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Abstra
t. We give improved upper bounds on the 
ommuni
ation 
om-

plexity of optimally-resilient se
ure multiparty 
omputation in the 
ryp-

tographi
 model. We 
onsider evaluating an n-party randomized fun
tion

and show that if f 
an be 
omputed by a 
ir
uit of size 
, then O(
n

2

�)

is an upper bound for a
tive se
urity with optimal resilien
e t < n=2 and

se
urity parameter �. This improves on the 
ommuni
ation 
omplexity

of previous proto
ols by a fa
tor of at least n. This improvement 
omes

from the fa
t that in the new proto
ol, only O(n) messages (of size O(�)

ea
h) are broad
ast during the whole proto
ol exe
ution, in 
ontrast to

previous proto
ols whi
h require at least O(n) broad
asts per gate.

Furthermore, we improve the upper bound on the 
ommuni
ation 
om-

plexity of passive se
ure multiparty 
omputation with resilien
e t < n

from O(
n

2

�) to O(
n�). This improvement is mainly due to a simple

observation.

1 Introdu
tion

1.1 Se
ure multiparty 
omputation

Se
ure multiparty 
omputation (MPC) allows a set of n players to 
ompute an

arbitrary fun
tion of their inputs in a se
ure way. More generally, we 
onsider re-

a
tive 
omputations, whi
h are spe
i�ed as a 
ir
uit with input gates, evaluation

gates (e.g., AND and OR gates), random gates, and output gates.

Se
urity is spe
i�ed with respe
t to an adversary 
orrupting up to t of the

players for a de�ned threshold t. A passive adversary 
an inspe
t the internal

state of 
orrupted players, an a
tive adversary 
an take full 
ontrol over them.

A proto
ol is t-se
ure if an adversary atta
king the proto
ol with t 
orruptions


an only obtain inevitable goals w.r.t. gathering information and in
uen
ing

?
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the output of the proto
ol. I.e. it 
an only learn the inputs and outputs of the


orrupted players, and, if it is a
tive, only in
uen
e the inputs of the 
orrupted

players.

1.2 Brief history of MPC

The MPC problem dates ba
k to Yao [Yao82℄. Independently Goldrei
h, Mi
ali

and Wigderson and Chaum, Damg�ard and van de Graaf [GMW87,CDG87℄ pre-

sented solutions to the MPC problem. Their proto
ols provide 
ryptographi
 se-


urity against a 
omputationally bounded a
tive adversary 
orrupting up to t <

n=2 of the players. Later, un
onditionally se
ure MPC proto
ols were proposed

by Ben-Or, Goldwasser and Wigderson [BGW88℄ and Chaum, Cr�epeau and

Damg�ard [CCD88℄ for the se
ure-
hannels model, where perfe
tly se
ure 
han-

nels are assumed between every pair of parties. These proto
ols have resilien
e

t < n=3. Later Rabin and Ben-Or [RB89℄ and independently Beaver [Bea91b℄

presented proto
ols with resilien
e t < n=2 for the se
ure-
hannels model with

broad
ast 
hannels.

1.3 Previous work on the 
omplexity of se
ure MPC

There has been substantial resear
h on the 
omplexity of se
ure MPC, both the

round 
omplexity and the 
ommuni
ation 
omplexity in messages and bits.

As for the round 
omplexity of se
ure MPC, it is now known that in a network

without any setup any fun
tionality 
an be 
omputed se
urely in three rounds

and that there exists fun
tionalities whi
h 
annot be 
omputed in two rounds

without setup [GIKR02℄. Furthermore, it is known that after an initial setup

phase, any fun
tionality 
an be 
omputed in two rounds [GIKR02,CDI05℄ and

that there exist fun
tionalities whi
h 
annot be 
omputed in one round even

after a setup phase. Even though the resulta in [GIKR02,CDI05℄ only applies to

a setting where the number of parties is relatively small, the above results go a

long way in resolving the exa
t round 
omplexity of se
ure MPC.

As for the 
ommuni
ation 
omplexity, the pi
ture is mu
h more open, and

we are far from knowing the exa
t 
ommuni
ation 
omplexity of se
ure MPC.

The 
ommuni
ation 
omplexity of a proto
ol is measured as the total number of

bits sent by all un
orrupted parties during the proto
ol exe
ution.

Very few results are known about the lower bound on the 
ommuni
ation


omplexity, ex
ept those whi
h follow trivially from known lower bounds on the


ommuni
ation 
omplexity of Byzantine agreement | sin
e the model of se
ure

MPC requires agreement on the output, Byzantine agreement is a spe
ial 
ase

of se
ure MPC. For the upper bound on the 
ommuni
ation 
omplexity, mu
h

more is known.

The seminal proto
ols with passive se
urity tend to be very 
ommuni
ation-

eÆ
ient, in 
ontrast to their a
tive-se
ure 
ounterparts, that require high 
om-

muni
ation 
omplexities. The high 
ommuni
ation 
omplexities of a
tive-se
ure

proto
ols is mainly due to their intensive use of a Byzantine agreement primi-

tive, whi
h is to be simulated by 
ommuni
ation-intensive broad
ast proto
ols.
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The most eÆ
ient broad
ast proto
ols for t < n 
ommuni
ate 
(n

2

`) bits for

broad
asting an `-bit message [BGP92,CW92℄. We denote the 
ommuni
ation


omplexity for broad
asting an `-bit message by B(`).

Over the years, several proto
ols have been proposed whi
h

improve the eÆ
ien
y of a
tive-se
ure MPC. In the 
rypto-

graphi
 model (with t < n=2), all proto
ols presented so

far [GV87,BB89,BMR90,BFKR90,Bea91a,GRR98,CDM00,CDD00℄ require

every player to broad
ast one message for ea
h multipli
ation gate. For a


ir
uit with 
 gates, this results in a total 
ommuni
ation 
omplexity of


(
nB(�)) = 
(
n

3

�), where � denotes the se
urity parameter of the proto
ol.

In the se
ure-
hannels model with broad
ast with t < n=2, things are even

worse: The most eÆ
ient proto
ol in this model [CDD

+

99℄ requires 
(n

4

) �-bit

messages to be broad
ast for every multipli
ation gate.

In the se
ure-
hannels model with t < n=3, re
ently more eÆ
ient proto
ols

were proposed [HMP00,HM01℄: The latter proto
ol requires only O(n

2

) broad-


asts in total (independently of the size of the 
ir
uit), and 
ommuni
ates an

additional O(
n

2

) bits in total. This result is based on the so-
alled player-

elimination framework, where subsets of players with faulty majority are elimi-

nated. This prevents 
orrupted players from repetitively disturbing and slowing

down the 
omputation. Unfortunately, the player-elimination framework 
annot


apture models with t < n=2: In order to re
onstru
t an intermediate value (a

wire), at least t + 1 players are required. After eliminating a group of players

with faulty majority, the remaining set of players does not ne
essarily 
ontain

t + 1 honest players (it might even 
ontain only one single player), hen
e the

remaining players 
annot re
onstru
t intermediate results | and would have to

restart the whole 
omputation.

1.4 Contributions

We 
onsider upper bounds on the 
ommuni
ation 
omplexity of a
tive-se
ure

MPC proto
ol in the 
ryptographi
 model with t < n=2 and passive-se
ure

MPC proto
ols in the 
ryptographi
 model with t < n. The most eÆ
ient

a
tive-se
ure proto
ol for this model is the proto
ol by Cramer, Damg�ard and

Nielsen [CDN01℄. This proto
ol requires every player to broad
ast O(1) �-bit

values for ea
h multipli
ation gate in the 
ir
uit. When repla
ing the broad
ast

primitive by the most eÆ
ient broad
ast proto
ol with resilien
e t < n=2 known

today (but unknown at the time when [CDN01℄ was published), this results in

an overall 
ommuni
ation 
omplexity of O(
n

3

�) for evaluating a 
ir
uit with 


gates. The same upper bound for a
tive se
urity was proved by Jakobsson and

Juels [JJ00℄ using similar te
hniques.

