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Abstrat. We give improved upper bounds on the ommuniation om-

plexity of optimally-resilient seure multiparty omputation in the ryp-

tographi model. We onsider evaluating an n-party randomized funtion

and show that if f an be omputed by a iruit of size , then O(n

2

�)

is an upper bound for ative seurity with optimal resiliene t < n=2 and

seurity parameter �. This improves on the ommuniation omplexity

of previous protools by a fator of at least n. This improvement omes

from the fat that in the new protool, only O(n) messages (of size O(�)

eah) are broadast during the whole protool exeution, in ontrast to

previous protools whih require at least O(n) broadasts per gate.

Furthermore, we improve the upper bound on the ommuniation om-

plexity of passive seure multiparty omputation with resiliene t < n

from O(n

2

�) to O(n�). This improvement is mainly due to a simple

observation.

1 Introdution

1.1 Seure multiparty omputation

Seure multiparty omputation (MPC) allows a set of n players to ompute an

arbitrary funtion of their inputs in a seure way. More generally, we onsider re-

ative omputations, whih are spei�ed as a iruit with input gates, evaluation

gates (e.g., AND and OR gates), random gates, and output gates.

Seurity is spei�ed with respet to an adversary orrupting up to t of the

players for a de�ned threshold t. A passive adversary an inspet the internal

state of orrupted players, an ative adversary an take full ontrol over them.

A protool is t-seure if an adversary attaking the protool with t orruptions

an only obtain inevitable goals w.r.t. gathering information and inuening

?
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the output of the protool. I.e. it an only learn the inputs and outputs of the

orrupted players, and, if it is ative, only inuene the inputs of the orrupted

players.

1.2 Brief history of MPC

The MPC problem dates bak to Yao [Yao82℄. Independently Goldreih, Miali

and Wigderson and Chaum, Damg�ard and van de Graaf [GMW87,CDG87℄ pre-

sented solutions to the MPC problem. Their protools provide ryptographi se-

urity against a omputationally bounded ative adversary orrupting up to t <

n=2 of the players. Later, unonditionally seure MPC protools were proposed

by Ben-Or, Goldwasser and Wigderson [BGW88℄ and Chaum, Cr�epeau and

Damg�ard [CCD88℄ for the seure-hannels model, where perfetly seure han-

nels are assumed between every pair of parties. These protools have resiliene

t < n=3. Later Rabin and Ben-Or [RB89℄ and independently Beaver [Bea91b℄

presented protools with resiliene t < n=2 for the seure-hannels model with

broadast hannels.

1.3 Previous work on the omplexity of seure MPC

There has been substantial researh on the omplexity of seure MPC, both the

round omplexity and the ommuniation omplexity in messages and bits.

As for the round omplexity of seure MPC, it is now known that in a network

without any setup any funtionality an be omputed seurely in three rounds

and that there exists funtionalities whih annot be omputed in two rounds

without setup [GIKR02℄. Furthermore, it is known that after an initial setup

phase, any funtionality an be omputed in two rounds [GIKR02,CDI05℄ and

that there exist funtionalities whih annot be omputed in one round even

after a setup phase. Even though the resulta in [GIKR02,CDI05℄ only applies to

a setting where the number of parties is relatively small, the above results go a

long way in resolving the exat round omplexity of seure MPC.

As for the ommuniation omplexity, the piture is muh more open, and

we are far from knowing the exat ommuniation omplexity of seure MPC.

The ommuniation omplexity of a protool is measured as the total number of

bits sent by all unorrupted parties during the protool exeution.

Very few results are known about the lower bound on the ommuniation

omplexity, exept those whih follow trivially from known lower bounds on the

ommuniation omplexity of Byzantine agreement | sine the model of seure

MPC requires agreement on the output, Byzantine agreement is a speial ase

of seure MPC. For the upper bound on the ommuniation omplexity, muh

more is known.

The seminal protools with passive seurity tend to be very ommuniation-

eÆient, in ontrast to their ative-seure ounterparts, that require high om-

muniation omplexities. The high ommuniation omplexities of ative-seure

protools is mainly due to their intensive use of a Byzantine agreement primi-

tive, whih is to be simulated by ommuniation-intensive broadast protools.
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The most eÆient broadast protools for t < n ommuniate 
(n

2

`) bits for

broadasting an `-bit message [BGP92,CW92℄. We denote the ommuniation

omplexity for broadasting an `-bit message by B(`).

Over the years, several protools have been proposed whih

improve the eÆieny of ative-seure MPC. In the rypto-

graphi model (with t < n=2), all protools presented so

far [GV87,BB89,BMR90,BFKR90,Bea91a,GRR98,CDM00,CDD00℄ require

every player to broadast one message for eah multipliation gate. For a

iruit with  gates, this results in a total ommuniation omplexity of


(nB(�)) = 
(n

3

�), where � denotes the seurity parameter of the protool.

In the seure-hannels model with broadast with t < n=2, things are even

worse: The most eÆient protool in this model [CDD

+

99℄ requires 
(n

4

) �-bit

messages to be broadast for every multipliation gate.

In the seure-hannels model with t < n=3, reently more eÆient protools

were proposed [HMP00,HM01℄: The latter protool requires only O(n

2

) broad-

asts in total (independently of the size of the iruit), and ommuniates an

additional O(n

2

) bits in total. This result is based on the so-alled player-

elimination framework, where subsets of players with faulty majority are elimi-

nated. This prevents orrupted players from repetitively disturbing and slowing

down the omputation. Unfortunately, the player-elimination framework annot

apture models with t < n=2: In order to reonstrut an intermediate value (a

wire), at least t + 1 players are required. After eliminating a group of players

with faulty majority, the remaining set of players does not neessarily ontain

t + 1 honest players (it might even ontain only one single player), hene the

remaining players annot reonstrut intermediate results | and would have to

restart the whole omputation.

1.4 Contributions

We onsider upper bounds on the ommuniation omplexity of ative-seure

MPC protool in the ryptographi model with t < n=2 and passive-seure

MPC protools in the ryptographi model with t < n. The most eÆient

ative-seure protool for this model is the protool by Cramer, Damg�ard and

Nielsen [CDN01℄. This protool requires every player to broadast O(1) �-bit

values for eah multipliation gate in the iruit. When replaing the broadast

primitive by the most eÆient broadast protool with resiliene t < n=2 known

today (but unknown at the time when [CDN01℄ was published), this results in

an overall ommuniation omplexity of O(n

3

�) for evaluating a iruit with 

gates. The same upper bound for ative seurity was proved by Jakobsson and

Juels [JJ00℄ using similar tehniques.

