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Abstract

In light of the growing complexity of cryptographic protocols and applications, it becomes highly
desirable to mechanize — and eventually automate — the security analysis of protocols. A natural step
towards automation is to allow for symbolic security analysis. However, the complexity of mechanized
symbolic analysis is typically exponential in the space and time complexities of the analyzed system.
Thus, full automation via direct analysis of the entire given system has so far been impractical even for
systems of modest complexity.

We propose an alternative route to fully automated and efficient security analysis of systems with no
a priori bound on the complexity. We concentrate on systems that have an unbounded number of com-
ponents, where each component is of small size. The idea is to perform symbolic analysis that guarantees
composable security. This allows applying the automated analysis only to individual components, while
still guaranteeing security of the overall system.

We exemplify the approach in the case of authentication and key-exchange protocols of a specific for-
mat. Specifically, we formulate and mechanically assert symbolic properties that correspond to concrete
security properties formulated within the Universally Composable security framework. As an additional
contribution, we demonstrate that the traditional symbolic secrecy criterion for key exchange provides an
inadequate security guarantee (regardless of the complexity of verification), and propose a new symbolic
criterion that guarantees composable concrete security.

Keywords: Cryptographic protocols, security analysis, symbolic analysis, automated analysis, universal
composition.
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1 Introduction

From its very earliest stages, modern cryptography has built mathematical models with which to represent
cryptographic protocols and specify their security properties. A very partial list of such properties includes
pseudorandomness [15, 16, 69], semantic security [38, 55], unforgeability [41], zero-knowledge [40, 34, 37],
non-malleability [29], and general security properties of protocols [70, 36, 39, 56, 9, 19, 64, 20]. Consequently,
we now have a variety of mathematical models with which to analyze cryptographic protocols.

These models are complex, however, and analyzing even very simple protocols within them is often
painstaking and delicate. In particular, such models are based on complexity theory and have a very
‘computational’ nature. Adversaries are represented by probabilistic Turing machines, and proofs of security
reduce a successful attack to some underlying problem. Such proofs show that if this underlying problem is
hard, then the adversary’s probability of success is bounded above by some (rapidly diminishing) function
of the consumed resources. To show this, however, these proofs use either asymptotic formalisms or highly
parameterized notions of security. Furthermore, these analyses often require ‘human ingenuity’, and are thus
hard to extend and to mechanize. All in all, full-fledged analysis of even a moderately complex cryptographic
system is a daunting task.

Several abstractions of this ‘computational’ model have been proposed, such as the Dolev-Yao model [31]
and its many extensions and derivatives (e.g., [33, 68, 26]), the BAN logic [18], and a number of process
calculi (e.g. [2, 49, 50, 53]). In these approaches, cryptography is axiomatized. That is, cryptographic
primitives are represented as symbolic operations which are defined to guarantee a set of idealized security
properties. For example, the BAN logic models encryption as a communication channel which is inaccessible
to the adversary [18], while others model it as a symbolic operation which completely hides the message [31].
As a result, these kinds of models are much simpler than the computational ones: protocols are finite and
deterministic, security definitions can be stated in absolute terms rather than asymptotic or probabilistic
ones, and proof are unconditional (rather than relying on computational hardness assumptions). This greater
simplicity makes analysis in these ‘symbolic’ models much more amenable to mechanization and automation,
see e.g. [52, 54, 66, 60, 11, 12].

A recent body of work, starting with that of Abadi and Rogaway [4], demonstrates that such symbolic
analyses can be sound with respect to the computational models: that symbolic analyses can also be used to
verify security properties of the computational model. In particular, Abadi and Rogaway showed that one
can assert indistinguishability of distribution ensembles from a certain class (such as those produced by an
encryption scheme) by translating these ensembles to symbolic forms and then verifying a symbolic property.

This work has been extended in a number of ways (e.g. [58, 3, 46, 5]). Two particularly important works
for our purposes are those of Micciancio and Warinschi [59] and Backes, Pfitzmann and Waidner ([6, 7] and
others). Micciancio and Warinschi substantially extend the approach of Abadi and Rogaway to the case of
interactive protocols and unauthenticated communication networks with active adversaries. In particular,
they provide a general soundness theorem for a class of symbolic properties (which, roughly, correspond
to “correctness properties” on the outputs of parties who follow the protocol). They also exemplify their
treatment for the task of mutual authentication, as defined in [10]. That is, they show that the security of
concrete mutual authentication protocols (of a certain format) can be asserted via the following two-step
process: First, translate the concrete protocol into a symbolic one. Then, assert an appropriate symbolic
property of the resulting symbolic protocol. Security of the concrete protocol is then guaranteed.

An alternative approach, taken by Backes, Pfitzmann and Waidner (e.g. [6, 7]) and discussed further in
Section 1.2, defines idealized abstractions of cryptographic primitives directly in a full-fledged cryptographic
model. These abstractions are realizable by actual concrete protocols in a cryptographic setting, but can
simultaneously be used as abstract primitives by higher-level protocols. Soundness properties, provided via
a general composition theorem, show that protocol executions can be ‘mapped’ from the computational to
abstract setting. Therefore, large classes of security properties can be verified by analyzing the abstract
primitives. (We note that this approach was developed concurrently to, and initially independently of [4].)