We improve the upper bound for a
tive se
urity by 
onstru
ting a new MPC

proto
ol for the 
ryptographi
 model with resilien
e t < n=2: The new proto
ol

requires every player to broad
ast O(1) �-bit values in total, i.e., during the

whole proto
ol exe
ution. Additionally, the players 
ommuni
ateO(n

2

�) bits per

multipli
ation over the normal 
hannels. This results in a total 
ommuni
ation

3




omplexity of O(
n

2

� + nB(�)) = O(
n

2

� + n

3

�). If every party has just one

input to the 
ir
uit, then 
 � n and O(
n

2

�+ n

3

�) = O(
n

2

�).

3

The new proto
ol follows the basi
 paradigm of [CDN01℄, enhan
ed with ideas

of [Bea91a℄ and [HMP00℄ and several novel te
hni
al 
ontributions. Our proto
ol

essentially improves over the best known upper bound for a
tive se
urity by a

fa
tor n.

Using a simple observation about threshold homomorphi
 en
ryption-based

MPC proto
ols we also present a passive se
ure proto
ol with resilien
e t < n,


ommuni
ating only O(
n�) bits. This improves the best known upper bound

for passive se
urity, as given by the proto
ol of Franklin and Haber [FH96℄, by

a fa
tor n.

2 Preliminaries

In this se
tion we dis
uss our model of se
urity of proto
ols and we sket
h the

te
hni
al setting for threshold homomorphi
 en
ryption based MPC. The reader

familiar with these issues 
an safely skip this se
tion.

2.1 Model

We 
onsider n players that are pairwise 
onne
ted with authenti
ated open 
han-

nels and we assume syn
hronous 
ommuni
ation. The adversarymay 
orrupt any

t of the players. All parties and the adversary are restri
ted to probabilisti
 poly-

nomial time. We 
onsider a stati
 adversary, whi
h 
orrupts all parties before

the proto
ol exe
ution.

Spe
ifying a multiparty fun
tionality. We assume that the task to be realized is

given by an arithmeti
 
ir
uit with input, addition, multipli
ation, randomizing

and output gates, all over some ring M . We 
onsider rea
tive 
ir
uits where

some input gates might appear after output gates. We assume that the 
ir
uit

is divided into layers being either input layers, 
onsisting solely of input gates,

evaluation layers 
onsisting of addition, multipli
ation, and randomizing gates,

and output layers, 
onsisting solely of output gates. An input gate G spe
i�es

its layer and the party that is to supply the value for the gate. A negation gate

spe
i�es its layer and a gate in a previous layer, from whi
h it takes its input.

An addition gate as well as a multipli
ation gate spe
i�es its layer and two gates

in a previous layer, from whi
h it takes its input. An output gate spe
i�es its

layer and a gate in a previous layer, whi
h is to be revealed.

The ideal evaluation. To explain the multiparty fun
tionality spe
i�ed by a

rea
tive 
ir
uit, it is 
onvenient to image an ideal pro
ess, where the parties are


onne
ted to a fully trusted party with se
ure 
hannels. The ideal evaluation of

3

For simpli
ity we spe
ify all bounds in the following for 
ir
uits with 
 = �(n).

Bounds for 
 � n are obtained by letting 
 = n.

4



the 
ir
uit takes pla
e in a layer by layer manner. For ea
h input layer, for every

gate spe
ifying P

i

as the party to 
ontribute the input, P

i

sends to the trusted

party an input value v 2 M over a se
ure line. If no value is sent, the trusted

party sets v to be 0. For ea
h evaluation layer, the trusted party 
omputes values

of all evaluation gates a

ording to the 
ir
uit; Randomizing gates are set to be

uniformly random values v 2

R

M and addition gates and multipli
ation gates

are evaluated in the expe
ted manner. For ea
h output layer, the trusted party

sends the value of all output gates in the layer to all parties.

Noti
e that in the ideal evaluation an adversary 
ontrolling some set of 
or-

rupted parties 
an only a
hieve inevitable goals: Of information it only learns the

output and the 
orrupted parties' inputs and, if it is a
tive, the only in
uen
e

it 
an exert on the evaluation is 
hanging the 
orrupted parties' inputs to the

fun
tion.

The goal of a proto
ol for a 
ir
uit is to realize the same fun
tionality in a

real-life network.

The real-life model. We assume that the network has a setup phase. In the setup

phase a setup fun
tion s : f0; 1g

�

! (f0; 1g

�

)

n+1

; r 7! (p; s

1

; : : : ; s

n

) is evaluated

on a random input, and the value p is made publi
. The value s

i

is only given to

the party P

i

. The reason for having a setup phase is that we will be interested

in MPC proto
ols with a
tive resilien
e t < n=2, and without a setup phase not

even the Byzantine agreement problem [LSP82℄, whi
h is a spe
ial 
ase of the

general MPC problem, 
an be solved with a
tive resilien
e t < n=2. The fun
tion

s is spe
i�ed as part of the general proto
ol. In parti
ular, s is not allowed to

depend on the 
ir
uit.

De�ning se
urity. There are many proposals on how to model the se
urity of

an n-party proto
ol, i.e. for what it means for a proto
ol to realize the ideal

evaluation of a 
ir
uit. Common to most is that the real-life adversary 
an only

obtain goals 
omparable to those of an ideal-model adversary, i.e. inevitable

goals.

The 
omparison of the proto
ol exe
ution to the ideal evaluation is made by

requiring that the 
omplete view of an adversary atta
king the proto
ol exe
u-

tion 
an be simulated given only the view of an adversary atta
king the ideal

evaluation with the same 
orrupted parties. This 
aptures exa
tly the idea that

the information gathering and the in
uen
ing 
apabilities of the adversary in-


lude nothing extra to that of whi
h the adversary is entitled. This so-
alled

simulation approa
h to 
omparing the proto
ol exe
ution to the ideal evaluation

originates in the de�nition of zero-knowledge proof in [GMR85℄ by Goldwasser,

Mi
ali and Ra
ko�. For the MPC setting the simulation approa
h is introdu
ed

by Goldrei
h, Mi
ali and Wigderson [GMW87℄ and elaborated on in a large

body of later work [GL90,MR91,Bea91b,BCG93,HM00,Can00,Can01℄. Of these

models, the universally 
omposable (UC) se
urity framework of Canetti [Can01℄

gives the strongest se
urity guarantees. When proving an upper bound it makes

sense to 
onsider the strongest se
urity notion. The 
ore model in [Can01℄ is

asyn
hronous, but 
ontains hints on how to apply it to a syn
hronous setting as

5



we 
onsider here. This was e.g. done in [DN03℄. It is straight-forward to formally


ast our rea
tive 
ir
uit model in the model of [DN03℄, and we 
an prove all our

proto
ols se
ure in this model.

For the detail of proofs permitted in this extended abstra
t we will not need

any formal details about this parti
ular simulation model. The informal proof

sket
hes given in subsequent se
tions 
an easily be extended to fully formal simu-

lation proofs using by now standard proof te
hniques for threshold homomorphi


en
ryption based MPC, see e.g. [CDN01,DN03℄.

2.2 Homomorphi
 en
ryption s
heme

In our proto
ols we assume the existen
e of a semanti
ally se
ure (in the sense of

IND-CPA [BDPR98℄) probabilisti
 publi
-key en
ryption fun
tion E

Z

: M �R !

