing the

fun
tion value y = F

SK

(x) together with the proof of 
orre
tness �

x

. This proof


onvin
es every veri�er that the value y = F

SK

(x) is indeed 
orre
t with respe
t

to the publi
 key of the VRF. We 
an thus view a VRF as a 
ommitment to an

exponential number of random-looking bits.

Sin
e their introdu
tion, VRFs have found useful appli
ations in proto
ol

design. To give a few examples, in [MR01℄, VRFs were used to redu
e the number

of rounds for resettable zero-knowledge proofs to three in the bare model. Mi
ali

and Rivest [MR02℄ used VRFs to 
onstru
t a non-intera
tive lottery system

employed in mi
ropayments. Re
ently, Jare
ki and Shmatikov [JS04℄ 
onstru
ted

a veri�able transa
tion es
row s
heme, whi
h preserves users' anonymity while

enabling automati
 de-es
row, again with the help of VRFs.

Unfortunately, despite their utility, VRFs are not very well studied. As

of this moment, there exist only a handful of 
onstru
tions in the standard

model: [MRV99, Lys02, Dod03℄. With the ex
eption of [Dod03℄, these works
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�rst 
onstru
t a veri�able unpredi
table fun
tion (VUF), whose output

is hard to predi
t but does not ne
essarily look random. Then, they use an in-

eÆ
ient Goldrei
h-Levin hard
ore bit [GL89℄ to 
onvert a VUF into a VRF,

losing a fa
tor in se
urity along the way. The size of proofs and keys of VRFs

in [Lys02,Dod03℄ is linear in the input size, whi
h may be undesirable in resour
e-


onstrained environments. Meanwhile, the VRF of Mi
ali-Rabin-Vadhan [MRV99℄

operates over a large multipli
ative group Z

�

n

whi
h has to be very large to

a
hieve reasonable se
urity. Before the VRF value 
an be 
omputed, it requires

inputs to be mapped to primes in a 
ompli
ated fashion.

In this paper, we 
onstru
t a simple VRF on groups equipped with bilinear

maps. We forego using the Goldrei
h-Levin hard
ore bit, thereby saving several

fa
tors in se
urity. The VRF's inputs need not be primes or 
odewords of some

spe
ial en
oding. For small inputs, our VRF has 
onstant size proofs and keys. By

utilizing a 
ollision-resistant hash fun
tion, our VRF 
an also be used with inputs

of arbitrary size. Our VRF 
onstru
tion 
an be instantiated with ellipti
 groups

of reasonable size, whi
h makes it quite pra
ti
al. In parti
ular, it was re
ently

used by Camenis
h, Hohenberger, and Lysyanskaya [CHL05℄ to 
onstru
t an

eÆ
ient o�ine anonymous e-
ash s
heme.

We begin in Se
tion 2 by formalizing the notions of a VRF and a VUF. We

also review the de�nition of bilinear groups, whi
h are used in our 
onstru
-

tions. These groups, re
ently dis
overed by Joux and Nguyen [JN01℄, have the

property that de
isional DiÆe-Hellman (DDH) assumption (given g; g

a

; and g

b

,

distinguish g

ab

from random) be
omes easy, but 
omputational DiÆe-Hellman

(CDH) assumption (given g; g

a

; and g

b

, 
ompute g

ab

) still remains hard. This

fa
t gives us many useful properties like veri�ability.

Our proofs of se
urity rely on two assumptions, whi
h we des
ribe in Se
-

tion 3. Informally, they are:

� q-DiÆe-Hellman inversion assumption (q-DHI) states that no eÆ
ient

algorithm 
an 
ompute g

1=x

on input

�

g; g

x

; : : : ; g

(x

q

)

�

[MSK02℄;

� q-de
isional bilinear DiÆe-Hellman inversion assumption (q-DBDHI)

states that no eÆ
ient algorithm 
an distinguish e(g; g)

1=x

from random even

after seeing

�

g; g

x

; : : : ; g

(x

q

)

�

[BB04a℄. (Here e(�; �) is a bilinear map, whi
h

we de�ne later.)

In Se
tion 4, we give our 
onstru
tions and analyze their eÆ
ien
y.

First, in Se
tion 4.1, we 
onsider a signature due to Boneh and Boyen [BB04b℄.

On input x and a se
ret key SK, the signature is Sign

SK

(x) = g

1=(x+SK)

.

Boneh and Boyen proved this signature to be existentially unforgeable against

non-adaptive adversaries. By restri
ting inputs to have slightly superlogarith-

mi
 size (in se
urity parameter), we are able to prove se
urity against adaptive

adversaries. As a result, our proof is more involved, but ne
essarily less tight

than the proof of [BB04b℄. We thus obtain a VUF, whi
h is se
ure for small

inputs. This VUF 
an then be 
onverted into a VRF using the approa
h of prior

works [MRV99,Lys02℄. Spe
i�
ally, we 
ould use the Goldrei
h-Levin hard
ore

bit [GL89℄ to 
onvert it into a VRF with output size 1, amplify the output size



to mat
h the size of the input, and then follow a tree-based 
onstru
tion to get

a VRF with arbitrary input size. Needless, to say this is rather ineÆ
ient.

