
Security Arguments for Partial Delegation
with Warrant Proxy Signature Schemes ∗

Qin Wang, Zhenfu Cao†

Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200030, P. R. China

E-mail address: chhwangqin@sjtu.edu.cn, cao-zf@cs.sjtu.edu.cn

November 17, 2004

Abstract

Proxy signature is an important cryptographic primitive and has been suggested in
numerous applications. In this paper, we present an attack on the aggregate-signature-
based proxy signature schemes, then point out there are two flaws in BPW notion of
security for proxy signature. Furthermore, we give arguments for partial delegation
with warrant proxy signature schemes. We construct a new proxy signature scheme
and prove that it is secure against existentially forgery on adaptively chosen-message
attacks and adaptively chosen-warrant attacks under the random oracle model.

Keywords: digital signature, proxy signature, partial delegation with warrant, provable
security.

1 Introduction

The idea of proxy signature was first discussed in [12]. The scheme allows an entity,
called the original signer, to delegate his/her signing capability to another entity, called the
proxy signer, in a way that the latter can sign messages on behalf of the former. Proxy
signature schemes have been suggested to use in a number of applications, particularly in
distributed computing where delegation of rights is quite common.

Mambo et al. [12] classified proxy signatures based on delegation type as full delega-
tion, partial delegation and delegation by warrant. For most of real-world settings, full
delegation is obviously impractical and insecure. Partial delegation is further classified as
proxy-unprotected and proxy-protected according to protection of proxy signer, and proxy
-protected signature schemes can provide more security level than proxy-unprotected signa-
ture schemes. In this paper we only discuss proxy-protected signature schemes. Compared
with delegation by warrant, partial delegation brings faster processing speed, however, in

∗This research is partially supported by the National Natural Science Foundation of China for Distin-
guished Young Scholars under Grant No. 60225007, the National Research Fund for the Doctoral Program
of Higher Education of China under Grant No. 20020248024, and the Science and Technology Research
Project of Shanghai under Grant Nos. 04JC14055 and 046407067.

†corresponding author, phone:+86-021-62835602

1

such schemes the range of messages a proxy signer can sign is not limited. In 1997, Kim et
al. [8] introduced the notion of partial delegation with warrant which combines the benefits
of the partial delegation and the delegation by warrant. After that, most work on proxy
signature focuses on partial delegation with warrant schemes.

The security requirements for proxy signature are first specified in [12, 13], and later
are enhanced by [10, 11]. That is, a secure proxy signature scheme should satisfy the
following five requirements: verifiability, strong unforgeability, strong identifiability, strong
undeniability, prevention of misuse. But these requirements are informal and cannot give
a precise meaning of security for proxy signature schemes. After the first scheme was
constructed by Mambo et al. [12], a number of new schemes have been proposed. However,
most of them do not fully meet the desired security requirements. Since those schemes lack
provably-security guarantee, almost every other paper breaks some previously proposed
proxy signature scheme and proposes a new scheme [8, 9, 14, 17, 15, 19].

In 2003, Boldyreva et al. [4] formalized a notion of security for proxy signature schemes,
and that was the first work on proxy signature in the provable-security direction. We refer
to their security model BPW security model. They also proposed three schemes and proved
their security: the delegation-by-certificate schemes, the aggregate-signature-based schemes
and the triple schnorr scheme.

In 2004, Zuowen Tan et al. [18] presented an attack to the delegation-by-certificate
schemes. They showed the schemes suffering attacks mounted by a malicious original
signer. They also formalized a notion of security for delegation-by-certificate proxy sig-
nature schemes.

Compared with the delegation-by-certificate proxy signature schemes, the aggregate-
signature-based proxy signature schemes have possibility to obtain an improvement in terms
of both bandwidth and efficiency. In fact, we find the aggregate-signature-based schemes
in [4] are not secure too. Furthermore, we point out there are two flaws in BPW security
model. Because most of the research work on proxy signature focuses on partial delegation
with warrant which is believed to combine the benefits of security and efficiency, we offer
security arguments for it in this paper. Moreover, we construct a proxy scheme and prove
its security in the random oracle model assuming the Computation Diffie-Hellman problem
in gap Diffie-Hellman groups is hard to solve.

