
Multicollision Attacks on a Class of Hash Functions

M. Nandi

Applied Statistics Unit

Indian Statistical Institute

Calcutta, India

mridul r@isical.ac.in

D. R. Stinson

School of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

dstinson@uwaterloo.ca

April 23, 2005

Abstract

In a recent paper, A. Joux [7] showed multicollision attacks on the
classical iterated hash function. (A multicollision is a set of inputs
whose hash values are same.) He also showed how the multicollision
attacks can be used to get a collision attack on the concatenated hash
function. In this paper, we first try to fix the attack by introducing
a natural and wide class hash functions. However, we show that the
multicollision attacks also exist in this general class. Thus, we rule
out a natural and a wide class of hash functions as candidates for
multicollision secure hash functions.

1 Introduction

In this paper, we discuss multicollision attacks on certain general classes
of hash functions. A multicollision is a generalized notion of collision on a
function. A collision on a function g : D → R is a doubleton subset {x, y}
of D such that g(x) = g(y). For an integer r ≥ 2, an r-way collision (or
multicollision) on a function, g(·), is an r-subset {x1, . . . , xr} of D such that
g(x1) = g(x2) = . . . = g(xr) = z (say). The common output value, z, is
known as the collision value for this r-way collision set. An r-way collision

1

or multicollision attack is an algorithm which finds an r-way collision set
with some probability.

The birthday attack for r-way collisions has time complexity O(|R|(r−1)/r).
In particular, the time complexity for finding a collision is O(|R|1/2) (here,
r = 2). The time complexity of an attack algorithm is usually proportional
to the number of computations of the underlying function, g, required to
get a multicollision set. From now on, we will use the word “complexity” to
mean time complexity, as measured by the number of computations of the
underlying function.

A classical iterated hash function [3] [13], H : {0, 1}∗ → {0, 1}n, is based
on a compression function, f : {0, 1}n×{0, 1}m → {0, 1}n. Here, we compute
the value of H in the following way;

1. Given a message, we first apply some good padding rule, which includes
some representation of the length of the message, so that the length of
the padded input becomes a multiple of m (see [3] [13] [12] for more
details). To analyze the hash function in a simpler way, we will usually
ignore the padding rule. For example, a padding rule is irrelevant if
we are concerned with messages of some fixed length.

2. Let M = m1 ‖ · · · ‖ ml be a padded message with |mi| = m, 1 ≤ i ≤ l
and let h0 be some fixed n-bit initial value. Then the classical iterated
hash function, H, based on the compression function f and the initial
value h0, is defined as follows: H(M) = hl, where hi = f(hi−1, mi),
1 ≤ i ≤ l. For each 1 ≤ i < l, hi is known as an intermediate hash
value, and H(M) is the output hash value (also known as a message
digest).

The above-described method is the most frequently used technique for
the design of practical hash functions.

Recently, A. Joux [7] found an algorithm to construct a 2K-way multi-
collision set on a classical iterated hash function, having time complexity
O(K 2n/2), which is a considerable improvement over the birthday attack.
This multicollision attack can be considered as a weakness of the iterated
hash function design because of the following reasons:

1. Joux also showed how the multicollision attack can be used to con-
struct a collision attack, which is better than the birthday attack, on
the concatenated hash function H ‖ G where H is the classical hash
function and G is any hash function. This concatenated hash function
has often been used when large output hash values are needed.

2

2. There are some other practical applications where multicollision secure
hash functions are required. These include the micropayment scheme
Micromint [15], the identification scheme of Girault and Stern [4], the
signature scheme of Brickell et al [2], etc.

3. Multicollision secure hash function design is an interesting fundamen-
tal question, because a function having an efficient multicollision at-
tack gives evidence of the non-randomness of the function.

1.1 Our Contribution

In the light of the above discussion, it remains an open question how to find
a good design technique for hash functions that are secure against multicolli-
sion attack. In this paper, we provide some negative results to this question.
In particular, we study a natural generalization of the classical iterated hash
function. This generalization is a natural way to attempt to fix the clas-
sical iterated design and it is therefore worthwhile to study this approach
in detail. Unfortunately, we show that these generalized hash functions
also have multicollision attacks: we find 2K-way collision attacks with com-
plexity O(n K2 2n/2). We also find multicollision attacks on a certain class
of generalized tree-based hash functions, having complexity O(n K2 2n/2).
Tree-based hash functions can be viewed as a parallellization of the classical
iterated hash functions (which are evaluated in a sequential manner). Thus,
we rule out a natural and large class of general hash functions as candidates
for multicollision secure hash functions.

1.2 Organization of Our Paper

We first give a brief introduction of Joux’s attack and its applications. Then
we generalize the definition of classical iterated hash functions in a natural
way. After defining this class of generalized iterated hash functions, we show
some multicollision attacks on them. We also provide multicollision attacks
for tree-based hash functions. Finally, we conclude with a brief note on
multipreimage attacks and possible future work.

2 Preliminaries and Related Works

In this section, we give a brief introduction to the birthday attack, which is
the basis for the attacks to be used throughout this paper. We also state
some recent results on multicollision attacks which motivate the rest of the

3

paper. Namely, we discuss Joux’s multicollision attack on classical iterated
hash functions. Finally we give some simple but important applications of
multicollision attack.

2.1 The Birthday Attack

A hash function usually has two main components: a compression function,
f : {0, 1}n × {0, 1}m → {0, 1}n, and a method to extend the domain of the
compression function into {0, 1}∗. The second component is also known as
the “design of iteration” as we generally iterate the compression function
several times. Throughout this paper, we consider only attacks which treat
the underlying compression function, f , as a black-box. Thus, the attacker
is not exploring any internal structure of f . The attacker can only make
some queries to the function f , and, based on the responses of the queries,
he finally output some value or values. Here a query denotes an input to f ,
say x, and the response denotes the output, y = f(x). This type of attack
can be applied to any compression function, and hence it mainly points out
the security of the design of iteration.

We recall that the complexity of a K-way collision attack algorithm is
the number of queries of f required to get a K-way collision. A natural (and
the most popular) attack is the birthday attack. The following algorithm de-
scribes the birthday attack for (possibly) finding an r-way collision of the
function g, where the attack has complexity q.

BirthdayAttack(g, q, r) :

1. Choose x1, · · · , xq randomly from the domain D and compute yi =
g(xi) for 1 ≤ i ≤ q.

2. Return a subset (if any) C ⊆ {x1, · · · , xq} of size r such that C is an
r-way multicollision subset for the function g. Otherwise return the
output “failure”.

The next proposition gives an estimate of the complexity of the birthday
attack in finding an r-way collision with significant probability. Here we
assume that the function, g : D → R, is a random oracle. (A function g is a
random oracle if every value g(x) is chosen uniformly at random from R for
every x ∈ D.) Random oracles are the usual model for hash functions which
can be accessed a black-box manner. See [1, 12, 18, 19] for a more detailed
discussion of the standard birthday attack for finding 2-way collisions.