We improve the upper bound for ative seurity by onstruting a new MPC

protool for the ryptographi model with resiliene t < n=2: The new protool

requires every player to broadast O(1) �-bit values in total, i.e., during the

whole protool exeution. Additionally, the players ommuniateO(n

2

�) bits per

multipliation over the normal hannels. This results in a total ommuniation
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omplexity of O(n

2

� + nB(�)) = O(n

2

� + n

3

�). If every party has just one

input to the iruit, then  � n and O(n

2

�+ n

3

�) = O(n

2

�).

3

The new protool follows the basi paradigm of [CDN01℄, enhaned with ideas

of [Bea91a℄ and [HMP00℄ and several novel tehnial ontributions. Our protool

essentially improves over the best known upper bound for ative seurity by a

fator n.

Using a simple observation about threshold homomorphi enryption-based

MPC protools we also present a passive seure protool with resiliene t < n,

ommuniating only O(n�) bits. This improves the best known upper bound

for passive seurity, as given by the protool of Franklin and Haber [FH96℄, by

a fator n.

2 Preliminaries

In this setion we disuss our model of seurity of protools and we sketh the

tehnial setting for threshold homomorphi enryption based MPC. The reader

familiar with these issues an safely skip this setion.

2.1 Model

We onsider n players that are pairwise onneted with authentiated open han-

nels and we assume synhronous ommuniation. The adversarymay orrupt any

t of the players. All parties and the adversary are restrited to probabilisti poly-

nomial time. We onsider a stati adversary, whih orrupts all parties before

the protool exeution.

Speifying a multiparty funtionality. We assume that the task to be realized is

given by an arithmeti iruit with input, addition, multipliation, randomizing

and output gates, all over some ring M . We onsider reative iruits where

some input gates might appear after output gates. We assume that the iruit

is divided into layers being either input layers, onsisting solely of input gates,

evaluation layers onsisting of addition, multipliation, and randomizing gates,

and output layers, onsisting solely of output gates. An input gate G spei�es

its layer and the party that is to supply the value for the gate. A negation gate

spei�es its layer and a gate in a previous layer, from whih it takes its input.

An addition gate as well as a multipliation gate spei�es its layer and two gates

in a previous layer, from whih it takes its input. An output gate spei�es its

layer and a gate in a previous layer, whih is to be revealed.

The ideal evaluation. To explain the multiparty funtionality spei�ed by a

reative iruit, it is onvenient to image an ideal proess, where the parties are

onneted to a fully trusted party with seure hannels. The ideal evaluation of

3

For simpliity we speify all bounds in the following for iruits with  = �(n).

Bounds for  � n are obtained by letting  = n.
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the iruit takes plae in a layer by layer manner. For eah input layer, for every

gate speifying P

i

as the party to ontribute the input, P

i

sends to the trusted

party an input value v 2 M over a seure line. If no value is sent, the trusted

party sets v to be 0. For eah evaluation layer, the trusted party omputes values

of all evaluation gates aording to the iruit; Randomizing gates are set to be

uniformly random values v 2

R

M and addition gates and multipliation gates

are evaluated in the expeted manner. For eah output layer, the trusted party

sends the value of all output gates in the layer to all parties.

Notie that in the ideal evaluation an adversary ontrolling some set of or-

rupted parties an only ahieve inevitable goals: Of information it only learns the

output and the orrupted parties' inputs and, if it is ative, the only inuene

it an exert on the evaluation is hanging the orrupted parties' inputs to the

funtion.

The goal of a protool for a iruit is to realize the same funtionality in a

real-life network.

The real-life model. We assume that the network has a setup phase. In the setup

phase a setup funtion s : f0; 1g

�

! (f0; 1g

�

)

n+1

; r 7! (p; s

1

; : : : ; s

n

) is evaluated

on a random input, and the value p is made publi. The value s

i

is only given to

the party P

i

. The reason for having a setup phase is that we will be interested

in MPC protools with ative resiliene t < n=2, and without a setup phase not

even the Byzantine agreement problem [LSP82℄, whih is a speial ase of the

general MPC problem, an be solved with ative resiliene t < n=2. The funtion

s is spei�ed as part of the general protool. In partiular, s is not allowed to

depend on the iruit.

De�ning seurity. There are many proposals on how to model the seurity of

an n-party protool, i.e. for what it means for a protool to realize the ideal

evaluation of a iruit. Common to most is that the real-life adversary an only

obtain goals omparable to those of an ideal-model adversary, i.e. inevitable

goals.

The omparison of the protool exeution to the ideal evaluation is made by

requiring that the omplete view of an adversary attaking the protool exeu-

tion an be simulated given only the view of an adversary attaking the ideal

evaluation with the same orrupted parties. This aptures exatly the idea that

the information gathering and the inuening apabilities of the adversary in-

lude nothing extra to that of whih the adversary is entitled. This so-alled

simulation approah to omparing the protool exeution to the ideal evaluation

originates in the de�nition of zero-knowledge proof in [GMR85℄ by Goldwasser,

Miali and Rako�. For the MPC setting the simulation approah is introdued

by Goldreih, Miali and Wigderson [GMW87℄ and elaborated on in a large

body of later work [GL90,MR91,Bea91b,BCG93,HM00,Can00,Can01℄. Of these

models, the universally omposable (UC) seurity framework of Canetti [Can01℄

gives the strongest seurity guarantees. When proving an upper bound it makes

sense to onsider the strongest seurity notion. The ore model in [Can01℄ is

asynhronous, but ontains hints on how to apply it to a synhronous setting as
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we onsider here. This was e.g. done in [DN03℄. It is straight-forward to formally

ast our reative iruit model in the model of [DN03℄, and we an prove all our

protools seure in this model.

For the detail of proofs permitted in this extended abstrat we will not need

any formal details about this partiular simulation model. The informal proof

skethes given in subsequent setions an easily be extended to fully formal simu-

lation proofs using by now standard proof tehniques for threshold homomorphi

enryption based MPC, see e.g. [CDN01,DN03℄.

2.2 Homomorphi enryption sheme

In our protools we assume the existene of a semantially seure (in the sense of

IND-CPA [BDPR98℄) probabilisti publi-key enryption funtion E

Z

: M �R !

E ; (m;�) 7!M , where Z denotes the publi key, M denotes a set of messages, R

denotes the set of random strings, and E denotes the set of enryptions. We write

E instead of E

Z

for shorthand. The deryption funtion is D

z

: E ! M ;M 7! m,

where z denotes the seret key. Again, we write D instead of D

z

.

We require that E is a group homomorphism, i.e., E(m

1

; �

1

)�E(m

2

; �

2

) =

E(m

1

+m

2

; �

1

� �

2

) for the orresponding group operations + in M , � in R,

and � in E . We require that M is a ring Z

M

for M > 1. The other groups an

be arbitrary.