E ; (m;�) 7!M , where Z denotes the publi
 key, M denotes a set of messages, R

denotes the set of random strings, and E denotes the set of en
ryptions. We write

E instead of E

Z

for shorthand. The de
ryption fun
tion is D

z

: E ! M ;M 7! m,

where z denotes the se
ret key. Again, we write D instead of D

z

.

We require that E is a group homomorphism, i.e., E(m

1

; �

1

)�E(m

2

; �

2

) =

E(m

1

+m

2

; �

1

� �

2

) for the 
orresponding group operations + in M , � in R,

and � in E . We require that M is a ring Z

M

for M > 1. The other groups 
an

be arbitrary.

In general we use 
apital letters to denote the en
ryption of the 
orresponding

lower
ase letters. For a 2 N and B 2 E and � 2 R we write aB as a shorthand

for B�� � ��B with a�1 additions and we use �

a

as a shorthand for �� � � ���

with a�1 multipli
ations. We use A	B to denote A�(�B), where �B denotes

the inverse of B in E .

We de�ne a 
iphertext-randomization fun
tion R : E � R ! E ; (M;
) 7!

(M �E(0; 
)). If M = E(m;�), then R(M;
) = E(m;� � 
). If 
 is uniformly

random in R and independent of �, then � � 
 is uniformly random in R and

independent of �, so R(M;
) will be a new independent, uniformly random

en
ryption of m. We say that M

0

= R(M;
) is a randomization of M .

We also require that there exists a passive se
ure threshold fun
tion sharing

of D

z

between n parties. I.e. for a given threshold t we split the de
ryption

key z in n shares z

1

; : : : ; z

n

and there exists a share-de
ryption fun
tion SD

z

i

:

E ! S;M 7! m

i

, where S denotes the set of message shares. And there exists

a 
ombining fun
tion C : S

t+1

! M ; (m

(1)

; : : : ;m

(t+1)

) 7! m, with the property

that ifM = E

Z

(m) andm

(j)

= SD

z

i

j

(M) for i = 1; : : : ; t+1 and t+1 distin
t key

shares z

i

j

, then m = C(m

(1)

; : : : ;m

(t+1)

). We require that the semanti
 se
urity

holds even when the distinguisher is given any t de
ryption key shares prior to

the distinguishing game. Furthermore, for all M = E

Z

(m), given M , m and

any t key shares one 
an eÆ
iently 
ompute all de
ryption shares m

i

= D

z

i

(M)

for i 2 f1; : : : ; ng. This requirement is made to guarantee that no subset of

the parties of size at most t learns anything from the other parties' de
ryption

shares, whi
h they 
ould not have 
omputed themselves from the result of the

de
ryption.
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Realizations. The probabilisti
 en
ryption fun
tion of Paillier [Pai99℄, enhan
ed

by threshold de
ryption [FPS00,DJ01℄, satis�es all required properties. This

s
heme has M = Z

N

for an RSA modulus N . A s
heme satisfying the require-

ments 
an also be build based on the QR assumption [CDN01,KY02℄. For this

s
heme M = Z

2

.

2.3 Non-malleable zero-knowledge proofs

In this se
tion we give a brief overview of the approa
h used in [CDN01℄ to

eÆ
iently realize non-malleable zero-knowledge proofs. We �rst re
all the notion

of �-proto
ol, then des
ribe a general transformation of a �-proto
ol into a

non-malleable zero-knowledge proof and then dis
uss some of the proofs used in

the main text of the paper.

�-proto
ols. A binary relation is a subset R � f0; 1g

�

�f0; 1g

�

. We use L(R) to

denote the set fx 2 f0; 1g

�

j9w((x;w) 2 R)g. For two binary relations R

1

and R

2

we de�ne binary relations R

1

^R

2

and R

1

_R

2

by ((x

1

; x

2

); (w

1

; w

2

)) 2 R

1

^R

2

if and only if (x

1

; w

1

) 2 R

1

and (x

2

; w

2

) 2 R

2

and ((x

1

; x

2

); w) 2 R

1

_ R

2

i�

(x

1

; w) 2 R

1

or (x

2

; w) 2 R

2

.

A �-proto
ol for proof of membership (knowledge) for R is a three-move

spe
ial honest-veri�er zero-knowledge proof of membership (knowledge) for

R [Cra96℄. The input to the prover is (x;w) 2 R and the input to the veri�er

is x. Two �-proto
ols �

1

and �

2


an easily be 
ombined to a new �-proto
ols

�

1

^�

2

and �

1

_�

2

for R

1

^R

2

respe
tively R

1

_R

2

, using two proofs in parallel

respe
tively the so-
alled OR-
onstru
tion.

From �-proto
ols to non-malleable zero-knowledge proofs. If the prover

and veri�er share a trapdoor 
ommitment s
heme, then �-proto
ols 
an be

turned into zero-knowledge proofs by having the prover 
ommit to the �rst

message and reveal it after seeing the 
hallenge [Dam00℄. If the trapdoor 
om-

mitment s
heme is non-malleable [DCIO98℄ with respe
t to opening [FF00℄, then

the resulting zero-knowledge proof will be non-malleable. If the expansion fa
tor

of the 
ommitment s
heme is 
onstant, then the transformation yields a zero-

knowledge proto
ol with 
ommuni
ation 
omplexity in the order of the 
ommu-

ni
ation 
omplexity of the �-proto
ol; The expansion fa
tor is the number of

bits used to 
ommit to � bits, divided by �.

Realizations. For the non-malleable trapdoor 
ommitment s
heme used for turn-

ing �-proto
ols into non-malleable zero-knowledge proto
ols several possibilities

exist. One 
an 
onstru
t a non-malleable trapdoor 
ommitment s
heme with


onstant expansion fa
tor from any trapdoor 
ommitment s
heme with 
onstant

expansion fa
tor by simply giving ea
h party an independent, random 
om-

mitment key [CDN01℄. Trapdoor 
ommitment s
hemes with 
onstant expansion

fa
tor 
an be based on either the DCR assumption or the strong RSA assump-

tion. We 
ould also use the 
ommitment s
heme from [DG02℄, whi
h is based on

7



the strong RSA assumption. This s
heme only needs one short global key to be

set up.

Robust threshold homomorphi
 en
ryption. For the a
tive-se
ure pro-

to
ol we need several non-malleable zero-knowledge proofs asso
iated to the

threshold homomorphi
 en
ryption s
heme. To help spe
ify our requirements we

de�ne three binary relationsR

PK

Z

, R

CM

Z

and R

CSD

Z

asso
iated with the en
ryption

key.

The relation R

PK

Z

is used to prove Plaintext Knowledge of en
ryptions; Here

the veri�er has an en
ryption M as input, where the prover 
laims to know

the plaintext, and the prover has the witness (m;�), where M = E(m;�). The

relation R

CM

Z

is used to prove Corre
tness of the Multipli
ation of a b

i

fa
tor

onto A; Here the veri�er has three en
ryptions A, B and C as input, where the

prover 
laims that D(C) = D(A)D(B), and the prover has the witness (b; �; 
),

where B = E(b; �) and C = R(bA; 
). Finally, the relation R

CSD

Z

is used to prove

Corre
tness of the Shares De
ryption m

i

of an en
ryption M . Here the veri�er

has input M , i and m

i

, where the prover 
laims that m

i

is the i'th message

share for M , and the prover has input z

i

, where z

i

is the i'th key share and

m

i

= SD

z

i

(M).