These results are attractive in that they demonstrate how one can simplify and mechanize the security
analysis of large cryptographic systems. However, they all require that the symbolic analysis be applied
directly to the entire system as a whole: all sessions of all protocols that might be running on the network



should be analyzed together. In some cases this is not possible at all, since the entire system might not be
known at the time of analysis. But even if it is, mechanical analysis might not be computationally feasible
or possible. Indeed, the general protocol-security problem — does a given protocol satisfy a given security
property when running an unbounded number of sessions — is undecidable [33]. Even when the number of
sessions is bounded and specified in the problem statement, the protocol-security problem is NP-hard and in
some cases PSPACE-hard [33, 32]. Thus, mechanical and automated analyses justified by the above works
do not seem to be feasible for systems of interest.

1.1 This work

We propose a different approach: Use symbolic analysis to prove composable security properties of cryp-
tographic protocols. Such properties are defined for (and verified about) individual protocol sessions, but
remain valid even when the analyzed session is composed with an unbounded number of other sessions. This
allows us to apply automated security analysis only to a single session, and still deduce security properties
of the overall system — even when this system consists of an unbounded number of sessions, and is not fully
known in advance. More concretely, we propose to modify the two-step approach of [4, 59] as follows:

1. De-compose the system into individual sessions, where each session consists of a single execution of a
relatively simple protocol.

2. Translate the resulting protocol into an abstract, symbolic form.

3. Use the automated analysis tools of the symbolic models to show that a single session of the (abstracted)
protocol achieves, in isolation, some particular symbolic property.

4. Conclude that, because the symbolic protocol satisfies those particular symbolic properties, the original
concrete protocol satisfies a composable security property in the computational model.

5. Conclude that the protocol provides the same security properties in the original, multi-session system.

Step 5 can be asserted once and for all, using a general composition theorem. We do this using the
universally composable (UC) security framework of Canetti [20]. Step 4 needs to be asserted only once per
model, where a model includes the abstraction method and the task at hand. We do this for a specific
abstraction method, and for the tasks of mutual-authentication and key-exchange. In fact, asserting Step 4
is the main technical bulk of this work.

The rest of this section discusses some obstacles in the way of the above plan, and our methods of
dealing with them. We postpone full overview to Section 2. We first briefly review the tasks of mutual
authentication and key exchange. In both cases, two parties are communicating over an unauthenticated,
adversarially controlled network. For mutual authentication, the two parties wish to learn whether the other
party exists in the system and agrees to communicate. For key exchange, two parties wish to generate a
random key that is known only to the two of them. In both cases, the system of interest consists of multiple
‘runs’ where in each run two parties attempt to mutually authenticate or exchange a key. Because these two
kinds of systems de-compose naturally into individual sessions, each of which consists of a relatively simple
interaction, they are particularly suited to our approach.

Joint state. The core idea of our approach is to analyze the individual sessions of a key-exchange or
mutual-authentication protocol, and then to use the composition theorems of the UC framework to extract
security properties for the entire multi-session system. However, the basic universal composition theorem
of [20] only applies when the parties running the protocol have disjoint local states and make independent
random choices in the individual sessions. In our setting this is not the case: Typically, each party has a
single “long term authentication module,” where this module is used in all the pairwise sessions in which
the party participates. (Most often, this module is either a public and private key pair for an encryption or
a signature scheme, or a long-term key shared with some server.) This means that the individual (pairwise)



sessions have some amount of “joint state,” and thus the universal composition theorem cannot be directly
applied to assert security of the re-composed system.

We solve this problem by using the universal composition with joint state (JUC) theorem of Canetti
and Rabin [25]. informally, this theorem states the following: Assume that protocol p has the property
that the outputs of the parties from a single instance of p look like their outputs from multiple independent
instances of some other, simpler protocol, f. Then, the behavior of any multi-party system r that uses
multiple instances of f as subroutines will remain essentially the same even when all the instances of f are
replaced by a single instance of p.

This somewhat abstract theorem is used as follows. We focus on modeling long-term authentication using
public-key encryption. For that purpose, we formulate an ‘ideal certified public key encryption functionality,’
denoted Fcpgi. This functionality models ideal encryption and decryption services in the presence of a public
key infrastructure. (Fepkg is a variant of known idealized formulations of public-key encryption, see e.g. [20].)
We then proceed in two steps. First we analyze an overly-idealized protocol, where each single (pairwise)
session of the mutual-authentication or key-exchange protocol has access to its own dedicated instance of
Fopke- Here the different protocol sessions have no joint state, and so the UC theorem can be applied.

Next, we demonstrate how multiple instances of Fpy; can be realized by a single instance of a concrete
encryption scheme — so long as all the instances of Fopxr have the same party as the designated decryptor,
and in addition the concrete scheme is secure against adaptive chosen ciphertext (CCA) attacks as in [65, 29].
By the JUC theorem, therefore, the security of a system where each single session uses its own dedicated
instance of Fcpyy implies security of that same system where all instances of Fcpxe that correspond to the
same decryptor are replaced with a single instance of a CCA secure encryption scheme.

Symbolic forms of concrete protocols. Recall that our approach requires that cryptographic protocols
be abstracted from a computational model to a symbolic model. However, an arbitrary protocol in the
UC setting may not have a natural or clear symbolic form. In order to enable our approach, therefore, we
concentrate on a restricted class of UC protocols which we call simple protocols. Mirroring Micciancio and
Warinschi [59] we require, for simplicity of exposition, that simple protocols use no cryptographic primitives
other than public-key encryption (with certified keys). In conjunction with the treatment of joint state,
described above, the use of public-key encryption is modeled as interaction with the functionality Fcpyg.

In addition, we require that simple protocols can be expressible as a sequence of commands from a
restricted set of operations. More precisely, we define simple protocols as programs from a high level ‘pro-
gramming language’ that regulates their form and enumerates a specific set of ‘atomic’ operations. While
restricted, this format is rich enough to express some ‘benchmark’ protocols such as the Dwork-Dolev-
Naor [29] protocol and the Needham-Schroeder-Lowe (NSL) protocol [61, 51, 52].