Instead, we prefer to 
onstru
t a VRF dire
tly (Se
tion 4.2), saving several

fa
tors in se
urity. We give a simple dire
t VRF 
onstru
tion for small inputs,

whi
h is se
ure under the q-DBDHI assumption. On input x and a se
ret key

SK, our VRF 
omputes (F

SK

(x); �(x)), where F

SK

(x) = e(g; g)

1=(x+SK)

is the

VRF value and �(x) = g

1=(x+SK)

is the proof of 
orre
tness. We 
an apply

a 
ollision-resistant hash fun
tion to large inputs to transform our VRF into

a VRF with unrestri
ted input length. By making the group size suÆ
iently

large, we 
an 
onstru
t a VRF with inputs of size roughly 160 bits, whi
h is

the length of SHA-1 digests. In theory, we do not have to assume existen
e of


ollision-resistant hash fun
tions, and 
ould also apply a variant of a generi
 tree

transformation to amplify the input size. Even though keys and proofs no longer

have 
onstant size, they are still shorter than the keys and proofs in 
onstru
tions

of [MRV99,Lys02℄. We analyze how large the group has to be and how our VRF


ompares with other 
onstru
tions in Se
tion 4.4.

Evaluating the VRF at a single server is a performan
e bottlene
k and a

single point of failure. Naturally, in Se
tion 5, we sket
h how to make our VRF

distributed and proa
tive.

In Se
tion 6, we analyze the q-DBDHI assumption in the generi
 group model

�a la Shoup [Sho97℄. We show that if the adversary 
an distinguish e(g; g)

1=x

from

random with probability

1

2

+ �, he will need to perform (at least) 
(

p

�p=q)

generi
 group operations in a group of size p.

We 
on
lude in Se
tion 7.

2 De�nitions

Before presenting our results, we review some basi
 de�nitions and assumptions.

Let k be a se
urity parameter. As 
ustomary, we model the proto
ol parti
-

ipants by probabilisti
 Turing ma
hines whose running time is polynomial in k

(abbreviated as PPTs). Hereafter, we use negl(k) to refer to a negligible fun
tion

in the se
urity parameter k.

1

2.1 VRFs and VUFs

Let a : N 7! N [ f�g and b : N 7! N be any fun
tions for whi
h a(k) and b(k) are


omputable in poly(k) time (ex
ept when a takes the value �).

2

Intuitively, a veri�able random fun
tion (VRF) behaves like a pseudo-

random fun
tion, but also provides proofs of its outputs' 
orre
tness.

De�nition 1. A fun
tion family F

(�)

(�) : f0; 1g

a(k)

7! f0; 1g

b(k)

is a family of

VRFs if there exists a PPT algorithm Gen and deterministi
 algorithms Prove

1

A fun
tion negl(k) : N 7! (0; 1) is negligible if for every 
 > 0, for all suÆ
iently

large k, negl(k) < 1=k




. See any standard referen
e, su
h as [GB99℄, for details.

2

When a(k) takes the value of �, it means the VRF is de�ned for inputs of all length.



and Ver su
h thatGen(1

k

) outputs a pair of keys (PK;SK); Prove

SK

(x) 
om-

putes

�

F

SK

(x); �

SK

(x)

�

, where �

SK

(x) is the proof of 
orre
tness; and Ver

PK

(x; y; �)

veri�es that y = F

SK

(x) using the proof �. Formally, we require:

1. Uniqueness: no values (PK; x; y

1

; y

2

; �

1

; �

2

) 
an satisfy Ver

PK

(x; y

1

; �

1

) =

Ver

PK

(x; y

2

; �

2

) when y

1

6= y

2

.

2. Provability: if (y; �) = Prove

SK

(x); then Ver

PK

(x; y; �) = 1.

3. Pseudorandomness: for any PPT algorithm A = (A

1

; A

2

), who does not

query its ora
le on x (see below),

Pr

2

6

4

b = b

0

(PK;SK) Gen(1

k

); (x; st) A

Prove(�)

1

(PK);

y

0

= F

SK

(x); y

1

 f0; 1g

b(k)

;

b f0; 1g; b

0

 A

Prove(�)

2

(y

b

; st)

3

7

5

�

1

2

+negl(k)

A veri�able unpredi
table fun
tion (VUF) is a 
lose relative of a VRF.

Essentially, it is a signature s
heme, whose veri�
ation algorithm a

epts at most

one signature for every publi
 key and message.

De�nition 2. A fun
tion family F

(�)

(�) : f0; 1g

a(k)

7! f0; 1g

b(k)

is a family of

VUFs, if it satis�es the same syntax, uniqueness and provability properties of the

VRFs, ex
ept the pseudorandomness property is repla
ed by the following weaker

property:

3' . Unpredi
tability: for any PPT algorithm A, who does not query its ora
le

on x (see below),

Pr

�

y = F

SK

(x) (PK;SK) Gen(1

k

); (x; y) A

Prove(�)

(PK)

�

� negl(k)

For exa
t se
urity bounds, we will o

asionally say that F

(�)

(�) is an (s

0

(k); �

0

(k))

se
ure VRF (resp., VUF) if no adversary A, running in time s

0

(k), 
an break

the pseudorandomness (resp., unpredi
tability) property with �

0

(k) advantage.

2.2 Bilinear Groups

Our 
onstru
tions utilize bilinear maps. We brie
y review their properties below.

Let G and G

1

be two (multipli
ative) 
y
li
 groups of prime order p. Let g

be a generator of G . We shall 
all a mapping bilinear if it is linear with respe
t

to ea
h of its variables. Formally:

De�nition 3. An (admissible) bilinear map e : G � G 7! G

1

is a map with the

following properties:

1. Bilinear: for all u; v 2 G and x; y 2 Z; we have e(u

x

; v

y

) = e(u; v)

xy

.