In general we use apital letters to denote the enryption of the orresponding

lowerase letters. For a 2 N and B 2 E and � 2 R we write aB as a shorthand

for B�� � ��B with a�1 additions and we use �

a

as a shorthand for �� � � ���

with a�1 multipliations. We use A	B to denote A�(�B), where �B denotes

the inverse of B in E .

We de�ne a iphertext-randomization funtion R : E � R ! E ; (M;) 7!

(M �E(0; )). If M = E(m;�), then R(M;) = E(m;� � ). If  is uniformly

random in R and independent of �, then � �  is uniformly random in R and

independent of �, so R(M;) will be a new independent, uniformly random

enryption of m. We say that M

0

= R(M;) is a randomization of M .

We also require that there exists a passive seure threshold funtion sharing

of D

z

between n parties. I.e. for a given threshold t we split the deryption

key z in n shares z

1

; : : : ; z

n

and there exists a share-deryption funtion SD

z

i

:

E ! S;M 7! m

i

, where S denotes the set of message shares. And there exists

a ombining funtion C : S

t+1

! M ; (m

(1)

; : : : ;m

(t+1)

) 7! m, with the property

that ifM = E

Z

(m) andm

(j)

= SD

z

i

j

(M) for i = 1; : : : ; t+1 and t+1 distint key

shares z

i

j

, then m = C(m

(1)

; : : : ;m

(t+1)

). We require that the semanti seurity

holds even when the distinguisher is given any t deryption key shares prior to

the distinguishing game. Furthermore, for all M = E

Z

(m), given M , m and

any t key shares one an eÆiently ompute all deryption shares m

i

= D

z

i

(M)

for i 2 f1; : : : ; ng. This requirement is made to guarantee that no subset of

the parties of size at most t learns anything from the other parties' deryption

shares, whih they ould not have omputed themselves from the result of the

deryption.
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Realizations. The probabilisti enryption funtion of Paillier [Pai99℄, enhaned

by threshold deryption [FPS00,DJ01℄, satis�es all required properties. This

sheme has M = Z

N

for an RSA modulus N . A sheme satisfying the require-

ments an also be build based on the QR assumption [CDN01,KY02℄. For this

sheme M = Z

2

.

2.3 Non-malleable zero-knowledge proofs

In this setion we give a brief overview of the approah used in [CDN01℄ to

eÆiently realize non-malleable zero-knowledge proofs. We �rst reall the notion

of �-protool, then desribe a general transformation of a �-protool into a

non-malleable zero-knowledge proof and then disuss some of the proofs used in

the main text of the paper.

�-protools. A binary relation is a subset R � f0; 1g

�

�f0; 1g

�

. We use L(R) to

denote the set fx 2 f0; 1g

�

j9w((x;w) 2 R)g. For two binary relations R

1

and R

2

we de�ne binary relations R

1

^R

2

and R

1

_R

2

by ((x

1

; x

2

); (w

1

; w

2

)) 2 R

1

^R

2

if and only if (x

1

; w

1

) 2 R

1

and (x

2

; w

2

) 2 R

2

and ((x

1

; x

2

); w) 2 R

1

_ R

2

i�

(x

1

; w) 2 R

1

or (x

2

; w) 2 R

2

.

A �-protool for proof of membership (knowledge) for R is a three-move

speial honest-veri�er zero-knowledge proof of membership (knowledge) for

R [Cra96℄. The input to the prover is (x;w) 2 R and the input to the veri�er

is x. Two �-protools �

1

and �

2

an easily be ombined to a new �-protools

�

1

^�

2

and �

1

_�

2

for R

1

^R

2

respetively R

1

_R

2

, using two proofs in parallel

respetively the so-alled OR-onstrution.

From �-protools to non-malleable zero-knowledge proofs. If the prover

and veri�er share a trapdoor ommitment sheme, then �-protools an be

turned into zero-knowledge proofs by having the prover ommit to the �rst

message and reveal it after seeing the hallenge [Dam00℄. If the trapdoor om-

mitment sheme is non-malleable [DCIO98℄ with respet to opening [FF00℄, then

the resulting zero-knowledge proof will be non-malleable. If the expansion fator

of the ommitment sheme is onstant, then the transformation yields a zero-

knowledge protool with ommuniation omplexity in the order of the ommu-

niation omplexity of the �-protool; The expansion fator is the number of

bits used to ommit to � bits, divided by �.

Realizations. For the non-malleable trapdoor ommitment sheme used for turn-

ing �-protools into non-malleable zero-knowledge protools several possibilities

exist. One an onstrut a non-malleable trapdoor ommitment sheme with

onstant expansion fator from any trapdoor ommitment sheme with onstant

expansion fator by simply giving eah party an independent, random om-

mitment key [CDN01℄. Trapdoor ommitment shemes with onstant expansion

fator an be based on either the DCR assumption or the strong RSA assump-

tion. We ould also use the ommitment sheme from [DG02℄, whih is based on
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the strong RSA assumption. This sheme only needs one short global key to be

set up.

Robust threshold homomorphi enryption. For the ative-seure pro-

tool we need several non-malleable zero-knowledge proofs assoiated to the

threshold homomorphi enryption sheme. To help speify our requirements we

de�ne three binary relationsR

PK

Z

, R

CM

Z

and R

CSD

Z

assoiated with the enryption

key.

The relation R

PK

Z

is used to prove Plaintext Knowledge of enryptions; Here

the veri�er has an enryption M as input, where the prover laims to know

the plaintext, and the prover has the witness (m;�), where M = E(m;�). The

relation R

CM

Z

is used to prove Corretness of the Multipliation of a b

i

fator

onto A; Here the veri�er has three enryptions A, B and C as input, where the

prover laims that D(C) = D(A)D(B), and the prover has the witness (b; �; ),

where B = E(b; �) and C = R(bA; ). Finally, the relation R

CSD

Z

is used to prove

Corretness of the Shares Deryption m

i

of an enryption M . Here the veri�er

has input M , i and m

i

, where the prover laims that m

i

is the i'th message

share for M , and the prover has input z

i

, where z

i

is the i'th key share and

m

i

= SD

z

i

(M).

4

We require that there exists a �-protool �

PK

Z

for proof of knowledge for

the relation R

PK

and we require that there exist �-protools �

CM

Z

and �

CSD

Z

for proof of membership for the relations R

CM

Z

respetively R

CSD

Z

. Using the

�-protool �

PK

Z

and the ^ operation on �-protools an ensure that �

CM

Z

is

also a proof of plaintext knowledge for B. We furthermore require that the

ommuniation omplexity of eah of these �-protools is O(�). We will use R

and � as shorthands for R

Z

respetively �

Z

.

Given suh �-proofs they an be transformed into non-malleable zero-

knowledge proofs using the tehnique disussed in Setion 2.3.