The rest of this paper is organized as follows: In section 2, we introduce related math-
ematical problems, recall the components of a digital signature scheme and its security
definition. In section 3, we analyze the aggregate-signature-based proxy signature schemes.
In section 4, we define a notion of security for partial delegation with warrant proxy sig-
nature schemes. Then in section 5, we construct a proxy signature scheme and prove its
security in our new model. Finally, concluding remarks are made in Section 6.

2 Preliminaries

Let G1 be a cyclic additive group generated by P , whose order is a large prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing is a map
e : G1 ×G1 → G2 with the following properties:

• Bilinear: e(aP, bQ) = e(P,Q)ab.

• Non-degenerate: there exists P,Q ∈ G1, such that e(P,Q) 6= 1.
2

• Computable: there is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Now we describe some mathematical problems in G1.
Discrete Logarithm Problem (DLP). Given two group elements P and Q, find an

integer n, such that Q = nP whenever such an integer exists.
Decision Diffie-Hellman Problem (DDHP). For a,b,c ∈ Z∗

q , given P , aP , bP , cP ,
decide whether c = ab mod q.

Computational Diffie-Hellman Problem (CDHP). For a,b ∈ Z∗
q , given P , aP ,

bP , compute abP .
When the DDHP is easy but the CDHP is hard on the group G1, we call G1 a Gap

Diffil-Hellman (GDH) group. Such groups can be found on supersingular elliptic curves or
hyperelliptic curves over finite field, and the bilinear parings can be derived from the Weil
or Tate pairing. We can refer to [1, 3, 5, 7] for more details.

Now, we give a precise definition of digital signature schemes and secure digital signature
schemes. These definitions are based on [6]:

Definition 2.1 [Digital Signature Scheme] A digital signature scheme DS = (G, S, V)
is defined by the following:

• on input 1k, where k is the security parameter, the algorithm G produces a pair
(pk, sk) of matching public and secret keys. Algorithm G is probabilistic.

• Giving a message m and a pair of matching public and secret keys (pk, sk), S can
produce a signature σ. The signing algorithm might be probabilistic.

• Given a signature σ, a message m and a public key pk, V tests whether σ is a valid
signature of m with respect to pk. In general, the verification algorithm need not be
probabilistic.

Definition 2.2 [Secure Digital Signature Scheme] A digital signature scheme is
secure if an existential forgery is computationally impossible, even under adaptively chosen-
message attacks.

3 Analysis of Aggregate-signature-based Proxy Signature Schemes

In this section, we will analyze the aggregate-signature-based proxy signature schemes
proposed in [4] and present an attack on them. After careful observation, we find there is
no fault in the proof, so we’ll try to discuss the flaws in their security model.

3.1 Aggregate-signature-based Proxy Signature Schemes

Let AS = (G, S, V, A,AV)be an aggregate signature scheme, where DS = (G, S, V) is
an ordinary digital signature scheme, A is the aggregation algorithm, and AV is the aggre-
gate verification algorithm. The algorithms of the corresponding proxy signature scheme
PS[AS] = (G1, S1, V1, (D,P), PS, PV, ID) are defined as follows:

• The key generation algorithms are the same as the aggregate scheme: K1 = K.

• An ordinary signature for message M is obtained by prepending 11 to the message,
and signing the result using S, i.e., S1(sk,M) = S(sk, 11||M).

3

• The verification of a signature σ for message M is done by computing V1(pk, M, σ) =
V (sk, 11||M,σ).

• (D,P) is a pair of interactive randomized algorithms forming the proxy designation
protocol. In this protocol, user i is a designator, and user j is a proxy signer. The
result of the interaction is (ω, cert) where ω is the designator’s warrant and cert is a
signature for 00||pkj ||ω under ski.

• The proxy signing algorithm PS uses A to aggregate the certificate and a proxy
signature as follows:

aσ = A(pki, pkj , 00||pkj ||ω, 01||pki||M, cert, S(skj , 01||pki||M)).

• The proxy verification algorithm PV is defined by

PV (pk, M, (ω, pk′, aσ)) = AV (pk, pk′, 00||pk′||ω, 01||pk||M,aσ).

• The identification algorithm is defined by ID(ω, pk′, aσ) = pk′.