2. Non-degenerate: e(g; g) 6= 1.

3. Computable: there is an eÆ
ient algorithm to 
ompute e(u; v) for all

u; v 2 G .



We say that a group G is bilinear if the group a
tion in G is eÆ
iently


omputable and there exists a group G

1

and an admissible bilinear map e :

G � G 7! G

1

. Hen
eforth, we shall use G

�

to stand for G nf1

G

g.

Bilinear maps provide an algorithm for solving the de
isional DiÆe-Hellman

problem (DDH) in G

3

; this property 
omes in handy for 
onstru
ting a veri�
a-

tion algorithm for our VRF. Su
h maps 
an be 
onstru
ted from Weil and Tate

pairings on ellipti
 
urves or abelian varieties [BF01,JN01,Gal01℄.

3 Complexity Assumptions

We now state the hardness assumptions on whi
h our 
onstru
tions are based.

In what follows, we let G be a bilinear group of prime order p, and let g be its

generator.

3.1 DiÆe-Hellman Inversion Assumption

Our VUF 
onstru
tion relies on the DiÆe-Hellman inversion (DHI) assumption,

whi
h was originally proposed in [MSK02℄.

The q-DHI problem in G asks: given the tuple

�

g; g

x

; : : : ; g

(x

q

)

�

2 (G

�

)

q+1

as

input, 
ompute g

1=x

. An algorithm A has advantage � in solving q-DHI in G if

Pr

h

A(g; g

x

; : : : ; g

(x

q

)

) = g

1=x

i

� �;

where probability is taken over the 
oin tosses of A and the random 
hoi
e of

x 2 Z

�

p

.

4

De�nition 4. (q-DHI assumption) We say that (t; q; �)-DHI assumption holds

in G if, no t-time algorithm A has advantage at least � in solving the q-DHI

problem in G .

Boneh and Boyen [BB04a℄ pointed out that the q-DHI assumption implies

the (q+1)-generalized DiÆe-Hellman assumption (GDH), on whi
h many 
ryp-

tographi
 
onstru
tions are based (e.g., [NR97,BS02,STW96℄ as well as the VUF

in [Lys02℄). Therefore, se
urity of our VUF rests on an equivalent 
omplexity

assumption to the one made before.

3.2 De
isional Bilinear DiÆe-Hellman Inversion Assumption

In order to 
onstru
t a VRF dire
tly, we need to make a de
isional bilinear DiÆe-

Hellman inversion assumption (DBDHI). It was previously used in [BB04a℄ to


onstru
t a sele
tive-ID se
ure identity based en
ryption s
heme.

3

Spe
i�
ally, to determine whether (g; g

x

; g

y

; g

z

) is a DDH tuple, we 
an 
he
k if

e(g

x

; g

y

) = e(g; g

z

):

4

To simplify the notation, from now on, we assume that algorithms impli
itly get a

des
ription of the bilinear group (G ; Æ; p), on whi
h they operate, as input.



The q-DBDHI problem asks: given the tuple

�

g; g

x

; : : : ; g

(x

q

)

�

as input, dis-

tinguish e(g; g)

1=x

from random. Formally, an algorithm A has advantage � in

solving the q-DBDHI problem if

�

�

�

Pr

h

A(g; g

x

; : : : ; g

(x

q

)

; e(g; g)

1=x

) = 1

i

� Pr

h

A(g; g

x

; : : : ; g

(x

q

)

; � ) = 1

i

�

�

�

� �;

where the probability is taken over the internal 
oin tosses of A and 
hoi
es of

x 2 Z

�

p

and � 2 G

1

.

De�nition 5. (q-DBDHI assumption) We say that the (t; q; �)-DBDHI assump-

tion holds in G if no t-time algorithm A has advantage at least � in solving the

q-DBDHI problem in G .

Clearly, q-DBDHI is a stronger assumption than q-DHI. To provide more


on�den
e in its validity, we analyze this assumption in the generi
 group model

in Se
tion 6.

4 Our Constru
tions

In Se
tion 4.1, we show that a signature s
heme due to Boneh and Boyen [BB04b℄

is in fa
t a VUF for small inputs. We 
ould then use a Goldrei
h-Levin hard
ore

bit to 
onvert the resulting VUF into a VRF. However, the generi
 transfor-

mation is rather ineÆ
ient, so we 
hoose to forego it. Instead, in Se
tion 4.2,

we 
onstru
t our VRF dire
tly for inputs of small size. We then show how to

extend the VRF input size in Se
tion 4.3. Finally, we evaluate our 
onstru
tion's

eÆ
ien
y in Se
tion 4.4.

Fix input length a(k), output length b(k), and se
urity s(k). For notational


onvenien
e, we will usually omit the se
urity parameter k, writing, for example,

a or s, instead of a(k) or s(k). Let G (jG j = p) be a bilinear group, whose order

p is a k-bit prime. Let g be a generator of G . Throughout, we shall assume that

messages 
an be en
oded as elements of Z

�

p

.

4.1 A Veri�able Unpredi
table Fun
tion

In order to build the intuition for our next proof, we �rst des
ribe how to 
on-

stru
t a simple VUF (Gen;Sign;Ver), whi
h is se
ure for small (superlogarith-

mi
) inputs.

Algorithm Gen(1

k

): Chooses a se
ret s 2

r

Z

�

p

and sets the se
ret key to

SK = s and a publi
 key to PK = g

s

.