Realizations. The threshold homomorphi enryption shemes disussed in Se-

tion 2.2 have the neessary �-protools. The sheme based on the QR assump-

tion in addition needs the strong RSA assumption for the existene of the �-

protools.

4

More formally, the relation R

PK

Z

is given by (x;w) 2 R

PK

Z

i� x 2 E, w = (m; r) 2

M � R and x = E

Z

(m; r). The relation R

CM

Z

is given by (x;w) 2 R

CM

Z

i� x =

(A;B;C) 2 E

3

, w = (b; �; ) 2 M � R � R, B = E

Z

(b; �) and C = (bA)� E

Z

(0; ).

For onveniene in de�ning the third relation we require that z is uniquely given by Z,

that the i'th key-share z

i

of z is uniquely given by z, that z

i

ontains a witness to the

fat that it is the i'th key-share orresponding to Z and that SD

z

i

is deterministi.

The relation R

CSD

Z

is given by (x;w) 2 R

CSD

Z

i� x = (i;M;m

i

) 2 f1; : : : ; ng�M �S,

w = z

i

2 f0; 1g

�

, m

i

= SD

z

i

(M) and z

i

is the i'th key share of the deryption key

z orresponding to Z.
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3 Ative-seure MPC protool for t < n=2

In this setion we present our upper bound on the ommuniation omplexity

of an ative-seure MPC protool. The upper bound is given by a protool. We

�rst give an overview on this protool, then present the required sub-protools,

and �nally analyze the seurity and the ommuniation omplexity.

3.1 Overview

In the protool desription we use P = fP

1

; : : : ; P

n

g to denote the set of parties.

We assume that the parties agree on the iruit before the protool is run.

The iruit is spei�ed over the ring M of the enryption sheme with input

gates, addition gates, multipliation gates, randomizing gates, and output gates.

The proposed protool an easily be modi�ed to evaluate Boolean iruits, see

Setion 3.7 for details. In the simplest ase, when the parties wish to evaluate

a deterministi funtion, the iruit will onsist of a layer of inputs gates, then

the arithmeti gates neessary to evaluate the funtion, and �nally the output

gates. However, we also onsider randomized gates, set to an unknown random

values, and reative iruits, where some players may reeive output before some

(other) players provide inputs.

The proposed protool follows Beaver's iruit randomization ap-

proah [Bea91a℄: In a preparation phase, a pool of random triples (a; b; ), with

 = ab, are generated, enrypted and distributed to all players. In the evaluation

phase, for eah multipliation one prepared triple is used. This approah brings

two advantages: First, it might be simpler to generate random produts (instead

of multiplying two given values). Seond, the load of the multipliation protool

is shifted to the preparation phase, where all triples are generated in parallel,

and osts an be amortized.

More formally, the protool proeeds in three phases:

Setup Phase: In the setup phase a random key pair (Z; z) is generated and

the deryption key z is shared among the parties with threshold t, where

t < n=2.

Preparation Phase: In a preparation phase, 

M

random triples

�

a

(i)

; b

(i)

; 

(i)

�

2 M

3

(for i = 1; : : : ; 

M

) with 

(i)

= a

(i)

b

(i)

are gener-

ated, enrypted, and given to every player in P , where 

M

denotes the

number of multipliation gates in the iruit. Furthermore, 

R

random

values r

(i)

2 M (for i = 1; : : : ; 

R

) are generated and enrypted, where 

R

denotes the number of random gates in the iruit.

Evaluation Phase: In an evaluation phase, the gates of the iruit are pro-

essed level by level, assoiating to eah gate a random iphertext enrypting

the (output) value of the gate. The various gates are handled as follows: For

eah input gate, the designated input party broadasts an enryption of its

input for that gate. Addition gates are handled non-interatively using the

homomorphi properties of the enryption sheme. For eah multipliation

gate one prepared triple from the preparation phase is used as desribed

9



in [Bea91a℄. For eah randomizing gate, an enryption of a prepared random

value r

(i)

is used. For the output gates, the iphertexts are derypted using

the threshold funtion sharing of D

z

.

In the subsequent setions we desribe the phases of the protool in detail,

and �nally analyze the overall omplexity of the protool.

3.2 Setup phase

The setup funtion generates ((Z; pk;H); z

1

; : : : ; z

n

), where (Z; z) is a random

key pair with z split into (z

1

; : : : ; z

n

) with threshold t, pk is a random key

for a non-malleable trapdoor ommitment sheme,

5

and H is a random hash

funtion hosen from a lass of ollision-resistant hash funtions, whih is used

by a protool desribed in the following setion. The setup funtion also sets

up digital signatures to allow to do Byzantine Agreement (BA) for resiliene

t < n=2, as disussed in Setion 2.1.

One ould onsider a simpler setup funtion whih only sets up digital signa-

ture keys. This allows to realize BA for resiliene t < n=2, whih in turn allows

to run a seure protool to ompute the setup funtion for the remaining values.

Either a speialized protool or one of the general MPC protools. In all ases

this would add a term p = O(poly(n+�)) to our bounds, where p is independent

of the iruit to be evaluated, giving a bound O(n

2

�+ poly(n+ �)).

3.3 Preparation phase

The goal of this phase is to seurely generate 

M

enrypted triples

�

A

(i)

; B

(i)

; C

(i)

�

(i = 1; : : : ; 

M

), where a

(i)

and b

(i)

are uniformly random values

from M unknown by all parties and 

(i)

= a

(i)

b

(i)

, and furthermore, to generate



R

enrypted random values R

(i)

(i = 1; : : : ; 

R

).

The preparation phase proeeds in three stages: First, 

M

random fa-

tors A

(1)

; : : : ; A

(

M

)

are generated. Seond, the fators B

(1)

; : : : ; B

(

M

)

and the

produts C

(1)

; : : : ; C

(

M

)

are omputed in parallel. Third, the random values

R

(1)

; : : : ; R

(

R

)

for the randomizing gates are prepared.

In eah stage, every player in P ontributes to the generation of the values.

However, not all these ontributions will be onsidered. Instead, the players in

P agree on a subset P

ok

� P with the following two properties: (1) Every player

in P

ok

suessfully veri�ed the ontribution of every other player in P

ok

, and (2)

the majority of the players in P

ok

is honest. Given both properties are satis�ed,

the output of the stage (so far known only to P

ok

) an easily be made known

to the players in P n P

ok

. This interim redution of the player set is similar to

the player elimination framework of [HMP00℄, but opposed to this, an also be

applied to settings with t < n=2.