4

Proposition 1 (Complexity of the Birthday Attack)
For a random oracle g : D → {0, 1}n, the birthday attack with complexity

q finds an r-way collision with probability O(qr/2(r−1)n). Thus, the birthday
attack requires Ω(2n(r−1)/r) queries to find an r-way collision with signifi-
cant probability. For r = 2, the (standard) birthday attack requires Ω(2n/2)
queries.

Proof. Since x1, · · · , xq are randomly chosen from the domain D, g(x1), · · · , g(xq)
are independent and uniformly distributed over R. Thus, for any {i1, · · · , ir} ⊂
[1, q] we have,

Pr[g(xi1) = · · · = g(xir)] = 1/2(r−1)n.

Let C1, · · · , Ck be r-subsets of {x1, · · · , xq} (which denotes the complete
query list of the birthday attack) where k =

(

q
r

)

. Let Ei denote the event
that Ci is a r-way multicollision set. Thus, the event corresponding to the
existence of an r-way collision in the set {x1, · · · , xq} is

⋃

i Ei. Hence, the
probability that the birthday attack finds an r-way collision set is

Pr(
⋃

i Ei) ≤
∑

i Pr[Ei] =
(q

r)
2(r−1)n = O(qr/2(r−1)n).

Thus, the birthday attack requires Ω(2n(r−1)/r) queries to find an r-way
collision with significant probability.

2.2 Joux’s Multicollision Attack

In a recent paper by Joux [7], it was shown that there is a 2r-way collision
attack for the classical iterated hash function based on a compression func-
tion, f : {0, 1}m+n → {0, 1}n, where the attack has complexity O(r 2n/2).

This complexity is much less than Ω(2
n(2r

−1)
2r), which is the complexity for

the birthday attack (see Proposition 1).
Here is the basic idea of the attack. Consider a set of vertices V =

{0, 1}n. We use the notation h →M h′ (a labeled arc) to mean f(h, M) = h′.
Here, |h| = |h′| = n and |M | = m. The strategy is to first find r successive
collisions (see Figure 1) by performing r successive birthday attacks, as
follows:

f(h0, m1) = f(h0, n1) = h1 (say), where m1 6= n1

f(h1, m2) = f(h1, n2) = h2 (say), where m2 6= n2
...

f(hr−1, mr) = f(hr−1, nr) = hr (say), where mr 6= nr.

5

For 1 ≤ i ≤ r, we apply BirthdayAttack(f(hi−1, ·), 2
n/2, 2) to find mi 6=

ni such that f(hi−1, mi) = f(hi−1, ni). Thus the set

{x1 ‖ · · · ‖ xr : xi = mi or ni, 1 ≤ i ≤ r}

is a 2r-way collision set. The complexity of the attack is O(r 2n/2).
Figure 1 is a diagram illustrating the attack.

. . .
h0 h1 h2 hr

m1

n1 nrn2

mrm2

Figure 1: Graphical representation of Joux’s multicollision attack

Remark: Since the birthday attack is itself a probabilistic attack, there
is some positive probability that Joux’s attack fails. One can perform
the birthday attack repeatedly until each required intermediate collision
is found. If ǫ is the success probability of the birthday attack, then on the
average we need r/ǫ calls of BirthdayAttack in total. In fact, if we make a
total of 2r/ǫ calls of BirthdayAttack, then we have an overall success prob-
ability exceeding 1/2. This is because of the following fact which follows
immediately from Markov’s Inequality: if the expected value of a random
variable, X, is µ, then Pr[X ≤ 2µ] ≥ 1/2.

2.3 Applications of Multicollision Attacks

The birthday attack is feasible for small sized output hash values. To
make the birthday attack infeasible, one simply specifies a large output
hash value. There are many approaches of designing hash functions having
large output hash values based on secure block ciphers; see [5], [6], [10], [9],
[14], [17]. However, most of these designs were proven to be insecure; see
[5], [10] [9], [14], [17]. Recently, Hirose [6] designed secure double length hash
functions based on secure block ciphers. But the efficiency of the design is
fairly low.

A natural and efficient approach to produce large output hash values
is the concatenation of several smaller output hash values. For example,
given two classical iterated hash functions, H and G, one can define a hash
function H(M) ‖ G(M). This idea has been frequently used because it is
efficient and simple to implement. However, due to the attacks of Joux [7],

6

there exists a collision attack that is more efficient than than the birthday
attack. The complexity of the attack is roughly the maximum of the com-
plexity of the multicollision birthday attack on H and the complexity of the
standard birthday attack on G.

We briefly describe the attack (see [7] for more details). Let H and G
have output hash values of nH and nG bits in length, respectively.

1. By using Joux’s multicollision attack, find 2nG/2 messages which have
common output hash value (say h∗) on H.

2. Find two messages, say M and N where M 6= N , which are members
of the set of 2nG/2 messages found in step 1, such that they have same
output hash value (say g∗) on G. Note that we expect to be able to
find a collision on an nG-bit function from a set of 2nG/2 messages
using the standard birthday attack.

Thus, we have H(M) ‖ G(M) = H(N) ‖ G(N) = h∗ ‖ g∗. The overall
complexity of this attack is O(nG 2nH/2 +2nG/2). Note that we only assume
that H is a classical iterated hash function; G can be any hash function at
all.

Remark: As mentioned previously, we ignore the padding that includes
the binary representation of the length of the inputs. Note that, even if we
included the padding, it does not affect the above attack, as the multicolli-
sion sets consist of messages of equal length.

3 A General Class of Hash Functions

We have seen in Section 2.2 that the classical iterated hash function is vul-
nerable to a multicollision attack. Thus one cannot use the classical iterated
hash function if multicollision secure hash functions are needed. There are
some other disadvantages of using classical iterated hash functions. For ex-
ample, very recently, Kelsey and Schneier [8] have found a generic second
preimage attack that is better than the birthday attack.

To fix all these problems, one can try to use some suitable variant of the
classical iterated hash function. We note that, recently, Lucks [11] designed a
hash function that is secure against multicollision attack. In his construction
a “wide” compression function is used. The hash function is proven to be
secure if the compression function and the output transformation are both
random oracles.

7

Alternatively, one might consider a modification of the classical iterated
hash function where message blocks are used more than once. Another
approach is to use a parallel design, which is characterized by a directed
tree; see [16]. One can also combine these two approaches.

These generalized hash functions could be considered as an alternative
to the classical iterated hash function since the Joux’s attack cannot be
applied. For example, the hash function H ′(M) = H(H(IV, M), M) uses
each message block twice. Here H denotes the classical iterated hash func-
tion. We call this hash function by double iterated hash function as it uses
the classical iteration twice. Obviously, Joux’s attack can not be applied
directly to this hash function. Thus it is worthwhile to study this class in
more detail.