Algorithm Sign

SK

(x): Outputs the signature Sign

SK

(x) = g

1=(x+SK)

. Note

that the proof is embedded in the output value so we do not need to in
lude

it expli
itly.



Algorithm Ver

PK

(x; y): Outputs 1 if e(g

x

� PK; y) = e(g; g); otherwise, out-

puts 0. Indeed, if the VRF value y was 
orre
tly 
omputed, we have:

e(g

x

� PK; y) = e(g

x

g

s

; g

1=(x+s)

) = e(g; g):

Boneh and Boyen [BB04b℄ proved this s
heme to be existentially unforgeable

against non-adaptive adversaries for inputs of arbitrary size. In our proof,

we restri
t inputs to have slightly superlogarithmi
 size in k (just like [MRV99℄

do); that is, we set a(k) = log s(k) = 
(log k). This enables us to enumerate all

possible messages in s(k) time and to respond to adversary's queries adaptively.

Further, the proof of [BB04b℄ is based on a q-strong DiÆe-Hellman assumption

(q-SDH), whi
h is implied by a weaker q-DHI assumption used in our proof.

Correspondingly, our proof is more involved but ne
essarily less tight than the

proof of [BB04b℄.

Theorem 1. Suppose the (s(k); 2

a(k)

; �(k))-DHI assumption holds in a bilinear

group G (jG j = p). Let the input size be a(k) and output size be b(k) = log

2

p.

Then (Gen;Sign;Ver) is a (s

0

(k); �

0

(k)) veri�able unpredi
table fun
tion, where

s

0

(k) = s(k)=(2

a(k)

� poly(k)) and �

0

(k) = �(k) � 2

a(k)

.

Proof. It is easy to see that uniqueness and provability properties of De�nition 2

are satis�ed. We thus 
on
entrate on residual unpredi
tability.

We shall use a short
ut and write q = 2

a(k)

. Suppose there exists an adversary

A, running in time s

0

(k), whi
h guesses the value of the fun
tion at an unseen

point with non-negligible probability �

0

(k). We shall 
onstru
t an algorithm B

that by intera
ting with A breaks the q-DHI assumption with non-negligible

probability.

Input to the redu
tion: Algorithm B is given a tuple

�

g; g

�

; : : : ; g

(�

q

)

�

2

(G

�

)

q+1

, for some unknown � 2 Z

�

p

. Its goal is to 
ompute g

1=�

.

Key generation: We guess that A will output a forgery on message x

0

2

r

f0; 1g

a(k)

. We are right with probability 1=2

a(k)

; error probability 
an be

de
reased by repeating the algorithm suÆ
iently many times. Let � = � �

x

0

.

5

We don't know what � is be
ause � is se
ret. However, we 
an use the

Binomial Theorem to 
ompute

�

g

�

; : : : ; g

(�

q

)

�

from

�

g

�

; : : : ; g

(�

q

)

�

. Be
ause

a(k) = log(s(k)), we 
an enumerate all possible inputs in s(k) time. Let f(z)

be the polynomial

f(z) =

Y

w2f0;1g

a

;w 6=x

0

(z + w) =

q�1

X

j=0




j

z

j

(for some 
oeÆ
ients 


0

; : : : ; 


q�1

).

We 
an 
ompute

h = g

f(�)

=

q�1

Y

j=0

�

g

(�

j

)

�




j

and h

�

=

q

Y

j=1

�

g

(�

j

)

�




j�1

:

5

For the sake of readability, we slightly abuse the notation. We should really have

written � = ��  (x

0

), where  : f0; 1g

a(k)

7! Z

�

p

.



Finally, we set h to be the generator and give PK = h

�

to A. The se
ret

key is SK = �, whi
h we don't know ourselves.

Responding to ora
le queries: Without loss of generality, we assume that A

never repeats a query. Consider the ith query (1 � i < q) on message x

i

. If

x

i

= x

0

, then we fail. Otherwise, we must 
ompute Sign

SK

(x

i

) = h

1=(x

i

+�)

.

Let f

i

(z) be the polynomial

f

i

(z) = f(z)=(z + x

i

) =

q�2

X

j=0

d

j

z

j

(for some 
oeÆ
ients d

0

; : : : ; d

q�2

).

We 
an 
ompute

g

f

i

(�)

=

q�2

Y

j=0

�

g

(�

j

)

�

d

j

= h

1=(x

i

+�)

and return it as the signature.

Outputting the forgery: Eventually,A outputs a forgery (x

�

; �

�

). If x

�

6= x

0

,

then our simulation failed. Be
ause the signature is unique, we must have

�

�

= h

1=(x

0

+�)

= g

f(�)=(x

0

+�)

. Compute

f(z)=(z + x

0

) =

q�2

X

j=0




j

z

j

+




�1

z + x

0

;

where 


�1

6= 0. Hen
e,

0

�

�

�

�

q�2

Y

j=0

�

g

(�

i

)

�

�


i

1

A

1=


�1

= g

1=(x

0

+�)

= g

1=�

:

Let �

0

(k) = �(k) � 2

a(k)

and s

0

(k) = s(k)=(2

a(k)

� poly(k)). To �nish the

proof, note that algorithm B su

eeds with probability �

0

(k)=2

a(k)

= �(k).