4

We require that there exists a �-proto
ol �

PK

Z

for proof of knowledge for

the relation R

PK

and we require that there exist �-proto
ols �

CM

Z

and �

CSD

Z

for proof of membership for the relations R

CM

Z

respe
tively R

CSD

Z

. Using the

�-proto
ol �

PK

Z

and the ^ operation on �-proto
ols 
an ensure that �

CM

Z

is

also a proof of plaintext knowledge for B. We furthermore require that the


ommuni
ation 
omplexity of ea
h of these �-proto
ols is O(�). We will use R

and � as shorthands for R

Z

respe
tively �

Z

.

Given su
h �-proofs they 
an be transformed into non-malleable zero-

knowledge proofs using the te
hnique dis
ussed in Se
tion 2.3.

Realizations. The threshold homomorphi
 en
ryption s
hemes dis
ussed in Se
-

tion 2.2 have the ne
essary �-proto
ols. The s
heme based on the QR assump-

tion in addition needs the strong RSA assumption for the existen
e of the �-

proto
ols.

4

More formally, the relation R

PK

Z

is given by (x;w) 2 R

PK

Z

i� x 2 E, w = (m; r) 2

M � R and x = E

Z

(m; r). The relation R

CM

Z

is given by (x;w) 2 R

CM

Z

i� x =

(A;B;C) 2 E

3

, w = (b; �; 
) 2 M � R � R, B = E

Z

(b; �) and C = (bA)� E

Z

(0; 
).

For 
onvenien
e in de�ning the third relation we require that z is uniquely given by Z,

that the i'th key-share z

i

of z is uniquely given by z, that z

i


ontains a witness to the

fa
t that it is the i'th key-share 
orresponding to Z and that SD

z

i

is deterministi
.

The relation R

CSD

Z

is given by (x;w) 2 R

CSD

Z

i� x = (i;M;m

i

) 2 f1; : : : ; ng�M �S,

w = z

i

2 f0; 1g

�

, m

i

= SD

z

i

(M) and z

i

is the i'th key share of the de
ryption key

z 
orresponding to Z.
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3 A
tive-se
ure MPC proto
ol for t < n=2

In this se
tion we present our upper bound on the 
ommuni
ation 
omplexity

of an a
tive-se
ure MPC proto
ol. The upper bound is given by a proto
ol. We

�rst give an overview on this proto
ol, then present the required sub-proto
ols,

and �nally analyze the se
urity and the 
ommuni
ation 
omplexity.

3.1 Overview

In the proto
ol des
ription we use P = fP

1

; : : : ; P

n

g to denote the set of parties.

We assume that the parties agree on the 
ir
uit before the proto
ol is run.

The 
ir
uit is spe
i�ed over the ring M of the en
ryption s
heme with input

gates, addition gates, multipli
ation gates, randomizing gates, and output gates.

The proposed proto
ol 
an easily be modi�ed to evaluate Boolean 
ir
uits, see

Se
tion 3.7 for details. In the simplest 
ase, when the parties wish to evaluate

a deterministi
 fun
tion, the 
ir
uit will 
onsist of a layer of inputs gates, then

the arithmeti
 gates ne
essary to evaluate the fun
tion, and �nally the output

gates. However, we also 
onsider randomized gates, set to an unknown random

values, and rea
tive 
ir
uits, where some players may re
eive output before some

(other) players provide inputs.

The proposed proto
ol follows Beaver's 
ir
uit randomization ap-

proa
h [Bea91a℄: In a preparation phase, a pool of random triples (a; b; 
), with


 = ab, are generated, en
rypted and distributed to all players. In the evaluation

phase, for ea
h multipli
ation one prepared triple is used. This approa
h brings

two advantages: First, it might be simpler to generate random produ
ts (instead

of multiplying two given values). Se
ond, the load of the multipli
ation proto
ol

is shifted to the preparation phase, where all triples are generated in parallel,

and 
osts 
an be amortized.

More formally, the proto
ol pro
eeds in three phases:

Setup Phase: In the setup phase a random key pair (Z; z) is generated and

the de
ryption key z is shared among the parties with threshold t, where

t < n=2.

Preparation Phase: In a preparation phase, 


M

random triples

�

a

(i)

; b

(i)

; 


(i)

�

2 M

3

(for i = 1; : : : ; 


M

) with 


(i)

= a

(i)

b

(i)

are gener-

ated, en
rypted, and given to every player in P , where 


M

denotes the

number of multipli
ation gates in the 
ir
uit. Furthermore, 


R

random

values r

(i)

2 M (for i = 1; : : : ; 


R

) are generated and en
rypted, where 


R

denotes the number of random gates in the 
ir
uit.

Evaluation Phase: In an evaluation phase, the gates of the 
ir
uit are pro-


essed level by level, asso
iating to ea
h gate a random 
iphertext en
rypting

the (output) value of the gate. The various gates are handled as follows: For

ea
h input gate, the designated input party broad
asts an en
ryption of its

input for that gate. Addition gates are handled non-intera
tively using the

homomorphi
 properties of the en
ryption s
heme. For ea
h multipli
ation

gate one prepared triple from the preparation phase is used as des
ribed

9



in [Bea91a℄. For ea
h randomizing gate, an en
ryption of a prepared random

value r

(i)

is used. For the output gates, the 
iphertexts are de
rypted using

the threshold fun
tion sharing of D

z

.

In the subsequent se
tions we des
ribe the phases of the proto
ol in detail,

and �nally analyze the overall 
omplexity of the proto
ol.

3.2 Setup phase

The setup fun
tion generates ((Z; pk;H); z

1

; : : : ; z

n

), where (Z; z) is a random

key pair with z split into (z

1

; : : : ; z

n

) with threshold t, pk is a random key

for a non-malleable trapdoor 
ommitment s
heme,

5

and H is a random hash

fun
tion 
hosen from a 
lass of 
ollision-resistant hash fun
tions, whi
h is used

by a proto
ol des
ribed in the following se
tion. The setup fun
tion also sets

up digital signatures to allow to do Byzantine Agreement (BA) for resilien
e

t < n=2, as dis
ussed in Se
tion 2.1.

One 
ould 
onsider a simpler setup fun
tion whi
h only sets up digital signa-

ture keys. This allows to realize BA for resilien
e t < n=2, whi
h in turn allows

to run a se
ure proto
ol to 
ompute the setup fun
tion for the remaining values.

Either a spe
ialized proto
ol or one of the general MPC proto
ols. In all 
ases

this would add a term p = O(poly(n+�)) to our bounds, where p is independent

of the 
ir
uit to be evaluated, giving a bound O(
n

2

�+ poly(n+ �)).

3.3 Preparation phase

The goal of this phase is to se
urely generate 


M

en
rypted triples

�

A

(i)

; B

(i)

; C

(i)

�

(i = 1; : : : ; 


M

), where a

(i)

and b

(i)

are uniformly random values

from M unknown by all parties and 


(i)

= a

(i)

b

(i)

, and furthermore, to generate




R

en
rypted random values R

(i)

(i = 1; : : : ; 


R

).

The preparation phase pro
eeds in three stages: First, 


M

random fa
-

tors A

(1)

; : : : ; A

(


M

)

are generated. Se
ond, the fa
tors B

(1)

; : : : ; B

(


M

)

and the

produ
ts C

(1)

; : : : ; C

(


M

)

are 
omputed in parallel. Third, the random values

R

(1)

; : : : ; R

(


R

)

for the randomizing gates are prepared.

In ea
h stage, every player in P 
ontributes to the generation of the values.