To begin with, we define a very general class of hash functions. Let
f : {0, 1}N → {0, 1}n be a compression function. A hash function H from
the class behaves in the following manner:

1. It invokes f a finite number of times.

2. The entire output of any intermediate invocation (not the final invo-
cation) is fed into the input of other invocations of f .

3. Each bit of the message, M , is fed into at least one invocation of f .

4. The output of the final invocation is the output of the hash function,
H.

We define a general class D of hash functions satisfying the above con-
ditions. We will assume that our message has the form M = m1 ‖ · · · ‖ ml,
where each mi is a message block that is an m-bit string. We also assume
that we have a fixed set of initial values, denoted v1, v2, · · · , each of which
is an n-bit strings. Every input to f is of the form h ‖ x. Each h is the con-
catenation of r n-bit strings, each of which is a previously computed output
of f or an initial value; and each x is the concatenation of q message blocks.
We will require that r ≥ 0, q ≥ 1 and nr + mq = N .

Then we can specify the computation of the hash function by a list of
triples

L = {(hi, xi, yi) : 1 ≤ i ≤ s},

8

where the following conditions hold for all i:

f(hi ‖ xi) = yi,
hi = h1

i ‖ · · · ‖ hr
i ,

hj
i ∈ {v1, v2, · · · } ∪ {y1, · · · , yi−1},

xi = x1
i ‖ · · · ‖ xq

i , and

xj
i ∈ {m1, · · · , ml}.

Each yi is an intermediate hash value and ys is the output hash value. Note
that the values of r and q do not have to be constant; they may depend on
i. However, nr + mq = N must always hold.

In this paper, we consider two special (but still quite general) subclasses
of D. They are termed generalized sequential hash functions (denoted S)
and generalized binary tree based hash functions (denoted T). We show
multicollision attacks on certain subclasses of S and T .

Generalized Sequential Hash Functions

In the class S of generalized sequential hash functions, we have r = q = 1
for all i and N = m + n. Define a sequence α = 〈α1, · · · , αs〉 where αi ∈
[1, l] = {1, 2, . . . , l}. Let h1 = v1 (an initial value), hi = yi−1 for all i ≥ 2,
and let xi = mαi for all i ≥ 1. Hence, we can express the computation in
the form

hi = f(hi−1, mαi), 2 ≤ i ≤ s + 1,

where h1 is an initial value and hs+1 is the final hash value.
We can present this hash function diagrammatically, as follows:

h1 →mα1
h2 →mα2

h3 →mα3
· · · →mαs−1

hs−1 →mαs
hs+1.

Note that a message block can be used more than once. In the case of
the classical iterated hash function, however, we have αi = i for all i, and
s = l. Also, in the classical iterated hash function, each message block is
used exactly once.

To define a hash function with arbitrary domain ({0, 1}m)∗, say H :
({0, 1}m)∗ → {0, 1}n, we have a sequence of sequences 〈α1, α2, · · · 〉 such
that H(M) is defined based on the sequence αl, where αl contains elements
from [1, l], whenever M is an l-block message.

9

Generalized Tree based Hash Functions

We also consider a class T of binary tree based hash functions in this section.
We assume that N = 2n. so the compression function f : {0, 1}2n → {0, 1}n.

We can specify the computation of the hash function by a list of triples

L = {(z1
i , z2

i , yi) : 1 ≤ i ≤ s},

where the following conditions hold:

f(z1
i ‖ z2

i) = yi, and
z1
i , z2

i ∈ {v1, v2, · · · } ∪ {y1, · · · , yi−1} ∪ {m1, · · · , ml}.

We describe this class in more detail in Section 5.

4 Attacks on Generalized Sequential Hash Func-

tions

4.1 Some Terminologies on Sequences

Consider a finite sequence α = 〈α1, α2, · · · , αs〉 of [1, l]. The length of the
sequence is s and it is denoted by |α|. The index set of the sequence is
[1, s]. Given any subset I = {i1, · · · , it} of the index set [1, s], we have a
subsequence α(I) = 〈αi1 , · · · , αit〉 where, i1 < · · · < it. Sometimes, we use
the same notation α(I) to denote the multiset {αi1 , · · · , αit}.

We say subintervals I1, · · · , Id form a partition of I ⊆ [1, s] if there exists

a1 = 1 < b1 + 1 = a2 < b2 + 1 · · · bd−1 + 1 = ad < bd = s

such that [ai, bi] ∩ I = Ii. The Ii’s are disjoint subintervals of I and their
union is the whole set I. Let J = [a, b] ∩ I and suppose that the minimum
elements of I and J are the same. Then we say that J is a left-end subinterval
of I.

Definition 1 (Independent Elements in a Subsequence)
Distinct elements x1, . . . , xd ∈ [1, l] are said to be independent in the sub-
sequence α(I) if there exist d subsets I1, . . . , Id which form a partition of I
such that xi ∈ α(Ii) but xi /∈ α(Ij) for 1 ≤ j 6= i ≤ d.

Observation: x1, · · · , xd are independent in α if and only if any subse-
quence containing x1, · · · , xd of α is of the form

〈x1, · · · , x1, x2, · · · , x2, · · · , xd, · · · , xd〉.

10

x1, · · · , xt cannot be independent in α if there is a subsequence 〈xi, xj , xi〉
of α for some 1 ≤ i 6= j ≤ t; this is because any interval containing all
occurrences of xi also contains xj .

We write

I(α(I)) := max{d : ∃ d independent elements in the subsequence α(I)}.

Thus, existence of d independent elements in α(I) implies I(α(I)) ≥ d.
Obviously, for any subsequence α1, it holds that I(α1) ≥ 1. If there are k
elements which appear only once in the sequence α, then I(α) ≥ k.

We now consider some examples illustrating the above definition and
terminologies. Later, we also show multicollision attacks on the generalized
sequential hash functions based on these sequences.

Example 1 Let ϑ(1) = 〈1, 2, . . . , l〉 (the sequence for the classical iterated
hash function). It is easy to note that I(ϑ(1)) = l.

Example 2 Let ϑ(2) = 〈1, 2, . . . , l, 1, 2, . . . , l〉. The doubly iterated hash
function is based on the sequence ϑ(2). It is easy to observe that there are no
two independent elements in the sequence ϑ(2) and hence I(ϑ(2)) = 1. But,
I(ϑ(2)([1, l])) = I(ϑ(1)) = l.