Its running time is dominated by answering ora
le queries, and ea
h query

takes (2

a(k)

� 2) � poly(k) time to answer. Therefore, B will run in roughly

s

0

(k) � 2

a(k)

poly(k) = s(k) time.

ut

Remark 1. The se
urity redu
tion of Theorem 1 is not tight. It allows to 
on-

stru
t VUFs with input roughly a(k) = 
(log s(k)). In theory, this means that

the input size we 
an a
hieve might be only slightly superlogarithmi
 in k (similar

to [MRV99℄). First, it might be reasonable to assume subexponential hardness

of the q-DHI assumption whi
h will immediately allow one to support input of

size k


(1)

. Also, by utilizing a 
ollision-resistant hash fun
tion, we will anyway

only need to 
onstru
t VUFs with relatively small input size su
h as 160 bits.

Indeed, in Se
tion 4.4, we show that our 
onstru
tion seems to yield a pra
ti
al

and se
ure VUF for inputs of arbitrary length already when k = 1; 000 bits.



4.2 A Veri�able Random Fun
tion

Our main 
ontribution is a dire
t 
onstru
tion of a veri�able random fun
tion

from a slightly stronger q-DBDHI assumption. The VRF (Gen;Prove;Ver) is

as follows.

Algorithm Gen(1

k

): Chooses a se
ret s 2

r

Z

�

p

and sets the se
ret key to

SK = s and the publi
 key to PK = g

s

.

Algorithm Prove

SK

(x): We let Prove

SK

(x) =

�

F

SK

(x); �

SK

(x)

�

where

F

SK

(x) = e(g; g)

1=(x+SK)

is the VRF output and �

SK

(x) = g

1=(x+SK)

is

the proof of 
orre
tness.

AlgorithmVer

PK

(x; y; �): To verify whether y was 
omputed 
orre
tly, 
he
k

if e(g

x

� PK; �) = e(g; g) and whether y = e(g; �). If both 
he
ks su

eed,

output 1; otherwise, output 0.

We 
an prove this s
heme to be se
ure (in the sense of De�nition 1) for small

inputs (superlogarithmi
 in k). We then show how to 
onvert it into a VRF with

unrestri
ted input size.

Theorem 2. Suppose the (s(k); 2

a(k)

; �(k))-de
isional BDHI assumption holds

in a bilinear group G (jG j = p). Let the input size be a(k) and the output size

be b(k) = log

2

p. Then (Gen;Prove;Ver), as de�ned above, is a (s

0

(k); �

0

(k))

veri�able random fun
tion, where s

0

(k) = s(k)=(2

a(k)

�poly(k)) and �

0

(k) = �(k) �

2

a(k)

.

Proof. It is trivial to show that uniqueness and provability properties of De�ni-

tion 1 are satis�ed. We thus 
on
entrate on the pseudorandomness property.

We shall use q = 2

a(k)

as a short
ut. For sake of 
ontradi
tion, suppose there

exists an algorithm A = (A

1

; A

2

), whi
h runs in time s

0

(k), and 
an distinguish

between F

SK

(x) = e(g; g)

1=(x+s)

(for some x) and a random element in G

1

with

probability at least 1=2 + �

0

(k). We shall 
onstru
t an algorithm B that uses A

to break the q-DBDHI assumption in G .

Input to the redu
tion: Algorithm B is given a tuple (g; g

�

; : : : ; g

(�

q

)

; � ) 2

(G

�

)

q+1

� G

1

, where � is either e(g; g)

1=�

2 G

1

or a random element in G

1

.

Its goal is to output 1 if � = e(g; g)

1=�

and 0 otherwise.

Key generation: We guess that A will 
hoose to distinguish the VRF value

on message x

0

2 f0; 1g

a(k)

. Let � = ��x

0

(see footnote 5). We generate the

publi
 and private keys for algorithm A as in the proof of Theorem 1. Using

the Binomial Theorem, we 
ompute the tuple

�

g

�

; : : : ; g

(�

q

)

�

. We de�ne

f(z) =

Y

w2f0;1g

a

;w 6=x

0

(z + w) =

q�1

X

j=0




j

z

j

:

This enables us to 
ompute the new base

h = g

f(�)

=

q�1

Y

j=0

�

g

(�

j

)

�




j

:



Finally, we give PK = h

�

=

Q

q

j=1

�

g

(�

j

)

�




j�1

as the publi
 key to A. The

se
ret key is SK = �, whi
h we don't know.

Responding to ora
le queries: Consider the ith query (1 � i < q) on mes-

sage x

i

. If x

i

= x

0

, we fail. Otherwise, we must respond with the 
orrespond-

ing proof �

SK

(x

i

) and a VRF value F

SK

(x

i

).

As in Theorem 1, we de�ne

f

i

(z) = f(z)=(z + x

i

) =

q�2

X

j=0

d

j

z

j

(for some 
oeÆ
ients d

0

; : : : ; d

q�2

).

We 
an thus 
ompute

�

SK

(x

i

) =

q�2

Y

j=0

�

g

(�

j

)

�

d

j

= h

1=(�+x

i

)

and

F

SK

(x

i

) = e(h; �

SK

(x

i

)) = e(h; h)

1=(�+x

i

)

;

and return them to algorithm A.