For the sake of easier presentation, we use a vetor notation: We denote

the triples by (

~

A;

~

B;

~

C) and the random values by

~

R. Furthermore, we extend

5

To be used in the non-malleable zero-knowledge proofs (see [CDN01℄).
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all operators on group elements also to vetors of group elements, where the

semantis is omponent-wise appliation of the operator.

Prepare 

M

random iphertexts

~

A. We �rst present a protool to generate

a single random enryption A, and will then extend it to generate 

M

random

iphertexts

~

A at one. The protool proeeds as follows:

1. Every player P

i

2 P selets at random a

i

2 M and omputes an enryption

A

i

= E(a

i

).

2. Every player P

i

2 P sends A

i

to every player P

j

2 P , and proves to P

j

interatively that he knows the plaintext of A

i

.

3. Every player P

i

broadasts the hash value h

i

= H(A

i

) among all players in

P , where H denotes the ollision-resistant hash funtion de�ned in the setup

phase.

4. Initially we set the set of mutually agreeing players to P

ok

= P . Then, in

sequene, every player P

j

2 P

ok

veri�es for every player P

i

2 P

ok

whether

{ the broadast hash value h

i

mathes the reeived enryption A

i

, i.e.,

h

i

?

= H(A

i

), and

{ the bilateral interative proof by P

i

is aepting for P

j

.

If P

j

's veri�ations sueed for all players P

i

2 P

ok

, then P

j

broadasts ?

to on�rm so. Otherwise, P

j

piks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�ation, and broadasts i. In the latter ase, both players

P

i

and P

j

are removed from the set P

ok

of agreeing players, i.e., all players

set P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets A =

L

P

i

2P

ok

A

i

and sends it to every P

i

2 PnP

ok

.

6. Every player P

i

2 P nP

ok

sets A as the majority of reeived values by players

in P

ok

.

We �rst argue that at the end of the protool, all players in P hold the same

enryption A, and then, that the plaintext of A is unknown to the adversary.

One an easily verify that all honest players in P

ok

ompute the same value A

(otherwise they hold a ollision of H). Furthermore, the majority of players in

P

ok

is honest (at least half of the removed players P nP

ok

is orrupted), hene in

Step 5, the majority of players P

j

2 P

ok

distributes the orret value A, and all

players in P will deide for the same value A. In order to argue about the serey

of the plaintext of A, observe that at least one player in P

ok

is honest and hooses

a

i

uniformly at random. Sine the enryption sheme is semantially seure

6

and

the proof of plaintext knowledge for a

i

is zero-knowledge, the protool reveals

zero knowledge about a

i

to the orrupted parties.

7

Sine all (orrupted) parties

6

Notie that the fat that the deryption key is shared between the parties is no

problem for the semanti seurity as the adversary an inspet at most t parties;

Sine the deryption key is shared with threshold t, the t shares known by the

adversary gives zero knowledge about the deryption key.

7

Here we olloquially distinguish between information and knowledge. Sine A

i

de-

termines a

i

learly the adversary has full information about a

i

. However, by the

11



P

j

2 P

ok

gave a non-malleable proof of plaintext knowledge of their ontribution

a

j

, and this proof was aepted by all parties in P

ok

(at least one of them being

honest), their shares a

j

are independent of the share a

i

. It follows that A is an

enryption of a uniformly random value a =

P

i2P

ok

a

i

of whih the adversary

has zero knowledge. This informal sketh of the seurity an be turned into a

formal simulation proof using known proof tehniques, see e.g. [CDN01,DN03℄.

In order to generate 

M

random iphertexts

~

A, the above protool is slightly

modi�ed:

1. Every player P

i

2 P selets at random ~a

i

2 M



M

and omputes its

omponent-wise iphertexts

~

A

i

.

2. Every player P

i

2 P sends

~

A

i

to every player P

j

2 P , and proves to P

j

interatively that he knows the plaintext of eah omponent of

~

A

i

.

3. Every player P

i

broadasts the hash value h

i

= H(

~

A

i

) among all players in

P .

4. Set P

ok

= P and, in sequene, every player P

j

2 P

ok

veri�es for every player

P

i

2 P

ok

whether

{ the broadast hash value h

i

mathes the reeived iphertexts

~

A

i

, i.e.,

h

i

?

= H(

~

A

i

), and

{ all the bilateral interative proofs by P

i

are aepting for P

j

.

If P

j

's veri�ations sueed for all players P

i

2 P

ok

, then P

j

broadasts ?

to on�rm so. Otherwise, P

j

piks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�ation, and broadasts i. In the latter ase, both players

P

i

and P

j

are removed from the set of agreeing players, i.e., all players set

P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets

~

A =

L

P

i

2P

ok

~

A

i

and sends it to every P

i

2 PnP

ok

.

6. Every player P

i

2 PnP

ok

sets

~

A as the majority of reeived vetors by players

in P

ok

.

The seurity of this protool follows immediately from the seurity of the

previous protool. The ommuniation omplexity of the protool is O(

M

n

2

�+

nB(�)) bits.

Prepare random iphertexts

~

B and produts

~

C. The B and C values of

the triples are generated similarly to the A values. For the sake of simpliity, we

present solely the protool for generating a single triple. The generalization to

vetors of triples is straight-forward along the lines of the protool for generating

~

A.

1. Every player P

i

2 P selets at random b

i

2 M , omputes B

i

= E(b

i

) and

C

i

= R(b

i

A).

semanti seurity and the fat that the adversary is polynomial time bounded, it

has zero knowledge about a

i

.
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2. Every player P

i

2 P sends B

i

and C

i

to every player P

j

2 P , and proves

to P

j

interatively that he knows the plaintext b

i

of B

i

, and that C

i

is a

randomization of b

i

A.

3. Every player P

i

broadasts the hash value h

i

= H(B

i

; C

i

) among all players

in P .

4. Set P

ok

= P and, in sequene, every player P

j

2 P

ok

veri�es for every player

P

i

2 P

ok

whether

{ the broadast hash value h

i

mathes the reeived iphertexts (B

i

; C

i

),

i.e., h

i

?

= H(B

i

; C

i

), and

{ all the bilateral interative proofs by P

i

are aepting for P

j

.

If P

j

's veri�ations sueed for all players P

i

2 P

ok

, then P

j

broadasts ?

to on�rm so. Otherwise, P

j

piks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�ation, and broadasts i. In the latter ase, both players

P

i

and P

j

are removed from the set of agreeing player, i.e., all players set

P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets B =

L

P

i

2P

ok

B

i

, and C =

L

P

i

2P

ok

C

i

, and sends

them to every P

i

2 P n P

ok

.

6. Every player P

i

2 P nP

ok

sets B and C to be the majority of reeived values

from players in P

ok

.

The orretness of the resulting triple (A;B;C) follows diretly from the

distributive law in groups. The seurity of the protool an be argued along the

lines of the proof of the previous protool.