Example 3 Let θl = 〈1, 2, 1, 3, 2, 4, 3, · · · , l−1, l−2, l, l−1, l〉. Here, I(θl) ≥
⌊ l+1

2 ⌋ as 1, 3, · · · , l (if l is odd) or 1, 3, · · · , l−1 (if l is even) are independent
elements. To show this, consider the partition [1, 3], [4, 7], [8, 11], · · · [2l−2, 2l]
of [1, 2l]. Assume that l is odd (the other case can be proved similarly).
Now one can see that 1 ∈ θl[1, 3], 3 ∈ θl[4, 7] , · · · , l ∈ θl[2l − 2, 2l].
These elements are not appearing in other intervals. Thus 1, 3, · · · , l are
independent elements (see Definition 1) for the sequence θl.

In fact, we have I(θl) = ⌊ l+1
2 ⌋. For any ⌊ l+1

2 ⌋ + 1 elements from [1, l]
there are two consecutive elements (by applying the pigeonhole principle),
say i and i + 1, and hence there is a subsequence 〈i, i + 1, i〉 of θl. Thus no
⌊ l+1

2 ⌋ + 1 elements can be independent (see the observation above).

For a sequence α of [1, l] and x ∈ [1, l] we define

freq(x, α) = |{i : α(i) = x}|.

Sometimes we write this as freq(x) and we call it the frequency of x. This
value denotes the number of times x appears in the sequence α. We also

11

write freq(α) (frequency of the sequence) for the maximum frequency of any
element from the sequence. More precisely,

freq(α) = max{freq(x) : x ∈ [1, l]}.

Note that, for all 1 ≤ i ≤ l, freq(i, ϑ(2)) = 2 and hence freq(i, θl) = 2. Thus
freq(ϑ(2)) = 2 and freq(θl) = 2. We show some multicollision attacks on
sequential hash functions based on sequences whose frequencies are at most
two.

4.2 Multicollision Attacks on Generalized Sequential Hash

Function

For the sake of convenience, we slightly modify the notation used in the
definition of the generalized sequential hash functions. Given a compression
function f : {0, 1}n+m → {0, 1}n, a fixed initial value h0, and a sequence
α = 〈α1, · · · , αs〉 on [1, l], the generalized sequential hash function based on
α is defined to be H(m1 ‖ · · · ‖ ml) = hs, where hi = f(hi−1, mαi) for all i.

We present a 2r-way multicollision attack on the hash function based on a
sequence α, where I(α) = r. The complexity of the attack is O(s 2n/2) where
s = |α|. In case of the classical iterated hash function, the corresponding
sequence is ϑ(1) (see Example 1). Here we have I(ϑ(1)) = l and thus we have
a 2l-way multicollision attack with complexity O(l 2n/2). This is the same
as the complexity of Joux’s attack. In fact, we will see that our attack is
same as Joux’s attack in the case of the classical iterated hash function.

The idea of the attack is to first identify some independent message
blocks, and then to find a sequence of intermediate collisions by varying
only those message blocks.

First, we illustrate our attack for the hash function based on the sequence
θ5 = 〈1, 2, 1, 3, 2, 4, 3, 5, 4, 5〉 (see Example 3). Here 1, 3, 5 are independent
elements in θ5. The attack proceeds as follows:

1. We first fix the message blocks m2, m4 and m6 arbitrarily, by defining
their values to be equal to some string IV .

2. Then we find m1
1 6= m2

1 such that

f(f(f(h0, m
1
1), IV), m1

1) = f(f(f(h0, m
2
1), IV), m2

1) = h1.

3. Then, we find find m1
3 6= m2

3 such that

f(f(f(f(h1, m
1
3), IV), IV)m1

3) = f(f(f(f(h1, m
2
3), IV), IV)m2

3) = h2.

12

4. Finally, we find m1
5 6= m2

5 such that

f(f(f(h2, m
1
5), IV), m1

5) = f(f(f(h2, m
2
5), IV), m2

5) = h3.

5. Now it is easy to see that

C = {m : mi = m1
i or m2

i for i = 1, 3, 5, mi = IV for i = 2, 4, 6} (1)

is a 23-way multicollision set with collision value h3 (see Figure 2).
The complexity of the attack is O(10 × 2n/2), because |θ5| = 10.

The attack is depicted diagramatically in Figure 2.

1̀ 1̀

11 3 3

3̀3̀ 5̀

5

5̀

5

IV

IV

IV

IV

IV

IV

IV IV

IV IV

Figure 2: Graphical representation of Multicollision attack on the hash func-
tion based on the sequence θ5

Before giving the proof of a general attack based on the ideas used in this
example, we first want to introduce some additional notation and rewrite
the above attack in terms of this notation. Referring to the previous at-
tack, we introduce some notation relating to h1, h2 and h3. These are the
intermediate hash values where we are looking for intermediate collisions.

Consider the algorithm for computing a generalized sequential hash func-
tion. In the ith round, we have hi = f(hi−1, mαi). We can define certain
partial computations in that algorithm. Define H(h∗, [a, b], M) = hb when
computing H(M), given that ha = h∗. Note that ha and hb are the interme-
diate hash values at rounds a and b, respectively. So, H(h∗, [a, b], M) is the
hash value at round b given that we start with the intermediate hash value
h∗ at round a.

Now, we rewrite the above-described attack in terms of the notation just
defined. We have the partition [1, 3], [4, 7] and [8, 10] and independent ele-
ments 1, 3 and 5 (see Example 3). We have fixed the message blocks m2, m4

and m6 to be equal to a certain string IV . Thus H(h0, [1, 3], M) depends

13

on only on the message block m1 and hence we can write H(h0, [1, 3], m1) in-
stead of H(h0, [1, 3], M). Similarly, we write H(h1, [4, 7], m3) and H(h2, [8, 10], m5)
instead of H(h1, [4, 7], M) and H(h2, [8, 10], M) respectively.

Then the 23-way collision attack can be described succinctly as follows :

1. Find m1
1 6= m2

1 such that H(h0, [1, 3], m1
1) = H(h0, [1, 3], m2

1) = h1

(say).

2. Find m1
2 6= m2

2 such that H(h1, [4, 7], m1
3) = H(h1, [4, 7], m2

3) = h2

(say).

3. Find m1
3 6= m2

3 such that H(h2, [8, 10], m1
5) = H(h2, [8, 10], m2

5) = h3.

4. Then C (as defined in (1)) is a 23-way multicollision set with collision
value h3.

In general, we have the following multicollision attack on a generalized
sequential hash function.

Proposition 2 Let H be a hash function based on a sequence α = αl, where
I(α) = r. Then we have a 2r-way multicollision attack on H with complexity
O(s 2n/2), where s = |α|.

Proof. As I(α) = r, we have r independent elements x1, . . . , xr and r
disjoint and exhaustive subintervals, I1, · · · , Ir. Now fix the message blocks
mi to be equal to an arbitrary string IV , for all i /∈ {x1, . . . , xr}.

Because the xi’s are independent, it follows that H(h∗, Ii, M) will only
depend on mxi for all i. Thus, for simplicity, we write H(h∗, Ii, mxi) instead
of H(h∗, Ii, M).