However, not all these 
ontributions will be 
onsidered. Instead, the players in

P agree on a subset P

ok

� P with the following two properties: (1) Every player

in P

ok

su

essfully veri�ed the 
ontribution of every other player in P

ok

, and (2)

the majority of the players in P

ok

is honest. Given both properties are satis�ed,

the output of the stage (so far known only to P

ok

) 
an easily be made known

to the players in P n P

ok

. This interim redu
tion of the player set is similar to

the player elimination framework of [HMP00℄, but opposed to this, 
an also be

applied to settings with t < n=2.

For the sake of easier presentation, we use a ve
tor notation: We denote

the triples by (

~

A;

~

B;

~

C) and the random values by

~

R. Furthermore, we extend

5

To be used in the non-malleable zero-knowledge proofs (see [CDN01℄).
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all operators on group elements also to ve
tors of group elements, where the

semanti
s is 
omponent-wise appli
ation of the operator.

Prepare 


M

random 
iphertexts

~

A. We �rst present a proto
ol to generate

a single random en
ryption A, and will then extend it to generate 


M

random


iphertexts

~

A at on
e. The proto
ol pro
eeds as follows:

1. Every player P

i

2 P sele
ts at random a

i

2 M and 
omputes an en
ryption

A

i

= E(a

i

).

2. Every player P

i

2 P sends A

i

to every player P

j

2 P , and proves to P

j

intera
tively that he knows the plaintext of A

i

.

3. Every player P

i

broad
asts the hash value h

i

= H(A

i

) among all players in

P , where H denotes the 
ollision-resistant hash fun
tion de�ned in the setup

phase.

4. Initially we set the set of mutually agreeing players to P

ok

= P . Then, in

sequen
e, every player P

j

2 P

ok

veri�es for every player P

i

2 P

ok

whether

{ the broad
ast hash value h

i

mat
hes the re
eived en
ryption A

i

, i.e.,

h

i

?

= H(A

i

), and

{ the bilateral intera
tive proof by P

i

is a

epting for P

j

.

If P

j

's veri�
ations su

eed for all players P

i

2 P

ok

, then P

j

broad
asts ?

to 
on�rm so. Otherwise, P

j

pi
ks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�
ation, and broad
asts i. In the latter 
ase, both players

P

i

and P

j

are removed from the set P

ok

of agreeing players, i.e., all players

set P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets A =

L

P

i

2P

ok

A

i

and sends it to every P

i

2 PnP

ok

.

6. Every player P

i

2 P nP

ok

sets A as the majority of re
eived values by players

in P

ok

.

We �rst argue that at the end of the proto
ol, all players in P hold the same

en
ryption A, and then, that the plaintext of A is unknown to the adversary.

One 
an easily verify that all honest players in P

ok


ompute the same value A

(otherwise they hold a 
ollision of H). Furthermore, the majority of players in

P

ok

is honest (at least half of the removed players P nP

ok

is 
orrupted), hen
e in

Step 5, the majority of players P

j

2 P

ok

distributes the 
orre
t value A, and all

players in P will de
ide for the same value A. In order to argue about the se
re
y

of the plaintext of A, observe that at least one player in P

ok

is honest and 
hooses

a

i

uniformly at random. Sin
e the en
ryption s
heme is semanti
ally se
ure

6

and

the proof of plaintext knowledge for a

i

is zero-knowledge, the proto
ol reveals

zero knowledge about a

i

to the 
orrupted parties.

7

Sin
e all (
orrupted) parties

6

Noti
e that the fa
t that the de
ryption key is shared between the parties is no

problem for the semanti
 se
urity as the adversary 
an inspe
t at most t parties;

Sin
e the de
ryption key is shared with threshold t, the t shares known by the

adversary gives zero knowledge about the de
ryption key.

7

Here we 
olloquially distinguish between information and knowledge. Sin
e A

i

de-

termines a

i


learly the adversary has full information about a

i

. However, by the
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P

j

2 P

ok

gave a non-malleable proof of plaintext knowledge of their 
ontribution

a

j

, and this proof was a

epted by all parties in P

ok

(at least one of them being

honest), their shares a

j

are independent of the share a

i

. It follows that A is an

en
ryption of a uniformly random value a =

P

i2P

ok

a

i

of whi
h the adversary

has zero knowledge. This informal sket
h of the se
urity 
an be turned into a

formal simulation proof using known proof te
hniques, see e.g. [CDN01,DN03℄.

In order to generate 


M

random 
iphertexts

~

A, the above proto
ol is slightly

modi�ed:

1. Every player P

i

2 P sele
ts at random ~a

i

2 M




M

and 
omputes its


omponent-wise 
iphertexts

~

A

i

.

2. Every player P

i

2 P sends

~

A

i

to every player P

j

2 P , and proves to P

j

intera
tively that he knows the plaintext of ea
h 
omponent of

~

A

i

.

3. Every player P

i

broad
asts the hash value h

i

= H(

~

A

i

) among all players in

P .

4. Set P

ok

= P and, in sequen
e, every player P

j

2 P

ok

veri�es for every player

P

i

2 P

ok

whether

{ the broad
ast hash value h

i

mat
hes the re
eived 
iphertexts

~

A

i

, i.e.,

h

i

?

= H(

~

A

i

), and

{ all the bilateral intera
tive proofs by P

i

are a

epting for P

j

.

If P

j

's veri�
ations su

eed for all players P

i

2 P

ok

, then P

j

broad
asts ?

to 
on�rm so. Otherwise, P

j

pi
ks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�
ation, and broad
asts i. In the latter 
ase, both players

P

i

and P

j

are removed from the set of agreeing players, i.e., all players set

P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets

~

A =

L

P

i

2P

ok

~

A

i

and sends it to every P

i

2 PnP

ok

.

6. Every player P

i

2 PnP

ok

sets

~

A as the majority of re
eived ve
tors by players

in P

ok

.

The se
urity of this proto
ol follows immediately from the se
urity of the

previous proto
ol. The 
ommuni
ation 
omplexity of the proto
ol is O(


M

n

2

�+

nB(�)) bits.

Prepare random 
iphertexts

~

B and produ
ts

~

C. The B and C values of

the triples are generated similarly to the A values. For the sake of simpli
ity, we

present solely the proto
ol for generating a single triple. The generalization to

ve
tors of triples is straight-forward along the lines of the proto
ol for generating

~

A.

1. Every player P

i

2 P sele
ts at random b

i

2 M , 
omputes B

i

= E(b

i

) and

C

i

= R(b

i

A).

semanti
 se
urity and the fa
t that the adversary is polynomial time bounded, it

has zero knowledge about a

i

.
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2. Every player P

i

2 P sends B

i

and C

i

to every player P

j

2 P , and proves

to P

j

intera
tively that he knows the plaintext b

i

of B

i

, and that C

i

is a

randomization of b

i

A.

3. Every player P

i

broad
asts the hash value h

i

= H(B

i

; C

i

) among all players

in P .

4. Set P

ok

= P and, in sequen
e, every player P

j

2 P

ok

veri�es for every player

P

i

2 P

ok

whether

{ the broad
ast hash value h

i

mat
hes the re
eived 
iphertexts (B

i

; C

i

),

i.e., h

i

?

= H(B

i

; C

i

), and

{ all the bilateral intera
tive proofs by P

i

are a

epting for P

j

.

If P

j

's veri�
ations su

eed for all players P

i

2 P

ok

, then P

j

broad
asts ?

to 
on�rm so. Otherwise, P

j

pi
ks the index i of some player P

i

2 P

ok

that

failed in P

j

's veri�
ation, and broad
asts i. In the latter 
ase, both players

P

i

and P

j

are removed from the set of agreeing player, i.e., all players set

P

ok

 P

ok

n fP

i

; P

j

g.