In [4], the authors argued if AS is a secure aggregate signature scheme, then the scheme
PS[AS] is a secure proxy signature scheme.

3.2 Attack to Aggregate-signature-based Proxy Signature Schemes

Let user i be an original signer and user j a proxy signer. We use BGSL bilinear
aggregate signature scheme [2] as AS. BGSL works in GDH groups, and its security has been
proved in the random oracle model assuming hardness of the Computational Diffie-Hellman
assumption. A GDH group G1 and its generator P , a hash function H : {0, 1}∗ → G1 and
the bilinear map e : G1 × G2 → GT are system parameters. We refer the reader to [2] for
details. The public/private key pairs of user i and user j are (pki, xi)and (pkj , xj), i.e.,
Pki = xiP , Pkj = xjP . We show an attack as follows:

step 1: User i gives a pair of (ω, σi) to user j under xi, that is

σi = xiH(00||pkj ||ω).

step 2: User j checks whether e(σi, P) = e(H(00||pkj ||ω), pki). If it is, user j computes

σj = xjH(01||pki||M),

then computes
aσ = σi + σj .

(ω, M, aσ) is user j’s proxy signature on user i’s delegation warrant ω.
step 3: After getting the above proxy signature, user i can compute user j’s signature

on M ,
σj = aσ − σi.

step 4: With user j’s signature on M , user i can generate any other warrant ω′ and its
signature σ′

i with his private key,

σ′
i = xiH(00||pkj ||ω′),

4

then use the aggregate algorithm to compute

aσ′ = σ′
i + σj .

(ω′,M, aσ′) is a valid forged proxy signature, the original signer is user i and the proxy
signer is user j. A third party can verify the validity of the proxy signature as follows:

e(aσ′, P) = e(H(00||pkj ||ω′), pki)e(H(01||pki||M), pkj).

Like the attack to delegation-by-certificate schemes in [18]. Here the attack is also
mounted by the malicious original signer. In many cases, the forgery will impair the proxy
signer because what written in the warrant may relate to the proxy signer’s interest or
responsibility. For example, perhaps the warrant is a contract between the original signer
and the proxy signer, using the above attack, the original signer can change the contract
(such as the price or time period, etc.) to impair the proxy signer.

With a slight modification, the aggregate-signature-based schemes can resist the above
attack. The simplest way is to add the original signer’s warrant together with the signed
message in step 2:

σj = xjH(01||pki||M ||ω).

3.3 Two Flaws in BPW Security Model

There are two flaws in the notion of security for proxy signature schemes [4].
1. In the BPW model, if an honest user 1 never delegates user i (we allow user i to be

colluded by an adversary) as a proxy signer, but eventually an adversary can forge a proxy
signature by user i on behalf of user 1, the proxy scheme is broken. We find besides the
above case, if user 1 have delegated user i as a proxy signer with some warrants which are
put into a list Warr1, but an adversary can forge a proxy signature by user i on behalf of
user 1 with a new warrant ω′ (ω′ /∈ Warr1), the scheme is also broken. Because in this
case, user 1 never delegate user i with warrant ω′, and the forgery perhaps will impair the
original signer user 1.

2. In the BPW model, user i (we allow user i to be colluded by an adversary) can
delegate an honest user 1 with n different warrants which are put into a list Warri, then
an adversary can query user 1’s proxy signature on any message mj(j ∈ N) conforming to
the restriction in warrant ωh(ωh ∈Warri) and the query (ωh,mj) are added in a query list
Quei. If the adversary can forge a proxy signature by user 1 on behalf of user i on a message
m′ which never appears in Quei, the scheme is broken. We find besides the above case, if
in the end an adversary can forge a proxy signature on (ω′,m′) where m′ has appeared in
Quei, but (ω′,m′) is not in the Quei list, the scheme is also broken. Because in this case,
user 1 never sign m′ under ω′, and the forgery perhaps will impair the proxy signer user 1.

4 Partial Delegation with Warrant Proxy Signature Schemes

4.1 Syntax of Partial Delegation with Warrant Proxy Signature Schemes

In a partial delegation with warrant proxy signature scheme, the original signer uses its
standard signature algorithm to sign a warrant which includes the type of the information
delegated, both the parties’ identities and the period of delegation, etc. The signature of

5

the warrant is called certificate. Here we only consider proxy-protected schemes. With the
certificate and his private key, the proxy signer generates a proxy private key. After that,
the proxy signer can sign any messages according to the warrant. And a third party would
verify the validity of the proxy signature.