Now find r successive collisions as follows:

H(hi−1, Ii, m
1
xi

) = H(hi−1, Ii, m
2
xi

) = hi,

for 1 ≤ i ≤ r. Then, it is easy to check that the following set

{m1 ‖ . . . ‖ ml : mx1 = m1
x1

or m2
x1

, . . .mi = IV ∀i /∈ {x1, . . . , xr}}

is a multicollision set of size 2r.
To get the ith intermediate collision, we need to make O(|α(Ii)| 2

n/2)
queries of f . For the complete attack we need O(

∑

i |α(Ii)| 2
n/2) = O(|α| 2n/2)

queries of f .

Remark: Note that the above attack reduces to Joux’s attack in the
case of the classical iterated hash function. In this case, all the elements

14

1, 2, · · · , l are independent and thus we find a collision for each intermediate
hash value by varying each message block. This is what Joux’s attack does.

To get a 2r-way collision on the hash function based on the sequence θl

(see Example 3), we can take l = 2r − 1. So I(θl) = r. By Proposition 2,
we have a 2r-way collision attack with complexity O(r 2n/2). However, we
cannot apply the same idea to the hash function based on the sequence
ϑ(2) (since I(ϑ(2)) = 1; see Example 2). Here, we have to use a different
multicollision attack. This attack is summarized as follows.

1. First, we take l = rn/2 and we use Joux’s multicollision attack to find
l pairs,

(m1
1, m

2
1), (m

1
2, m

2
2), · · · , (m1

l , m
2
l),

such that
f(hi−1, m

1
i) = f(hi−1, m

2
i) = hi,

1 ≤ i ≤ l. Thus we have a 2l-way collision set

C = {m : mi = m1
i or mi = m2

i }

for the hash function based on the sequence ϑ(2)[1, l].

2. Next, to get a 2r-way multicollision for the desired hash function, we
search for intermediate collisions within the set C. Divide the index
interval [l + 1, 2l] into r consecutive intervals, each consisting of n/2
elements, i.e., I1 = [l+1, l+n/2], · · · , Ir = [l+1+(r−1)n/2, l+rn/2].
Write h′

0 = hl.

Then, for each 1 ≤ i ≤ r, find a pair M1
i 6= M2

i from the set

Ci =
{

mj1
(i−1)n/2+1 ‖ · · · ‖ m

jn/2

in/2 : j1, · · · jn/2 ∈ {1, 2}
}

such that H(h′
i−1, Ii, M

1
i) = H(h′

i−1, Ii, M
2
i) = h′

i. Note that |Ci| =

2n/2 so the desired pair should exist.

3. Finally, it is easy to observe that

C∗ = {M j1
1 ‖ · · · ‖ M jr

r : j1, · · · jr ∈ {1, 2}}

is a multicollision set (of size 2r) for our hash function.

See Figure 3 for a diagrammatic representation of the attack.

15

. . .
h0 h1 hr

m1
1 ml1

ml2m1
2

Mr1

Mr2

. . .
M1

1

M1
2

Figure 3: Graphical representation of multicollision attack on the hash func-
tion based on the sequence ϑ(2)

Now, we prove a general result which says that for any sequence α with
frequency at most two with I(α) ≥ rn/2 there is a 2r-way collision attack
with complexity O(r2 n 2n/2).

Proposition 3 Let H be a hash function based on αl with freq(αl) ≤ 2. If
there is a left-end subinterval I such that I(αl(I)) ≥ rn/2, then there is a
2r-way multicollision attack on H having complexity O(r2 n 2n/2).

Proof. Let x1, · · · , xk be independent elements in α(I), where k = rn/2.
As in Proposition 2, we have a set

C = {M = m1 ‖ . . . ‖ ml; mx1 = m1
x1

or m2
x1

, . . . , mxk
= m1

xk
or m2

xk
}

of size 2k so that C is a multicollision set for the hash function based on
the sequence α(I). Let h′

0 be the collision value for the multicollision set
C. Without loss of generality, we assume that each xi appears exactly once
in the sequence α([a + 1, s]), in the same order as they appear in I, where
I = [1, a] and s is the length of the sequence. (If this is not the case, then
the proof can be modified suitably.)

Define Ci+1 for 0 ≤ i ≤ r − 1 as follows:

Ci+1 =
{

mj1
xin/2+1

‖ · · · ‖ m
jn/2
x(i+1)n/2

: j1, · · · , jn/2 ∈ {1, 2}
}

. (2)

Now divide the interval [a + 1, s] into r disjoint and exhaustive subintervals
I ′1, I

′
2, · · · , I ′r so that xin/2+1, · · · , x(i+1)n/2 appear in I ′i+1, 0 ≤ i ≤ r − 1. To

make the notation simpler, we ignore all other message blocks as these are
fixed to be equal to a string IV . We write

H(h∗, I ′i+1, mxin/2+1
‖ · · · ‖ mx(i+1)n/2

)

instead of
H(h∗, I ′i+1, M).

16

Note that |Ci| = 2n/2. Then we find r successive collisions:

H(h′
i−1, I

′
i, M

1
i) = H(h′

i−1, I
′
i, M

2
i) = h′

i,

for 1 ≤ i ≤ r, where M1
i , M2

i ∈ Ci. Now it is easy to observe that

C∗ = {M j1
1 ‖ · · · ‖ M jr

r : j1, · · · jr ∈ {1, 2}}

is a multicollision set of size 2r.

So far, we have provided a multicollision attack if the underlying se-
quence satisfies certain conditions. More precisely, if I(α) = r or if there
exists an interval I such that I(α(I)) = rn/2, then there is a 2r-way mul-
ticollision attack. Now we show that these conditions are satisfied by any
sequence with a sufficient number of elements and having frequency at most
two.

Definition 2 Given any subsequence α(I) of α, we define

S(α(I)) = |{x ∈ [1, l] : freq(x, α(I)) ≥ 1}|.

Similarly, we can define

Si(α(I)) = |{x ∈ [1, l] : freq(x, α(I)) = i}|.

So, when freq(α) ≤ 2 we have S(α(i)) = S1(α(i)) + S2(α(i)).

Proposition 4 Let α be a sequence of elements from [1, l] with freq(α) ≤ 2
and S(α) = l. Suppose that l ≥ MN . Then one of the folllowing holds:

1. I(α) ≥ M , or

2. there exists a left-end subinterval I such that I(α(I)) ≥ N .

Proof. The proof is by induction on l. Let |α| = s. For the left-end
subinterval, I = [1, N], either I(α(I)) ≥ S1(α(I)) = N or there exists an
element, say x1, which appears twice in the sequence α(I). In the former
case we are done, so assume the latter. Remove all elements from α which
appear in α(I) and call this new sequence α1 = α(I1) for some set I1.

