
Adaptively-Secure, Non-Interactive Public-Key Encryption∗

Ran Canetti†

canetti@watson.ibm.com

Shai Halevi†

shaih@alum.mit.edu

Jonathan Katz‡

jkatz@cs.umd.edu

November 23, 2004

Abstract

Adaptively-secure encryption schemes ensure secrecy even in the presence of an adversary
who can corrupt parties in an adaptive manner based on public keys, ciphertexts, and secret
data of already-corrupted parties. Ideally, an adaptively-secure encryption scheme should, like
standard public-key encryption, allow arbitrarily-many parties to use a single encryption key to
securely encrypt arbitrarily-many messages to a given receiver who maintains only a single short
decryption key. However, it is known that these requirements are impossible to achieve: no non-
interactive encryption scheme that supports encryption of an unbounded number of messages
and uses a single, unchanging decryption key can be adaptively secure. Impossibility holds even
if secure data erasure is possible.

We show that this limitation can be overcome by updating the decryption key over time and
making some mild assumptions about the frequency of communication between parties. Using
this approach, we construct adaptively-secure, completely non-interactive encryption schemes
supporting secure encryption of arbitrarily-many messages from arbitrarily-many senders. Our
schemes additionally provide forward security and security against chosen-ciphertext attacks.

Key words: Public-key encryption, adaptive security, forward security, non-committing encryp-
tion.

∗An extended abstract of this work appeared at TCC ’05.
†IBM T.J. Watson Research Center, NY, USA.
‡Department of Computer Science, University of Maryland. This work was supported by NSF Trusted Computing

Grant #0310751.

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Techniques and Constructions . 2
1.3 Organization . 3

2 Definition of AFSE 4
2.1 Handling Multiple Outstanding Ciphertexts . 4
2.2 Realizing Fafse Using Key-Evolving Encryption Schemes 6

3 AFSE Based on Forward-Secure Encryption 6
3.1 Proof of Theorem 1 . 8

3.1.1 Conventions and Notation . 8
3.1.2 Description of the Simulator . 9
3.1.3 Proof of Indistinguishability . 11

4 Receiver Non-Committing Encryption 14
4.1 Definition of RNCE . 15
4.2 A Secure RNCE Scheme for Polynomial-Size Message Spaces 16
4.3 A Secure RNCE Scheme for Exponential-Size Message Spaces 18

5 AFSE Based on Receiver Non-Committing Encryption 21
5.1 Proof of Theorem 7 . 22

5.1.1 Description of the Simulator . 22
5.1.2 Proof of Indistinguishability . 22
5.1.3 Comments . 29

A Key-Evolving and Forward-Secure Encryption 31

B The UC Framework, Abridged 32
B.1 The Public-Key Encryption Functionality Fpke . 32

1 Introduction

Imagine a band of political dissidents who need to go into hiding from an oppressive regime. While in
hiding, the only form of communication with the outside world is via the public media. Before going
into hiding, each individual wants to publish a key that will allow anyone (even parties not currently
known to this individual) to publish encrypted messages that only this individual can decipher.
Since it is not known in advance how long these members will need to be in hiding, reasonably short
public keys must suffice for encrypting an unbounded number of messages. Furthermore, messages
encrypted to each dissident must remain secret even if other dissidents are caught and their secrets
are extracted from them. Do encryption schemes satisfying these requirements exist?

At first glance, a standard public-key encryption scheme seems to suffice. Indeed, a public-
key encryption schemes allows a receiver to publish a key that can then be used by anyone to
send encrypted messages to the receiver. The public key is short (i.e., of fixed polynomial length)
and can be used by arbitrary senders (potentially unknown to the receiver at the time the key is
published) to securely send arbitrarily-many messages to the receiver without further interaction.
Furthermore, senders need not maintain any state other than the receiver’s public key, and the
receiver similarly need not maintain any state except for his secret key.

However, standard public-key encryption schemes do not provide the desired level of security.
Standard definitions of security, including semantic security against passive attacks [gm84] as well
as various notions of security against active attacks [ny90, rs91, ddn00, bdpr98], only consider the
case where the adversary never learns any secret key. However, when an adversary can compromise
players and learn their internal states in an adaptive manner, possibly depending on previously-
observed ciphertexts and information learned during previous corruptions, the standard notions
no longer apply. In particular, in the adaptive setting encrypting with a CCA-secure encryption
scheme is not known to provide secure communication.

To obtain provable security against adaptive adversaries, one must ensure that the information
gathered by the adversary when compromising parties (namely, their secret keys) does not give
the adversary any additional advantage toward compromising the security of the yet-uncorrupted
parties. The standard way of formulating this is by requiring the existence of a simulator that
can generate “dummy ciphertexts” which can be later “opened” (i.e., by revealing an appropriate
secret key) as encryptions of any message; see, e.g., [cfgn96]. A scheme satisfying this additional
condition is said to be adaptively secure.

Several methods are known for achieving adaptively-secure encrypted communication, but none
can be used in the basic setting exemplified by the above toy problem. Beaver and Haber [bh92]
propose an adaptively secure encryption protocol in which the sender and receiver must interact
before they can securely communicate for the first time. Furthermore, the parties must maintain
a shared secret key per connection. This key must be continually updated, with the old key being
erased, as more messages are encrypted. Non-committing encryption schemes [cfgn96, b97, dn00]
more closely mimic the functionality of standard public-key encryption, and in particular do not
require maintenance of per-connection state. (In addition, these solutions also remove the need
for secure data erasure.) In these schemes, however, both the public and secret keys are at least
as long as the overall number of bits to be encrypted. In fact, as noted by Nielsen [n02], any
adaptively-secure scheme with non-interactive encryption must have a decryption key which is at
least as long as the number of bits to be decrypted under this key. In a nutshell, this is because the
simulator must “open” the “dummy ciphertexts” as encryptions of any given sequence of messages
by presenting an appropriate secret key; therefore, the number of possible secret keys must be at
least the number of possible message-sequences. The unfortunate conclusion is that a public-key

1

encryption scheme that can encrypt an unbounded number of messages with short and unchanging
keys cannot be adaptively secure. This holds even if secure data erasures are possible, and even in
a weaker setting where only receivers can be corrupted.

We also comment that previous work on adaptively-secure encryption did not address resistance
to chosen-ciphertext attacks.

1.1 Our Contributions

This work demonstrates that we can circumvent Nielsen’s negative result if the secret decryption key
is allowed to periodically change, and some mild assumptions about the frequency of communication
between parties are made. That is, under standard hardness assumptions, there exist adaptively-
secure, non-interactive public-key encryption schemes with short keys that can handle arbitrarily-
many messages and senders. In particular, our schemes solve the toy example from above in a way
that is essentially the best possible under the given constraints.

This is done by considering key-evolving encryption schemes [chk03] in which the secret key is
locally updated by the receiver according to a globally-known schedule (say, at the end of every day),
while the public key remains fixed. The secret key for the previous period is securely erased once it is
no longer needed. Using this approach, we construct adaptively-secure, non-interactive encryption
schemes that can be used to encrypt arbitrarily-many bits as long as the number of encrypted bits
(for any particular key) is bounded per time period. As discussed above, an assumption of this sort
is essential to circumvent Nielsen’s negative results. Also, this assumption is reasonable in many
cases: for instance, one may easily posit some known upper bound on the number of incoming
e-mails processed per day.

In addition to being adaptively secure, our schemes also provide both forward security [a97,
chk03] and security against chosen-ciphertext attacks. (We comment that although forward secu-
rity is reminiscent of adaptive security, neither security property implies the other.) Accordingly,
we refer to schemes satisfying our security requirements as adaptively- and forward-secure encryption
(AFSE) schemes. We formalize the requirements for AFSE schemes within the UC framework [c01].
That is, we present an functionality Fafse that captures the desired properties of AFSE schemes.
This functionality is a natural adaptation of the “standard” public-key encryption functionality
of [c01, ckn03] to the context of key-evolving encryption. As in the non-adaptive case, Fafse

guarantees security against active adversaries, which in particular implies security against chosen-
ciphertext attacks. Using the composability properties of the UC framework, our constructions are
guaranteed to remain secure in any protocol environment. Indeed, the formulation of Fafse, which
blends together the notions of forward security, chosen-ciphertext security, and adaptive security
of public-key encryption schemes, is another contribution of this work.

1.2 Techniques and Constructions

We first note that dealing with corruption of senders is easy, since a sender can simply erase its
local state upon completing the encryption algorithm. We thus concentrate on the more difficult
case of receiver corruption. We then show that it suffices to consider AFSE for the case when only
a single message is encrypted per time period, since any such construction can be extended in a
generic manner to give a scheme which can be used to encrypt any bounded number of messages
per time period. With this in mind, our first construction uses the paradigm of Naor-Yung and
Sahai [ny90, s99] to construct an AFSE scheme based on any forward-secure encryption (FSE)
scheme and any simulation-sound non-interactive zero-knowledge (NIZK) proof system [ddops01].
Recall that, under the Naor-Yung/Sahai paradigm, the sender encrypts messages by essentially

2

using two independent copies of a semantically-secure encryption scheme together with an NIZK
proof of consistency. To decrypt, the receiver verifies the proof and then decrypts either one of
the component ciphertexts. Naor and Yung prove that this provides security against “lunch-time”
(i.e., non-adaptive) chosen-ciphertext attacks when an arbitrary NIZK proof system is used, and
Sahai later showed that this technique achieves full (i.e., adaptive) CCA-security if a one-time
simulation-sound NIZK proof system is used. We show that if a semantically-secure FSE scheme is
used as the underlying encryption scheme, and the NIZK proof system is “fully” simulation sound
(as defined in [ddops01]), the resulting construction is also an AFSE scheme. This approach can
be extended to encrypt a polynomial number of bits per ciphertext using only a single NIZK proof.
(We remark that, as opposed to the case of standard CCA-secure encryption [s99], here it is not
enough that the underlying NIZK is one-time simulation sound.)

While the above approach is conceptually simple, it is highly impractical due to the inefficiency
of known NIZKs. We thus propose an alternate approach that leads to more efficient solutions based
on specific, number-theoretic assumptions. As part of this approach, we first define and construct
“standard” (i.e., non key-evolving) encryption schemes which are secure against lunch-time chosen-
ciphertext attacks and are adaptively-secure for encryption of a single message (in total). We call
such schemes receiver non-committing encryption (RNCE) schemes.1 Our construction of an AFSE
scheme proceeds by first encrypting the message using any RNCE scheme, and then encrypting
the resulting ciphertext using any CCA-secure FSE scheme. Informally, this construction achieves
adaptive security for an unbounded number of messages (as long as only one message is encrypted
per time period) because the secret key of the outer FSE scheme is updated after every period and
so the simulator only needs to “open” one ciphertext (i.e., the one corresponding to the current
time period) as an arbitrary message. It can accomplish the latter using the “inner” RNCE scheme.

Obtaining an efficient scheme using this approach requires efficient instantiation of both com-
ponents. Relatively efficient CCA-secure FSE schemes (in particular, schemes which avoid the need
for NIZK proofs) are already known [chk04, bb04]. Therefore, we focus on constructing efficient
RNCE schemes based on specific number-theoretic assumptions. Our first RNCE scheme is based
on the Cramer-Shoup encryption scheme [cs98] (and adapts techniques of [jl00]) and its security
is predicated on the decisional Diffie-Hellman (DDH) assumption. However, this scheme allows
encryption of only a logarithmic number of bits per ciphertext. We also show a second RNCE
scheme based on the schemes of [gl03, cs03] (which, in turn, build on [cs02]), whose security
relies on the decisional composite residuosity assumption introduced by Paillier [p99] and which
can be used to encrypt a polynomial number of bits per ciphertext.

1.3 Organization

The AFSE functionality is defined and motivated in Section 2. Our construction of AFSE using the
Naor-Yung/Sahai paradigm is described in Section 3. In Section 4, we present definitions for RNCE
and show two constructions of RNCE schemes based on specific number-theoretic assumptions.
Finally, in Section 5 we construct an AFSE scheme from any RNCE scheme and any CCA-secure
FSE scheme. In Appendix A, we include definitions of key-evolving and forward-secure encryption,
while a brief overview of the UC framework and its application to secure encryption is provided in
Appendix B. All proofs of security are also deferred to the appendices.

1Indeed, this is a relaxation of the notion of non-committing encryption from [cfgn96]. It is similar to the
relaxation studied by Jarecki and Lysyanskaya [jl00], except that we also require security against lunch-time chosen-
ciphertext attacks.

3

2 Definition of AFSE

We define AFSE by specifying an appropriate ideal functionality in the UC security framework
(cf. Appendix B). This functionality, denoted Fafse and presented in Figure 1, is obtained by
appropriately modifying the “standard” public-key encryption functionality Fpke [c01, ckn03]
which is reviewed in Appendix B.1.

Intuitively, Fafse captures the same security notions as Fpke except that it also provides a
mechanism by which the receiver can “update” its secret key; Fafse guarantees security only as
long as a bounded number of messages are encrypted between key updates. In fact, for simplicity,
the functionality as defined only guarantees security when a single ciphertext is encrypted between
key updates. Say a ciphertext encrypted with respect to a particular time period t is outstanding
until the receiver has updated its secret key a total of t + 1 times. Then, if more than one
outstanding ciphertext is requested, the functionality guarantees no security whatsoever for this
ciphertext. (Formally, this is captured by handing the corresponding plaintext to the adversary.)
Section 2.1 discusses how Fafse can be extended to allow any bounded number of outstanding
ciphertexts, which corresponds to ensuring security as long as at most this many messages are
encrypted between key updates. It also presents a generic transformation from protocols secure for
a single outstanding ciphertext to protocols secure for the general case.