Definition 4.1 [Partial Delegation with Warrant Proxy Signature Scheme] A
partial delegation with warrant proxy signature scheme is a tuple PS = (G, S, V, P, PS, PV),
and the components are defined as follows:

• G is used to produce private/public key pairs as usual. The public and private key
pairs for the original and the proxy signers are (pko, sko), (pkp, skp).

• S is a randomized standard signing algorithm. The original signer uses it to sign a
warrant ω which includes the type of the information delegated, both of the parties’
identities and the period of delegation, etc. Then the original signer produces (ω, cert)
and gives it to the proxy signer without a secure channel.

• V is a deterministic standard verification algorithm. It takes input (ω, cert), then
outputs 0 or 1. In the latter case, we say that cert is a valid signature for ω relative
to pko.

• P is a (possibly) randomized algorithm, taking cert and his private key as input, the
proxy signer generates a proxy signing key skp.

• PS is a (possibly) randomized proxy signing algorithm. It takes input a proxy signing
key skp and a message m ∈ {0, 1}∗, then outputs a proxy signature pσ.

• PV is a deterministic proxy verification algorithm. It takes input (pko, pkp, ω,m, pσ)
(here for clarity, we write out the public keys of original and proxy signers which are
included in ω), then outputs 0 or 1. In the latter case, we say that pσ is a valid proxy
signature for m by the proxy signer on behalf of the original signer.

4.2 A Notion of Security for Partial Delegation with Warrant Proxy Sig-
nature Schemes

We first informally describe some of the features of our adversarial model. In real
world applications, sometimes the users want to change their public keys, an adversary is
also possible to collude some original signers or proxy signers, and in most cases, there is
no secure channel between an original signer and a proxy signer. An adversary aims at
personating the original signer or the proxy signer and forging a standard signature, or
forging a proxy signature. In our model, such as in [4, 18], there is only one honest user,
user 1, against an adversary A. A can register public keys but he must output both of the
public keys and the matching secret keys or prove his knowledge of the secret keys, such that
a nasty problem of collusion is considered in our model. User 1 can delegate others (they
are controlled by A) or be delegated by others as the proxy signer, such that in our model
both the original and the proxy signers’ security is considered. We also allow self-delegation
in our model. And we don’t assume the existence of a secure channel between an original
signer and a proxy signer. Then a secure proxy signature should satisfy three requirements:
1. A can’t forge a stand signature relative to user 1’s public key; 2. A can’t forge a proxy

6

signature by user 1; 3. A can’t forge a proxy signature on behalf of user 1. We formalize
this intuition as adaptively chosen-message attack and adaptively chosen-warrant attack.

Definition 4.2 [Secure Partial Delegation with Warrant Proxy Signature
Scheme] A partial delegation with warrant proxy signature scheme is secure if an existen-
tial forgery is computationally impossible, even under adaptively chosen-message attacks
and adaptively chosen-warrant attacks.

Our notion of security for partial delegation with warrant is formally defined as follows
and the adversary’s advantage is his probability of success in the following game:

1. First, user 1 runs G on input 1k to produce public and secret key pair (pk1, sk1).
2. An adversary A is given a single public key pk1, and he can access to two signing

oracles, that is OS(sk1, ·), and OPS(skp, ·).
3. A can choose all public keys except the challenged one pk1, i.e., A can register all

other key pairs in the game, (pk2, sk2),...,(pkn, skn).
4. A can choose r warrants ωi(i ∈ {1, 2, ..., r}) in which user 1 is delegated as the proxy

signer and user j relative to pkj is the original signer, then signs ωi under skj (j ∈ {2, ..., n})
and (ωi, σi) is a signature. User 1 accepts the signature after verifying the validity of it, then
runs the algorithm P to get the corresponding skp. We allow A to sign several different
warrants with the same private key, i.e., an original signer can delegate the same proxy
signer several times with different warrants. In the end, all the warrants are added to a list
Warrp.