Note that S(α1) ≥ MN −N = (M − 1)N . By induction, either I(α1) ≥
M −1 or there exists a left-end subinterval J of I1, such that I(α1(J)) ≥ N .
In the latter case, I(α([1, r])) ≥ N , where r is the last element in the set J .
In this case, we are done. In the former case there exist M − 1 independent

17

elements x2, . . . , xM in the subsequence α1. Also x1 does not appear in the
subsequence α[N + 1, s] and x2, . . . , xM do not appear in α([1, N]). Thus,
x1, x2, . . . , xM are independent elements in α.

Now we have a multicollision attack for any generalized sequential hash
function with frequency at most two. This is immediate from Proposi-
tions 2, 3 and 4.

Theorem 5 Let H be a generalized sequential hash function based on the
sequences 〈α1, α2, · · · 〉, where freq(αl) ≤ 2 for every l ≥ 1. Then we have a
2r-way multicollision attack on H with complexity O(r2 n 2n/2).

5 Multicollision attacks on generalized tree-based

hash functions

Similar attacks can be carried out on generalized tree based hash functions.
First, we define the generalized tree based hash function and some termi-
nology. We modify the notation somewhat to make the attacks easier to
describe.

Here we consider a compression function, f : {0, 1}n×{0, 1}n → {0, 1}n,
on which an l-block generalized tree based hash function H(·) is defined.
Suppose that m = m1 ‖ m2 ‖ · · · ‖ ml is an l-block message where every
block is a bitsting of length n. Also, suppose that h1, h2, · · · ∈ {0, 1}n are
constants (i.e., fixed initial values which only depend on l).

Define a list of s ordered pairs {(x1
j , x

2
j)}1≤j≤s. For 1 ≤ j ≤ s, we have

that
x1

j , x
2
j ∈ {h1, h2, . . .} ∪ {m1, m2, · · · , ml} ∪ {z1, . . . , zj−1}

and zj = f(x1
j , x

2
j). For j 6= s, the zj ’s are the intermediate hash values and

zs is known as the final hash value. Finally, define H(m) = zs.
We can assume that each intermediate hash value zi and each message

block mj are in the list and hence they are inputs to some invocations of f .
So there are no message blocks and intermediate hash values which are not
hashed.

The above hash function also can be defined using a directed binary tree
and a MIV (message-initial value) assignment. We first define the directed
binary tree and some terminologies.

Definition 3 A directed binary tree is a directed tree so that each vertex
has indegree equal to either two or zero and outdegree equal to one, except

18

for a unique vertex called the root which has outdegree equal to zero. A leaf
node is a vertex with indegree zero. All other vertices or nodes (except the
root) are known as intermediate nodes. So intermediate nodes have indegree
equal to two and outdegree equal to one. For every nonleaf node v, there are
two nodes u and u′ such that (u, v), (u′, v) ∈ E. One of u, u′ is denoted the
left child of v and the other is denoted the right child of v.

Now we state some terminology relating to directed binary trees.

1. Let G = (V, E) be a rooted directed tree with root q ∈ V and the arc
set E ⊆ V × V . We write u → v for the arc (u, v) ∈ E. Further, we
write u ⇒ v if there is a directed path from the vertex u to v or if
u = v.

2. For a vertex v, define the subtree G[v] = (V [v], E[v]) to be the subtree
of G rooted at v. That is, V [v] = {u ∈ V : u ⇒ v} and E[v] =
{(u, u′) ∈ E : u, u′ ∈ V [v]}.

3. We use the notation L[G] (or simply L) for the set of leaves of G.
Further, let L[v] denote the set L[G[v]], which is the set of leaves of
the graph G[v]. Note that L[v] = L ∩ V [v].

Generalized Tree based Hash Functions

Let G = (V, E) be a directed binary tree. An MIV assignment is a mapping
ρ : L → [1, l] ∪ {0, 1}n. If ρ(v) ∈ [1, l] then it denotes an index of a message
block. When ρ(v) ∈ {0, 1}n, it denotes an initial value. Given a pair (G, ρ),
we define a hash function H based on (G, ρ) as follows: For an l-block
message m = m1 ‖ · · · ‖ ml, we assign recursively an n-bit string to each
vertex of G in the following manner:

1. For each leaf v, assign the n-bit string mi to v if ρ(v) = i, or assign h
to v if ρ(v) = h.

2. For any other node v, assign the n-bit string f(z, z′) to v, where z and
z′ are assigned to the vertices u and u′ respectively, u is the left child
of v and u′ is the right child of v.

3. The output of the hash function, H(m), is the value assigned to the
root of the tree.

Now we define some more notation which will be used in the multicolli-
sion attack.

19

• For x ∈ [1, l], we write freq(x, G) (or simply freq(x)) for the number
of times x appears in the multi-set ρ(L) (this is called the frequency
of x). That is, freq(x) denotes the number of times the message block
mx is hashed to get the final output hash value. Also, define freq(G) =
max{freq(x) : x ∈ L}.

• We define the hash output at vertex v (i.e., the value assigned to v,
given that the message is m) to be H(v, m). Note that a message
block mi is used to compute H(v, m) if and only if i is in ρ(L[v]). We
also use the notation H(v, mi) instead of H(v, m) when H(v, m) only
depends on the ith message block, i.e., if the only index appearing in
ρ(L[v]) is i.

• Given any vertex v, define S(v, G) (or more simply, S(v)) to be the
quantity

|{x ∈ [1, l] : freq(x, G[v]) ≥ 1}|.

Similarly, we define

Si(v) = |{x ∈ [1, l] : freq(x, G[v]) = i}|.

So S(v) (Si(v), resp.) denotes the number of message blocks which
are hashed at least once (exactly i times, resp.) to compute H(v, m).

Definition 4 (independent sequence of message indices) Given a
directed binary tree (G, ρ), we say that (x1, x2, . . . , xk) is an independent
sequence of message indices if there exist vertices v1, v2, . . . , vk ∈ V such
that

1. All occurrences of xi are in ρ(L[vi]) for all 1 ≤ i ≤ k.

2. xi /∈ ρ(L[vj]) for all i > j.

3. vk = q, where q denotes the root of the directed binary tree G.

We use the notation I(v) to denote the maximum value of k such that
there exists an independent sequence of message indices in G[v] of length k.
In particular, I(q) denotes the maximum length of an independent sequence
of message indices in the tree G. We say that vi is the corresponding vertex
of xi.

Because of condition 2 in Definition 4, the order of independent elements
is important. So (x2, x1, x3, · · · , xk) might not be an independent sequence,
even if (x1, x2, · · · , xk) is an independent sequence. The definition of the

20

m m1 m m m m m m m m mm1 2 3 4 6 4 2 5 3 5 6

v v

v

1 2

3

Figure 4: An example of 6-block binary tree based hash function.

independent sequence coincides with independent elements in a subsequence
(see Definition 1) if our tree has a suitable “sequential” structure.