The above protool an be extended to vetor-values in a straight-forward

manner. The ommuniation omplexity of the extended protool is O(

M

n

2

�+

nB(�)) bits.

Prepare 

R

random values

~

R. The random

~

R vetor is prepared exatly as

the random

~

A vetor, only the orresponding

~

B and

~

C vetors are not generated.

3.4 Evaluation phase

In the evaluation phase, the iruit is evaluated layer by layer. In the following,

we give the protools for evaluating the di�erent types of gates.

Input gates. When a party P

i

is to provide an input for some gate G, the

parties proeed as follows:

1. P

i

omputes V

i

= E(v

i

) broadasts V

i

.

2. P

i

bilaterally proves (in zero-knowledge) knowledge of plaintext v

i

to every

player P

j

2 P .

3. Eah P

j

2 P , lets b

j

= 1 if the proof from P

i

was aepted and lets b

j

= 0

otherwise.

4. The parties in P run a BA with input b

j

from P

j

. Let the output be b 2 f0; 1g.

13



5. If b = 1, then eah P

j

2 P sets the enryption for gate G to be the broadast

value V

i

; Otherwise, P

j

sets the enryption for gate G to be E(0; e), where 0

and e denotes the neutral elements from M respetively R.

After this protool the input gate is de�ned to the same value by all parties.

The proof of knowledge given by P

i

serves the purpose of guaranteeing indepen-

dene of inputs. The privay of the protool follows from the semanti seurity

of the enryption sheme, using that the proofs are zero-knowledge.

Using that the ommuniation omplexity of one zero-knowledge proof is

O(�), the ommuniation omplexity for giving one input is seen to be O(B(�)+

n�+ B(1)). Assuming that B(�) � n�, this is O(B(�)).

Output gates. When the value of some gate G (with assoiated iphertextM)

is to be revealed towards a party P

j

, the parties proeed as follows:

1. Every player P

i

2 P omputes m

i

= SD

z

i

(M) and sends it to P

j

.

2. Every player P

i

2 P gives a zero-knowledge proof to every other party P

j

that m

i

is a orret i'th deryption share.

3. P

j

ollets t + 1 deryption shares for whih the proof of orret deryption

share sueeded and ombine them to obtain m = D(M).

Sine at least t+ 1 parties are honest, P

j

will be able to ollet t+ 1 shares

where the proof sueeded. By the soundness of the zero-knowledge proof all

olleted shares will be orret, exept with negligible probability. By the way

the values (z

1

; : : : ; z

n

) were set up and the requirements on the share ombining

algorithm have that indeed m = D

z

(M).

The privay of the protool follows from the requirements on the threshold

deryption protool: from the result of the protool and the key shares of the

t orrupted parties, the adversary ould ompute the key shares of the honest

parties on its own. Therefore the protool leaks zero knowledge about the key

shares of the honest parties.

The ommuniation omplexity is seen to beO(n�) per output gate and party

to learn the output. If all parties are to learn the output, the ommuniation

omplexity is O(n

2

�) per output gate.

If only one party is to learn the output and the output should be private,

the deryption shares sent to P

j

should be sent over private hannels. This does

not a�et the order of the ommuniation omplexity.

Addition gates. For an addition gate G where the input gates of G has

assoiated iphertexts M

1

and M

2

, the assoiated iphertext of G is set to

be M

G

= M

1

� M

2

. As the �-operator is deterministi, all parties agree on

the enryption M

G

, and by the homomorphi properties of � it holds that

D(M

G

) = D(M

1

) +D(M

2

).

Multipliation gates. For a multipliation gate G where the two input gates

have assoiated iphertexts M

1

and M

2

, the assoiated iphertext M

G

of G is

omputed as follows:
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1. Every party P

i

2 P piks the prepared triple (A;B;C) that is assoiated with

the gate.

2. Every party P

i

2 P omputes D = A�M

1

and E = B �M

2

.

3. Every party P

i

2 P invokes the deryption protool from Setion 3.4 on D

and E. Denote the results by d respetively e.

4. Every party sets M

G

= (eM

1

)	 (dB) � C.

The above way to use a prepared triple is from [Bea91a℄.

We argue that the protool maintains agreement on the assoiated ipher-

texts. Assume that the parties agree on M

1

and M

2

. By the fat that � is a

funtion, the parties will agree on D and E. Therefore the deryption protool

will return orret and onsistent d and e values to the parties. Using that 	

and � are funtions it then follows that the parties will agree on M

G

.

We then argue the orretness of the protool. By the orretness of the

deryption protool and the homomorphi properties of � and 	 we have that

D(M

G

) = em

1

�db+ = (b+m

2

)m

1

�(a+m

1

)b+ab = m

1

m

2

, wherem

1

= D(M

1

)

and m

2

= D(m

2

).

For the privay, the only values that are revealed are d and e. However, sine

a and b are independent, uniformly random elements from M unknown to any

adversary whih inspets at most t parties, it follows that d and e are uniformly

random and independent of m

1

and m

2

in the view of the adversary. Therefore

the protool leaks zero knowledge about m

1

and m

2

.

The ommuniation omplexity per gate is that of two invoations of the

deryption protool, i.e. O(n

2

�).

Randomizing gates. When the iruit is evaluated, the randomizing gates

should be initialized by uniformly random values. To reet the ideal evalua-

tion the random values used for initialization should be unknown to all parties.

Therefore, to every random gate, one random enrypted value R

(i)

is assoiated.

3.5 Complexity analysis

In this setion we onsider the omplexity of the ative-seure protool. Sum-

ming the omplexities stated in the presentation of the protool gives us a total

omplexity of O(((

M

+ 

R

)n

2

�+nB(�))+ 

I

B(�)+ 

O

n

2

�+ 

M

n

2

�), where 

M

denotes the number of multipliation gates, 

R

denotes the number of randomiz-

ing input gates, 

I

denotes the number of input gates, and 

O

denotes the number

of output gates. This is seen to be O((

M

+ 

R

+ 

O

)n

2

�+ nB(�) + 

I

B(�)).

In the synhronous model with t < n=2, broadasting (and/or doing BA on) a

total of ` bits an be done with omplexity O(n

2

`+n

3

�) under the strong RSA

assumption and the assumption the RSA signatures are seure (.f. [Nie03℄).

We have n + 

I

broadasts of �-bit messages, giving ` = (n + 

I

)� and (a

bit informally) nB(�) + 

I

B(�) = O(n

2

(n + 

I

)� + n

3

�) = O(

I

n

2

� + n

3

�).