For convenience, we highlight some differences between Fafse and Fpke. First, an additional
parameter — a time period t — is introduced. An encryption request now additionally specifies a
time period for the encryption called the “sender time”, and the functionality maintains a variable
t∗ called the “receiver time”. The receiver time is initialized to 0, and is incremented by the receiver
R∗ using an Update request. A ciphertext generated for sender time t is only decrypted by Fafse

(upon request of the appropriate receiver) when the current receiver time is t∗ = t.
Second, Fafse limits the information gained by the adversary upon corruption of parties in the

system. When corrupting parties other than R∗, the adversary learns nothing. When corrupting R∗

at some “receiver time” t∗, the adversary does not learn any information about messages that were
encrypted at “sender times” t < t∗. (This is akin to the level of security provided by forward-secure
encryption schemes, and in fact strengthens the usual notion of adaptive security which potentially
allows an adversary to learn all past messages upon corruption of a party.) In addition, adaptive
security is guaranteed for a single message encrypted at some sender time t ≥ t∗ (i.e., a single
outstanding message).

The fact that security is guaranteed only for a single outstanding message is captured via the
variable messages-outstanding, which is initialized to 0 and is set to 1 when a message is encrypted
for time period t with t ≥ t∗. When the receiver’s time unit t∗ advances beyond the time unit t of
the outstanding ciphertext, the variable messages-outstanding is reset to 0. If another encryption
request arrives with time period t ≥ t∗ while messages-outstanding is equal to 1, then Fafse discloses
the entire plaintext to the adversary (and thus does not ensure any secrecy in this case).

We remark that Fafse can be used in a natural way to realize a variant of the “secure mes-
sage transmission functionality” [c01, af04] in synchronous networks with respect to adaptive
adversaries. We omit further details.

2.1 Handling Multiple Outstanding Ciphertexts

While the functionality Fafse and all the constructions in this work are described assuming a bound
of at most one outstanding ciphertext, both the functionality and the constructions can be gener-
alized to the case of any bounded number of outstanding ciphertexts (corresponding to a bounded
number of messages encrypted per time period). Generalizing the functionality is straightforward,

4

Functionality Fafse

Fafse proceeds as follows, when parameterized by message domain ensemble D = {Dk}k∈N and
security parameter k.

Key Generation: Upon receiving a request (KeyGen, sid) from party R∗, do: Verify that sid =
(sid′, R∗) (i.e., that the identity R∗ is encoded in the session ID). If not, then ignore this
input. If yes:

1. Hand (KeyGen, sid) to the adversary.

2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗. Initialize t∗ ← 0 and
messages-outstanding← 0.

Encryption: Upon receiving from some party P a tuple (Encrypt, sid, pk, t, m) proceed as follows:

1. If m ∈ Dk, pk = pk∗, and either t < t∗ or messages-outstanding = 0,
then send (Encrypt,sid, pk, t, P) to the adversary. In all other cases, send
(Dummy-Encrypt, sid, pk, t, m, P) to the adversary (i.e., reveal the plaintext to the ad-
versary).

2. Receive a reply c from the adversary and send (ciphertext,c) to P . In addition, if
m ∈ Dk, pk = pk∗, and t ≥ t∗, then do:

(a) If messages-outstanding = 0, set messages-outstanding ← 1 and flag ← outstanding.
Else, set flag← dummy.

(b) record the tuple (m, t, c, flag) in the list of ciphertexts.

Decryption: Upon receiving a tuple (Decrypt, sid, c) from player P , if P 6= R∗ then ignore this
input. Otherwise:

1. If the list of ciphertexts contains a tuple (m, t, c, ⋆) with the given ciphertext c and t = t∗,
then return m to R∗.

2. Otherwise send a message (Decrypt, sid, t∗, c) to the adversary, receive a reply m, and
forward m to R∗.

Update: Upon receiving (Update, sid) from player P , if P = R∗ do:

1. Send a message (Update, sid) to the adversary.

2. Remove from the list of ciphertexts all the tuples (m, t∗, c, flag) with the current time t∗.
If any of these tuple has flag = outstanding, then reset messages-outstanding← 0.

3. Set t∗ ← t∗ + 1.

Corruptions: Upon corruption of party P , if P = R∗ then send to the adversary all tuples
(m, t, c, ⋆) in the list of ciphertexts with t ≥ t∗. (If P 6= R∗ then do nothing.)

Figure 1: The AFSE functionality, Fafse.

5

so we do not describe it here. As for constructions, any AFSE scheme which is secure for the case
of a single outstanding ciphertext can be extended generically so as to be secure for any bounded
number ℓ of outstanding ciphertext in the following way: The public key of the new scheme consists
of ℓ independent keys pk1, . . . , pkℓ generated using the original scheme. To encrypt a message m,
the sender computes the “nested encryption” Epk1

(Epk2
(· · ·Epkℓ

(m) · · ·)) and sends the resulting
ciphertext to the receiver. One can show that this indeed realizes Fafse for at most ℓ outstanding
ciphertexts. The formal proof, however, is more involved and is omitted.

2.2 Realizing Fafse Using Key-Evolving Encryption Schemes

We present our constructions as key-evolving encryption schemes (i.e., as a collection of algorithms)
rather than as protocols (as technically required by the UC framework). For completeness, we
describe the (obvious) transformation from key-evolving encryption schemes to protocols geared
toward realizing Fafse.

Recall that a key-evolving encryption scheme consists of four algorithms (Gen,Upd,Enc,Dec),
where (Gen,Enc,Dec) are the key generation, encryption, and decryption routines (as in a standard
encryption scheme, except that the encryption and decryption routines also take as input a time
period t), and Upd is the secret-key update algorithm that takes as input the current secret key
and time unit, and outputs the secret key for the next time unit. The definition is reviewed in
Appendix A.

Given a key evolving encryption scheme S = (Gen,Upd,Enc,Dec), one may construct the pro-
tocol πS as follows:

1. When activated within player R∗ and with input (KeyGen, sid, 1k), run algorithm Gen(1k),
output the encryption key pk, record the decryption key sk0, initialize a counter t ← 0, and
erase all other local state.

2. When activated within R∗ with input (Update, sid), set skt+1 ← Upd(t, ski), set t ← t + 1,
and erase ski (as well as any other temporary state that was used for the Upd algorithm).

3. When activated within some player P with input (Encrypt, sid, pk′, t′,m), choose a random r
and return Encpk′(t

′,m, r), and then erase all local state. (Note that it does not necessarily
hold that pk′ = pk.)

4. When activated within R∗ with input (Decrypt, sid, c), return Decsk(t, c) (and then erase
any temporary state that was used for the decryption).

With this transformation we can now define an AFSE scheme:

Definition 1 A key-evolving encryption scheme S is an adaptively- and forward-secure encryption
(AFSE) scheme if the protocol πS resulting from the transformation above securely realizes Fafse

with respect to adaptive adversaries.

3 AFSE Based on Forward-Secure Encryption

In this section we show how to construct an AFSE scheme from any FSE scheme secure against
chosen-plaintext attacks along with any simulation-sound NIZK proof system. (See Appendix A
for definitions of key-evolving encryption and forward security, both against chosen-plaintext and
chosen-ciphertext attacks.) We describe in detail a construction that allows encryption of only a

6

single bit per ciphertext and then discuss how this may be generalized to allow for encryption of
any polynomial number of bits per ciphertext. Our construction uses a simple twist of the Naor-
Yung/Sahai transformation [ny90, s99]; when applied to two FSE schemes, the resulting scheme
yields not only CCA security but also security against adaptive corruptions. We comment that,
as opposed to the case of non-adaptive CCA security, “one-time” simulation sound NIZK proofs
are not sufficient to achieve security against adaptive corruptions; instead, we require NIZK proofs
satisfying the stronger notion of unbounded simulation soundness [ddops01].

The construction. Let E ′ = (G′, U ′, E′,D′) be a key-evolving encryption scheme, and let P =
(ℓ, P, V) be an NIZK proof system (where ℓ(k) is the length of the common random string for
security parameter k) for the following NP language

LE ′
def
= {(t, pk′0, c

′
0, pk′1, c

′
1) :

∃ m, r0, r1 s.t. c′0 = E′(pk′0, t;m; r0), c′1 = E′(pk′1, t;m; r1)}.

We construct a new key-evolving encryption scheme E = (G,U,E,D) as follows:

Key generation, G. On security parameter 1k, run two independent copies of the key generation
algorithm of E ′ to obtain (pk′0, sk

′
0) ← G′(1k) and (pk′1, sk

′
1) ← G′(1k). Choose a random

bit b ∈ {0, 1} and a random ℓ(k)-bit string crs ∈ {0, 1}ℓ(k). The public key is the triple
(pk′0, pk′1, crs), and the secret key is (b, sk′b). Erase the other key sk′

b̄
.

Key update, U . Key update is unchanged, namely U(t, (b, sk′)) = (b, U ′(t, sk′)).

Encryption, E. To encrypt a bit m ∈ {0, 1} at time t, first pick two independent random
strings r0, r1 as needed for the encryption algorithm E′ and compute c′0 ← E′(pk′0, t;m; r0),
c′1 ← E′(pk1, t;m; r1), and a proof that (t, pk′0, c

′
0, pk′1, c

′
1) ∈ LE ′ (namely, compute π ←

P (crs; t, pk′0, c
′
0, pk′1, c

′
1;m, r0, r1)). The ciphertext is the triple c = (c′0, c

′
1, π).

Decryption, D. To decrypt a ciphertext c = (c′0, c
′
1, π) at time t, first run the verifier V (crs;

t, pk′0, c
′
0, pk′1, c

′
1). If V rejects, the output is ⊥. Otherwise, the recipient uses (b, sk′b) to

recover m← D′(sk′b; c
′
b).

We claim the following theorem:

Theorem 1 If E ′ is forward-secure against chosen-plaintext attacks (fs-CPA, cf. Definition 4) and
if (P, V) is an unbounded simulation-sound NIZK proof system [ddops01, Def. 6], then E is an
AFSE scheme.

Before proceeding with the proof, we provide some intuition. Underlying our analysis is the observa-
tion that a simulator (who can generate proofs for false assertions) can come up with a valid-looking
“dummy ciphertext” whose component ciphertexts encrypt different messages (i.e., both 0 and 1).
The simulator, who also knows both underlying decryption keys, can thus open the dummy ci-
phertext as an encryption of either 0 or 1, depending on which decryption key is presented to an
adversary. (Note further that the adversary will be unable to generate dummy ciphertexts of this
form due to the simulation soundness of the NIZK proof system.) The above argument demon-
strates adaptive security for a single encrypted bit. Adaptive security for an unbounded number of
bits (as long as only one ciphertext is outstanding) holds since the secret keys of the underlying FSE
schemes evolve after each encryption. We remark that one-time simulation soundness for (P, V)

7

would not be sufficient here, since the simulator must generate multiple “fake ciphertexts” and the
hybrid argument that works in the non-adaptive case (see [s99]) does not work here.

AFSE for longer messages. To obtain a construction of an AFSE scheme for n-bit messages, one
can simply use n pairs of public keys generated using E ′ (the receiver now chooses at random one
secret key from each pair to store, while the other is erased). The rest is an obvious extension of the
proof intuition from above, with the only subtle point being that the resulting ciphertext contains
a single NIZK proof computed over the entire vector of n ciphertext pairs (with the language being
defined appropriately).

3.1 Proof of Theorem 1

To prove this theorem, we describe a simulator and prove that no ppt environment can distinguish
interactions with the “standard real-world adversary” and the scheme E from interactions with the
ideal-world simulator and the functionality Fafse (with domain D = {0, 1}). Before doing so, we
establish some useful conventions and notation that will be used here as well as in later proofs.

3.1.1 Conventions and Notation

Recall that in this work we are dealing with a non-interactive scheme, where parties never commu-
nicate directly with each other (any interaction in a run of the system is done via the environment).
This means that direct interaction between the environment and the adversary (in either model)
happens only when players are corrupted. Given the functionality Fafse, the relevant interface
between the environment, the adversary, and the system, consists of the following queries:

• The environment sends a query (KeyGen, sid) to player i, which is answered by some public
key pk. Below we call the player whose identity is encoded in the sid “the receiver”, denoted
R∗. The public key given to the receiver is called the “target public key” and is denoted
by pk∗. We refer to t∗ (which is initialized by Fafse in response to this query and later
incremented with every update query) as the “local time at the receiver”.

• The environment sends a query (Update, sid) to the receiver R∗, but this query generates no
response.

• The environment sends a query (Encrypt, sid, pk, t,m) to some player j, which is answered
by a ciphertext c. We call the time t included in this query the “sender time” for the query.
We say an encryption query is important if it causes the Fafse functionality to send a message
(Encrypt, sid, pk, t, j) to the simulator. (That is, m is kept hidden from the adversary.) That
means in particular that: (a) the query specifies the target public key pk∗, (b) the message
m is in the domain D, (c) the receiver is not corrupted, and (d) either the sender time is
“in the past” (i.e., t < t∗), or the variable messages-outstanding is not set when this query is
made. We comment that from the transcript of the environment, it is easy to deduce which
encryption queries are important.

• The environment sends a query (Decrypt, sid, c) to the receiver R∗, which is answered by a
plaintext m (possibly m =⊥).

A decryption query is important if it causes the Fafse functionality to send a message
(Decrypt, sid, t∗, c, i) to the simulator. This roughly means that the ciphertext c was not
generated in response to a previous encryption query. Again, from the transcript of the
environment, it is easy to deduce which decryption queries are important.

8

• The environment sends a query (Corrupt, sid, i) to the adversary. In the real world, the
adversary is then supposed to corrupt player i and send its internal state to the environment.
(Presumably, the relevant part of the internal state consists of a key, say of the form (pk, t, sk).)