We illustrate Definition 4 with a small example. In Figure 4, (1, 5, 4) is
an independent sequence. Here the corresponding vertices of 1, 5 and 4 are
v1, v2 and v3, respectively. However, note that (4, 1, 5) is not an independent
sequence since the only vertex v such that all occurrences of 4 are in ρ(L[v])
is v3. One can also check that (5, 4) is still an independent sequence in
G − G[v1] and 1 does not appear in G − G[v1].

In general, we have the following lemma.

Lemma 6 If (x1, x2, . . . , xk) is an independent sequence in G, then (x2, · · · , xk)
is also an independent sequence in G−G[v1], where v1 is the corresponding
vertex of x1. Also, we have that x1 /∈ ρ(L[G − G[v1]]).

Proof. x1 /∈ ρ(L[G − G[v1]]) since all occurrences of x1 are in ρ(L[v1]) (by
condition 1 of Definition 4). Also, it is easy to check that (x2, · · · , xk) is an
independent sequence in G − G[v1].

Now we can state one of our main theorems of this section. It says that,
given a pair (G, ρ) with r independent elements in G, there is a 2r-way
collision attack on the hash function H based on (G, ρ). The complexity of
this attack is O((s + 1)2n/2), where s is the number of intermediate nodes
in G. The idea of the attack is very similar to that of Joux’s attack. First
we try to find r intermediate collison pairs (m1

x1
, m2

x1
), · · · (m1

xr
, m2

xr
). Then

21

we can combine all these pairs independently to obtain a 2r-way collision
attack.

We demonstrate the attack with the example shown in Figure 4.

1. First, fix the message blocks m2, m3 and m6 to be an n-bit string, say
IV .

2. Find m1
1 6= m2

1 such that H(v1, m
1
1) = H(v1, m

2
1) = h∗

1 by using 3×2n/2

computations of f (note that three computations of f are required to
obtain a value assigned to v1).

3. Consider the graph G2 = G − G[v1]. Find m1
5 6= m2

5 such that
H(v2, m

1
5) = H(v2, m

2
5) = h∗

2 by using 3 × 2n/2 computations of f
(note that three computations of f are required to obtain a value as-
signed to v2).

4. Consider the graph G3 = G2 − G[v3] and the mapping ρ3(v1) = h∗
1,

ρ3(v2) = h∗
2. For this pair (G3, ρ3), we can find m1

4 6= m2
4 such that

H(v3, m
1
4) = H(v3, m

2
4) = h∗

3 by using 5×2n/2 computations of f (note
that five computations of f are required to obtain a value assigned to
v3, given specified values for h∗

1 and h∗
2).

5. Now it is easy to check that the set

{m : mi = IV for i = 2, 3, 6, mj = m1
j , m

2
j for j = 1, 4, 5}

is a multicollision set with the collision value h∗
3. In this example we

need O(11 × 2n/2) computations of f . Note that 10 is the number of
intermediate nodes.

Now we state and prove a general theorem in detail.

Theorem 7 There is a 2r-way multicollision attack on H having complexity
O((s+1)2n/2), where s is the number of the intermediate nodes in the directed
binary tree G and I(q) = r for the root of the binary tree, q.

Proof. Suppose that (x1, · · · , xr) is an independent sequence in G. We will
find a 2r multicollision set where each mxi (1 ≤ i ≤ r) takes on one of two
possible values, and the other mj ’s are fixed to be some value IV .

We prove the result by induction on r. Let vi be the corresponding
vertex of xi. For r = 1 this is just a standard birthday attack on H, varying
the message block mx1 and fixing all other message blocks by a string IV .

22

For r > 1, we first define the message blocks mi to be IV for all i /∈
{x1, · · · , xr}. Then we find a pair (m1

x1
, m2

x1
) with m1

x1
6= m2

x1
such that

H(v1, m
1
x1

) = H(v1, m
2
x1

) = h∗
1 (say). This computation has complexity

t 2n/2, where t = |V [v1] − L[v1]|.
Now consider the graph G′ = G − G[v1] and the MIV ρ′ : L[G′] →

[1, l]∪ {0, 1}n defined as ρ′(v1) = h∗
1 and ρ′(v) = ρ(v) for any other leaf v in

L[G′]. By Lemma 6, we know that (x2, · · · , xr) is an independent sequence
for the hash function based on (G′, ρ′). So, by induction, we can find a
2r−1-way collision set

{m : mj = m1
xi

or m2
xi

if j = xi, 2 ≤ i ≤ r, otherwise mj = IV, where j 6= x1},

with the collision value h∗ (say). This computation has complexity O(|V ′ −
L[G′]|).

Note that there is no occurrence of index x1 in the multi-set ρ′(L[G′]),
and if the intermediate hash value at the vertex v1 is h∗

1, then the final hash
value for (G′, ρ′) is the same as the final hash value for (G, ρ). Hence,

{m : mj = m1
xi

or m2
xi

if j = xi, 1 ≤ i ≤ r, otherwise mj = IV }

is a 2r-way collision set with collision value h∗. The complexity of the attack
is

O((|V ′ − L[G′]| + |V [v1] − L[v1]|)2
n/2) = O(|V − L[V]|2n/2) =

O((s + 1)2n/2).

Now we prove a simple fact on directed binary trees relevant to out
multicollision attack on generalized tree based hash functions. Recall that
S(v) denotes the number of indices which appear in ρ(L[v]).

Lemma 8 For any pair (G, ρ) with S(q) ≥ 2N , there exists a vertex v ∈ V
with N ≤ S(v) ≤ 2N , where q is the root of the tree G = (V, E).

Proof. Let u1 → v and u2 → v. Then it is easy to check that S(v) ≤
S(u1) + S(u2). So, if u1 → q, u2 → q, then S(u1) + S(u2) ≥ 2N . There
will be one vertex, say u1, with S(u1) ≥ N . If S(u1) ≤ 2N , then the result
follows for v = u1. If not, we can continue until we reach a vertex v with
N ≤ S(v) ≤ 2N .

Proposition 9 Let l = |S(q)| where q is the root of the tree. If freq(G) ≤ 2,
then there is a vertex v such that I(v) ≥ N or I(q) ≥ M whenever l ≥ 2MN .