5. Every player P

j

2 P

ok

sets B =

L

P

i

2P

ok

B

i

, and C =

L

P

i

2P

ok

C

i

, and sends

them to every P

i

2 P n P

ok

.

6. Every player P

i

2 P nP

ok

sets B and C to be the majority of re
eived values

from players in P

ok

.

The 
orre
tness of the resulting triple (A;B;C) follows dire
tly from the

distributive law in groups. The se
urity of the proto
ol 
an be argued along the

lines of the proof of the previous proto
ol.

The above proto
ol 
an be extended to ve
tor-values in a straight-forward

manner. The 
ommuni
ation 
omplexity of the extended proto
ol is O(


M

n

2

�+

nB(�)) bits.

Prepare 


R

random values

~

R. The random

~

R ve
tor is prepared exa
tly as

the random

~

A ve
tor, only the 
orresponding

~

B and

~

C ve
tors are not generated.

3.4 Evaluation phase

In the evaluation phase, the 
ir
uit is evaluated layer by layer. In the following,

we give the proto
ols for evaluating the di�erent types of gates.

Input gates. When a party P

i

is to provide an input for some gate G, the

parties pro
eed as follows:

1. P

i


omputes V

i

= E(v

i

) broad
asts V

i

.

2. P

i

bilaterally proves (in zero-knowledge) knowledge of plaintext v

i

to every

player P

j

2 P .

3. Ea
h P

j

2 P , lets b

j

= 1 if the proof from P

i

was a

epted and lets b

j

= 0

otherwise.

4. The parties in P run a BA with input b

j

from P

j

. Let the output be b 2 f0; 1g.

13



5. If b = 1, then ea
h P

j

2 P sets the en
ryption for gate G to be the broad
ast

value V

i

; Otherwise, P

j

sets the en
ryption for gate G to be E(0; e), where 0

and e denotes the neutral elements from M respe
tively R.

After this proto
ol the input gate is de�ned to the same value by all parties.

The proof of knowledge given by P

i

serves the purpose of guaranteeing indepen-

den
e of inputs. The priva
y of the proto
ol follows from the semanti
 se
urity

of the en
ryption s
heme, using that the proofs are zero-knowledge.

Using that the 
ommuni
ation 
omplexity of one zero-knowledge proof is

O(�), the 
ommuni
ation 
omplexity for giving one input is seen to be O(B(�)+

n�+ B(1)). Assuming that B(�) � n�, this is O(B(�)).

Output gates. When the value of some gate G (with asso
iated 
iphertextM)

is to be revealed towards a party P

j

, the parties pro
eed as follows:

1. Every player P

i

2 P 
omputes m

i

= SD

z

i

(M) and sends it to P

j

.

2. Every player P

i

2 P gives a zero-knowledge proof to every other party P

j

that m

i

is a 
orre
t i'th de
ryption share.

3. P

j


olle
ts t + 1 de
ryption shares for whi
h the proof of 
orre
t de
ryption

share su

eeded and 
ombine them to obtain m = D(M).

Sin
e at least t+ 1 parties are honest, P

j

will be able to 
olle
t t+ 1 shares

where the proof su

eeded. By the soundness of the zero-knowledge proof all


olle
ted shares will be 
orre
t, ex
ept with negligible probability. By the way

the values (z

1

; : : : ; z

n

) were set up and the requirements on the share 
ombining

algorithm have that indeed m = D

z

(M).

The priva
y of the proto
ol follows from the requirements on the threshold

de
ryption proto
ol: from the result of the proto
ol and the key shares of the

t 
orrupted parties, the adversary 
ould 
ompute the key shares of the honest

parties on its own. Therefore the proto
ol leaks zero knowledge about the key

shares of the honest parties.

The 
ommuni
ation 
omplexity is seen to beO(n�) per output gate and party

to learn the output. If all parties are to learn the output, the 
ommuni
ation


omplexity is O(n

2

�) per output gate.

If only one party is to learn the output and the output should be private,

the de
ryption shares sent to P

j

should be sent over private 
hannels. This does

not a�e
t the order of the 
ommuni
ation 
omplexity.

Addition gates. For an addition gate G where the input gates of G has

asso
iated 
iphertexts M

1

and M

2

, the asso
iated 
iphertext of G is set to

be M

G

= M

1

� M

2

. As the �-operator is deterministi
, all parties agree on

the en
ryption M

G

, and by the homomorphi
 properties of � it holds that

D(M

G

) = D(M

1

) +D(M

2

).

Multipli
ation gates. For a multipli
ation gate G where the two input gates

have asso
iated 
iphertexts M

1

and M

2

, the asso
iated 
iphertext M

G

of G is


omputed as follows:
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1. Every party P

i

2 P pi
ks the prepared triple (A;B;C) that is asso
iated with

the gate.

2. Every party P

i

2 P 
omputes D = A�M

1

and E = B �M

2

.

3. Every party P

i

2 P invokes the de
ryption proto
ol from Se
tion 3.4 on D

and E. Denote the results by d respe
tively e.

4. Every party sets M

G

= (eM

1

)	 (dB) � C.

The above way to use a prepared triple is from [Bea91a℄.

We argue that the proto
ol maintains agreement on the asso
iated 
ipher-

texts. Assume that the parties agree on M

1

and M

2

. By the fa
t that � is a

fun
tion, the parties will agree on D and E. Therefore the de
ryption proto
ol

will return 
orre
t and 
onsistent d and e values to the parties. Using that 	

and � are fun
tions it then follows that the parties will agree on M

G

.

We then argue the 
orre
tness of the proto
ol. By the 
orre
tness of the

de
ryption proto
ol and the homomorphi
 properties of � and 	 we have that

D(M

G

) = em

1

�db+
 = (b+m

2

)m

1

�(a+m

1

)b+ab = m

1

m

2

, wherem

1

= D(M

1

)

and m

2

= D(m

2

).

For the priva
y, the only values that are revealed are d and e. However, sin
e

a and b are independent, uniformly random elements from M unknown to any

adversary whi
h inspe
ts at most t parties, it follows that d and e are uniformly

random and independent of m

1

and m

2

in the view of the adversary. Therefore

the proto
ol leaks zero knowledge about m

1

and m

2

.

The 
ommuni
ation 
omplexity per gate is that of two invo
ations of the

de
ryption proto
ol, i.e. O(n

2

�).

Randomizing gates. When the 
ir
uit is evaluated, the randomizing gates

should be initialized by uniformly random values. To re
e
t the ideal evalua-

tion the random values used for initialization should be unknown to all parties.

Therefore, to every random gate, one random en
rypted value R

(i)

is asso
iated.

3.5 Complexity analysis

In this se
tion we 
onsider the 
omplexity of the a
tive-se
ure proto
ol. Sum-

ming the 
omplexities stated in the presentation of the proto
ol gives us a total


omplexity of O(((


M

+ 


R

)n

2

�+nB(�))+ 


I

B(�)+ 


O

n

2

�+ 


M

n

2

�), where 


M

denotes the number of multipli
ation gates, 


R

denotes the number of randomiz-

ing input gates, 


I

denotes the number of input gates, and 


O

denotes the number

of output gates. This is seen to be O((


M

+ 


R

+ 


O

)n

2

�+ nB(�) + 


I

B(�)).

In the syn
hronous model with t < n=2, broad
asting (and/or doing BA on) a

total of ` bits 
an be done with 
omplexity O(n

2

`+n

3

�) under the strong RSA

assumption and the assumption the RSA signatures are se
ure (
.f. [Nie03℄).

We have n + 


I

broad
asts of �-bit messages, giving ` = (n + 


I

)� and (a

bit informally) nB(�) + 


I

B(�) = O(n

2

(n + 


I

)� + n

3

�) = O(


I

n

2

� + n

3

�).