Of course, the environment is free to issue other queries to the players, but these will simply be
ignored. Also, in the real world it is sufficient to consider a “dummy adversary” that only relays
messages from the environment to Fafse and back (see [c01]).

Additional notation and observations. A ciphertext c which is returned as a reply to an
important encryption query (pk∗, t,m) is said to be “outstanding” as long as the local time at the
receiver is t∗ ≤ t. We call a ciphertext that is outstanding when the receiver is corrupted “the
critical ciphertext”, and the encryption query that resulted in that ciphertext is called “the critical
encryption query”. Note that the Fafse functionality ensures that at any time there is at most one
outstanding ciphertext in the system, and in particular there can be at most one critical ciphertext.
In fact, we can assume that in every run there is a critical ciphertext, since we can require w.l.o.g.
that the environment always corrupts the receiver and, just before doing so, makes an encryption
query with the current local time t∗.

We also observe that if a ciphertext c is outstanding at local time t∗, then every important
encryption query that was issued up to local time t∗ (other than the one that generated c) must
have sender time t′ < t∗. (Otherwise, we would have two outstanding ciphertexts at local time t∗.)
In particular, if the receiver is corrupted at local time t∗ then all the important encryption queries
that are made before the receiver was corrupted — except the critical query — must have sender
time t′ < t∗.

3.1.2 Description of the Simulator

The simulator is quite natural. Roughly, to generate a key it uses the NIZK simulator to generate
the common random string crs, and it runs the original key-generation G′ twice and keeps both
secret keys sk′0 and sk′1. When it needs to generate a ciphertext (and it does not see the bit to
be encrypted), it picks a bit b at random, encrypts b under pk′0 and b̄ under pk′1, and uses the
NIZK simulator to generate a simulated proof for these two ciphertexts. If the simulator needs
to decrypt ciphertexts that were generated by the environment, it verifies the NIZK proof and (if
correct) decrypts the ciphertext using either of the secret keys that it knows. Finally, if the receiver
is compromised and the simulator needs to open one of the invalid ciphertexts that it created, it
learns the bit that was supposed to be encrypted in that ciphertext and then reveals either sk′0 or
sk′1 (depending on which decrypts the ciphertext to the right bit). Note that the simulator never
needs to open more than one of these invalid ciphertexts, since there can be at most one critical
ciphertext. A detailed description follows.

Recall that we are dealing with a non-interactive scheme, where parties never communicate
directly with each other (any interaction in a run of the system is done via the environment).
This means that direct interaction between the environment and the adversary (in either model)
happens only when players are corrupted. Thus, when specifying the simulator we only need to
show how it handles corrupted players and how it interacts with the functionality Fafse. Below we
list all the types of interactions that the simulator needs to handle, and how it implements them.
Let S = (S1, S2) be the NIZK simulator that is guaranteed to exist in [ddops01, Def. 6].

Key Generation. Upon receiving a message (KeyGen, sid, i, 1k) from the Fafse functionality, if
this is the first activation then do the following:

9

• Run two independent copies of the key generation of E ′ to get (pk′0, sk
′
0) ← G′(1k) and

(pk′1, sk
′
1)← G′(1k).

• Run the first stage of the NIZK simulator to get (crs, z)← S1(1
k).

• Return to the functionality the public key pk = (pk′0, pk′1, crs).

• Record the variables pk∗ ← pk, R∗ ← i, t∗ ← 0, sk∗0 ← sk′0, sk∗1 ← sk′1 and z∗ ← z.

If this is not the first activation, just run the key-generation of E to get (pk, sk)← G(1k) and return
pk to the functionality.

Update. Upon receiving a message (Update, sid) from the functionality, update the secret keys
sk∗0, sk

∗
1 using the update algorithm of E ′, setting sk∗0 ← U ′(t∗, sk∗0) and sk∗1 ← U ′(t∗, sk∗1), and then

set t∗ ← t∗ + 1.

Encryption. Upon receiving a message (Encrypt, sid, pk, t, j) from the functionality (with pk =
pk∗), parse pk as (pk′0, pk′1, crs) and do the following:

• Pick at random a bit b, set c′0 ← E′(pk′0, t; b) and c′1 ← E′(pk′1, t; b̄).

• Compute a simulated proof π ← S2(z
∗, t, pk′0, c

′
0, pk′1, c

′
1).

• Return the ciphertext c = (c′0, c
′
1, π) to the functionality, and record this ciphertext together

with the bit b.

Upon receiving a message (Dummy-Encrypt, sid, pk, t,m, j) from the functionality, simply apply the
encryption routine of E to get c← E(pk, t;m) and return c.

Decryption. Upon receiving a message (Decrypt, sid, t∗, c, i) from the functionality, if i 6= R∗

then return ⊥. Otherwise, parse pk∗ = (pk′0, pk′1, crs) and c = (c′0, c
′
1, π), and do the following:

• Verify the proof π using V (crs, t∗, pk′0, c
′
0, pk′1, c

′
1, π).

• If verification succeeds then decrypt m← D′(sk∗0; c
′
0) and if m ∈ {0, 1} then return m.

• If verification fails or m /∈ {0, 1} then return ⊥.

Corruptions. When the simulator is instructed by the environment to corrupt the receiver R∗,
it informs the functionality that R∗ is corrupted, and gets from it all the tuples (m, t, c, flag) with
t ≥ t∗. (Recall that there can be at most one such tuple which is outstanding. Also, since the
message domain is D = {0, 1}, then m must be a single bit.) Then it does the following:

• If there is no outstanding tuple, pick a random bit σ and set sk∗ ← (σ, sk∗σ).

• If there an outstanding tuple (m, t, c, outstanding), then recover the bit b that was recorded
with the ciphertext c. If m = b then set sk∗ ← (0, sk∗0). Otherwise, set sk∗ ← (1, sk∗1).

• Send (pk∗, t∗, sk∗) to the environment, and then erase all the variables R∗, pk∗, t∗, sk∗0, sk∗1,
and z∗.

10

3.1.3 Proof of Indistinguishability

We now prove that the interaction of the environment with the scheme E and the “standard real-
world adversary” is indistinguishable from its interaction with the simulator and the functionality
Fafse. Below, we assume w.l.o.g. that the environment halts immediately after corrupting the
receiver (since at this point, neither the functionality nor the simulator has any secrets that the
environment does not know). There are four differences between the real and the simulated worlds:

• In the real world, the public key contains a CRS that was chosen according to the specified
distribution, whereas in the simulated world the CRS was generated by the NIZK simulator.

• In the real world, ciphertexts that are encrypted under pk∗ include two encryptions of the
same bit, whereas in the simulated world they include encryptions of two different bits.

• In the real world, these ciphertexts include a “real proof” (generated by the prover with
respect to a “real common random string”) that the two component ciphertexts encrypt the
same bit. In the simulated world, ciphertexts instead include a simulated proof (generated
by the simulator with respect to the “simulated common random string” in the public key).

• In the real world, decryption queries with a valid NIZK proof are decrypted with the same
key that is later revealed when R∗ is corrupted. In the simulated world, they are decrypted
with the key sk∗0.

To deal with the first two differences we introduce a “hybrid world”, in which ciphertexts that are
encrypted under pk∗ include two encryptions of the same bit, but with a simulated proof (with
respect to a “simulated common random string”) rather than a real proof. We then show that:
(a) the simulated world cannot be distinguished from the hybrid world because of the CPA-security
of the underlying scheme E ′ and the simulation-soundness of the NIZK proof system (Proposition 2
and Claim 3), and (b) the hybrid world cannot be distinguished from the real world because the
proof system is zero-knowledge (Proposition 4). We note that proving indistinguishability between
the hybrid and real world is straightforward, while the other indistinguishability proof is somewhat
more subtle (as it has to deal with the forward-security aspect of the scheme).

The hybrid world. The hybrid world proceeds like the simulated world (and, in particular,
the crs∗ component of the target public key is generated by the NIZK simulator), except that
important encryption queries are handled differently. Namely, a message (Encrypt, sid, pk, t, j)
that the functionality sends to the simulator (in response to encryption query (pk, t,m) to player i
with m ∈ {0, 1}) is answered by setting c0 ← E(pk∗0, t;m) and c1 ← E(pk∗1, t;m), then computing
π ← S2(z

∗, t, pk∗0, c0, pk∗1, c1) and returning c = (c0, c1, π). When the environment corrupts the
receiver, the simulator picks at random one of the two secret keys it knows and gives it to the
environment.

Proposition 2 (simulated ≈ hybrid) For any ppt environment Env, the following is negligible:

α(k)
def
=

∣

∣

∣

∣

Pr
sim

[Env(1k)→ 1] − Pr
hybrid

[Env(1k)→ 1]

∣

∣

∣

∣

.

Proof. Assume that there is a ppt environment Env for which α is not negligible, and we show a
contradiction to the CPA security of the underlying encryption scheme E ′. Specifically, we describe
an adversary A against the scheme E ′ that works as follows: it receives a public key pk′, generated

11

by G′, it specifies a time t and receives a ciphertext c′ ← E′
pk′

(t,m) for a random bit m, together

with the secret key sk′ for time t + 1 (i.e., the result of making t + 1 updates to the original secret
key). The goal of A is to guess the bit m, and we show that the advantage of A in guessing m is
polynomially related to α.

Let Q(k) be a polynomial that bounds the number of important encryption queries that Env
makes on security parameter 1k. Upon receipt of the public key pk′, A begins by picking a random
index q∗ ∈ [1 . . . Q(k)]. Then A runs the environment Env(1k), creating for it a world that looks like
the hybrid world up to encryption query q∗− 1, like the simulated world from query q∗ + 1 and on,
and where what happens in query q∗ depends on the bit that is encrypted in c′. In more details,
A implements both the functionality Fafse and the ideal-world simulator as described above, with
the following exceptions.

• When Env makes its first “KeyGen” query to player R∗, A picks a bit σ, sets pk∗σ ← pk′,
sk∗σ ← “?”, and (pk∗σ̄, sk∗σ̄)← G′(1k). It also computes (crs∗, z∗)← S1(1

k) and returns to Env
the public key pk∗ = (pk∗0, pk∗1, crs

∗).

• When Env makes its j’th important encryption query (pk, t,m) to player i, causing the func-
tionality to send a message (Encrypt, sid, pk, t, j) to the simulator, A responds as follows: If
j < q∗ then A responds just like in the hybrid world, encrypting twice the bit m and pro-
viding a simulated NIZK proof. If j > q∗ then A responds just like in the simulated world,
encrypting two different bits (in random order) and providing a simulated NIZK proof.

If j = q∗ then A makes its challenge query, specifying the time t and getting back a ciphertext
c′ and the secret key sk′, corresponding to public key pk∗σ and time t + 1. If t < t∗ (where
t∗ is the local time of the verifier; i.e., this encryption query is for some time period “in the
past”) then A computes sk∗σ by applying the update algorithm U ′ sufficiently many times to
the secret key sk′ that it got. Otherwise (t ≥ t∗), A just records the secret key sk′ and the
corresponding time t′ ← t + 1. In either case, it sets cσ ← c′, cσ̄ ← E′(pk∗σ̄, t;m), and π ←
S2(z

∗, t, pk∗0, c0, pk∗1, c1), returns to the functionality (and Env) the ciphertext c = (c0, c1, π),
and record the encrypted bit m∗ ← m.

• When Env makes an Update query, A updates the secret keys that it knows, setting sk∗σ̄ ←
U ′(t∗, sk∗σ̄), and if sk∗σ 6= “?” then it also sets sk∗σ ← U ′(t∗, sk∗σ). If A doesn’t yet know sk∗

σ but
it has recorded sk′ and t′ = t∗ + 1, then A sets sk∗σ ← sk′. In either case, the local time at the
receiver is then updated t∗ ← t∗ + 1.

• When Env makes an important decryption query (Decrypt, sid, c) with c = (c0, c1, π), causing
the functionality to send a message (Decrypt, sid, t∗, c, R∗) to the simulator, then A verifies
the NIZK proof π, decrypts cσ̄ to get m ← D′(sk∗σ̄; cσ̄) and verifies that m is a single bit. If
everything succeeds it returns m, and otherwise it returns ⊥.

• When Env makes a query (Corrupt, sid,R∗) to the simulator, if A already knows both skσ

and skσ̄, then it just proceeds like the simulator, returning the key that correctly decrypts
the (single) outstanding ciphertext (or a random key, if they both decrypt correctly). If A
still does not know skσ then it returns the secret key sk∗ ← (σ̄, skσ̄). (Below we show that in
the latter case, skσ̄ must indeed decrypt correctly the critical ciphertext.)

If Env halts with output 1, then A guesses the bit m∗ (i.e., the bit that Env asked to encrypt when A
made its challenge query). If Env outputs anything else, then A guesses the complement of m∗.

12

We start the analysis of A by examining decryption queries. Denote by BadProof the event
in the execution of A where Env makes an important decryption query (Decrypt, sid, c) with c =
(c0, c1, π), such that the NIZK verifier falsely accepts the proof π. Namely, if the local time at
the receiver when this query is made was t∗, then we have V (crs∗, t∗, pk∗0, c0, pk∗1, c1, π) = accept,
but (t∗, pk∗0, c0, pk∗1, c1) /∈ LE ′ . We notice that as long as the event BadProof does not happen, the
replies that Env get for its decryption queries are independent of which of the two keys is used
to decrypt the ciphertext. Hence, what A returns is the same as the replies that Env gets in the
simulated world (which is the same as in the hybrid world). The following claim, which is proven
later, follows easily from the unbounded simulation-soundness of the NIZK proof system.