A can query standard signature oracle OS and proxy signature oracle OPS .
5. Signature queries. A can make qS queries to the signing oracle OS(sk1, ·) on any

messages of his choice:
(1). Some messages are warrants in which user 1 is stated as an original signer and user

j (j ∈ {2, ..., n}) is a proxy signer. These messages are added to a list Warro;
(2). Some messages are warrants in which user 1 is stated as both an original signer

and a proxy signer (this is user 1’s self-delegation). Then user 1 will run P to get the
corresponding skp. These messages are added to a list Warrs;

(3). Others are ordinary messages which are added to a list Squ.
6. Proxy signature queries. A can query the proxy signature oracle OPS(skp, ·) on any

message of his choice qPS times. The queries are like (ωi,mi) where ωi ∈ {Warrp∪Warrs},
i ∈ {1, 2, ..., qPS} and mi satisfies ωi. Then the queries are added to a list PSqu. User 1
will produce a proxy signature under the corresponding skp to A.

The adversary A wins if any one of the following events occurs:
E1: A outputs a forgery (m′, σ) where V (pk1,m

′, σ) = 1 and m′ was not queried to
OS(sk1, ·) (m′ /∈ {Warro ∪Warrs ∪ Squ}), i.e., A forges user 1’s stand signature.

E2: A outputs a forgery (ω′,m′, pσ) where PV (pki, pk1, ω
′,m′, pσ) = 1 (i ∈ {1, 2, ..., n})

and (ω′,m′) /∈ PSqu, i.e., A forges user 1’s proxy signature, including self-delegation.
E3: A outputs a forgery (ω′,m′, pσ) where PV (pk1, pki, ω

′,m′, pσ) = 1 (i ∈ {2, ..., n})
and ω′ /∈Warro, i.e., A forges a proxy signature on behalf of user 1.

5 A Secure Partial Delegation with Warrant Proxy Signature
Scheme

In this section, we propose a new proxy signature scheme which is provably secure in
the random oracle model assuming the Computational Diffie-Hellman problem is hard in

7

gap Diffie-Hellman groups.

5.1 The Proposed Proxy Signature Scheme

In the proposed proxy signature, we use BLS short signature scheme [3] as a standard
signature algorithm, Cha-Cheon ID-based signature scheme [5] as a proxy signature algo-
rithm. They were both proved secure in the random oracle model. The proposed scheme can
be regarded as the Cha-Cheon version proxy signature scheme discussed in [20]. We propose
it here because it just can be proved secure in our new security model. The proposed proxy
signature scheme PS = (G, S, V, P, PS, PV) is as follows:

Use a GDH parameter generator [5] to provide a GDH group G with a prime order q.
P is a generator of G. Define two cryptographic hash functions H1 : {0, 1}∗ × G → Z∗

q ,
H2 : {0, 1}∗ → G.

G: Pick a random number x ∈ Z∗
q , compute v = xP , then the secret key is x, the

public key is v.
S: Given a private key x ∈ Z∗

q , and a message m ∈ {0, 1}∗, compute f ← H2(m) ∈ G

and σ ← xf . The signature is σ ∈ G;
V : Given a public key v, a message/signature pair (m, σ), compute f ← H2(m) ∈ G

and verify that (P, v, f, σ) is a valid Diffie-Hellman tuple. If so, output 1; if not, output 0.
Assuming the original signer has public/secret key pair (vo, xo), the proxy signer has

public/secret key pair (vp, xp).
P : The original signer computes σω = xoH2(ω), and sends (ω, σω) to the proxy signer.

The proxy signer checks if (P, vo,H2(ω), σω) is a valid Diffie-Hellman tuple. If so, then
computes skpω = σω + xpH2(ω) = (xo + xp)H2(ω).

PS: On message m ∈ {0, 1}∗, the proxy signer picks a random number r ∈ Z∗
q and

outputs a signature pσ = (U, h, V) where U = rH2(ω), h = H1(ω||m,U) and V = (r +
h)skpω.

To verify a proxy signature pσ = (U, h, V) of a message m for a warrant ω, check whether
(P, vo + vp, U + hH2(ω), V) is a Diffie-Hellman tuple. If so, output 1; if not, output 0.