Challenge: Eventually, A outputs a message x

�

on whi
h it wants to be 
hal-

lenged. If x

�

6= x

0

, then we fail. Otherwise, A 
laims to be able to distinguish

e(h; h)

1=(�+x

0

)

= e(h; h)

1=�

from a random element in G

1

. Re
all that

f(z) =

q�1

X

i=0




i

z

i

:

Be
ause f(z) is not divisible by (z + x

0

), we have:

f

0

(z) = f(z)=(z + x

0

)�




z + x

0

=

q�2

X

j=0




j

z

j

(for some 
 6= 0 and 
oeÆ
ients 


0

; : : : ; 


q�2

):

Let �

0

be

�

0

=

0

�

q�1

Y

i=0

q�2

Y

j=0

e

�

g

(�

i

)

; g

(�

j

)

�




i




j

1

A

�

 

q�2

Y

m=0

e

�

g; g

(�

t

)

�


� 


m

!

= e

�

g

f(�)

; g

f

0

(�)

�

� e

�

g




; g

f

0

(�)

�

(1)

= e(g; g)

(f(�)

2

� 


2

)=�

:

Set �

�

= �

(


2

)

��

0

. Noti
e that if � = e(g; g)

1=�

, then �

�

= e(g

f(�)

; g

f(�)=�

) =

e(h; h)

1=�

. Meanwhile, if � is uniformly distributed, then so is �

�

. We give

�

�

to algorithm A.

Note: It may seem as though 
omputing �

0

is very expensive. However,

from Equation (1), we see that the 
omputation only takes two bilinear map

evaluations.



Guess: Algorithm A makes some more queries to whi
h we respond as before.

Finally, A outputs a guess b 2 f0; 1g. We return b as our guess as well.

The running time of the redu
tion is dominated by simulating ora
le queries.

Per every query, we must perform one bilinear map evaluation (this takes poly(k)

time) and (2

a

� 2) multipli
ations and exponentiations (this takes 2

a

� poly(k)

time). Be
ause A 
an make at most s

0

(k) queries, the running time of B is alto-

gether s

0

(k)(2

a(k)

�poly(k)). The advantage of B in this experiment is �

0

(k)=2

a(k)

.

Setting s

0

(k) = s(k)=(2

a(k)

�poly(k)) and �

0

(k) = �(k) �2

a(k)


ompletes the proof.

ut

We 
an view the VRF output F

SK

(x) = h

1=(x+SK)

as a pseudorandom fun
-

tion (PRF) on the group G

1

, whose generator is h = e(g; g). By Theorem 2, this

PRF is se
ure (for small inputs) under the de
isional bilinear DiÆe-Hellman

inversion assumption.

6

To the best of our knowledge, this is the �rst PRF in

the standard model, whi
h does not pro
ess its inputs bit-by-bit. This PRF also

admits eÆ
ient zero-knowledge proofs for statements of the form \y = F

SK

(x)"

and \y 6= F

SK

(x)" given a 
ommitment to the se
ret key SK (see [CL04℄ for an

overview of these te
hniques).

4.3 Extending the Input Size

We 
onstru
ted a VRF (Gen;Prove;Ver), whi
h is provably se
ure for inputs

of small size a(k) = 
(log(k)). We now explain how to handle inputs of arbitrary

size.

Hashing the Input. Noti
e that if we have a VRF Prove

SK

(�) : f0; 1g

a(k)

7!

f0; 1g

b(k)

and a 
ollision-resistant hash fun
tion H(�) : f0; 1g

�

7! f0; 1g

a(k)

,

then their 
omposition Prove

SK

(H(�)) : f0; 1g

�

7! f0; 1g

b(k)

is trivially se
ure.

Although our se
urity redu
tion is relatively loose, we 
an make the size of a

bilinear group large enough (we give exa
t numbers in Se
tion 4.4) to have inputs

of length roughly a(k) = 160 bits, the length of SHA-1 digests. Restri
tion to

small inputs is therefore not limiting be
ause we 
an always hash longer inputs.

Tree Constru
tion. Although, we re
ommend using the previous 
onstru
tion

(by making the group large enough), in theory, we 
ould always use the (ineÆ-


ient) generi
 tree 
onstru
tion to extend the input length. Then, we do not have

to assume the existen
e of a 
ollision-resistant hash fun
tion; having a universal

hash fun
tion suÆ
es.

We shall use the following proposition:

6

In fa
t, we no longer need to use bilinear maps for a PRF. So, we 
an repla
e the

q-DBDHI assumption by a q-DDHI assumption: given the tuple

�

h; h

x

; : : : ; h

(x

q

)

�

2

(G

�

1

)

q+1

as input, distinguish h

1=x

from random [CHL05℄.



Proposition 1 ([MRV99℄). If there is a VRF with input length a(k), output

length 1, and se
urity s(k), then there is a VRF with unrestri
ted input length,

output length 1 and se
urity at least min(s(k)

1=5

; 2

a(k)=5

).

The 
onstru
tion �rst 
onverts a VRF with output length 1 into a VRF with

output length (a�1). This transformation loses a fa
tor of a in se
urity. Be
ause

our VRF has output length mu
h larger than 1, we 
an omit this step. Instead,

we apply a universal hash fun
tion to VRF's output and let the VRF's value be

the �rst (a � 1) bits of hash fun
tion's output (it is easily seen that these bits

will be pseudo-random as well).

The rest of the transformation pro
eeds as usual. We 
onstru
t a binary trie

whose nodes are labeled with strings of length (a� 1). The root is labeled with

0

a�1

and the 
hildren of node y are labeled with VRF values on inputs (y Æ 0)

and (y Æ1). Computing the VRF value on input x 2 f0; 1g

�

amounts to tra
ing a

path through the trie to the leaf 
orresponding to x. The VRF value is the label

of the leaf, and the proof of 
orre
tness is a tuple of VRF proofs|one proof per

ea
h node on the path tra
ed by x.