Claim 3 PrA[BadProof] is negligible in the security parameter k, where the probability is taken
over all the randomness in the execution of A (including the choice of its input public key).

Next we show that if the receiver is corrupted at a time when A only knows one secret key,
then this key must indeed decrypt correctly the critical ciphertext. (That is, the key sk∗ that A
returns decrypts the critical ciphertext to the bit that Env specified in the critical encryption query.)
Specifically, we show that in this case the critical encryption query was query j ≤ q∗ (which means
that A explicitly encrypted under pk∗σ̄ the bit that Env specified in that query). Assume to the
contrary that the critical encryption query was j > q∗. Let t be the sender time that was specified
in encryption query q∗ (which was made before query j) and let t∗ denote the local time of the
receiver when it was corrupted. Since A knows only one secret key at time t∗, it must be that t∗ ≤ t.
But this means that the ciphertext from query q∗ is also outstanding at time t∗, contradicting the
fact that there could be at most one outstanding ciphertext at any given time. We conclude that
conditioned on the event BadProof not happening:

• The view of Env when q∗ = 1 and the bit encrypted in the ciphertext c′ is m∗, is distributed
identically to its view in the simulated world.

Namely, important encryption queries are answered by encryptions of two different bits (in
random and independent order) with a simulated proof, important decryption queries are
answered as in the simulated world (which is the same as in the hybrid world), and a corruption
is answered with the key that decrypts the outstanding ciphertext to the right bit.

• The view of Env when q∗ = Q(k) and the bit encrypted in the ciphertext c′ is the complement
of m∗, is distributed identically to its view in the hybrid world.

Namely, important encryption queries are answered by two encryptions of the right bit with a
simulated proof, important decryption queries are answered as in the simulated world (which
is the same as in the hybrid world), and a corruption is answered with one of the two keys,
randomly chosen between them (since σ is chosen at random).

• For any j ∈ [2 . . . Q(k)], the view of Env when q∗ = j − 1 and the bit encrypted in the
ciphertext c′ is m∗, is distributed identically to its view when q∗ = j and the bit encrypted
in the ciphertext c′ is the complement of m∗.

Namely, important encryption queries up to query j are answered by two encryptions of the
right bit and the other important encryption queries (if there are any) are answered with
encryptions of two different bits in random and independent order, all with simulated proofs.
Important decryption queries are answered as in the simulated world (which is the same as
in the hybrid world). Also, if a corruption happens while the outstanding ciphertext consists
of two encryptions of the same bit, it is answered with either one of the two keys, randomly

13

chosen between them, while if a corruption happens when the outstanding ciphertext con-
sists of encryptions of two different bits then it is answered with the key that decrypts the
outstanding ciphertext to the right bit.

We conclude that the advantage of A in guessing the bit encrypted in c′ is at least α(k)/Q(k) −
PrA[BadProof].

Proof of Claim 3. The proof is straightforward. We show a forger F that interacts with the NIZK
simulator S = (S1, S2) and produces a proof of an incorrect theorem, different from all theorems it
received from S, with probability exactly PrA[BadProof]. The forger F gets as input a “simulated
common random string” crs, generated by S1. It sets (pk′, sk′) ← G′(1k) and then runs A on the
input pk′, putting the input crs in the target public key. Whenever A needs to generate a simulated
proof, F uses its access to S2 to obtain that proof. Whenever the environment in the execution of
A makes an important decryption query (pk, c) with pk = (crs, pk′0, pk′1) and c = (c′0, c

′
1, π) at time

t∗, the forger F checks if the event BadProof happened. If so, then F outputs the “false theorem”
(t∗, pk′0, c

′
0, pk′1, c

′
1) with the proof π. We note that F can indeed check whether BadProof occurs

since it knows the two secret keys.2 By definition of event BadProof, the false theorem is different
from all previous theorems that F received from S2, and the proof π is accepted (with respect to
the input crs).

Proposition 4 (hybrid ≈ real) For any ppt environment Env, the following is negligible:

β(k)
def
=

∣

∣

∣

∣

Pr
hybrid

[Env(1k)→ 1] − Pr
real

[Env(1k)→ 1]

∣

∣

∣

∣

.

Proof. This follows by definition from the (unbounded) zero-knowledge of the proof system. We
just note that the combination of the environment, the functionality Fafse, and the hybrid-world
simulator constitute a distinguisher between the NIZK simulator and the prescribed prover. This is
because in either world, the answers to the important encryption queries of the environment consist
of true theorems, and the only difference between the worlds is that in the hybrid world the proofs
for these true theorems are generated by the simulator, while in the real world they are generated
by the prescribed prover.

4 Receiver Non-Committing Encryption

This section defines and constructs receiver non-committing encryption (RNCE) that is secure
against “lunch-time attacks” (aka CCA1-secure). We note that RNCE was considered in [jl00] for
the more basic case of chosen-plaintext attacks. Section 5 shows how to combine any RNCE scheme
with any FSE scheme secure against chosen-ciphertext attacks to obtain a secure AFSE scheme.
Since our proposed constructions of RNCE schemes are quite efficient (and since relatively-efficient
constructions of FSE schemes secure against chosen-ciphertext attacks are known [chk03, chk04,
bb04]), we obtain (relatively) efficient AFSE schemes.

On a high level, a receiver non-committing encryption scheme is one in which a simulator can
generate a single “fake ciphertext” and later “open” this ciphertext (by showing an appropriate
secret key) as any given message. These “fake ciphertexts” should be indistinguishable from real
ciphertexts, even when an adversary is given access to a decryption oracle before the fake ciphertext
is known.

2Here, we assume that the encryption scheme E
′ has no decryption errors.

14

4.1 Definition of RNCE

Formally, a receiver non-committing encryption (RNCE) scheme consists of five ppt algorithms
(G,E,D, F̃ , R̃) such that:

• The randomized key-generation algorithm G takes as input the security parameter and out-
puts a key-pair and some auxiliary information. This is denoted by: (pk, sk, z)← G(1k). The
public key pk defines a message space D.

• The randomized encryption algorithm E takes a public key pk and a message m ∈ D. It
returns a ciphertext c← E(pk;m).

• The decryption algorithm D takes as input a secret key sk and a ciphertext c, and returns a
message m← D(sk; c), where m ∈ D ∪ {⊥}.

• The fake encryption algorithm F̃ takes as input a triple (pk, sk, z) as output by G, and outputs
a “fake ciphertext” c̃← F̃ (pk, sk, z).

• The reveal algorithm R̃ takes as input a triple (pk, sk, z) as output by G, a “fake ciphertext” c̃
as output by F̃ , and a message m ∈ D. It outputs a “fake secret key” s̃k← R̃(pk, sk, z; c̃,m).
(Intuitively, s̃k is a valid-looking secret key for which c̃ decrypts to m.)

We make the standard correctness requirement; namely, for any pk, sk, z output by G and any
m ∈ D, we have D(sk;E(pk;m)) = m.

Our definition of security requires, informally, that for any message m an adversary cannot
distinguish whether it has been given a “real” encryption of m along with a “real” secret key, or a
“fake” ciphertext along with a “fake” secret key under which the ciphertext decrypts to m. This
should hold even when the adversary has non-adaptive access to a decryption oracle. We now give
the formal definition.

Definition 2 (RNC-security) Let E = (G,E,D, F̃ , R̃) be an RNCE scheme. We say that E is
RNC-secure (or simply “secure”) if the advantage of any ppt algorithm A in the game below is
negligible in the security parameter k.

1. The key generation algorithm G(1k) is run to get (pk, sk, z).

2. The algorithm A is given 1k and pk as input, and is also given access to a decryption oracle
D(sk; ·). It then outputs a challenge message m ∈ D.

3. A bit b is chosen at random. If b = 1 then a ciphertext c ← E(pk;m) is computed, and A
receives (c, sk). Otherwise, a “fake” ciphertext c̃ ← F̃ (pk, sk, z) and a “fake” secret key
s̃k ← R̃(pk, sk, z; c̃,m) are computed, and A receives (c̃, s̃k). (After this point, A can no
longer query its decryption oracle.) A outputs a bit b′.

The advantage of A is defined as 2 ·
∣

∣Pr[b′ = b]− 1
2

∣

∣.

It is easy to see that the RNC-security of (G,E,D, F̃ , R̃) according to Definition 2 implies in
particular that the underlying scheme (G,E,D) is secure against non-adaptive chosen-ciphertext
attacks. It is possible to augment Definition 2 so as to grant the adversary access to the decryption
oracle even after the ciphertext is known, but we do not need this stronger definition for our intended
application (Section 5). We also comment that the Naor-Yung construction [ny90] is RNC-secure
for 1-bit messages (if the secret key is chosen at random from the two underlying secret keys); a
proof can be derived from [ny90] as well as our proof of Theorem 1.

15

4.2 A Secure RNCE Scheme for Polynomial-Size Message Spaces

Here, we show that the Cramer-Shoup cryptosystem [cs98] can be modified to give a secure RNCE
scheme for polynomial-size message spaces. Interestingly, because our definition of security only
involves non-adaptive chosen-ciphertext attacks, we can base our construction on the simpler and
more efficient “Cramer-Shoup lite” scheme. In fact, the only difference is that we encode a message
m by the group element gm, rather than encoding it directly as the element m. (This encoding is
essential for the reveal algorithm R̃.3)

In what follows, we let G = {G k}k∈N be a family of finite, cyclic groups (written multiplicatively),
where each group G k has (known) prime order qk and |qk| = k. For simplicity, we describe our
RNCE scheme for the message space {0, 1}; however, we will comment briefly afterward how the
scheme can be extended for any polynomial-size message space.

Key generation, G. Given the security parameter 1k, let G denote G k and q denote qk. Choose at
random g1 ← G \{1}, and also choose random α, x1, x2, y1, y2 ← Zq. Set g2 = gα

1 ;h = gx1

1 gx2

2 ;
and d = gy1

1 gy2

2 . The public key is pk = (g1, g2, h, d), the secret key is sk = (x1, x2, y1, y2), and
the auxiliary information is z = α.

Encryption, E. Given a public key pk = (g1, g2, h, d) and a message m ∈ {0, 1}, choose a random
r ∈ Zq, compute u1 = gr

1 u2 = gr
2, e = gm

1 hr and v = dr. The ciphertext is 〈u1, u2, e, v〉.

Decryption, D. Given a ciphertext 〈u1, u2, e, v〉 and secret key sk = (x1, x2, y1, y2), proceed as
follows: First check whether uy1

1 uy2

2 = v. If not, then output ⊥. Otherwise, compute w =
e/ux1

1 ux2

2 . If w = 1 (i.e., the group identity), output 0; if w = g1, output 1. (If w /∈ {1, g1}
then output ⊥.)

Fake encryption, F̃ . Given pk = (g1, g2, h, d) and sk = (x1, x2, y1, y2), choose at random r ∈ Zq.
Then compute ũ1 = gr

1, ũ2 = g1g
r
2, ẽ = gx2

1 hr and ṽ = ũy1

1 ũy2

2 , and output the “fake” ciphertext
c̃ = 〈ũ1, ũ2, ẽ, ṽ〉.

Reveal algorithm, R̃. Given pk = (g1, g2, h, d), sk = (x1, x2, y1, y2), z = α, a “fake” ciphertext
〈ũ1, ũ2, ẽ, ṽ〉, and a message m ∈ {0, 1}, set x′

2 = x2 −m and x′
1 = x1 + mα (both in Zq) and

output the “fake” secret key s̃k = (x′
1, x

′
2, y1, y2).

One can check that the secret key s̃k matches the public key pk, since

g
x′
1

1 g
x′
2

2 = gx1+mα
1 gx2−m

2 = (gx1

1 gm
2)gx2−m

2 = gx1

1 gx2

2 = h;

moreover, s̃k decrypts the “fake” ciphertext 〈ũ1, ũ2, ẽ, ṽ〉 to m, since

e

ũ
x′
1

1 ũ
x′
2

2

=
gx2

1 (g
x′
1

1 g
x′
2

2)r

(gr
1)

x′
1(g1g

r
2)

x′
2

=
g

x2+rx′
1

1 g
rx′

2

2

g
rx′

1
+x′

2

1 g
rx′

2

2

= g
x2−x′

2

1 = gm
1 .

The above scheme can be immediately extended to support any polynomial-size message space:
encryption, fake encryption, and reveal would be exactly the same, and decryption would involve
computation of w, as above, followed by an exhaustive search through the message space to deter-

mine m
def
= logg1

w.

3Looking ahead, it is for this reason that the present construction only handles polynomial-size message spaces: the
receiver only directly recovers gm, and must search through the message space to find the corresponding message m.

16

Before stating the formal theorem, we first recall the decisional Diffie-Hellman (DDH) as-
sumption. The DDH assumption for G states that the following two distribution ensembles are
computationally indistinguishable:

U =
{

g ← G k , a, b, c← Zqk
: (g, ga, gb, gc)

}

k∈N
and D =

{

g ← G k , a, b← Zqk
: (g, ga, gb, gab)

}

k∈N
,

where elements drawn from the former distribution ensemble are called “random tuples” and ele-
ments drawn from the latter distribution ensemble are called “Diffie-Hellman tuples”. It is easy to
show that under the DDH assumption, the distribution ensemble

D′ =
{

g ← G k , a, b← Zqk
: (g, ga, gb, gab+1)

}

k∈N

is also indistinguishable from U . The reason is that if the 4-tuple (g, h, u, v) is drawn at random
from D then (g, h, u, gv) is a random tuple in D′, whereas if (g, h, u, v) is a random tuple from U ,
then so is (g, h, u, gv). It follows that D′ is indistinguishable from D.

Theorem 5 If the DDH assumption holds for G, then the above scheme is RNC-secure.