From symbolic properties to UC security. We first formulate composable, concrete notions of security
for mutual authentication and key exchange. Within the UC framework, this is done by way of formulating
ideal functionalities that captures the appropriate security properties. For key exchange, we simply use
the ’ideal key exchange’ functionality Fox; from [20]. Since there is no existing functionality for mutual
authentication in the literature, we formulate one here (called Fay,) in a straightforward way.

Our approach now requires us to find criteria for symbolic protocols that imply the two specific notions
of security captured by Foy. and Foxg. For mutual-authentication protocols, we use the standard symbolic
mutual authentication criterion from the literature — except that we only need to apply this criterion to a
single authentication session. That is, we demonstrate that a concrete symbolic protocol realizes Foy, if and
only if the corresponding symbolic protocol satisfies the standard symbolic mutual authentication criterion,
applied to a single session. (This criterion is is also reminiscent of the one used in [59], except that there it
is formulated in the more complex terms of multiple sessions).

For Key-Exchange protocols, the traditional symbolic definition turns out to be insufficient for our needs.
In fact, we demonstrate that it provides an inadequate formulation of security in general. (See further
discussion of this point below.) We therefore define a new symbolic criterion for key-exchange protocols
which is closer in spirit to the ‘real or random’ test that is prevalent in cryptographic notions of security.



Nevertheless, this criterion is formulated in a symbolic setting. We then show that this criterion (which is
reminiscent of the one used in [12, 57]) suffices to guarantee that a protocol achieves our composable security
goals. (i.e., it realizes Foxg). Furthermore, as discussed below, this criterion can be efficiently verified using
the same tools as would be used to verify the traditional symbolic criterion.

A central tool in these two proofs is a ‘mapping lemma’ which provides a close correspondence between
executions of the abstracted protocol in the symbolic model and executions of the original protocol in the
concrete model. This lemma is similar to the corresponding lemma by Micciancio and Warinschi [59], except
that it is framed within our model; in particular, it is formulated in terms of a single execution of a two-party
protocol.

Automated analysis. To demonstrate that our approach results in a feasible method for protocol analysis,
we used an automated tool to analyze a number of protocols. Specifically, we used ProVerif [13, 11, 12] to
analyze three closely-related protocols: the original Needham-Schroeder-Lowe protocol and two variants
proposed in this work. The original protocol is a mutual-authentication protocol, while the two variants
provide two natural ways to extend this protocol into a key-exchange protocol. As expected, the tool verified
that the original protocol satisfied our symbolic criteria for mutual authentication. It was also able to
correctly analyze the key-exchange variants: In one case, the tool was able to find an attack and conclude
that the protocol fails to realize Foxs. In the other case, the tool verified that the protocol realizes Foyp.

Again, we emphasize that in our approach, the automatic analysis need only consider a single instance
of the protocol running in isolation. Therefore, our ProVerif analyses were limited to this small system and
executed quite quickly. For each of the above cases, the tool (running on a 1GHz G4 processor) finished
within less than a second.

On the insufficiency of traditional symbolic secrecy of key exchange. The main thrust of this work
is to improve the feasibility of security analysis, and so it suffices to show (as we do) that composable security
properties are implied by some symbolic criteria. As an additional contribution, however, we also observe
that the traditional symbolic secrecy criterion for key exchange provides an inadequate level of security —
regardless of how easily it can be verified. Specifically, we present a protocol that satisfies the traditional
criterion and an attack against that protocol in a generic computational setting. Interestingly, the attack is
completely ‘generic’ in that it treats the underlying encryption in a ‘black-box’ way. (In a nutshell, the issue
is that the traditional criterion only requires that no symbolic adversary be able to explicitly output the
secret key in any execution of the symbolic protocol [31]. This turns out to be too weak of a requirement.)

1.2 Related work

Pfitzmann and Waidner [64] provide a general definition of integrity properties and prove that such properties
are preserved under protocol composition in their framework. Our symbolic mutual authentication criterion
can be cast as such an integrity property. In addition, Backes, Pfitzmann and Waidner [7], building on the
idealized cryptographic library in [6], demonstrate that several known protocols satisfy a property that is
similar to our symbolic mutual authentication criterion. These results differ from ours in two main respects.
First, these results do not address the question of whether a given concrete cryptographic protocol realizes
an ideal functionality (e.g., the mutual authentication functionality) within a cryptographic model (e.g.,
their framework.) More importantly, since the idealized library of [6] is formulated in an inherently multi-
session way, the analysis of protocols (as in, e.g., [7]) has to be directly applied to the multi-session system.
Consequently, analysis based on the idealized library [6] is susceptible to the same complexity limitations
which this work circumvents. Furthermore, the formulation [6] does not seem to enable applying a joint-state
composition theorem along the lines of [25]. See more discussion on this point in [21].

Sprenger et al. [67] show how to semi-automate the proof process for a class of protocols that take the
[6] approach, via human-assisted theorem proving. However, this approach does not (in fact, it inherently
cannot) lead to fully automated proofs.



Concurrently to the first public version of this work, Backes and Pfitzmann [8] propose an abstract
secrecy criterion for key-exchange protocols that use their cryptographic library, and demonstrate that this
criterion suffices for guaranteeing cryptographically sound secrecy. However, their criterion is still formulated
within their full-fledged cryptographic framework, rather than in a simplified symbolic model as done here.
Furthermore, it does not carry any secure composability guarantees.