7

We also note that both of the aforementioned te
hniques 
an be used to


onvert the VUF in Se
tion 4.1 into a VUF with unrestri
ted input length.

4.4 EÆ
ien
y

We now 
ompare the eÆ
ien
y of our 
onstru
tion with that of prior VRF 
on-

stru
tions. We �x inputs to be a(k) = 160 bits, the length of SHA-1 digests, and

let q = 2

a(k)

.

Our VRF. A

ording to Theorem 2, if (s(k); q; �(k))-DBDHI holds on G , then

our VRF is se
ure against adversaries running in time s

0

(k) = s(k)=(2

a(k)

�

poly(k)) that have advantage �

0

(k) = �(k) � 2

a(k)

. To be generous, we instantiate

�

0

(k) = 2

�80

, s

0

(k) = 2

80

, and poly(k) = 2

30

. Then, we have: �(k) = 2

�240

and s(k) = 2

270

. Suppose no better algorithm exists for breaking the q-DBDHI

assumption than a generi
 group algorithm. Then, by Theorem 3 (whi
h we

prove in Se
tion 6), for these se
urity parameters a bilinear group must have

size:

p �

2(s(k) + q + 3)

2

q

�(k)

=

2

�

2

270

+ 2

160

+ 3

�

2

2

160

2

�240

� 2

940

:

Therefore, making the group size be a 1,000 bit prime seems suÆ
ient to guar-

antee se
urity of the VRF that takes 160 bit inputs. Proofs and keys 
onsist of a

single group element and will roughly be 125 bytes ea
h. We 
an generate su
h

groups using the standard parameter generator of [BF01℄.

7

The inputs have to be pre�x-free for this tree 
onstru
tion to work. This 
an be

a

omplished using te
hniques of [MRV99℄.



VRF by Mi
ali-Rabin-Vadhan [MRV99℄. This VRF operates over a mul-

tipli
ative group Z

�

n

, where n = pq is a k-bit RSA modulus. The fastest general-

purpose fa
toring algorithm today is the number �eld sieve [BLZ94℄; it takes

approximately O

�

e

1:9223(k

1=3

(log k)

2=3

)

�

time to fa
tor a k bit number. The RSA

based VUF (not even a VRF) 
onstru
ted in [MRV99℄ has se
urity s

0

(k) =

s(k)=(2

a(k)

� poly(k)) where s(k) is hardness of RSA. Letting s

0

(k) = 2

80

and

poly(k) = 2

30

as before, we obtain an RSA se
urity lower bound s(k) = 2

80

�

(2

160

� 2

30

) = 2

270

. Be
ause RSA is only se
ure as long as we 
annot fa
tor n, to

get 270 bits of se
urity, we need n to be a k-bit number, where

1:9223k

1=3

(log k)

2=3

= 270:

Hen
e, n must be at least 14; 383 bits long if we want to use this VUF on

160 bit inputs. After following the tree 
onstru
tion, proofs for 160 bit inputs

will have size 280 kilobytes.

VRF by Dodis [Dod03℄ and VUF by Lysyanskaya [Lys02℄. These 
on-

stru
tions work on ellipti
 
urve groups, whose size is usually a 160 bit prime.

At the bare minimum, 160 bit messages yield keys and proofs of size 160 � 160 =

25; 600 bits, whi
h is about 3.2 kilobytes. In fa
t, they will probably have larger

size due to use of error-
orre
ting 
odes and other en
oding expansions.

To summarize, none of the prior VRF 
onstru
tions 
ome 
lose to the 1,000

bit proofs and keys of our 
onstru
tion. If our VRF is used with the generi


tree 
onstru
tion, its keys and proofs 
onsist of jxj group elements (one group

element per input bit) when the input is x 2 f0; 1g

�

. This is less than the jxj

2

group elements (jxj group elements per input bit) needed by the VRF of [Lys02℄.

5 Distributed VRF

We point out that our VUF/VRF 
onstru
tions 
an be easily made distributed

(or even proa
tive). Indeed, both of the 
onstru
tions simply amount to a se
ure


omputation of the fun
tion �

SK

(x) = g

1=(x+SK)

when the servers have shares of

the se
ret SK. Be
ause it is well known how to do multiparty addition, inversion,

and exponentiation [BIB89, BoGW88℄, this extension follows immediately. We

noti
e however that unlike the 
onstru
tion of Dodis [Dod03℄, our distributed

VUF/VRF is intera
tive.

6 Generi
 Se
urity of the q-DBDHI Assumption

In this se
tion, we examine the q-DBDHI assumption in the generi
 group model

of Shoup [Sho97℄. We pro
eed to derive a lower bound on the 
omputational


omplexity of a generi
 adversary who breaks this assumption.

In the generi
 group model, elements of G and G

1

are en
oded as unique

random strings. We de�ne an inje
tive fun
tion � : Z

p

7! f0; 1g

�

, whi
h maps



a 2 Z

p

to the string representation �(g

a

) of g

a

2 G . Similarly, we de�ne a

fun
tion �

1

: Z

p

7! f0; 1g

�

for G

1

. The en
odings are su
h that non-group

operations are meaningless. There exist three ora
les whi
h 
ompute the group

a
tion in G , the group a
tion in G

1

, and the bilinear pairing e : G � G 7! G

1

from elements' en
odings.