Proof. Recall the game as specified in Definition 2. In step 3 of the game, the adversary is given
either a ciphertext output by the real encryption algorithm and the “real” secret key (if b = 1), or
a “fake” ciphertext (i.e., one output by the fake encryption algorithm) and a “fake” secret key (if
b = 0). We show that an adversary who can distinguish these cases with a non-negligible advantage
implies a distinguisher between D and D′ (above), thereby violating the DDH assumption.

Fix a ppt adversary A, denote the advantage of A in the game of Definition 2 by ǫ = ǫ(k), and
let qd = qd(k) be a polynomial upper bound on the number of decryption queries that A makes.
We begin by showing that a certain “bad event” can only happen with negligible probability in
this game. Let Bad denote the event that the adversary ever submits to its decryption oracle a
ciphertext c = 〈u1, u2, e, v〉 for which (1) uα

1 6= u2 (recall that α = logg1
(g2)), yet (2) uy1

1 uy2

2 = v. We
claim that Pr[Bad] ≤ qd/q. (Recall that qd is polynomial in k whereas q = |G k | is exponential in k.)
This is so because the public key pk only constrains the values y1, y2 (in an information-theoretic
sense) to those q pairs satisfying gy1

1 gy2

2 = d. Furthermore, for any u1, u2, v for which uα
1 6= u2,

exactly one of those pairs satisfies uy1

1 uy2

2 = v. Other than the information in the public key, the
only information available to A on y1, y2 comes from previous failed decryption queries, and each
such query can rule out at most one pair. It follows that Pr[Bad] ≤ qd/q.

We next claim that, conditioned on event Bad not occurring, the answers that A gets from its
decryption queries match the answers it can later compute using D(s̃k; ·), where s̃k is the secret key
it gets in step 3 of the game. Indeed, the y1, y2 components in the secret key that A gets are the
same as in the secret key that is used to answer the oracle queries. Furthermore, for any decryption
query 〈u1, u2, e, v〉 that is not rejected it must be the case that logg1

u1 = logg2
u2 (assuming Bad

does not occur). Letting r = logg1
u1, we see that in this case the ciphertext is decrypted to (the

discrete logarithm of) e/hr regardless of (x1, x2), the representation of h in the secret key.
We now describe a distinguisher B between D and D′. It gets a 4-tuple (g1, g2, u1, u2) and

it (essentially) needs to decide whether logg1
u1 = logg2

u2 or logg1
u1 = logg2

(u2/g1). It chooses
x1, x2, y1, y2 ← Zq and gives to A the public key (g1, g2, h = gx1

1 gx2

2 , d = gy1

1 gy2

2). Then B uses
its secret key to answer the decryption queries of A in step 2. When A outputs its challenge m
at the end of step 2, then B computes e = gm

1 ux1

1 ux2

2 and v = uy1

1 uy2

2 and returns the ciphertext
c = 〈u1, u2, e, v〉 and the secret key sk = (x1, x2, y1, y2). Finally, B outputs whatever A does.

17

It is clear that when (g1, g2, u1, u2) is a Diffie-Hellman tuple, the view of A is distributed
identically to its view in the game of Definition 2 with the bit b = 1. We now show that when
(g1, g2, u1, u2) are taken fromD′, the view of A is statistically close to its view in the game with b = 0:
First, note that the public key pk and “fake” ciphertext c are distributed the same. Namely, g1 is
a random element in G , g2, d, h, e, v are random (and independent) elements in 〈g1〉, and u1, u2 are
random subject to logg1

(u1) = logg2
(u2/g1). Next, observe that given the public key, the challenge

message m, and the fake ciphertext c, there is a unique secret key that matches pk and decrypts c
to m, and this is the secret key that A sees in either game. It is therefore left to show that the
answers from the decryption oracles are distributed (almost) the same in both settings (i.e., even
when conditioned on the secret key that is later revealed). In the run of B these answers are
exactly what can be computed using D(sk; ·), where sk is the secret key that A gets in step 3 of
the game. And, as explained above, A gets the same answers in the game with b = 0 unless event
Bad occurs (which happens with negligible probability). We conclude that the advantage of B in
distinguishing D from D′ is at least ǫ− qd

q
, which completes the proof.

4.3 A Secure RNCE Scheme for Exponential-Size Message Spaces

The RNCE scheme in the previous section can be used only for message spaces of size polynomial in
the security parameter, as the decryption algorithm works in time linear in the size of the message
space. We now show a scheme that supports message spaces of size exponential in the security
parameter. Just as in the previous section, we construct our scheme by appropriately modifying a
(standard) cryptosystem secure against chosen-ciphertext attacks. Here, we base our construction
on schemes developed independently by Gennaro and Lindell [gl03] and Camenisch and Shoup
[cs03], building on earlier work by Cramer and Shoup [cs02]. Security of our scheme, as in these
earlier schemes, is predicated on the decisional composite residuosity (DCR) assumption [p99].

Let p, q, p′, q′ be distinct primes with p = 2p′ + 1 and q = 2q′ + 1 (i.e., p, q are strong primes).
Let n = pq and n′ = p′q′, and observe that the group Z

∗
n2 can be decomposed as the direct product

G n · G n′ · G 2 ·T, where each G i is a cyclic group of order i and T is the order-2 subgroup of Z∗
n2

generated by (−1 mod n2). This implies that there exist homomorphisms φn, φn′ , φ2, φT from Z

∗
n2

onto G n , G n′ , G 2 , and T, respectively, and every x ∈ Z

∗
n2 is uniquely represented by the 4-tuple

(φn(x), φn′(x), φ2(x), φT (x)). We use also the fact that the element γ
def
= (1 + n) mod n2 has order

n in Z

∗
n2 (i.e., it generates a group isomorphic to G n) and furthermore γa mod n2 = 1+an, for any

0 ≤ a < n.

Let Pn
def
= {xn mod n2 : x ∈ Z∗

n2} denote the subgroup of Z∗
n2 consisting of all nth powers; note

that Pn is isomorphic to the direct product G n′ ·G 2 ·T. The DCR assumption (informally) is that,
given n, it is hard to distinguish a random element of Pn from a random element of Z∗

n2.
Our RNCE scheme is defined below. In this description, we let G be an algorithm that on

input 1k randomly chooses two primes p′, q′ as above with |p′| = |q′| = k. Also, for a positive real
number r we denote by [r] the set {0, . . . , ⌊r⌋ − 1}.

Key generation, G. Given the security parameter 1k, use G(1k) to select two random k-bit primes
p′, q′ for which p = 2p′ + 1 and q = 2q′ + 1 are also prime, and set n = pq and n′ = p′q′.
Choose random x, y ∈ [n2/4] and a random g′ ∈ Z∗

n2, and compute g = (g′)2n, h = gx, and
d = gy. The public key is pk = (n, g, h, d), the secret key is sk = (x, y), and the auxiliary
information is z = n′.

Encryption, E. Given a public key as above and a message m ∈ [n], choose random r ∈ [n/4],
compute u = gr, e = γmhr, and v = dr (all in Z

∗
n2), and output the ciphertext c = 〈u, e, v〉.

18

Decryption, D. Given a ciphertext 〈u, e, v〉 and secret key (x, y), check whether u2y = v2; if not,
output ⊥. Then, set m̂ = (e/ux)n+1. If m̂ = 1 + mn for some m ∈ [n], then output m;
otherwise, output ⊥.

Correctness follows, since for a valid ciphertext 〈u, e, v〉 we have u2y = (gr)2y = d2r = v2, and
also (e/ux)n+1 = (γmhr/grx)n+1 = (γm)n+1 = γm = 1 + mn (using for the third equality the
fact that the order of γ is n).

Fake encryption, F̃ . Given pk = (n, g, h, d) and sk = (x, y), choose at random r ∈ [n/4], compute
ũ = γ · gr, ẽ = ũx, and ṽ = ũy (all in Z

∗
n2), and output the “fake” ciphertext c̃ = 〈ũ, ẽ, ṽ〉.

Reveal algorithm, R̃. Given pk = (n, g, h, d), sk = (x, y), z = n′, a “fake” ciphertext 〈ũ, ẽ, ṽ〉 as
above, and a message m ∈ [n], proceed as follows: Using the Chinese Remainder Theorem
and the fact that gcd(n, n′) = 1, find the unique x′ ∈ [nn′] satisfying x′ = x mod n′, and
x′ = x−m mod n, and output the secret key s̃k = (x′, y).

It can be verified that the secret key s̃k matches the public key pk and also decrypts the
“fake” ciphertext to the required message m: For the second component y this is immediate
and so we focus on the first component x′. First, the order of g divides n′ and so

gx′

= gx′ mod n′

= gx mod n′

= gx = h.

Furthermore, using also the fact that the order of γ in Z

∗
n2 is n, we have

(

ẽ

ũx′

)n+1

=

(

γxgrx

γx′grx′

)n+1

=
(

γx−x′ mod n
)n+1

= γm.

Before analyzing the protocol, we recall the DCR assumption. Let G be a randomized instance
generator as described earlier. We refer the reader to [p99] for the original definition of the
DCR assumption for G, and use here the fact that this assumption implies thatthe following two
distribution ensembles are computationally indistinguishable:

QR =
{

n← G(1k), x← Z

∗
n2 : (n, x2)

}

k∈N
and D =

{

n← G(1k), x← Z

∗
n2 : (n, x2n)

}

k∈N
.

It is easy to show that under the same assumption, the distribution ensemble

D′ =
{

n← G(1k), x← Z

∗
n2 : (n, γ · x2n)

}

k∈N

is also indistinguishable from QR, where γ = (1 + n) mod n2. The reason is that if (n, y) is drawn
at random from D then (n, γ · y) is distributed according to D′, whereas if (n, y) is a random pair
from QR then so is (n, γ · y). It follows that D′ is indistinguishable from D.

Theorem 6 If the DCR assumption holds for G, then the above scheme is RNC-secure.

Proof. At a high level, the proof proceeds much like the proof of Theorem 5. We show that
an adversary with a non-negligible advantage in the game of Definition 2 implies a distinguisher
between D and D′ above, thereby violating the DCR assumption. In what follows, we will use the
fact that the uniform distributions over [nn′] and [n2/4] have negligible statistical difference. We
also assume w.l.o.g. that p > q.

19

Fix a ppt adversary A, and let qd = qd(k) be a polynomial upper bound on the number of
decryption queries that A makes. Let Bad denote the event that the adversary ever submits to its
decryption oracle a ciphertext c = 〈u, e, v〉 for which (1) u /∈ Pn, yet (2) u2y = v2. We claim that
Pr[Bad] ≤ qd/q. (Recall that qd is polynomial in k whereas q ≥ 2k.)

Consider a ciphertext c = 〈u, e, v〉, and let un
def
= φn(u) ∈ G n . If u /∈ Pn, then un 6= 1, so the

order of un in G n is either p, q, or n. Assume the order is q (the arguments for the other cases are
similar). Since the order of g in Z

∗
n2 divides n′, the only possible information about y revealed by

the public key pk, in an information-theoretic sense, is the value (y mod n′). In particular, given
only the public key the value of (y mod n) is still distributed uniformly in [n], and so (y mod q)
is uniform in [q] (recall we may make the simplifying assumption that y is chosen uniformly at
random from [nn′]).

The only other information that A has on (y mod q), at the time it makes its decryption
query c, comes from previous decryption queries 〈u′, e′, v′〉 where, assuming Bad did not occur,
A learns only that (u′)2y 6= (v′)2. When u′ ∈ Pn, the order of u′ in Z

∗
n2 divides 2n′ and so

the condition (u′)2y ?
= (v′)2 depends only on (y mod n′); hence, A does not learn anything about

(y mod n) (or (y mod q)) from such queries. When u′ 6∈ Pn, the fact that (u′)2y 6= (v′)2 reveals
no more information on (y mod q) than the condition φn(u′)2y 6= φn(v′)2 (all the computations in
G n). Since in this case φn(u′) has order either p, q, or n in G n , the condition φn(u′)2y 6= φn(v′)2

rules out at most one value of (y mod q). In summary, each previous decryption query of A rules
out at most one of the q potential values for (y mod q) and hence the probability that Bad occurs
on the current query is at most 1/(q − i), where i is the number of previous decryption queries. It
follows easily that Pr[Bad] ≤ qd/q.

We next claim that, conditioned on event Bad not occurring, the answers that A gets from its
decryption queries are independent of (x mod n). Indeed, for a decryption query c = 〈u, e, v〉, if
u2y 6= v2 then the query is rejected. Otherwise, assuming Bad does not occur then u ∈ Pn which
implies that the order of u divides 2n′. In this case, the value of e/u2x depends only on (x mod n′),
and hence it is independent of (x mod n). It follows that, conditioned on event Bad not occurring,
the answers that A gets from its decryption oracle queries match the answers it can later compute
using the secret key it gets in stage 3 of the game.

We now describe a distinguisher B between D and D′. It gets a pair (n, ū) and it (essentially)
needs to decide whether ū or ū/γ are 2nth residues in Z

∗
n2. B chooses a random g′ ∈ Z

∗
n2 and

random x, y ∈ [n2/4]. It then sets g = (g′)2n, h = gx, and d = gy and gives to A the public key
(n, g, h, d). Then B uses the secret key sk = (x, y) to answer decryption oracle queries of A in step 2
of the game. When A outputs a message m, then B returns to A the ciphertext 〈ū, γmūx, ūy〉 and
secret key (x, y). Finally, B outputs whatever A does.

When B is given a tuple from D, it is immediate that the view of A is statistically close to its
view in the game of Definition 2 with b = 1. To see this, first note that g has order n′ (both in
the above game as well as the game of Definition 2) with all but negligible probability. Assuming
this to be the case, we may write the first component of the ciphertext in the above game as gr

with r uniformly distributed in [n′], while the first component of the ciphertext in the game of
Definition 2 (with b = 1) is gr with r uniformly distributed in [n/4]. These two distributions are
statistically close. The remaining components of the ciphertext, as well as those of the public key,
are distributed identically in each of the two games.