23

Proof. We prove the stated result by induction on l. For M = 1, the proof
is trivial since I(q) ≥ 1. So assume M > 1. Since S(q) ≥ 2MN ≥ 2N , it
follows from Lemma 8 that there is a vertex v such that N ≤ S(v) ≤ 2N .
Now, if S1(v) = S(v) ≥ N , then I(v) ≥ S1(v) ≥ N . If S1(v) < S(v), then
there is an element, say x1, which appears exactly twice in ρ(L[v]) (note that
freq(G) ≤ 2). Let G′ = G − G[v]. After we choose an index x1 in ρ(L[v]),
we want to make sure that no xi (i > 1) that is chosen later on also occurs
in ρ(L[v]). To prevent this from happening, we take all indices of message
blocks in ρ(L[v]) and “remove” them from any other leaves in the graph, by
fixing their values, before applying the inductive hypothesis. Formally, we
define ρ′(u) to be an n-bit string, where u ∈ ρ(L[v]) ∩ ρ(L[G′]); otherwise,
ρ′(u) = ρ(u). Note that S(G′) ≥ 2MN − 2N = 2(M − 1)N .

By the induction hypothesis on the graph G′, either I(q) ≥ M−1 or there
exists a vertex u such that I(u) ≥ N . In the latter case, I(u) ≥ N (for the
graph G). Otherwise there exist M − 1 independent elements, x2, . . . , xM ,
in the graph G′. Also, x1 does not appear in ρ(L[G′]) and x2, · · · , xM do
not appear in ρ(L[v]). So, x1, x2, . . . , xM are independent elements in G.

Whenever l ≥ 2r2n either I(q) ≥ r or there is a vertex v such that I(v) ≥
rn = k (say). In the former case, we already have a 2r-way collision attack.
In the latter case, we can do the same thing that we did in the sequential case:
Let (x1, · · · , xk) be an independent sequence. Find r vertices v1, v2, · · · , vr =
q in G′ (=G − G[v]) such that the following occurs:

1. xin+1, xin+2, · · · , xin+n/2 ∈ ρ(L(G′[vi])) for all i.

2. xin+1, xin+2, · · · , xin+n/2 /∈ ρ(L(G′[vj])) for all j < i.

First, we find a 2k-way collision on v. Then, we find r successive collisions
from the multicollision set. The idea of the attack is very similar with that
of the sequential case, so we ignore the details. Our main theorem is as
follows.

Theorem 10 If freq(G(H)) ≤ 2 then we have a 2r-way multicollision attack
having complexity O(r2 n 2n/2).

5.1 A Note on Multi-Preimage Attacks

For the sake of completeness, we briefly study the corresponding multi-
preimage attacks on generalized sequential or generalized tree-based hash
functions. For a hash function H : {0, 1}∗ → {0, 1}n, we define the r-way
preimage (multi-preimage) attack as follows: Given a random y ∈ {0, 1}n,

24

find a subset C = {x1, · · · , xr} of size r (≥ 1) such that H(x1) = · · · =
H(xr) = y. The complexity of an r-way preimage attack for a random oracle
is Ω(r 2n). On the other hand, for a generalized tree based or sequential
hash function there is an r-way preimage attack with complexity O(2n).
The attack is almost same as the multicollision attack. It starts out exactly
the same as the multicollision attack. At the final step, instead of finding a
collision, we instead look for outputs having a given value y. The complexity
for last step is O(2n) which will dominate the O(r2 n 2n/2) complexity of the
remaining steps in the attack.

6 Conclusion

Recently there have been many proposed approaches to design hash func-
tions with large output hash values. The most simple and natural one is the
concatenation of two classical iterated hash functions. Joux [7] showed some
collision (and preimage) attacks on this hash function. It is an interesting
question to find design techniques for hash functions for which multicollision
attacks are infeasible. In this paper, we have defined a large natural class of
hash functions and we studied their security with respect to multicollision
attacks. Unfortunately, we have found efficient multicollision attacks on the
hash functions when the message blocks are processed at most most twice.
So the natural question that arises is if multicollision security an be ob-
tained if the message blocks are used more than twice. One can also search
for some other designs outside this class of hash functions, and study their
multicollision security.

Acknowledgements

Research of the second author is supported by NSERC grant RGPIN 203114-
02.

References

[1] M. Bellare and T. Kohno. Hash function balance and its impact on birth-
day attacks. Lecture Notes in Computer Science 3027 (2004), 401–418
(Eurocrypt 2004).

25

[2] E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung. Design valida-
tions for discrete logarithm based signature schemes. Lecture Notes in
Computer Science 1751 (2000), 276–292 (PKC 2000).

[3] I. B. Damg̊ard. A design principle for hash functions. Lecture Notes in
Computer Science 435 (1990), 416–427 (CRYPTO ’89).

[4] M. Girault and J. Stern. On the length of cryptographic hash-values used
in identification schemes. Lecture Notes in Computer Science 839 (1994),
202–215 (CRYPTO ’94).

[5] M. Hattori, S. Hirose and S. Yoshida. Analysis of double block length
hash functions. Lecture Notes in Computer Science 2898 (2003), 290–302
(Cryptography and Coding 2003).

[6] S. Hirose. Provably secure double-block-length hash functions in a black-
box model. To appear in Lecture Notes in Computer Science (ICISC 2004).

[7] A. Joux. Multicollisions in iterated hash functions. Application to cas-
caded constructions. Lecture Notes in Computer Science 3152 (2004),
306–316 (CRYPTO 2004).

[8] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions
for much less than 2n work. IACR Cryptology ePrint Archive, Report
2004/304, http://eprint.iacr.org/2004/304.

[9] L. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length
hash functions. Journal of Cryptology 11 (1998), 59–72.

[10] L. Knudsen and B. Preneel. Construction of secure and fast hash func-
tions using nonbinary error-correcting codes. IEEE Transactions on In-
formation Theory 48 (2002), 2524–2539.

[11] S. Lucks. Design principles for iterated hash functions. IACR Cryptology
ePrint Archive, Report 2004/253, http://eprint.iacr.org/2004/253.

[12] A. J. Menezes, P. van Oorschot and S. A. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1996.

[13] R. Merkle. One way hash functions and DES. Lecture Notes in Com-
puter Science 435 (1990), 428–446 (CRYPTO ’89) .

[14] B. Preneel. Analysis and Design of Cryptographic Hash Functions. Doc-
toral Dissertation, Katholieke Universiteit Leuven, 1993.

26

[15] R. Rivest and A. Shamir. PayWord and MicroMint. CryptoBytes 2(1)
(1996), 7–11.

[16] P. Sarkar. Domain extender for collision resistant hash functions:
improving upon Merkle-Damg̊ard iteration. IACR Cryptology ePrint
Archive, Report 2003/173, http://eprint.iacr.org/2003/173.

[17] T. Satoh, M. Haga and K. Kurosawa. Towards secure and fast hash
functions. IEICE Trans. Fundamentals, E82-A, no. 1, January, 1999.

[18] D. R. Stinson. Cryptography: Theory and Practice, Second Edition,
CRC Press, 2002.

[19] D. R. Stinson. Some observations on the theory of cryptographic hash
functions. To appear in Designs, Codes and Cryptography.

27