Laud [48] investigates the concrete cryptographic properties guaranteed by certain symbolic secrecy crite-
ria for protocols using symmetric encryption. He also shows how these symbolic criteria can be automatically
verified. However, these criteria are different from the ones discussed here. Specifically, following the tra-
ditional symbolic formulation, it is only required that the adversary obtains no information about the key
during the course of the protocol, and “real-or-random secrecy” against active adversaries is not considered.
Consequently, these criteria do not guarantee secure key exchange, nor are they preserved under composition.

Concurrently to this work, Cortier and Warinschi [27] formulate another symbolic secrecy criterion for
key exchange protocols, demonstrate how to automatically verify this criterion, and show that this criterion
implies a cryptographic secrecy criterion against active adversaries. However, also in that work the symbolic
criterion follows the tradition of only requiring that the adversary obtains no information on the secret key.
Consequently, their cryptographic criterion falls short of guaranteeing secrecy in a general protocol setting,
as exhibited in [23]. In particular, their criterion admits the above-mentioned insecure extension of the NSL
protocol to key exchange.

In another concurrent work, Micciancio and Panjwani [57] study computationally sound symbolic analysis
of group key agreement protocols with adaptively changing membership. Their symbolic secrecy criterion
also has a “real or random” flavor, set in a symbolic setting, much like the one here.

Blanchet [12] provides a symbolic criterion (cast in a variant of the spi-calculus [1]) that captures a
secrecy property, called “strong secrecy”, that is similar to our symbolic secrecy criterion for the exchanged
key. Essentially, the criterion says that the view of any adversarial environment remains unchanged (modulo
renaming of variables) when the symbol representing the secret key is replaced by a fresh symbol that is
unrelated to the protocol execution. As opposed to our criterion, however, Blanchet’s directly considers
multi-session systems.

Recently, Blanchet has developed a new automated tool called CryptoVerif [14] which directly analyzes
computational security of concrete protocols. An interesting direction for future research is to apply this
tool to assert composable security properties.

Herzog, Liskov and Micali [45] provide an alternative cryptographic realization of the Dolev-Yao abstrac-
tion of public-key encryption. Their realization makes stronger cryptographic requirements from encryption
scheme in use (namely, they require “plaintext aware encryption”), and assumes a model where both the
sender and the receiver have public keys. Herzog relaxes this requirement to standard CCA-2 security [44],
but that work (lacking any composition theorems) still considers the multi-session case. Furthermore, it only
connects executions of protocols in the concrete setting to executions of protocols in the symbolic setting. It
does not investigate whether security in the symbolic setting implies or is implied by security in the concrete
setting.

Patil [62] extends the present work to handle also mutual authentication and key exchange protocols that
use digital signatures in addition to public-key encryption.

Organization. We begin with an informal overview of our approach and results (Section 2). Next, we
define our version of the Dolev-Yao model for symbolic encryption (Section 3). We then present the class
of simple protocols and the certified public-key encryption functionality, Fepke (Section 4). Next, we present
the mapping from executions of simple protocols in the UC framework to executions in the symbolic model
(Section 5). Mutual authentication and key exchange are presented in Sections 6 and 7, respectively. Ap-
pendix A provides an overview of the UC framework. Appendix B sketches a standard method for realizing
multiple instances of Fepki via a single instance of a fully-specified cryptographic protocol.



2 Overview

This section presents an overview of the rest of this work. Section 2.1 contains a brief review of the UC
framework and the traditional symbolic (“Dolev-Yao”) model which we will be using. Section 2.2 sketches
and motivates the notion of simple protocols. Section 2.3 informally presents the mapping lemma, which is
our main tool for relating runs of a concrete (simple) protocol to runs of its “symbolic counterpart.” Finally,
Sections 2.4 and 2.5 sketch our treatment of mutual authentication and key exchange, respectively.

2.1 Background

The universal composition framework. The universal composition (UC) framework provides a general
way for specifying the security requirements of cryptographic tasks, and asserting whether a given protocol
realizes the specification. A salient property of this framework is that it provides strong composability guar-
antees: a protocol that realizes the specification in isolation continues to realize the specification regardless
of the activity in the rest of the network. That is, the composition of the protocol with the other network
activity will not lead to “unexpected side-effects.” We give here a very high level sketch of the framework.
A more detailed description appears in Appendix A.

Defining what it means for a protocol p to “securely realize” a certain task is done in three steps, as
follows. First, we formulate a model for executing the protocol. This model consists of the parties running
the protocol, plus two adversarial entities: the environment Z, which generates the inputs for the parties and
reads their outputs, and the adversary A, which reads the outgoing messages generated by the parties and
delivers incoming messages to the parties. The adversary and the environment can interact freely during the
protocol execution.

Next, we formulate an “ideal process” for carrying out the task at hand in a “perfectly secure way”. In
the ideal process the protocol participants simply pass their inputs to an imaginary “trusted party,” who
locally computes the desired outputs and hands them back to the parties. The program run by the trusted
party is called an ideal functionality and is intended to capture the security and correctness specifications
of the task. For convenience, the ideal process with ideal functionality F is formulated as the process of
running a special protocol Ir called the ideal protocol for F. In protocol Ir the parties simply pass all inputs
to the trusted party, and output whatever information they obtain from the trusted party. Similarly, the
adversary does not interact with the parties; instead, it interacts directly with F in a way specified by F.
The communication between the adversary and the environment remains arbitrary.

Finally, we say that protocol p UC-emulates protocol f if for any polytime adversary A there exists a
polytime adversary S such that no polytime environment Z can tell with non-negligible probability whether
it is interacting with an execution of p and adversary A, or alternatively with protocol f and adversary S.
We say that p UC-realizes an ideal functionality F if it UC-emulates the ideal protocol Ig. This in particular
means that the I/O behavior of the good parties in the protocol execution is essentially the same as that of
the ideal functionality; in addition, the information that Z learns from A can be generated (or, “simulated”)
by S, who is given only the information that it can learn legally from interacting with F.