We now show that when B is given a tuple from D′, the view of A is statistically close to its
view in the game of Definition 2 with b = 0. As before, we assume g has order n′ since this occurs
with all but negligible probability. In this case, we may write the first component of the ciphertext

20

in the current game as γgr with r uniformly distributed in [n′], while the first component of the
ciphertext in the game of Definition 2 (with b = 0) is gr with r uniformly distributed in [n/4].
Again, these distributions are statistically close. Finally, as long as Bad does not occur the secret
key received by A exactly matches the public key, the ciphertext/message pair, and all decryption
oracle answers received by A. The theorem follows.

5 AFSE Based on Receiver Non-Committing Encryption

We describe a construction of an AFSE scheme based on any secure RNCE scheme and any FSE
scheme secure against chosen-ciphertext attacks. Let E ′ = (G′, E′,D′, F̃ , R̃) be an RNCE scheme,
and let E ′′ = (G′′, U ′′, E′′,D′′) be a key-evolving encryption scheme. The message space of E ′ is
D, and we assume that ciphertexts of E ′ belong to the message space of E ′′. We construct a new
key-evolving encryption scheme E = (G,U,E,D) with message space D as follows:

Key generation, G. On security parameter 1k, run the key-generation algorithms of both schemes,
setting (pk′, sk′, z) ← G′(1k) and (pk′′, sk′′0) ← G′′(1k). The public key is (pk′, pk′′) and the
initial secret key is (sk′, sk′′0). (The extra information z is ignored.)

Key update, U . The key-update operation is derived as one would expect from E ′′; namely:
U(t; sk′, sk′′t) = (sk′, U ′′(t; sk′′t)).

Encryption, E. To encrypt a message m ∈ D at time t, first compute
c′ ← E′(pk′;m) and then c← E′′(pk′′, t; c′). The resulting ciphertext is just c.

Decryption, D. To decrypt a ciphertext c, set c′ ← D′′(sk′′t ; c) and then compute m← D′(sk′; c′).

Theorem 7 If E ′ is RNC-secure, and if E ′′ is forward-secure against chosen-ciphertext attacks,
then the combined scheme given above is an AFSE scheme.

Before proceeding to the actual proof, let us provide some informal intuition behind the proof
of the above theorem. The most interesting scenario to consider is what happens upon player
corruption, when the adversary obtains the secret key for the current time period t∗. We may
immediately note that messages encrypted for prior time periods t < t∗ remain secret; this follows
from the FSE encryption applied at the “outer” layer. Next, consider adaptive security for the (at
most one) outstanding ciphertext which was encrypted for some time period t ≥ t∗. Even though
the adversary can “strip off” the outer later of the encryption (because the adversary now has the
secret key for time period t∗), RNC security of the inner layer ensures that a simulator can open
the inner ciphertext to any desired message. The main point here is that the simulator only needs
to “fake” the opening of one inner ciphertext, and thus RNC security suffices. (Still, since the
simulator does not know in advance what ciphertext it will need to open, it actually “fakes” all
inner ciphertexts.) Chosen-ciphertext attacks are dealt with using the chosen-ciphertext security of
the outer layer, as well as the definition of RNC security (where “lunch-time security” at the inner
layer is sufficient). Also, we note that reversing the order of encryptions does not work: namely,
using RNCE(FSE(m)) does not yield adaptive security, even if the RNCE scheme is fully CCA
secure (cf. Section 5.1.3).

21

5.1 Proof of Theorem 7

To prove Theorem 7, we need to describe a simulator and prove that no environment can distinguish
between interactions with the “standard real-world adversary” and the scheme E and interactions
with the ideal-world simulator and the functionality Fafse (with domain D).

5.1.1 Description of the Simulator

The simulator interacts with the functionality Fafse and the environment as follows:

Key Generation. Upon receiving a message (KeyGen, sid, i, 1k) from the Fafse functionality, the

simulator runs the key generation of E ′ to get (pk′, sk′, z)← G′(1k), and the key generation of E ′′ to
get (pk′′, sk′′0)← G′′(1k). It returns to the functionality the public key pk = (pk′, pk′′). If this is the
first activation then the simulator records the variables pk∗ ← pk, R∗ ← i, t∗ ← 0, sk∗ ← (sk′, sk′′0),
and z∗ ← z.

Update. On a message (Update, sid) from the functionality, the simulator uses the prescribed
update algorithm U to update the secret key sk∗.

Encryption. Upon receiving a message (Encrypt, sid, pk, t, j) from the functionality (with pk =

pk∗), it generates a fake ciphertext for E ′ by computing c̃ ← F̃ (pk′, sk′, z), and then encrypts this
fake ciphertext under E ′′ to get c ← E′′(pk′′, t; c̃). The simulator returns the ciphertext c to the
functionality, and records c together with the inner ciphertext c̃.

Decryption. Upon receiving a message (Decrypt, sid, t∗, c, i) from the functionality, the simulator
uses the prescribed decryption algorithm D to decrypt it.

Corruptions. When the simulator is instructed by the environment to corrupt the receiver R∗,
it informs the functionality that R∗ is corrupted, and gets all the tuples (m, t, c, flag) with t ≥ t∗.
(Recall that there can be at most one outstanding tuple). Then:

• If there is an outstanding tuple (m, t, c, outstanding), the simulator recovers the fake inner
ciphertext c̃ that it recorded with the ciphertext c. It runs the reveal algorithm to get
s̃k← R̃(pk′, sk′, z∗; c̃,m), and re-sets sk∗ ← (s̃k, sk′′). (Namely, it replaces sk′ with s̃k.)

• The simulator then returns to the environment the key (pk∗, t∗, sk∗), and then erases all the
variables R∗, pk∗, t∗, sk∗, and z∗.

5.1.2 Proof of Indistinguishability

We again use the notations and observations from Section 3.1.1. The proof consists of three parts,
showing very roughly that: (1) the secrecy of encryption queries — except the critical one — is
due to the secrecy of the outer FSE scheme E ′′; (2) the secrecy of the critical encryption query
is due to the secrecy of the inner RNCE E ′; and (3) the chosen-ciphertext security is due to the
chosen-ciphertext security of both E ′ and E ′′. However, these arguments no longer fit in a clean
“simulated to hybrid” and “hybrid to real” framework. Rather, we directly show a reduction from
an adversary distinguishing the simulated world from the real world to an adversary breaking the
security of the outer scheme E ′′, and use the other security requirements as sub-claims in the
analysis of this upper-level reduction.

All in all, we describe below four ppt algorithms, A, A′, B and C, where A,A′ attack the
forward-CCA-security of E ′′ and B,C attack the RNC-security of E ′. We show that the advantage
of the environment in distinguishing the simulated world from the real world is polynomially related
to the sum of the advantages of these four algorithms, thereby proving:

22

Proposition 8 (simulated ≈ real) For any ppt environment Env, the following is negligible:

α(k)
def
=

∣

∣

∣

∣

Pr
sim

[Env(1k)→ 1] − Pr
real

[Env(1k)→ 1]

∣

∣

∣

∣

.

Proof. Fix an environment Env, and let α = α(k) be the advantage of Env in distinguishing
the simulated world from the real world. Let T = T (k) be an upper bound on the local time of
the verifier when it is corrupted by Env, and let Q = Q(k) be an upper bound on the number of
important encryption queries (pk∗, t,m) that can share the same sender time t (everything w.r.t.
security parameter 1k).

We show a chosen-ciphertext attacker A against the FSE scheme E ′′ that uses Env as a sub-
routine. The attacker A gets as input a public key pk′′, and it has access to a decryption oracle
D′′(sk′′(·); ·) (i.e., on query (t; c), D′′ decrypts the ciphertext c with the key sk′′t corresponding to
time t). In addition, A can make one challenge query: the challenge query specifies two messages
x0, x1 and sender time t. When A makes its challenge query, a random bit b is chosen and xb is
encrypted to get c∗ ← E′′(pk′′, t;xb). Then A gets c∗ and the secret key sk′′t+1 corresponding to
time t + 1, and its goal is to guess the bit b. A can keep making decryption queries after it makes
its challenge queries, as long as it does not ask for the decryption of c∗ with respect to time t.

A slight twist. Below, it will be more convenient to assume that A keeps running even after it
outputs its guess for the bit b. Moreover, once A outputs its guess we let it grow more powerful. In
particular, we now let it learn the initial secret key sk′′0 corresponding to its input public key pk′′.
Of course, now A can tell whether its guess is correct or not, but it cannot change its guess even if
it is wrong. Clearly, this all has no effect on the advantage of A in guessing the bit b correctly, and
the modified A has the same advantage as the original A. The reason for making this modification
is that in the analysis of A below, we refer to some random variables whose value is only determined
after A’s output is already fixed.

On input pk′′, the attacker A runs the environment on security parameter 1k, implementing
for it both the functionality Fafse and the simulator. Specifically, A answers the queries of the
environment as follows:

• When the environment makes the first KeyGen query, A runs the key-generation of E ′ to get
(pk′, sk′, z)← G′(1k), and returns the public key pk∗ = (pk′, pk′′). The attacker A also chooses
a pair of indexes (τ, j) at random among all the pairs between (1, 1) and (T, 1). Namely

(τ, j)←

(

({1, . . . , T − 1} × {1, . . . , Q}) ∪ {(T, 1)}

)

.

• On an important encryption query (pk∗, t,m) with t < τ , as well as on the first j − 1 queries
with t = τ , A sets c′ ← E(pk′;m). On queries with t > τ and queries (τ, j′) with j′ > j, it
sets c′ ← F̃ (pk′, sk′, z). Either way, it returns c← E′′(pk′′, t; c′).

When it gets the jth query (pk∗, t,m) with t = τ , algorithm A uses its challenge query: It
computes c′0 ← F̃ (pk′, sk′, z) and c′1 ← E(pk′;m), and makes its challenge query, specifying
the “plaintexts” c′0 and c′1 and sender time τ . Then a bit b is chosen at random and A gets
back a ciphertext c← E′′(pk′′, τ ; c′b) that it forwards to the environment. In addition, A also
gets the secret key sk′′τ+1 for time τ + 1. If the local time at the receiver is still earlier than
τ + 1 (i.e., t∗ ≤ τ), then A just stores (sk′′τ+1, τ + 1) for later. If t∗ ≥ τ + 1 it computes the
secret key sk′′t∗ for time t∗ using the update algorithm U ′′.

23

We make a slight exception for the case that A chooses the indices τ = T, j = 1. In this
case, A answers all the queries with time t < T as above, but embeds its challenge in the first
query with sender time t ≥ T (rather than the first query with t = T). Recall that there can
be at most one such query, and if there is one it must be the critical query.

• On an update query, A updates the secret key sk∗ if it knows it and does nothing otherwise.

• On an important decryption query (pk∗, c), A uses its own decryption oracle to decrypt c
with time t∗, thus getting some c′ ← D′′(sk′′t∗ ; c). Then A uses the decryption routine of E ′

with the secret key sk′ that it knows and returns m← D′(sk′; c′) to the environment.

• When the environment corrupts the receiver at local time t∗, the attacker A is supposed to
provide the environment (among other things) with the current secret key sk′′t∗ . We consider
three cases: either A did not use its challenge query yet, or it did use its challenge query for
some time τ < t∗, or it used the challenge query with time τ ≥ t∗. In the first case A just
makes up some challenge query with sender time t∗− 1, thus getting the key sk′′t∗ for time t∗.
In the second case, A already knows the key sk′′t∗ for time t∗. In the third case, A has no
means of getting the secret key that Env expects to see, so it just outputs zero as its guess
for the bit b. However, since we assume the “modified” version of A (see the earlier remark),
we allow A to now learn the initial secret key sk′′0, from which it can compute the current key
sk′′t∗ for time t∗.

Either way, A looks up the outstanding ciphertext c and the corresponding message m (both
kept by the functionality Fafse), and also the associated “inner ciphertext” c̃ (kept by the
simulator). If sk′ decrypts c̃ to m, then A gives the environment the key sk∗ = (sk′, sk′′t∗).
Otherwise, it must be that the inner ciphertext was generated as F̃ (pk′, sk′, z). In this case, A
uses the reveal routine to get s̃k← R̃(pk′, sk′, z∗; c̃,m) and returns to the environment sk∗ =
(s̃k, sk′′t∗).

• When the environment halts with some output, A also halts with the same output (unless it
already output zero as in the previous bullet).

We first note that when A chooses the indices τ = 1, j = 1 and the bit b (that determines which
of c′0, c′1 is encrypted in response to A’s challenge query) is zero, the view of the environment is
exactly as in the simulated world. Similarly, when A chooses τ = T, j = 1 and the bit b is one, the
view of Env is exactly as in the real world. Also, it is clear from the description of A that the view
of Env when A chooses τ, j and b = 1 is identical to its view when A chooses τ, j + 1 and b = 0.4

This means that in the run of A we have:
∣

∣

∣

∣

Pr
A

[Env→ 1 | b = 1]− Pr
A

[Env→ 1 | b = 0]

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

Q(T − 1) + 1

∑

τ,j

(

Pr
A

[Env→ 1 | τ, j, b = 1]− Pr
A

[Env→ 1 | τ, j, b = 0]

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Q(T − 1) + 1

(

Pr
A

[Env→ 1 | τ = T, j = 1, b = 1]− Pr
A

[Env→ 1 | τ = 1, j = 1, b = 0]

)
∣

∣

∣

∣

> α/TQ.