5.2 Security Proof

Theorem 1: The above proxy signature is existentially unforgeable against adaptively
chosen-message attacks and adaptively chosen-warrant attacks in the random oracle model
if the Computational Diffie-Hellman Problem in GDH groups is hard to solve.

Proof. Suppose A is a forger algorithm that breaks the proxy signature scheme. We
show how to construct an algorithm B against CDHP, such that if A has a non-negligible
advantage in creating a forgery for the proxy signature scheme, B will have a non-negligible
advantage to solve CDHP. This will contradict the fact that G is a GDH group.

Let P be a generator of G, the only honest user, user 1, runs G to produce a pair of
public/secret keys (x1P, x1). A can query to four oracles: H1 oracle at most qH1 times, H2

oracle at most qH2 times, signature query OS(x1, ·) at most qS times , and proxy signature
query OPS(skp, ·) at most qPS times. Algorithm B simulates user 1 and interacts with A

as follows:
1. Algorithm B starts by giving A the generator P , and the public key x1P .
2. A produce n− 1 pairs of public/secret keys: (x2P, x2),, (xnP, xn). Now B is given

n + 1 tuples (P, x1P, yP), (P, x1P + x1P, yP), (P, x1P + x2P, yP), ..., (P, x1P + xnP, yP)
8

(x1, ..., xn, y ∈ Z∗
q), its goal is to output any one of the following: x1yP, (x1 + x1)yP, (x1 +

x2)yP, ..., (x1 + xn)yP . It’s obvious that the above problems are all CDH problems.
3. H1-queries. At any time algorithm A can query the random oracle H1. To respond to

these, algorithm B maintains a list of tuples < mj , uj , hj >. We refer to this list H1-list. The
list is initially empty. When A queries the oracle at point (mi, ui), (mi ∈ {0, 1}∗, ui ∈ G),
algorithm B responds as follows:

(1). If the query (mi, ui) already appears on the H1-list in a tuple < mi, ui, hi >,
algorithm B responds with H1(mi, ui) = hi.

(2). Otherwise, B generates a random hi ∈ Z∗
q and sends H1(mi, ui) = hi to A.

4. H2-queries. At any time algorithm A can query the random oracle H2. To respond
to these, algorithm B maintains a list of tuples < mj , βj , bj , cj > as explained below. We
refer to this list H2-list. The list is initially empty. When A queries the oracle at point
mi ∈ {0, 1}∗, algorithm B responds as follows:

(1). If the query mi already appears on the H2-list in a tuple < mi, βi, bi, ci >, algorithm
B responds with H2(mi) = βi ∈ G.

(2). Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qS + 1).
(3). Algorithm B picks a random bi ∈ Z∗

q and computes βi = (1− ci)yP + biP ∈ G.
(4). Algorithm B adds the tuple < mi, βi, bi, ci > to the H2-list and responds to A by

setting H(mi) = βi.
Note that either way βi is uniform in G and is independent of A’s current view.
5. Signature queries. Let mi be a signature query issued by A. Algorithm B responds

to this query as follows. B maintains three lists Warro, Warrs and Squ which initially are
all empty.

(1). Algorithm B runs the above algorithm for responding to H2-queries to obtain
βi ∈ G such that H(mi) = βi. Let < mi, βi, bi, ci > be the corresponding tuple on the
H2-list. If ci = 0 then B reports failure and terminates.

(2). Otherwise, we know ci = 1 and hence βi = biP ∈ G. Define σi = bi · x1P . And
therefore σi is a valid signature on mi under the public key x1P . Algorithm B gives σi

to algorithm A. If mi is a warrant in which user 1 is stated as an original signer and
user j (j ∈ {2, ..., n}) is a proxy signer, then mi is added to a list Warro-list. If mi is a
self-delegation warrant, then mi is added to Warrs-list. Otherwise, mi is added to Squ-list.