The following basic property holds in this framework.

Theorem (Universal Composition, informal). Let p be a protocol that UC-emulates protocol f,
and let r be a protocol that has access to (multiple instances of) f. Let r/f be the “composed
protocol” which is identical to r except that inputs to f are replaced by inputs to p, and outputs
from p are treated as outputs from f. Then, protocol r?/f behaves in an indistinguishable way
from the original r.

In particular, if r UC-realizes some ideal functionality G then so does rP/f.

We sketch a number of additional aspects of the UC framework that our work uses. First, it turns out
that the definition sketched above can be somewhat simplified as follows. Let the dummy adversary denote
the adversary that merely serves as a “channel” for the environment; that is, it delivers to parties messages
provided by the environment, and forwards to the environment all messages sent by the parties. Then, it
suffices to restrict attention to the case where the adversary interacting with the protocol is the dummy



adversary. That is, say that protocol p UC-realizes an ideal functionality F with respect to dummy adversaries
if there exists an adversary S such that no environment can tell with non-negligible probability whether it
is interacting with an execution of p and the dummy adversary, or alternatively with the ideal process for F
and adversary S. Then we have that p UC-realizes F if and only if p UC-realizes F with respect to dummy
adversaries.

Another aspect of the UC framework used by our work is the following. To facilitate distinguishing
among different protocol instances in a multi-instance system, the framework makes sure that each protocol
instance in a system is associated with an identifier, called the session ID (SID), that is unique to that protocol
instance and is known to all participants in that instance. In general, the SID of an instance is determined by
the external system; typically, it will be chosen by the program instance that “initializes” the said protocol
instance by invoking the first participant in the said instance. See more details in Appendix A.

Finally, we sketch an additional composition theorem that is necessary for our treatment, namely universal
composition with joint state (JUC) [25]. As mentioned in the Introduction, the UC theorem only applies to
protocols rP where the honest parties maintain completely disjoint local states for the different instances of
p- In contrast, the JUC theorem applies in cases where the different instances of p have some joint state.
Specifically, let ﬁ/\be a protocol that, in one instance, UC-realizes multiple instances of a simpler protocol
f. (Formally, let f be the protocol that exhibits, in a single instance, the behavior of multiple instances of
f. Then p is a protocol that UC-emulates ?) Let r be an arbitrary protocol that uses multiple instances of
f, and let r?/fl be the composed protocol where each party runs a single instance of r plus a single instance
of p, and where all the inputs provided by r to all the instances of f are forwarded to the single instance of
p. Similarly, the outputs of the single instance of p are given to r as coming from the various instances of f.
Then, the JUC theorem states that protocol rlP/fl UC-emulates the original r.

The symbolic model. The symbolic model (often dubbed the “Dolev-Yao” model) is an abstract model
for representing and analyzing protocols that use cryptographic primitives. In this model, messages are
represented as compound elements in some symbolic algebra. That is, each compound element represents
a “parse tree,” or a sequence of operations needed to obtain the composite symbol from basic symbols.
For instance, the element Enc(M; K) does not represent a distribution on strings; rather, it is a compound
element that results from applying the formal encryption operation to the elements M and K. While the
full-fledged Dolev-Yao model includes a variety of primitives such as symmetric encryption and signatures,
we focus on a sub-model which includes only asymmetric encryption.

The basic element of the model is a symbolic algebra A that represents messages of a protocol. The atomic
elements of the algebra are used to represent primitive structures such as party identifiers, public encryption
keys, random challenges (“nonces”), and secret keys. (The party identifiers and public keys can be either
honest, or corrupted.) The two operations of the algebra represent abstracted pairing (or concatenation) and
encryption. Thus, the compound elements of the algebra (i.e., those messages produced by the operations)
represent those messages that pair or encrypt primitive messages (or other, simpler, compound messages).
The algebra is free: each message has exactly one representation. Put another way, the algebra admits no
equalities other than identity, and a composite element can be associated with a unique “parse-tree.”

Protocols are defined via a state transition table. When a participant receives a message or input, it
transitions to a new state and either generates output or sends an outgoing message, as specified in the
transition table. Here, messages are elements from the algebra; inputs and outputs are either elements from
the algebra or special symbols signaling the beginning and end of an execution.

The symbolic adversary is defined in two parts: its initial knowledge (a set of symbolic messages), and the
adversary operations it can use to deduce new messages from the initial messages and the messages generated
by parties running the protocol. The adversary operations are extremely limited. Specifically, the adversary
can concatenate messages, de-concatenate elements of a message, encrypt a message with a given public
key, or decrypt a given symbolic ciphertext if the corresponding public key is corrupted. We remark that
this list of adversary operations implicitly postulates “ideal” encryption: the adversary cannot perform any
operations to ciphertexts other than the symbolic ones.

A protocol execution in this model consists of a sequence of events where each event is one of:



e The adversary initializing a participant,

e The adversary delivering a message to a participant,

e A participant sending or outputting a message, or

e The adversary computing some new message from messages it has already computed or intercepted.

A symbolic trace is sequence of these events, and a trace is valid for a protocol if it could have resulted from an
execution of that protocol. That is, a trace is valid for a protocol if the messages delivered by the adversary
to the participants are consistent with the adversary’s computations, and the messages sent by participants
are consistent with the messages received and the protocol in question.