4For convenience we use here (τ, Q + 1) as a shorthand for (τ + 1, 1), and we assume that (τ, j) < (T, 1).

24

This, however, still falls short of what we need, since we need to prove a similar statement for the
probability that A outputs one (and A does not always output the same thing as Env). We observe
that A outputs 1 whenever the environment does, except if it happened to embed its challenge
query in an encryption query with sender time τ and the local time at the receiver when it is
corrupted is t∗ ≤ τ . In this case, the query in which A embedded its challenge must be the critical
query, as it is still outstanding when the receiver is corrupted. In turn, this means that it must be
the only important encryption query with sender time τ (in particular, it is the first query with
this sender time and thus A chose j = 1). It also means that all the other important encryption
queries had sender time t < t∗ ≤ τ .

Below we denote by Critical the event in which A embeds its challenge in the critical encryption
query. Namely, this is the event that A chooses j = 1 and some τ < T and the critical query has
sender time τ , or when A chooses j = 1 and τ = T and the critical query has sender time t ≥ T .
Using this notation, we can write

A→ 1 ⇐⇒ Env→ 1 and ¬Critical. (1)

The key observation here is that due to the properties of the inner RNCE, when the “bad event”
Critical occurs the environment has only a negligible advantage in distinguishing b = 1 from b = 0.
Thus, it must be that (almost) all the advantage of Env comes from the “good event” (i.e., when
Critical does not occur), and so (informally) almost all this advantage is shared by A. Formally, we
have the following:

Claim 9 Denote δ
def
= |PrA [Env→ 1 and Critical | b = 1]− PrA [Env→ 1 and Critical | b = 0]|. Then

δ is negligible in the security parameter k.

Obviously, proving Claim 9 is sufficient to complete the proof of Proposition 8, since

advantage(A) =

∣

∣

∣

∣

Pr
A

[A→ 1 | b = 1] − Pr
A

[A→ 1 | b = 0]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
A

[Env→ 1 and ¬Critical | b = 1] − Pr
A

[Env→ 1 and ¬Critical | b = 0]

∣

∣

∣

∣

≥

∣

∣

∣

∣

Pr
A

[Env→ 1 | b = 1] − Pr
A

[Env→ 1 | b = 0]

∣

∣

∣

∣

− δ

≥ α/TQ− δ.

The CCA-security of E ′′ ensures that the advantage of A is negligible, and as T,Q are polynomially
bounded and δ is negligible we may thus conclude that α is also negligible.

Proof of Claim 9 For the most part, the claim follows from Definition 2: When A embeds its
challenge in the critical encryption query, the only difference in the view of the environment in the
two cases b = 0 and b = 1, is that in the first case the inner ciphertext in the critical query is as in
the real world (i.e., c′ is generated according to c′ ← E′(pk′;m)) and Env gets the secret key sk′,
while in the second case, the inner ciphertext is as in the simulated world (i.e., c′ is generated using
c′ ← F̃ (pk′, sk′, z)) and Env gets a secret key s̃k that decrypts c′ to m. By Definition 2, Env cannot
distinguish between these two cases.

The only subtlety here is that the view of Env is not the quite same as that of the distinguisher
in Definition 2: The experiment in Definition 2 describes a “lunch-time attack” scenario in which

25

the attacker cannot query its decryption oracle after it gets the “target ciphertext”. On the other
hand, Env can keep making decryption queries, even after it asks the critical decryption query.
However, we show that this discrepancy does not help Env to distinguish b = 0 from b = 1.

We describe an algorithm B for the experiment from Definition 2. The algorithm B is designed
so that the view of the environment is the same as in the run of A up until the event Critical is
decided, and “almost the same” as in the run of A conditioned on this event occurring. Moreover,
B outputs one exactly when Env outputs one and the event Critical happens. This implies that B
has advantage ǫ, which is “almost the same” as δ from Claim 9. The RNC-security of E ′ ensures
that ǫ is negligible, so we conclude that δ must also be negligible.

On input pk′, the algorithm B chooses (τ, j) at random in ([1..T − 1] × [1..Q]) ∪ {(T, 1)}, just
as A does. If j 6= 1 then B immediately halts, outputting zero. Otherwise, B runs the environment
on security parameter 1k. When the environment makes its first KeyGen query, B chooses the keys
for the outer encryption E ′′ by running (pk′′, sk′′0) ← G′′(1k), and returns pk∗ = (pk′, pk′′). After
that, B answers the environment queries as follows: On important encryption queries (pk∗, t,m)
with t < τ , B answers as in the real world, setting c ← E′′(pk′′, t;E′(pk′;m)). If the environment
makes important encryption queries with sender time t > τ , or if it makes more than one important
query with sender time t = τ , then B outputs zero and halts. If and when the environment makes
its first query (pk∗, τ,m) with sender time t = τ , B outputs its challenge message m, getting a
ciphertext c̃ (which is computed using either c̃← F̃ (pk′, sk′, z) or c̃← E′(pk′;m)), and a secret key
s̃k (that decrypts c̃ to m).

On update queries, B just updates the secret key sk′′ of the outer encryption scheme. As long
as B still did not use its challenge message, it answers important decryption queries (pk∗, c) by
decrypting c′ ← D′′(sk′′; c) and then using its decryption oracle D′(sk′; ·) to get m ← D′(sk; c′).
After using its challenge message, B cannot use its decryption oracle anymore so instead it uses the
secret key s̃k that it received, answering a query (pk∗, c) with m ← D′(s̃k;D′′(sk′′; c)). When the
environment corrupts the receiver, B checks to see if the event Critical happened (i.e., if the critical
encryption query had time τ). If not, B outputs zero and halts. If Critical did happen, then B
gives the environment the secret key sk∗ = (sk′′, s̃k) and eventually outputs whatever Env does.

We denote by σ the bit chosen in the experiment of Definition 2 (which B is trying to guess). It
is not hard to see that the view of Env in the run of B, conditioned on Critical occurring and σ = 1,
is distributed exactly as its view in the run of A from above conditioned on Critical and b = 1: in
both cases, all queries of Env are answered as in the real world. Also, by construction of B, the
probability of Critical is the same in the runs of A and B (even when conditioned on b = 1 and
σ = 1, respectively). We thus have:

Pr
B

[B → 1 | σ = 1] = Pr
B

[Env→ 1 and Critical | σ = 1] = Pr
A

[Env→ 1 and Critical | b = 1]. (2)

We would like to say the same thing about the events σ = 0 in the run of B vs. b = 0 in the run
of A, since in both these cases all the encryption queries of the environment are answered as in
the simulated world. Here, however, the views of Env may differ, since after Env makes the critical
encryption query (i.e., the first and only query (pk∗, t,m) with sender time t = τ) further decryption
queries in the run of B are answered using D′(s̃k; ·), whereas in the run of A they are answered
using D′(sk′; ·). However, it is sufficient to show that (with all but a negligible probability) all these
decryption queries have the same answers no matter what secret key is used to answer them.

In a run of either A or B, we say that an important decryption query of Env is ambivalent if
the inner ciphertext in that query is decrypted differently by the secret key sk′ that is used at the
time, than by the secret key s̃k that is later given to Env. We denote by Ambivalent the event in
which Env makes an ambivalent decryption query. Clearly, as long as this does not happen the

26

view of Env in the run of B with σ = 0 and Critical is distributed the same as its view in the run
of A with b = 0 and Critical. Hence we have

Pr
A

[Env→ 1 and Critical | b = 0]

= Pr
A

[Env→ 1 and Critical and Ambivalent | b = 0]

+ Pr
A

[Env→ 1 and Critical and ¬Ambivalent | b = 0]

≤ Pr
A

[Critical and Ambivalent | b = 0] + Pr
B

[Env→ 1 and Critical and ¬Ambivalent | σ = 0]

= Pr
A

[Critical and Ambivalent | b = 0] + Pr
B

[B → 1 and ¬Ambivalent| σ = 0]

≤ Pr
A

[Critical and Ambivalent | b = 0] + Pr
B

[B → 1 | σ = 0];

therefore:

δ =

∣

∣

∣

∣

Pr
A

[Env→ 1 and Critical | b = 1] − Pr
A

[Env→ 1 and Critical | b = 0]

∣

∣

∣

∣

≤ Pr
A

[Critical and Ambivalent | b = 0] +

∣

∣

∣

∣

Pr
B

[B → 1 | σ = 0] − Pr
B

[B → 1 | σ = 1]

∣

∣

∣

∣

= Pr
A

[Critical and Ambivalent | b = 0] + ǫ,

where ǫ is the advantage of B. The RNC-security of E ′ implies that ǫ is negligible, so to complete
the proof of Claim 9 it is sufficient to prove the following:

Claim 10 The probability PrA[Critical and Ambivalent | b = 0] is negligible in k.

Proof. Roughly, we show that the event “Critical and Ambivalent” does not happen in a run of A
with b = 1,5 due to the RNC-security of the inner scheme E ′. Therefore, it also cannot happen in
a run of A with b = 0 or else we could use it to distinguish b = 0 from b = 1, thereby breaking the
CCA-security of the outer scheme E ′′.

Formally, consider the following modification of the algorithm A from above, which we denote A′:
As long as the receiver is not corrupted, the algorithm A′ interacts with the environment Env the
same way as A, and it remembers the “inner ciphertexts” in all the important decryption queries
that Env makes. However, just as the algorithm B from above, A′ halts with an output of zero
whenever it becomes clear that the event Critical does not happen (i.e., if j > 1, or if the environment
makes an important encryption query with sender time t > τ , or if it makes more than one query
with sender time t = τ).

When the environment corrupts the receiver, A′ checks once again to see if the event Critical
happened (i.e., if the query in which it embedded its challenge happened to be the critical encryption
query). If not, then A′ simply outputs zero and halts. If the event Critical did happen, then A′

recalls the message m from the critical encryption query and the two ciphertexts c′0 and c′1 that it
used for its own challenge. (Recall that c′0 was computed as F (pk′, sk′, z) and c′1 was computed as
E′(pk′;m).) It computes s̃k ← R̃(pk′, sk′, z; c′0,m) and then examines the inner ciphertexts in all
the important decryption queries that Env made. If it finds an ambivalent inner ciphertext (i.e., a
ciphertext c̃ such that D′(sk′; c̃) 6= D′(s̃k; c̃)), then it outputs “1”. Otherwise, it outputs “0”.

5Technically, Ambivalent cannot happen when b = 1 since in this case we have s̃k = sk
′, but we will make clear

exactly what we mean in the actual description below.

27

We observe that if b = 0, then the key s̃k that A′ computes is indeed the one that A would return
to Env. Hence, in this case we have A′ outputting one if and only if the event “Critical and Ambivalent”
happens. Namely PrA′ [A′ → 1|b = 0] = PrA[Critical and Ambivalent | b = 0]. Now we can write,

Pr
A

[Critical and Ambivalent | b = 0] = Pr
A′

[A′ → 1|b = 0]

≤ Pr
A′

[A′ → 1|b = 1] + δ′,

where δ′ is the advantage of A′, namely δ′
def
= |PrA′ [A′ → 1|b = 1] − PrA′ [A′ → 1|b = 0]|. The

CCA-security of E ′′ ensures that δ′ is negligible in k. To prove Claim 10, it is therefore sufficient
to show that

ρ
def
= Pr

A′
[A′ → 1 | b = 1]

is also negligible in k. To so so, we describe one last algorithm C, for the experiment from Defi-
nition 2 using the inner scheme E ′, and show that C has advantage exactly ρ. RNC security of E ′

then implies that ρ is negligible.
The algorithm C is designed to mimic the interaction between A′ and Env for the case b = 1.

On input pk′, the algorithm C chooses (τ, j) at random just as A′ does and halts with output zero if
j > 1. Otherwise C runs the environment on security parameter 1k. When the environment makes
its first KeyGen query, C chooses the keys for the outer encryption E ′′ by computing (pk′′, sk′′0) ←
G′′(1k), and returns pk∗ = (pk′, pk′′).

After that, C answers encryption queries (pk∗, t,m) with sender time t < τ just as A′ does,
returning E′′(pk′′, t;E′(pk′;m)). Moreover, C answers in the same way also the first encryption
query with sender time τ . We note that this is indeed consistent with what A′ does in the case
b = 1 (since A′ sets c′1 ← E(pk′;m) in its challenge). We also note that A′ halts with zero whenever
Env makes a query with sender time t > τ (or more than one query with sender time t = τ), so C
never needs to answer a query using the fake encryption algorithm F̃ . (Indeed, C cannot use F̃ in
a consistent manner, since it does not know sk′ and z.)

On update queries, C updates the outer secret key sk′′ just as A′ does. The answers it gives to
decryption queries are also the same as those given by A′ (since A′ has oracle access to D′′(sk′′; ·)
and it knows the inner secret key sk′, whereas C knows the outer secret key sk′′ and it has oracle
access to D′(sk′; ·)). Finally, when the environment corrupts the receiver C checks once more that
the event Critical happened and halts with output “0” if not. If Critical did happen, then C recalls
the message m from the critical encryption query and lets m be its challenge message. It gets back
a secret key s̃k (and also a ciphertext c′0 that it ignores). Using s̃k, C makes the same test as A′;
namely, it examines the inner ciphertexts from all the important decryption queries of Env, looking
for a ciphertext c̃ such that D′(s̃k; c̃) is not the same as what C got at the time from its decryption
oracle D′(sk′; ·). If it find such an ambivalent inner ciphertext, then C outputs “1”, and otherwise
it outputs “0”.