This immediately gives us the bound O((

M

+ 

R

+ 

O

+ 

I

)n

2

�+ n

3

�) on the

ommuniation omplexity of the overall protool.
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Theorem 1. Under the QR assumption (or the DCR assumption), the strong

RSA assumption and the assumption that RSA signatures are seure, O(n

2

�)

is an upper bound on the ommuniation omplexity of an ative-seure protool

with resiliene t < n=2 for evaluating an n-party funtion with arithmeti iruit

omplexity  � n.

3.6 Ongoing omputations

The result for ative seurity assumes that the size of the iruit is known before

the omputation starts, to allow for a preparation phase. For an on-going reative

omputation, even the iruit might be spei�ed as the omputation unfolds and

in partiular the length of the omputation might not be spei�ed on beforehand.

Our result an be extended to suh a setting. We simply hold a pool of prepared

triples, and eah time it dries out we prepare at least twie as many triples as last

time. After polynomially many ativations, this gives a maximum of O(log(�))

runs of the preparation phase and prepares at most twie as many triples as

needed. This gives the bound O(n

2

�+ n

3

� log(�)).

3.7 Boolean iruits

The proposed protool evaluates a iruit of arithmeti gates, where the under-

lying ring is the message spae of the enryption sheme. We an extend the

protool to evaluate a Boolean iruit, even when the message spae of the en-

ryption sheme is larger (e.g., when using Paillier enryption). In the sequel,

we present the neessary modi�ations for Boolean iruits over AND and NOT

gates. The protool for Boolean iruits has the same ommuniation omplexity

as the protool for arithmeti iruits.

Input gates. In the input protool, the player providing input must prove that

the input is in f0; 1g. Therefore, the zero-knowledge proof for proving plaintext

knowledge is augmented by a zero-knowledge proof for proving that the plaintext

is either 0 or 1.

AND-gates. As it is guaranteed that all wires are enryptions of either 0 or 1,

AND-gates an be realized as multipliation gates.

NOT-gates. A NOT-gates an be omputed by using the homomorphism of the

enryption sheme. Given an enrypted bit B, its negation an be omputed

as E(1) 	 B. Every player an ompute the enrypted value of a negation gate

loally, without ommuniating with other players.

Randomizing gates. It must also be ensured that the output of randomizing

gates are in f0; 1g. If M > 2 (as is the ase for Paillier's ryptosystem), and we

want to stay within the new upper bound, a new protool is needed for this.
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0. Let

~

R

(0)

= E(

~

0; ~e) be a onstant vetor of length 

R

, where eah element is

the onstant enryption E(0; e). Let P

ok

= P , let P

done

= ;, let i

prev

= 0, let

i

next

= 1 and let Prev be an empty stak.

1. P

i

next

omputes

~

R

(i

next

)

from

~

R

(i

prev

)

as follows: For eah element R

(i

prev

)

in

~

R

(i

prev

)

, pik � 2

R

R and b 2

R

f0; 1g and, if b = 0, let R

(i

next

)

= E(0; �) �

R

(i

prev

)

, and if b = 1, let

~

R

(i

next

)

= E(1; �) 	R

(i

prev

)

.

2. P

i

next

broadasts the hash value h

i

= H(

~

R

(i

next

)

) among all players in P .

3. P

i

next

sends

~

R

(i

next

)

to every player P

j

2 P , and gives to P

j

(for eah element

R

(i

prev

)

) a non-malleable zero-knowledge proof of knowledge of � for whih

either R

(i

next

)

= E(0; �) �R

(i

prev

)

or R

(i

next

)

= E(1; �) 	R

(i

prev

)

.

4. The parties P enter a BA on whether to aept the proofs given by P

i

next

:

Eah party P

j

2 P enters with b

j

= 1 i� in the above step it reeived

~

R

(i

next

)

suh that h

i

= H(

~

R

(i

next

)

) and the bilateral proof from P

i

next

to P

j

was

aepted.

5. { If the outome of the BA is b = 0, then all parties in P set P

ok

=

P

ok

n fi

next

g and set i

next

to be the smallest i 2 P

ok

n P

done

.

{ If the outome of the BA is b = 1, then all parties in P set P

done

=

P

done

[ fi

next

g, push i

prev

on Prev, let i

prev

= i

next

and set i

next

to be

the smallest i 2 P

ok

n P

done

.

In both ases, if P

ok

n P

done

= ;, then go to Step 8.

6. The party P

i

next

broadasts a bit b 2 f0; 1g, where b = 0 i� i

prev

6= 0 and

P

i

next

never reeived

~

R

(i

prev

)

suh that h

i

prev

= H(

~

R

(i

prev

)

) (in Step 3).

7. { If i

prev

= 0 or P

i

next

broadast 1, then all parties in P go to Step 1.

{ If i

prev

6= 0 and P

i

next

broadast 0, then all parties set P

ok

= P

ok

n

fi

prev

; i

next

g. Then i

prev

is set to be the top of Prev (whih is then popped)

and i

next

is set to be the smallest i 2 P

ok

nP

done

(if P

ok

nP

done

= ;, then

go to Step 8.) Then all parties in P go to Step 6.

8. All parties in P whih knows

~

R

(i

prev

)

suh that h

i

prev

= H(

~

R

(i

prev

)

) sends

~

R

(i

prev

)

to all parties.

9. All parties in P waits for a value

~

R

(i

prev

)

for whih h

i

prev

= H(

~

R

(i

prev

)

) to

arrive and outputs

~

R

(i

prev

)

.

We �rst argue termination and agreement: It is straight-forward to verify that

the proedure reahes Step 8. Sine at this point P

i

prev

at some point broadast

h

i

prev

and had its proof aepted by a majority of the parties in P , at least

one honest party must have reeived

~

R

(i

prev

)

suh that h

i

prev

= H(

~

R

(i

prev

)

). At

least that party will eho

~

R

(i

prev

)

in Step 8 and thus all parties will terminate in

Step 9. Sine h

i

prev

is a broadast value, all parties will output the same value

~

R

(i

prev

)

unless a ollision under H is found.

We then argue that

~

R

(i

prev

)

is a vetor of enryptions of random bits of

whih the adversary has zero knowledge. At termination we learly have that

P

ok

� P

done

. Furthermore, at termination P

ok

will ontain a majority of honest

17



parties and there exists a sequene i

0

= 0 < i

1

< � � � < i

l�1

< i

l

� n suh that

P

ok

= fi

1

; : : : ; i

l

g and for m = 1; : : : ; l, the vetor

~

R

(i

m

)

was omputed by P

i

m

from

~

R

(i

m�1

)

as spei�ed in Step 1. Sine the proof of knowledge ensures that

eah party \ips" the enryptions independently and at least one party in P

ok

is honest it follows that

~

R

(i

l

)

is a vetor of enryptions of independent random

bits unknown to the adversary.

Eah party broadasts (at most) � bits in Step 2 and one bit in Step 6.