In the symbolic model security properties are traditionally formalized as predicates on sets of traces: A
protocol satisfies such a security property if the predicate is satisfied by all of that protocol’s valid traces.

2.2 Simple Protocols

Both the Dolev-Yao model and the UC framework allow protocols much flexibility, though in different ways.
The Dolev-Yao model strictly regulates the forms of legal messages, restricting messages to the algebra A.
However, protocols can consist of any sequence of messages, including sequences that cannot be efficiently
computed. (For example, a symbolic protocol might have a participant receive a ciphertext encrypted with
another participant’s key but then reply with the plaintext.) The UC framework, on the other hand, requires
only that participants run efficiently. So long as it obeys this one restriction, the protocol can consist of any
sequence of bit-strings (or distribution on bit-strings). To find a common denominator between these two
models, we restrict our attention to a particular set of protocols which are valid for both settings.

This set of protocols, called simple protocols, are defined to be programs written in a specific programming
language. This language enforces that each operation of the program is efficiently computable, but also limits
the program to commands that reflect the structure of the Dolev-Yao model. Specifically, the language allows
basic operations such as nonce generation, concatenation and separation, encryption, decryption, testing
equality, and sending messages. (This set of operations is standard; in particular it is essentially the same
as in [59].)

The programming language of simple protocols is presented in an abstract way that is not specific to either
the UC model or the Dolev-Yao model. We then provide two different sets of semantic interpretations of the
language: one interpretation is formulated in terms of interactive Turing machines in the UC framework,
and the other interpretation as a symbolic protocol in the Dolev-Yao model. this gives a natural mapping
from the UC interpretation of a simple protocol to the corresponding Dolev-Yao interpretation, and vice
versa.

In the UC interpretation of a simple protocol, the encryption and decryption operations are translated to
calls to the certified public-key encryption functionality, Fepkg. (This functionality captures, in an idealized
way, the properties of public-key encryption in the case where parties know the public keys of each other
in advance.) In the Dolev-Yao interpretation of a simple protocol encryption and decryption are translated
to creating new elements of the algebra using the appropriate symbolic operations. The UC and Dolev-Yao
interpretations of other instructions in a simple protocol are defined in a similar way.

We demonstrate the expressive power of simple-protocol programming language by casting several known
protocols in that language. One protocol is the Dolev-Dwork-Naor authentication protocol which was orig-
inally presented in concrete cryptographic terms [29]. The other protocol is the Needham-Schroeder-Lowe
(NSL) protocol, which is traditionally presented in symbolic form [61, 51, 52]. This protocol is typically used
for mutual authentication, but we extend it to be also a key-exchange protocol, and do so in two different
ways. More specifically, we leave the messages of the protocol untouched but identify two different values
which the participants might locally output as a key. While these two extensions look similar at first, they
turn out to have very different security properties. See more details in Section 7.



From simple protocols to fully-specified protocols. Even the UC interpretation of simple protocols
are by themselves somewhat abstract, in that they use Fepkp rather than some fully-specified public-key en-
cryption. This abstraction is justified as follows. First we show how F¢pyp can be realized using functionality
Foxe (which represents the basic properties of public-key encryption schemes) and functionality Frpe (which
represents some basic properties of a certification service). Next we recall that Fpyp can be realized given
any public-key encryption scheme that is secure against chosen ciphertext attacks [20].

These facts, combined with the UC theorem, provide a way to instantiate simple protocols, while pre-
serving security: Replace each instance of Fepk by an instance of a CCA-secure encryption scheme, and use
the certification authority to publicize the public keys. However, this results in highly inefficient protocols,
where each instance of the instantiated simple protocol uses its own instance of the public-key encryption
scheme. Instead, we would like to obtain a protocol where each party uses a single instance of the public-key
encryption scheme for multiple instances of the instantiated simple protocol.

One way to do that would be to consider the entire multi-session interaction as a single instance of a more
complex protocol. That protocol can now use a single instance of Fcpy per party. But this approach would
force us to directly analyze the more complex multi-session protocols as a single unit. Instead we would like
to be able to specify and analyze simple protocols in terms of a single instance (e.g., a single exchange of a
key in the case of key-exchange), while making sure that the instantiated protocol uses only a single instance
of Fepky per party. This can be obtained using the UC with joint state theorem, along with an additional
simple technique from [25]. We sketch this technique.

First we observe that the following protocol realizes multiple instances of Fcpyr which has the same
decryptor, using only a single instance of Fcpxi: Whenever some party asks to encrypt a message m for an
instance of Fepkp with session identifier sid, the protocol encrypts the pair (m, sid). Whenever some party
asks to decrypt a ciphertext ¢ for an instance sid, the protocol decrypts ¢, verifies that the decrypted value is
of the form (m, sid) for some m, and returns m; else an error value is returned. Denote this protocol by Es,
for “Encrypt the Session ID”. (This protocol and its analysis are analogous to the [25] protocol for realizing
multiple instances of an ideal signature functionality using a single instance.)

Now, consider some protocol P that involves multiple instances of a simple protocol p. (Protocol P may
simply describe an adversarially-controlled invocation of multiple instances of p, or alternatively P may be
geared towards realizing some other ideal functionality, potentially calling other protocols as subroutines.)
In P, each party uses a different instance of Fqpiy per instance of p. We can now use the JUC theorem to
assert that the protocol P[ES! behaves in the same way as P. Furthermore, in PFS! each party uses a single
instance of Fepk throughout the interaction. See more details in Appendix B.