This immediately gives us the bound O((


M

+ 


R

+ 


O

+ 


I

)n

2

�+ n

3

�) on the


ommuni
ation 
omplexity of the overall proto
ol.
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Theorem 1. Under the QR assumption (or the DCR assumption), the strong

RSA assumption and the assumption that RSA signatures are se
ure, O(
n

2

�)

is an upper bound on the 
ommuni
ation 
omplexity of an a
tive-se
ure proto
ol

with resilien
e t < n=2 for evaluating an n-party fun
tion with arithmeti
 
ir
uit


omplexity 
 � n.

3.6 Ongoing 
omputations

The result for a
tive se
urity assumes that the size of the 
ir
uit is known before

the 
omputation starts, to allow for a preparation phase. For an on-going rea
tive


omputation, even the 
ir
uit might be spe
i�ed as the 
omputation unfolds and

in parti
ular the length of the 
omputation might not be spe
i�ed on beforehand.

Our result 
an be extended to su
h a setting. We simply hold a pool of prepared

triples, and ea
h time it dries out we prepare at least twi
e as many triples as last

time. After polynomially many a
tivations, this gives a maximum of O(log(�))

runs of the preparation phase and prepares at most twi
e as many triples as

needed. This gives the bound O(
n

2

�+ n

3

� log(�)).

3.7 Boolean 
ir
uits

The proposed proto
ol evaluates a 
ir
uit of arithmeti
 gates, where the under-

lying ring is the message spa
e of the en
ryption s
heme. We 
an extend the

proto
ol to evaluate a Boolean 
ir
uit, even when the message spa
e of the en-


ryption s
heme is larger (e.g., when using Paillier en
ryption). In the sequel,

we present the ne
essary modi�
ations for Boolean 
ir
uits over AND and NOT

gates. The proto
ol for Boolean 
ir
uits has the same 
ommuni
ation 
omplexity

as the proto
ol for arithmeti
 
ir
uits.

Input gates. In the input proto
ol, the player providing input must prove that

the input is in f0; 1g. Therefore, the zero-knowledge proof for proving plaintext

knowledge is augmented by a zero-knowledge proof for proving that the plaintext

is either 0 or 1.

AND-gates. As it is guaranteed that all wires are en
ryptions of either 0 or 1,

AND-gates 
an be realized as multipli
ation gates.

NOT-gates. A NOT-gates 
an be 
omputed by using the homomorphism of the

en
ryption s
heme. Given an en
rypted bit B, its negation 
an be 
omputed

as E(1) 	 B. Every player 
an 
ompute the en
rypted value of a negation gate

lo
ally, without 
ommuni
ating with other players.

Randomizing gates. It must also be ensured that the output of randomizing

gates are in f0; 1g. If M > 2 (as is the 
ase for Paillier's 
ryptosystem), and we

want to stay within the new upper bound, a new proto
ol is needed for this.
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0. Let

~

R

(0)

= E(

~

0; ~e) be a 
onstant ve
tor of length 


R

, where ea
h element is

the 
onstant en
ryption E(0; e). Let P

ok

= P , let P

done

= ;, let i

prev

= 0, let

i

next

= 1 and let Prev be an empty sta
k.

1. P

i

next


omputes

~

R

(i

next

)

from

~

R

(i

prev

)

as follows: For ea
h element R

(i

prev

)

in

~

R

(i

prev

)

, pi
k � 2

R

R and b 2

R

f0; 1g and, if b = 0, let R

(i

next

)

= E(0; �) �

R

(i

prev

)

, and if b = 1, let

~

R

(i

next

)

= E(1; �) 	R

(i

prev

)

.

2. P

i

next

broad
asts the hash value h

i

= H(

~

R

(i

next

)

) among all players in P .

3. P

i

next

sends

~

R

(i

next

)

to every player P

j

2 P , and gives to P

j

(for ea
h element

R

(i

prev

)

) a non-malleable zero-knowledge proof of knowledge of � for whi
h

either R

(i

next

)

= E(0; �) �R

(i

prev

)

or R

(i

next

)

= E(1; �) 	R

(i

prev

)

.

4. The parties P enter a BA on whether to a

ept the proofs given by P

i

next

:

Ea
h party P

j

2 P enters with b

j

= 1 i� in the above step it re
eived

~

R

(i

next

)

su
h that h

i

= H(

~

R

(i

next

)

) and the bilateral proof from P

i

next

to P

j

was

a

epted.

5. { If the out
ome of the BA is b = 0, then all parties in P set P

ok

=

P

ok

n fi

next

g and set i

next

to be the smallest i 2 P

ok

n P

done

.

{ If the out
ome of the BA is b = 1, then all parties in P set P

done

=

P

done

[ fi

next

g, push i

prev

on Prev, let i

prev

= i

next

and set i

next

to be

the smallest i 2 P

ok

n P

done

.

In both 
ases, if P

ok

n P

done

= ;, then go to Step 8.

6. The party P

i

next

broad
asts a bit b 2 f0; 1g, where b = 0 i� i

prev

6= 0 and

P

i

next

never re
eived

~

R

(i

prev

)

su
h that h

i

prev

= H(

~

R

(i

prev

)

) (in Step 3).

7. { If i

prev

= 0 or P

i

next

broad
ast 1, then all parties in P go to Step 1.

{ If i

prev

6= 0 and P

i

next

broad
ast 0, then all parties set P

ok

= P

ok

n

fi

prev

; i

next

g. Then i

prev

is set to be the top of Prev (whi
h is then popped)

and i

next

is set to be the smallest i 2 P

ok

nP

done

(if P

ok

nP

done

= ;, then

go to Step 8.) Then all parties in P go to Step 6.

8. All parties in P whi
h knows

~

R

(i

prev

)

su
h that h

i

prev

= H(

~

R

(i

prev

)

) sends

~

R

(i

prev

)

to all parties.

9. All parties in P waits for a value

~

R

(i

prev

)

for whi
h h

i

prev

= H(

~

R

(i

prev

)

) to

arrive and outputs

~

R

(i

prev

)

.

We �rst argue termination and agreement: It is straight-forward to verify that

the pro
edure rea
hes Step 8. Sin
e at this point P

i

prev

at some point broad
ast

h

i

prev

and had its proof a

epted by a majority of the parties in P , at least

one honest party must have re
eived

~

R

(i

prev

)

su
h that h

i

prev

= H(

~

R

(i

prev

)

). At

least that party will e
ho

~

R

(i

prev

)

in Step 8 and thus all parties will terminate in

Step 9. Sin
e h

i

prev

is a broad
ast value, all parties will output the same value

~

R

(i

prev

)

unless a 
ollision under H is found.

We then argue that

~

R

(i

prev

)

is a ve
tor of en
ryptions of random bits of

whi
h the adversary has zero knowledge. At termination we 
learly have that

P

ok

� P

done

. Furthermore, at termination P

ok

will 
ontain a majority of honest
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parties and there exists a sequen
e i

0

= 0 < i

1

< � � � < i

l�1

< i

l

� n su
h that

P

ok

= fi

1

; : : : ; i

l

g and for m = 1; : : : ; l, the ve
tor

~

R

(i

m

)

was 
omputed by P

i

m

from

~

R

(i

m�1

)

as spe
i�ed in Step 1. Sin
e the proof of knowledge ensures that

ea
h party \
ips" the en
ryptions independently and at least one party in P

ok

is honest it follows that

~

R

(i

l

)

is a ve
tor of en
ryptions of independent random

bits unknown to the adversary.

Ea
h party broad
asts (at most) � bits in Step 2 and one bit in Step 6.