We again let σ denote the bit chosen during the experiment of Definition 2 which C is trying
to guess. We observe that when σ = 1, then C gets the inner secret key s̃k = sk′ and therefore in
this case it never finds an “ambivalent” ciphertext and it always outputs zero. Namely, PrC [C →
1|σ = 1] = 0. On the other hand, the behavior of C when σ = 0 is identical to the behavior
of A′ when b = 1. (The interaction with Env is the same in both cases, and s̃k is drawn from
the same distribution in both cases, so the output distribution must also be the same.) That is,
PrC [C → 1|σ = 0] = PrA′ [A′ → 1|b = 1] = ρ. We conclude that the advantage of C is exactly ρ,
so ρ must be negligible in k.

28

This completes the proof of Claim 10 and therefore also the proofs of Claim 9, Proposition 8,
and Theorem 7.

5.1.3 Comments

After seeing the proof of Theorem 7, we can now explain why reversing the order between the FSE
and RNCE schemes does not work. Note that in the simulated world, the simulator produces many
“fake ciphertexts”, whereas the definition of RNC-security only refers to a single fake ciphertext.
The reason that requiring security for just one fake ciphertext is sufficient even in a world where
there are many fake ciphertexts is that they are all “hidden” from the environment due to the outer
layer of forward-secure encryption. The only inner ciphertext that the environment sees is the one
in the critical ciphertext, and for that one we can rely on the RNC-security of the inner scheme.

If we were computing the ciphertexts as c = RNCE(FSE(m)), then in the simulated world
the environment would potentially see many fake ciphertexts and the notion of RNC-security from
Definition 2 would be insufficient. We stress that in that case, even augmenting Definition 2 to
imply full CCA security (as opposed to “lunchtime security”) would not be enough.

References

[af04] M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-
Composable Threshold Cryptography. Adv. in Cryptology — Crypto 2004, LNCS vol. 3152,
Springer-Verlag, pp. 317–334, 2004. Full version available at eprint.iacr.org/2004/119.

[a97] R. Anderson. Two Remarks on Public Key Cryptology. Invited lecture, given at ACM CCCS
’97. Available at http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf.

[b97] D. Beaver. Plug and Play Encryption. Adv. in Cryptology — Crypto 1997, LNCS vol. 1294,
Springer-Verlag, pp. 75–89, 1997.

[bh92] D. Beaver and S. Haber. Cryptographic Protocols Provably Secure Against Dynamic Ad-
versaries. Adv. in Cryptology — Eurocrypt 1992, LNCS vol. 658, Springer-Verlag, pp. 307–323,
1992.

[bdpr98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of
Security for Public-Key Encryption Schemes. Adv. in Cryptology — Crypto 1998, LNCS vol.
1462, Springer-Verlag, pp. 26–45, 1998.

[bb04] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption Without
Random Oracles. Adv. in Cryptology — Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag, pp.
223–238, 2004.

[cs03] J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of Discrete
Logarithms. Adv. in Cryptology — Crypto 2003, LNCS vol. 2729, Springer-Verlag, pp. 126–
144, 2003.

[c01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp. 136–145,
2001. Also available as ECCC TR 01-16, or from http://eprint.iacr.org/2000/067.

29

[cfgn96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Computation. 28th
ACM Symposium on Theory of Computing (STOC), ACM, pp. 639–648, 1996. Full version in
MIT-LCS-TR #682, 1996.

[chk03] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption Scheme.
Adv. in Cryptology — Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 255–271, 2003.
Full version available at http://eprint.iacr.org/2003/083.

[chk04] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based En-
cryption. Adv. in Cryptology — Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag, pp. 207–222,
2004. Full version available at http://eprint.iacr.org/2003/182.

[ckn03] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing Chosen Ciphertext Security. Adv. in
Cryptology — Crypto 2003, LNCS vol. 2729, Springer-Verlag, pp. 565–582, 2003. Full version
available at http://eprint.iacr.org/2003/174.

[cs98] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against
Chosen Ciphertext Attack. Adv. in Cryptology — Crypto 1998, LNCS vol. 1462, Springer-
Verlag, pp. 13–25, 1998.

[cs02] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. Adv. in Cryptology — Eurocrypt 2001, LNCS vol.
2332, Springer-Verlag, pp. 45–63, 2001.

[dn00] I. Damg̊ard and J. B. Nielsen. Improved Non-Committing Encryption Schemes Based
on General Complexity Assumptions. Adv. in Cryptology — Crypto 2000, LNCS vol. 1880,
Springer-Verlag, pp. 432–450, 2000.

[ddops01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust Non-
Interactive Zero Knowledge. Adv. in Cryptology — Crypto 2001, LNCS vol. 2139, Springer-
Verlag, pp. 566–598, 2001.

[ddn00] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM. J. Computing

30(2): 391-437, 2000.

[gl03] R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Exchange.
Adv. in Cryptology — Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 524–543, 2003.
Full version available at http://eprint.iacr.org/2003/032.

[gm84] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Computer System Sciences 28(2):
270-299, 1984.

[hms03] Dennis Hofheinz, Joern Mueller-Quade, and Rainer Steinwandt. On Modeling IND-CCA
Security in Cryptographic Protocols. Available at http://eprint.iacr.org/2003/024.

[jl00] S. Jarecki and A. Lysyanskaya. Adaptively Secure Threshold Cryptography: Introducing
Concurrency, Removing Erasures. Adv. in Cryptology — Eurocrypt 2000, LNCS vol. 1807,
Springer-Verlag, pp. 221–242, 2000.

[ny90] M. Naor and M. Yung. Public-Key Cryptosystems Provably-Secure against Chosen-
Ciphertext Attacks. 22nd ACM Symposium on Theory of Computing (STOC), ACM, pp.
427–437, 1990.

30

[n02] J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
Committing Encryption Case. Adv. in Cryptology — Crypto 2002, LNCS vol. 2442, Springer-
Verlag, pp. 111–126, 2002.

[p99] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. Adv.
in Cryptology — Eurocrypt 1999, LNCS vol. 1592, Springer-Verlag, pp. 223–238, 1999.

[rs91] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. Adv. in Cryptology — Crypto 1991, LNCS vol. 576, Springer-Verlag, pp.
433–444, 1991.

[s99] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext
Security. 40th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp.
543–553, 1999.

A Key-Evolving and Forward-Secure Encryption

We review the definitions of key-evolving and forward-secure encryption schemes from [chk03].

Definition 3 A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-tuple of ppt algo-
rithms (Gen,Upd,Enc,Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and the total number
of time periods N . It returns a public key pk and an initial secret key sk0.

• The key update algorithm Upd takes as input pk, an index t < N of the current time period,
and the associated secret key skt. It returns the secret key skt+1 for the following time period.

• The encryption algorithm Enc takes as input pk, an index t ≤ N of a time period, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input pk, an index t ≤ N of the current time period,
the associated secret key skt, and a ciphertext C. It returns a message M .

We require that Dec(skt; t;Enc(pkt, t,M)) = M holds for all (pk, sk0) output by Gen, all time periods
t ≤ N , all correctly generated skt for this t, and all messages M .

Definition 4 A ke-PKE scheme is forward-secure against chosen plaintext attacks (fs-CPA) if for
all polynomially-bounded functions N(·), the advantage of any ppt adversary in the following game
is negligible in the security parameter:

Setup: Gen(1k, N(k)) outputs (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1) query, in either
order, subject to 0 ≤ j < i < N . These queries are answered as follows:

• On query breakin(i), key SKi is computed via Upd(PK, i − 1, · · ·Upd(PK, 0, SK0) · · ·). This
key is then given to the adversary.

• On query challenge(j,M0,M1), a random bit b is selected and the adversary is given C∗ =
Enc(PK, j,Mb).

31

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s advantage
is the absolute value of the difference between its success probability and 1/2.

Forward security against (adaptive) chosen-ciphertext attacks (fs-CCA security) is defined by
the natural extension of the above definition in which the adversary is given decryption oracle
access during both the “Attack” and “Guess” stages.

B The UC Framework, Abridged

We provide a brief review of the universally composable security framework [c01]. The framework
allows for defining the security properties of cryptographic tasks so that security is maintained
under general composition with an unbounded number of instances of arbitrary protocols running
concurrently. Definitions of security in this framework are called universally composable (UC).

In the UC framework, the security requirements of a given task (i.e., the functionality expected
from a protocol that carries out the task) are captured via a set of instructions for a “trusted
party” that obtains the inputs of the participants and provides them with the desired outputs (in
one or more iterations). Informally, a protocol securely carries out a given task if running the
protocol with a realistic adversary amounts to “emulating” an ideal process where the parties hand
their inputs to a trusted party with the appropriate functionality and obtain their outputs from it,
without any other interaction.

The notion of emulation in the UC framework is considerably stronger than that considered in
previous models. Traditionally, the model of computation includes the parties running the protocol
and an adversary A that controls the communication channels and potentially corrupts parties.
“Emulating an ideal process” means that for any adversary A there should exist an “ideal process
adversary” (or simulator) S that causes the outputs of the parties in the ideal process to have similar
distribution to the outputs of the parties in an execution of the protocol. In the UC framework the
requirement on S is more stringent. Specifically, an additional entity, called the environment Z, is
introduced. The environment generates the inputs to all parties, reads all outputs, and in addition
interacts with the adversary in an arbitrary way throughout the computation. A protocol is said
to securely realize functionality F if for any “real-life” adversary A that interacts with the protocol
and the environment there exists an “ideal-process adversary” S, such that no environment Z can
tell whether it is interacting with A and parties running the protocol, or with S and parties that
interact with F in the ideal process. In a sense, Z serves as an “interactive distinguisher” between
a run of the protocol and the ideal process with access to F .

The following universal composition theorem is proven in [c01]. Consider a protocol π that
operates in the F-hybrid model, where parties can communicate as usual and in addition have
ideal access to an unbounded number of copies of the functionality F . Let ρ be a protocol that
securely realizes F as sketched above, and let πρ be identical to π with the exception that the
interaction with each copy of F is replaced with an interaction with a separate instance of ρ. Then,
π and πρ have essentially the same input/output behavior. In particular, if π securely realizes
some functionality I in the F-hybrid model then πρ securely realizes I in the standard model (i.e.,
without access to any functionality).

B.1 The Public-Key Encryption Functionality Fpke

(This section is taken almost verbatim from [ckn03].) Within the UC framework, public-key
encryption is defined via the public-key encryption functionality, denoted Fpke and presented in

32

Functionality Fpke

Fpke proceeds as follows, when parameterized by message domain ensemble D = {Dk}k∈N and
security parameter k.

Key Generation: Upon receiving a value (KeyGen, sid) from some party R∗, verify that sid =
(sid′, R∗). If not, then ignore the input. Otherwise:

1. Hand (KeyGen, sid) to the adversary.

2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗.

3. If this is the first KeyGen request, record R∗ and pk∗.

Encryption: Upon receiving from some party P a value (Encrypt, sid, pk, m) proceed as follows:

1. If m /∈ Dk then return an error message to P .

2. If m ∈ Dk then hand (Encrypt, sid, pk, P) to the adversary. (If pk 6= pk∗ or pk∗ is not
yet defined then hand also the entire value m to the adversary.)

3. Receive a “ciphertext” c from the adversary, record the pair (c, m), and send
(ciphertext,c) to P . (If pk 6= pk∗ or pk∗ is not yet defined then do not record the pair
(c, m).)

Decryption: Upon receiving a value (Decrypt, sid, c) from R∗ (and R∗ only), proceed as follows:

1. If there is a recorded pair (c, m) then hand m to R∗. (If there is more than one such
pair then use the first one.)

2. Otherwise, hand the value (Decrypt, sid, c) to the adversary. When receiving a value
m′ from the adversary, hand m′ to R∗.

Figure 2: The public-key encryption functionality, Fpke

Figure 2. Functionality Fpke is intended to capture the functionality of public-key encryption
and, in particular, is written in a way that allows realizations consisting of three non-interactive
algorithms without any communication. (The three algorithms correspond to the key generation,
encryption, and decryption algorithms in traditional definitions.)

Referring to Figure 2, we note that sid serves as a unique identifier for an instance of functional-
ity Fpke (this is needed in a general protocol setting when this functionality can be composed with
other components, or even with other instances of Fpke). It also encodes the identity of the de-
cryptor for this instance. The “public key value” pk has no particular meaning in the ideal scenario
beyond serving as an identifier for the public key related to this instance of the functionality, and
this value can be chosen arbitrarily by the attacker. Also, in the ideal setting ciphertexts serve as
identifiers or tags with no particular relation to the encrypted messages (and as such are also cho-
sen by the adversary without knowledge of the plaintext). Still, rule 1 of the decryption operation
guarantees that “legitimate ciphertexts” (i.e., those produced and recorded by the functionality
under an Encrypt request) are decrypted correctly, while the resultant plaintexts remain unknown
to the adversary. In contrast, ciphertexts that were not legitimately generated can be decrypted in
any way chosen by the ideal-process adversary. (Since the attacker obtains no information about
legitimately-encrypted messages, we are guaranteed that illegitimate ciphertexts will be decrypted
to values that are independent from these messages.) Note that the same illegitimate ciphertext
can be decrypted to different values in different activations. This provision allows the decryption

33

algorithm to be non-deterministic with respect to ciphertexts that were not legitimately generated.
Another characteristic of Fpke is that, when activated with a KeyGen request, it always responds

with an (adversarially-chosen) encryption key pk′. Still, only the first key to be generated is
recorded, and only messages that are encrypted with that key are guaranteed to remain secret.
Messages encrypted with other keys are disclosed to the adversary in full. This modeling represents
the fact that a single copy of the functionality captures the security requirements of only a single
instance of a public-key encryption scheme (i.e., a single pair of encryption and decryption keys).
Other keys may provide correct encryption and decryption, but do not guarantee any security (see
[ckn03] for further discussion about possible alternative formulations of the functionality).

34