Besides this n BAs are exeuted and eah party P

i

next

sends the vetor

~

R

(i

next

)

to all parties and gives the non-malleable zero-knowledge proofs of knowledge

in Step 3. Assuming that B(k) dominates the ost of one Byzantine agreement,

the total ommuniation omplexity of this is O(

R

n

2

�+ nB(�)), as desired.

The above protool an be seen as a strengthening of the protool used in the

original preparation phase to deal with large values being build sequentially from

large ontributions from all parties. Similar protools an be used to prepare

 gates for the Mix-and-Math protool in [JJ00℄ with omplexity O(n

2

� +

nB(�)) and for mixing  iphertext in anonymizing networks and voting (with n

servers) with omplexity O(n

2

� + nB(�)). In both ases an optimization over

�(nB(�)) = �(n

3

�).

4 Passive-seure MPC protool for t < n

In this setion we present an upper bound on the ommuniation omplexity of

a passive seure MPC protool. Again the upper bound is given by a protool.

As opposed to the ative seure protool, the passive protool is not based on

novel tehnial ontributions but rather a neat observation.

The essential observation is that from the threshold homomorphi enryp-

tion based MPC protool of [CDN01℄ eah gate has a short publily known

representation, namely the assoiated enryption. This is opposed to e.g. seret

sharing based protools, where the representation is exatly shared among the

parties and therefore inherently large (�(n�)). This observation allows to des-

ignate some party P

king

whih drives the protool and evaluates the iruit gate

by gate, with help of the other parties.

The protool proeeds along the lines of the ative protool, though no prepa-

ration phase is needed anymore. The details are given below.

Setup phase. In the setup phase the setup funtion s generates a random key

pair (Z; z), splits z into (z

1

; : : : ; z

n

) with threshold t = n � 1, sets p = Z and

sets s

i

= z

i

for i = 1; : : : ; n. Furthermore one designated party P

king

is hosen,

alled the king, e.g. P

king

= P

1

.

Input gates. When a party P

i

is to provide the input v

i

2 M , the parties proeed

as follows:

1. P

i

selets �

i

2

R

R, omputes and sends V

i

= E(v

i

; �

i

) to P

king

.

2. P

king

sends V

i

to all parties.

18



The privay of the protool follows from the semanti seurity of the enryp-

tion sheme.

Output gates. The value of some gate G with assoiated iphertextM is revealed

as follows:

1. Every party P

i

omputes and sends m

i

= SD

z

i

(M) to P

king

.

2. P

king

omputes m = C(m

1

; : : : ;m

n

) and sends it to all parties.

The seurity of this protool is argued along the lines of the ative-seure

protool. The ommuniation omplexity is O(n�).

If the value is to be revealed privately to only one party P

j

, then the

parties send their deryption shares m

i

privately to P

j

, who omputes m =

C(m

1

; : : : ;m

n

).

Addition gates. The king omputes the value of addition gates using the homo-

morphism of the enryption sheme.

Multipliation gates. For a multipliation gate G where the two input gates

have assoiated iphertexts M

1

and M

2

, the assoiated iphertext M

G

of G is

omputed as follows:

1. Every party P

i

2 P selets a

i

2

R

M , �

i

; �

i

2

R

R, omputes A

i

= E(a

i

; �

i

)

and C

i

= R(a

i

M

2

; �

i

), and sends A

i

and C

i

to P

king

.

2. P

king

omputes A = M

1

L

P

i

2P

A

i

and C =

L

P

i

2P

C

i

and sends A and C

to all parties,

3. Every party P

i

2 P omputes its deryption share a

i

= SD

z

i

(A) and sends

it to P

king

.

4. P

king

derypts a = C(a

1

; : : : ; a

n

), omputes G

M

= aM

2

	 C and send it to

all parties.

The seurity is argued as for the ative-seure protool. The ommuniation

omplexity is O(n�).

Randomizing gates. An enryption of a random value m, unknown to the ad-

versary, is omputed as follows:

1. Every party P

i

2 P selets a

i

2 M , �

i

2 R, omputes A

i

= E(a

i

; �

i

) and

sends it to P

king

.

2. P

king

omputes A =

L

P

i

2P

A

i

and sends it to all parties.

Complexity analysis. It is straight forward to verify that the total number of

bits sent by the parties is O((

I

+ 

M

+ 

O

+ 

R

)n�).

Theorem 2. Under the QR assumption (or the DCR assumption), O(n�) is an

upper bound on the ommuniation omplexity of a passive seure protool with

resiliene n � 1 for evaluating an n-party randomized funtion with arithmeti

iruit omplexity .
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5 Conlusions and open problems

We presented new upper bounds on the ommuniation omplexity of optimally

resilient ative-seure MPC and optimally resilient passive-seure MPC. In both

ases we improved the previously best bounds by a fator n. The improvement of

the bound for ative seurity was based on a ombination of previous tehniques

for eÆient MPC along with several novel tehnial ontributions, as opposed to

the improvement of the bound for passive seurity, whih was based on a simple

observation.

Our bounds were based either on the DCR assumption or on the QR as-

sumption (in both ases requiring, additionally the strong RSA assumption and

the assumption that RSA signatures are seure for ative seurity). Even though

these assumptions are standard assumptions, they are very spei�. It is an in-

teresting open problem to ahieve the same bounds under general assumptions,

as e.g. the existene of one-way funtions. One approah would be to investi-

gate the eÆieny of ative-seure information-theoreti MPC with t < n=2. It

is known that the player elimination framework does not apply to this thresh-

old [HMP00,HM01℄. The ideas presented here might however allow to obtain

similar results in this model. The new upper bound for passive seurity however

seems very hallenging to obtain under general assumptions.

It is an interesting open problem to obtain the new bound for also adaptive

seurity. In [DN03℄ an adaptively seure version of the protool from [CDN01℄

was presented. However, the tehniques from [DN03℄ do not allow to make our

protool here adaptive seure while staying within the bound O(n

2

� + n

3

�).

We stress that although our protool annot be proven adaptively seure (we

annot onstrut a simulator), there is no obvious way for an adaptive adversary

to violate the orretness or the seurity of the omputation. This is in ontrast

to some folklore trik for improving eÆieny, namely to have the players agree

on a small random subset of players, who then perform the whole protool.

8

In this approah, an adaptive adversary an trivially violate both privay and

orretness of the protool, simply by orrupting the majority (or even all) of

the players in the subset, one this is randomly hosen.

Another interesting open problem is to prove non-trivial lower bounds on the

ommuniation omplexity of seure MPC.
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Note that is is even unlear how this subset is to be hosen suh that it ontains

an honest majority, given that the original set of players satis�es the optimal bound

t < n=2. Furthermore, the trik only works if n is large.
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