6. A chooses r warrants ωi(i ∈ {1, 2, ..., r}) in which user 1 is delegated as the proxy
signer and user j relative to pkj is the original signer, then signs ωi under skj (j ∈ {2, ..., n})
and the signature is σi. A sends the tuple (ωi, σi) to B. B searches in H2-list for a tuple
containing ωi to get H2(ωi)(with only a negligible probability A doesn’t query ωi to H2-
query). B accepts after verifying the validity of the signature. ωi is added to a list Warrp

which is also maintained by B.
7. Proxy signature queries. Let (ωi,mi)(ωi ∈ (Warrp ∪Warrs)) be a proxy signature

query issued by A. B responds to this query as follows:
(1). B searches in the H2-list to get < ωi, βi, bi, ci >.
(2). B chooses randomly yi ∈ Z∗

q , and hi ∈ Z∗
q , then compute Ui = yiP − hiβi,

Vi = yi(xoP + x1P) (o is the original signer and o ∈ {1, 2, ...n}). B adds (ωi||mi, Ui, hi)to
the H1-list. If A has queried (ωi||mi, Ui) to H1, B reports failure and terminates. Since Ui

is random, the probability is negligible. So (ωi,mi, Ui, hi, Vi)is a valid proxy signature. The
queries are added to a list PSqu which is also a list maintained by B.

9

As long as B does not abort, the simulation for A is perfect. Since A has a non-negligible
advantage, at least one of the following events will occur with non-negligible probability.

E1: A outputs a valid signature (m′, σ′) under the given public key x1P , such that no
signature query was issued for m′(m′ /∈ {Warro ∪Warrs ∪ Squ}). Then B will find the
tuple < m′, β′, b′, c′ > on the H2-list. If c′ = 1, B reports failure and terminates. Otherwise,
c′ = 0, therefore σ′ = x1(yP + b′P), then x1yP = σ′ − b′(x1P). Now B computes x1yP .

E2: A outputs a valid proxy signature (ω′,m′, U ′, h′, V ′) where ω′ ∈ {Warrp∪Warrs}
and (ω′,m′) /∈ PSqu, V ′ = (xo+x1)(U ′+h′H2(ω′))(o ∈ {1, 2, ..., n}). Then algorithm B will
find the tuple < ω′, β′, b′, c′ > on the H2-list. If c′ = 1, B reports failure and terminates.
Otherwise c′ = 0, B applies the oracle replay attack which was invented by Pointcheval
and Stern in [16, 17], and obtains a valid proxy signature (ω′,m′, U ′, h′′, V ′′), V ′′ = (xo +
x1)(U ′+h′′H2(ω′)). B subtracts the two equations V ′−V ′′ = (h′−h′′)(xo +x1)H2(ω′), and
(xo+x1)(b′+y)P = (h′−h′′)−1(V ′−V ′′), (xo+x1)yP = (h′−h′′)−1(V ′−V ′′)−b′(xoP +x1P).
That is, B computes (xo + x1)yP (o ∈ {1, 2, ..., n}).

E3: A outputs a valid proxy signature (ω′,m′, U ′, h′, V ′) where ω′ /∈ Warro, x1P is
the original signer’s public key and xpP (p ∈ {2, ..., n})is the delegator’s public key. Then
B will find the tuple < ω′, β′, b′, c′ > on the H2-list. If c′ = 1, B reports failure and
terminates. Otherwise c′ = 0, B applies the oracle replay attack, and obtains a valid
proxy signature (ω′,m′, U ′, h′′, V ′′), V ′′ = (xp + x1)(U ′ + h′′H2(ω′)). B subtracts the two
equations V ′−V ′′ = (h′−h′′)(xp+x1)H2(ω′), and (xp+x1)(b′+y)P = (h′−h′′)−1(V ′−V ′′),
(xp + x1)yP = (h′ − h′′)−1(V ′ − V ′′) − b′(xpP + x1P). That is, B computes (xp + x1)yP

(p ∈ {2, ..., n}).
From the above analysis, if the proposed scheme isn’t a secure partial delegation with

warrant proxy signature scheme, the CDHP in G will be solved with a non-negligible prob-
ability.

By a word, in [4], Boldyerva et al. proposed a triple schnorr scheme. It’s also a partial
delegation with warrant proxy signature scheme. It was proven in BPW security model.
We find it’s still secure in our model, the proof can be done in the similar way except that
the two flaws we discuss in section 3 should be considered.