2.3 The mapping lemma

A central tool in our analysis is a mapping lemma that establishes a correspondence between executions
of concrete simple protocols and executions of the corresponding symbolic protocols. (This lemma can be
regarded as a restatement in our framework of the corresponding lemma in [59].) We proceed as follows.
First, we define the trace of an execution of a simple protocol in the presence of an environment and an
adversary within the UC framework. The trace provides a global view of the execution, including the views
of the environment and the participants. It consists of a sequence of input, outputs, messages, and local
variables (represented in bit-strings). It also contains the participants’ calls to Fepkg, thus capturing their
internal cryptographic operations. Similarly, we define the trace of an execution of a symbolic protocol
within the symbolic model. Again, the trace represents a global view of the (now symbolic) execution. Here,
the trace consists of a sequence of expressions from the underlying symbolic algebra. However, in contrast
with concrete traces, the internal cryptographic operations of participants are not represented.

Next, we define a trace mapping, also denoted ¢, which translates a trace of a concrete simple protocol
into a symbolic trace. This mapping is straightforward except that the calls to Fepky in the concrete trace
do not map to events in the symbolic trace, but are instead used as intermediate values in the mapping.

Finally, we show that this mapping provides soundness to trace properties in the symbolic protocol. That
is, t almost always translates a trace of a concrete simple protocol to a trace of the corresponding symbolic



protocol that is valid (meaning: one that could have been produced by the symbolic adversary and symbolic
protocol):

Mapping Lemma (informal): Let p be a simple protocol, and let Env be an environment (all in the
UC framework). Let t denote the trace of the execution of p with Z and the dummy adversary,
and let t denote the derived symbolic trace. Let p be the symbolic protocol derived from p. Then
t is a valid trace of p, except with negligible probability (over the random choices in t).

In other words, the adversary in the UC setting can do nothing the symbolic adversary cannot also do (except
with negligible probability).

We note that the statement of the mapping lemma is unconditional. Furthermore, it applies even to
computationally unbounded environments and adversaries. In fact, the only source of error in the mapping
is in cases where the environment in the concrete model “guesses” the value of some nonce. Since nonces are
chosen at random from a large enough domain, the probability of error is negligible (in fact, it is exponentially
small in the length of the nonces).

2.4 Mutual authentication

Having established a general correspondence between concrete traces in the UC framework and the symbolic
traces of the Dolev-Yao model, we turn to specific security goals for protocols. Similar to [59] and [7],
we demonstrate that the standard symbolic mutual authentication criterion is equivalent to the standard
concrete criterion. The symbolic criterion essentially states that if a party P successfully completes a session
with the specified peer P’, then P’ has initiated a session with the specified peer P.

The concrete (UC) criterion is formalized via an ideal functionality Foy, which guarantees the same
property: Faoy, waits to receive two session initiation inputs. If the identities in these inputs match (i.e.,
one input is by party P with specified peer P’, and the other is by party P’ with specified peer P) then,
upon request of the adversary, Foy, generates a successful completion output to either P or P’. It is stressed
that both the symbolic and the concrete criteria are formulated with respect to a single session of the
authentication protocol. We then show:

Theorem (informal): Let p be a simple concrete protocol. Then p UC-realizes Foy, if and only if
the symbolic protocol p satisfies the symbolic mutual authentication criterion.

The proof is rather straightforward, given the mapping lemma. On the one hand, it is easy to turn any
symbolic trace of p that violates the symbolic mutual authentication criterion into a strategy for a concrete
environment for distinguishing between an execution of p and the ideal process for Foy,. On the other hand,
given a simple protocol p, we construct a general strategy for a simulator (i.e., an ideal-process adversary)
within the UC framework, such that any environment that distinguishes between real and ideal executions
can be turned into a symbolic trace of p that violates the symbolic mutual authentication criterion. It is in
this last part that the mapping lemma is used in a central way.

2.5 Key exchange

The basic security properties for key-exchange are agreement and secrecy for the output key. The agreement
property states that if two parties P and P’ obtain keys and associate these keys with each other, then the
two keys are equal. The secrecy requirement states that in this case the joint key should be “unknown” to
the adversary. (Note that these requirements neither imply nor are implied by mutual authentication.)

The UC criterion combines agreement and secrecy into a single ideal functionality, Foxz. This functionality
waits to receive requests from two parties to exchange a key with each other, and then hands a secretly chosen
random key to the parties. (Each party gets the output key only when the adversary instructs.)

The traditional symbolic criterion separately requires agreement and key secrecy. The agreement criterion
is straightforward. The secrecy criterion turns out to be less so. The traditional requirement is that the
symbolic adversary be unable to generate the secret key, namely that the symbol that corresponds to the
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secret key is not in the closure of the messages seen by the adversary. This requirement is different in
flavor than standard definitional approach in cryptographic security, where it is typically required that a
secret value be indistinguishable from random. It is tempting at first to believe that, since in the symbolic
model the security guarantees are “all or nothing” in flavor, the ability to symbolically generate a secret and
the ability to distinguish it from random should be equivalent. However, it turns out that this is not the
case: we show that the traditional symbolic criterion is insufficient for guaranteeing security of concrete key
exchange protocols, under any reasonable definition, even if all the cryptography is “perfect.” Our proof
is by counter-example: We show that one of the two Needham-Schroeder-Lowe mentioned earlier satisfies
the traditional symbolic definition of secrecy but not a computational one. Thus, the traditional symbolic
notion of key secrecy cannot imply the UC notion of security for key-exchange protocols. The key insight of
the example is that while the protocol never explicitly leaks the key, it give the adversary an opportunity to
verify candidate values for the key.