Theorem 3. Let A be an algorithm that solves the q-DBDHI problem. Assume

both x 2 Z

�

p

and the en
oding fun
tions �; �

1

are 
hosen at random. If A makes at

most q

G

queries to ora
les 
omputing the group a
tion in G ; G

1

and the bilinear

mapping e : G � G 7! G

1

, then

�

�

�

�

�

Pr

"

A

�

p; �(1); �(x); : : : ; �(x

q

);

�

1

(�

0

); �

1

(�

1

)

�

= b

b

r

 f0; 1g;

�

b

 1=x; �

1�b

r

 Z

�

p

#

�

1

2

�

�

�

�

�

�

2(q

G

+ q + 3)

2

q

p

:

Proof. Instead of letting A intera
t with the a
tual ora
les, we play the following

game.

We maintain two lists: L = f (F

i

; s

i

) : i = 0; : : : ; t � 1g and L

0

= f (F

0

i

; s

0

i

) :

i = 0; : : : ; t

0

� 1g. Here s

i

; s

0

i

2 f0; 1g

�

are en
odings and F

i

; F

0

i

2 Z

p

[X;�

0

; �

1

℄

are multivariate polynomials in X;�

0

; and �

1

. The total length of lists at step

� � q

G

in the game must be

t+ t

0

= � + q + 3: (2)

In the beginning of the game, we initialize the lists to F

0

= 1; F

1

= X; : : : ; F

q

=

X

q

and F

0

0

= �

0

; F

0

1

= �

1

. The 
orresponding en
odings are set to arbitrary

distin
t strings in f0; 1g

�

. The lists have length t = q + 1 and t

0

= 2.

We start the game by providing A with en
odings (s

0

; : : : ; s

q

; s

0

0

). Algorithm

A begins to issue ora
le queries. We respond to them in the standard fashion:

Group a
tion: Given a multiply/divide bit and two operands s

i

and s

j

(0 �

i; j < t), we 
ompute F

t

= F

i

�F

j

a

ordingly. If F

t

= F

l

for some l < t, we

set s

t

= s

l

. Otherwise, we set s

t

to a random string in f0; 1g

�

nfs

0

; : : : ; s

t�1

g,

and in
rement t by 1. Group a
tion in G

1

is 
omputed similarly, ex
ept we

operate on list L

0

.

Bilinear pairing: Given two operands s

i

and s

j

(0 � i; j < t), we 
ompute the

produ
t F

t

0

= F

i

F

j

. If F

t

0

= F

l

for some l < t

0

, we set s

t

0

= s

l

. Otherwise

we set it to a random string in f0; 1g

�

nfs

0

; : : : ; s

t

0

�1

g. We then in
rement t

0

by 1.

After making at most q

G

queries, A halts with a guess

^

b 2 f0; 1g. We now


hoose x; y

r

 Z

�

p

and 
onsider �

b

 1=x; �

1�b

= y for both 
hoi
es of b. Our

simulation is perfe
t and reveals nothing to A about b unless the values that we


hose for indeterminates give rise to some non-trivial equality relation. Spe
i�-


ally, algorithm A wins the game if for any F

i

6= F

j

or any F

0

i

6= F

0

j

, either of

these hold:

1. F

i

(x; 1=x; y)� F

j

(x; 1=x; y) = 0



2. F

i

(x; y; 1=x)� F

j

(x; y; 1=x) = 0

3. F

0

i

(x; 1=x; y)� F

0

j

(x; 1=x; y) = 0

4. F

0

i

(x; y; 1=x)� F

0

j

(x; y; 1=x) = 0

Noti
e that A 
an never engineer an en
oding of an element whose 
or-

responding polynomial would have a 1=X term unless he is expli
itly given it.

Therefore, we 
an only get a non-trivial equality relation as a result of numeri
al


an
ellation.

For all i, deg(F

i

) � q and deg(F

0

i

) � 2q. We 
an use the S
hwartz-Zippel

Theorem [S
h80℄ to bound the probability of a 
an
ellation. It tells us that for

all i; j, Pr[F

i

� F

j

= 0℄ � q=p and Pr[F

0

i

� F

0

j

= 0℄ � 2q=p. Thus A's advantage

is

� � 2 �

��

t

2

�

q

p

+

�

t

0

2

�

2q

p

�

< 2(q

G

+ q + 3)

2

q

p

(plugging into (2))

= O

�

q

2

G

q + q

3

p

�

:

ut

It turns out that in a generi
 group model algorithm A that solves the q-

DBDHI problem has advantage, whi
h is roughly twi
e as mu
h as an advantage

of an algorithm solving the q-SDH problem (see [BB04b℄, Se
tion 5). The as-

ymptoti
 
omplexities are the same.

The following 
orollary is immediate.

Corollary 1. Any adversary that breaks the q-DBDHI assumption with proba-

bility

1

2

+ � (0 < � < 1=2) in generi
 groups of order p su
h that q < o(

3

p

p)

requires 
(

p

�p=q) generi
 group operations.

7 Con
lusion

We have presented a simple and eÆ
ient 
onstru
tion of a veri�able random

fun
tion. Our VRF's proofs and keys have 
onstant size regardless of the size of

the input. Our proofs of se
urity are based on a de
isional bilinear DiÆe-Hellman

inversion assumption, whi
h seems reasonable given 
urrent state of knowledge.

We also demonstrated that our s
heme 
an be instantiated with ellipti
 groups

of very reasonable size whi
h makes our 
onstru
tions quite pra
ti
al.
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