6 Conclusion

In this paper, we analyze the aggregate-based-signature schemes and give a simple im-
provement. Furthermore, we point out two flaws in BPW security notion for proxy signa-
ture. We formalize the syntax of partial delegation with warrant and propose a security
model for it. After that, based on BLS short signature and Cha-Cheon ID-based signature
we propose a proxy signature scheme which is secure in the random oracle model assuming
the CDHP is hard in GDH groups. We find triple schnorr scheme is still secure in our
security model.

References

[1] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing, Advances
in Cryptology-Crypto 2001, LNCS 2139, pp.213-229, Springer-Verlag, 2001.

10

[2] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted
signatures from bilinear maps. In E. Biham, editor, Proceedings of Advances is Cryp-
tology C Eurocrypt03, LNCS. Springer-Verlag, 2003.

[3] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C.
Boyd, editor, Asiacrypt 01, volume 2248 of LNCS. Springer Verlag, 2001.

[4] A. Boldyreva, A. Palacio, B. Warinschi. Secure Proxy Signature Schemes for Delegation
of Signing Rights. At:http://eprint.iacr.org/2003/096.

[5] J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman groups,
Public Key Cryptography - PKC 2003, LNCS 2139, pp.18-30, Springer- Verlag, 2003.

[6] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptative Chosen- Message Attacks. SIAM Journal of Computing, 17(2):281C308,
April 1988.

[7] F. Hess, Efficient identity based signature schemes based on pairings, SAC 2002, LNCS
2595, pp.310-324, Springer-Verlag, 2002.

[8] S. Kim, S. Park, and D. Won. Proxy signatures, revisited. In Y. Han, T. Okamoto,
and S. Quing, editors, Proceedings of International Conference on Information and
Communications Security (ICICS)’97, volume 1334 of LNCS, pages 223-232. Springer-
Verlag, 1997.

[9] J. Lee, J. Cheon, and S. Kim. An analysis of proxy signatures: Is a secure channel
necessary? In M. Joye, editor, Topics in Cryptology-CT-RSA’03, volume 2612 of LNCS,
pages 68-79. Spinger-Verlag, 2003.

[10] B. Lee, H. Kim, and K. Kim. Strong proxy signature and its applications. In: Proceed-
ings of the 2001 Symposium on Cryptography and Information Security (SCIS’01), Vol.
2/2, pp. 603-608. Oiso, Japan, Jan. 23-26, 2001.

[11] B. Lee, H. Kim, and K. Kim. Secure mobile agent using strong non-designated proxy
signature. In: Information Security and Privacy (ACISP’01), LNCS 2119, pp. 474-486.
Springer-Verlag, 2001.

[12] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing oper-
ation. In Proceedings of the 3rd ACM Conference on Computer and Communications
Security (CCS), pages 48-57. ACM, 1996.

[13] M. Mambo, K. Usuda, and E. Okamoto. Proxy Signature: Delegation of the power
to sign messages. IEICE Trans. Fundamentals, Sep. 1996, Vol. E79-A, No. 9, pp.1338-
1353.

[14] T. Okamoto, M. Tada, and E. Okamoto. Extended proxy signatures for smart cards.
In LNCS, volume 1729 of LNCS. Springer-Verlag, 1999.

[15] H.M. Sun and B.T. Hsieh. Remarks on two nonrepudiable proxy signature schemes. In
Ninth National Conference on Information Security, volume 241-246, 1999.

11

[16] D. Pointcheval and J. Stern. Security proofs for signature schemes, Proc. of Eurocrypt
’96, Lecture Notes in Computer Sciences, Vol.1070, pp.387-398, Springer-Verlag, 1996.

[17] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signa-
tures. Journal of Cryptology, 13(3):361C369, 2000.

[18] Zuowen Tan, Zhuojun Liu. Provably Secure Delegation-by-Certification Proxy Signa-
ture Schemes. http://eprint.iacr.org/2004/148/

[19] S.M. Yen, C.P. Hung, and Y.Y. Lee. Remarks on some proxy signature schemes. In
Workshop on Cryptology and Information Security, 2000 ICS, pages 54C59, 2000.

[20] Fangguo Zhang and Reihaneh Safavi-Naini and Chih-Yin Lin. New Proxy Signature,
Proxy Blind Signature and Proxy Ring Signature Schemes from Bilinear Pairing.
http://eprint.iacr.org/2003/104

12