Besides this n BAs are exe
uted and ea
h party P

i

next

sends the ve
tor

~

R

(i

next

)

to all parties and gives the non-malleable zero-knowledge proofs of knowledge

in Step 3. Assuming that B(k) dominates the 
ost of one Byzantine agreement,

the total 
ommuni
ation 
omplexity of this is O(


R

n

2

�+ nB(�)), as desired.

The above proto
ol 
an be seen as a strengthening of the proto
ol used in the

original preparation phase to deal with large values being build sequentially from

large 
ontributions from all parties. Similar proto
ols 
an be used to prepare


 gates for the Mix-and-Mat
h proto
ol in [JJ00℄ with 
omplexity O(
n

2

� +

nB(�)) and for mixing 
 
iphertext in anonymizing networks and voting (with n

servers) with 
omplexity O(
n

2

� + nB(�)). In both 
ases an optimization over

�(
nB(�)) = �(
n

3

�).

4 Passive-se
ure MPC proto
ol for t < n

In this se
tion we present an upper bound on the 
ommuni
ation 
omplexity of

a passive se
ure MPC proto
ol. Again the upper bound is given by a proto
ol.

As opposed to the a
tive se
ure proto
ol, the passive proto
ol is not based on

novel te
hni
al 
ontributions but rather a neat observation.

The essential observation is that from the threshold homomorphi
 en
ryp-

tion based MPC proto
ol of [CDN01℄ ea
h gate has a short publi
ly known

representation, namely the asso
iated en
ryption. This is opposed to e.g. se
ret

sharing based proto
ols, where the representation is exa
tly shared among the

parties and therefore inherently large (�(n�)). This observation allows to des-

ignate some party P

king

whi
h drives the proto
ol and evaluates the 
ir
uit gate

by gate, with help of the other parties.

The proto
ol pro
eeds along the lines of the a
tive proto
ol, though no prepa-

ration phase is needed anymore. The details are given below.

Setup phase. In the setup phase the setup fun
tion s generates a random key

pair (Z; z), splits z into (z

1

; : : : ; z

n

) with threshold t = n � 1, sets p = Z and

sets s

i

= z

i

for i = 1; : : : ; n. Furthermore one designated party P

king

is 
hosen,


alled the king, e.g. P

king

= P

1

.

Input gates. When a party P

i

is to provide the input v

i

2 M , the parties pro
eed

as follows:

1. P

i

sele
ts �

i

2

R

R, 
omputes and sends V

i

= E(v

i

; �

i

) to P

king

.

2. P

king

sends V

i

to all parties.
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The priva
y of the proto
ol follows from the semanti
 se
urity of the en
ryp-

tion s
heme.

Output gates. The value of some gate G with asso
iated 
iphertextM is revealed

as follows:

1. Every party P

i


omputes and sends m

i

= SD

z

i

(M) to P

king

.

2. P

king


omputes m = C(m

1

; : : : ;m

n

) and sends it to all parties.

The se
urity of this proto
ol is argued along the lines of the a
tive-se
ure

proto
ol. The 
ommuni
ation 
omplexity is O(n�).

If the value is to be revealed privately to only one party P

j

, then the

parties send their de
ryption shares m

i

privately to P

j

, who 
omputes m =

C(m

1

; : : : ;m

n

).

Addition gates. The king 
omputes the value of addition gates using the homo-

morphism of the en
ryption s
heme.

Multipli
ation gates. For a multipli
ation gate G where the two input gates

have asso
iated 
iphertexts M

1

and M

2

, the asso
iated 
iphertext M

G

of G is


omputed as follows:

1. Every party P

i

2 P sele
ts a

i

2

R

M , �

i

; �

i

2

R

R, 
omputes A

i

= E(a

i

; �

i

)

and C

i

= R(a

i

M

2

; �

i

), and sends A

i

and C

i

to P

king

.

2. P

king


omputes A = M

1

L

P

i

2P

A

i

and C =

L

P

i

2P

C

i

and sends A and C

to all parties,

3. Every party P

i

2 P 
omputes its de
ryption share a

i

= SD

z

i

(A) and sends

it to P

king

.

4. P

king

de
rypts a = C(a

1

; : : : ; a

n

), 
omputes G

M

= aM

2

	 C and send it to

all parties.

The se
urity is argued as for the a
tive-se
ure proto
ol. The 
ommuni
ation


omplexity is O(n�).

Randomizing gates. An en
ryption of a random value m, unknown to the ad-

versary, is 
omputed as follows:

1. Every party P

i

2 P sele
ts a

i

2 M , �

i

2 R, 
omputes A

i

= E(a

i

; �

i

) and

sends it to P

king

.

2. P

king


omputes A =

L

P

i

2P

A

i

and sends it to all parties.

Complexity analysis. It is straight forward to verify that the total number of

bits sent by the parties is O((


I

+ 


M

+ 


O

+ 


R

)n�).

Theorem 2. Under the QR assumption (or the DCR assumption), O(
n�) is an

upper bound on the 
ommuni
ation 
omplexity of a passive se
ure proto
ol with

resilien
e n � 1 for evaluating an n-party randomized fun
tion with arithmeti



ir
uit 
omplexity 
.
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5 Con
lusions and open problems

We presented new upper bounds on the 
ommuni
ation 
omplexity of optimally

resilient a
tive-se
ure MPC and optimally resilient passive-se
ure MPC. In both


ases we improved the previously best bounds by a fa
tor n. The improvement of

the bound for a
tive se
urity was based on a 
ombination of previous te
hniques

for eÆ
ient MPC along with several novel te
hni
al 
ontributions, as opposed to

the improvement of the bound for passive se
urity, whi
h was based on a simple

observation.

Our bounds were based either on the DCR assumption or on the QR as-

sumption (in both 
ases requiring, additionally the strong RSA assumption and

the assumption that RSA signatures are se
ure for a
tive se
urity). Even though

these assumptions are standard assumptions, they are very spe
i�
. It is an in-

teresting open problem to a
hieve the same bounds under general assumptions,

as e.g. the existen
e of one-way fun
tions. One approa
h would be to investi-

gate the eÆ
ien
y of a
tive-se
ure information-theoreti
 MPC with t < n=2. It

is known that the player elimination framework does not apply to this thresh-

old [HMP00,HM01℄. The ideas presented here might however allow to obtain

similar results in this model. The new upper bound for passive se
urity however

seems very 
hallenging to obtain under general assumptions.

It is an interesting open problem to obtain the new bound for also adaptive

se
urity. In [DN03℄ an adaptively se
ure version of the proto
ol from [CDN01℄

was presented. However, the te
hniques from [DN03℄ do not allow to make our

proto
ol here adaptive se
ure while staying within the bound O(
n

2

� + n

3

�).

We stress that although our proto
ol 
annot be proven adaptively se
ure (we


annot 
onstru
t a simulator), there is no obvious way for an adaptive adversary

to violate the 
orre
tness or the se
urity of the 
omputation. This is in 
ontrast

to some folklore tri
k for improving eÆ
ien
y, namely to have the players agree

on a small random subset of players, who then perform the whole proto
ol.

8

In this approa
h, an adaptive adversary 
an trivially violate both priva
y and


orre
tness of the proto
ol, simply by 
orrupting the majority (or even all) of

the players in the subset, on
e this is randomly 
hosen.

Another interesting open problem is to prove non-trivial lower bounds on the


ommuni
ation 
omplexity of se
ure MPC.
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8

Note that is is even un
lear how this subset is to be 
hosen su
h that it 
ontains

an honest majority, given that the original set of players satis�es the optimal bound

t < n=2. Furthermore, the tri
k only works if n is large.
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