We formulate a new symbolic secrecy criterion for the shared key. Unlike the traditional symbolic
criterion, our new definition is not expressed as a predicate on valid traces. Instead, it translates the real-
or-random secrecy criterion from cryptographic definitions of secrecy into the symbolic model. To that end,
we formalize two things: the notion of a symbolic adversary strategy, and the observable portion of a trace
(using public-key patterns due originally to Abadi and Rogaway [4].) Our new symbolic definition of secure
key-exchange requires that, for all adversary strategies, when a given strategy is applied to the protocol, the
observable portion of the resulting trace looks the same when the protocol outputs the shared key as when
it outputs a fresh key symbol (representing a fresh random key). The reader is referred to the Introduction
for a review of other recent and concurrent works that formulate symbolic secrecy in similar ways.

Having defined this new notion of key-exchange security for the symbolic model, we demonstrate that it
is equivalent to the UC criterion. That is, we show:

Theorem (informal): Let p be a simple concrete protocol. Then p UC-realizes Foxp, if and only if
the symbolic protocol p satisfies the symbolic key exchange criterion.

As was the case with mutual authentication, this equivalence holds unconditionally.

The proof proceeds with the same logical structure as before. First, we show how to turn any symbolic
trace of p that violates the symbolic key exchange criterion into a strategy of a concrete environment for
distinguishing between an execution of p and the ideal process for Fox. Next, given a simple protocol p, we
construct a general strategy for a simulator (i.e., an ideal-process adversary) within the UC framework, such
that any environment that distinguishes between real and ideal executions can be turned into a symbolic
trace of p that violates the symbolic key exchange criterion. Here, however, the proof is more delicate. In
particular, demonstrating the second property with respect to the symbolic secrecy criterion requires some
work.

3 The Dolev-Yao model for symbolic encryption

There are several variations on Dolev and Yao’s original symbolic model [31] each of which is tailored to a
specific tool or application. In this section, we formulate a variant which is appropriate for our needs. This
variant is very close to Paulson’s formalism [63] but with the following changes:

We consider only public-key encryption (ignoring symmetric encryption, signatures and so on),
We add a few new messages (for garbage terms, errors, and starting/finishing a protocol),

We partition the set of nonces among the participants and the adversary,

We add the notion of a local output, and

We make explicit the internal states of protocol participants.

3.1 The Message Algebra
We begin by defining the algebra of possible messages.
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Definition 1 (The Message Algebra) The messages of our model are elements of an algebra A. There
are enumerably many atomic messages, divided into the following types:

o Identifiers (M) which are denoted by Py, Ps . ..

e Random-string (Nonce) symbols (R), which are denoted by Ry, Ro ... The set of nonces is partitioned
among the participants: participant P; is given the set Rp, C R. (The adversary, introduced in
Section 3.3, will also be given its own set of nonces R agy-)

o Public keys (Kpup), denoted Ky, Ks. ..

e Garbage terms, written G,G1,Ga . ..

Compound messages are created by two operations:
o encrypt : Kpuyp X A — A
o pair: Ax A— A

Mirroring the standard notation of the symbolic model, write Enc(m; K) for encrypt(K,m) and mi|my for
pair(my, my).t

The algebra is free: Every compound message has a unique representation. In other words, each compound
message can be equated with the “parse tree” which describes the unique way in which the message was
constructed.

Identifiers are used to model the names of protocol participants. Each identifier-symbol is assumed to
name a unique entity. (That is, no name is shared by multiple entities, and no entity has multiple names.)

Random-string symbols are used to represent just that: freshly-generated random bit-strings. It is
assumed that no two random strings are the same. These symbols have two purposes: First, they can be
used as ‘nonces’ to ensure freshness of messages and responses. Second, they can also be used as symmetric
keys (i.e., output by key-exchange protocols).

We assume the existence of a function keyof : M — Kp,, which maps each identifier to one public key.
This function is assumed to be injective but not surjective: a key cannot be associated with more than one
identifier, but there is no requirement that every key be associated with a name. This function is used to
model a PKI infrastructure, and so every principal is assumed to be able to compute this function.

3.2 Symbolic Protocols

A symbolic protocol P consists of a set Lp of roles, each of which describes a program for a protocol
participant. That is, a role describes how a participant should react to an input or an incoming message.
The reaction might involve some state transition, and in addition one out of the following three possibilities:?

1. It might generate a new message M to another participant
2. It might generate a local output.
3. It might do neither.

We represent the third case (no observable reaction) by the symbol L. We represent the first case (sending
a message) by (message, M). To represent the second case, we need to define the set of local outputs. In
addition to messages from the algebra A, local outputs can contain either of two special signals for starting
and ending the protocol. However, such outputs can only contain one such signal, and we assume (for
simplicity) that such signals are also accompanied by a message from the algebra:

1When three or more terms are written together, such as mj|ma|ms, we assume they are grouped to the left. That is,
m1|m2|m3 = pair(pai'r(ml, mg)7 m3).

?In keeping with the UC framework, we allow only one outgoing message or only one input per activation. The sub-
partitioning of a protocol into roles is not explicitly defined within the UC framework, but it can be easily implemented. We
use it here for convenience of use (see the examples in Section 4.4).
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Definition 2 (Outputs) Let the set of outputs O be
O = AU ({Starting, Finished} x A)

To distinguish local outputs from outgoing messages we represent the former as (output, O) for some O € O.
Although each role defines its own transition table, it will be convenient to combine the transitions-tables
of the individual roles into a single transition-table for the protocol as a whole:

Definition 3 A symbolic protocol P is a set of roles Lp, a set of states S and a mapping fp from the set
of states S, the set Lp of roles, an incoming message (either from the algebra A or an empty message €),
and the set M of identities, to a new state and one of:

e | indicating no visible reaction,
o (message, M) for some M € A, indicating a message-transmission, or
e (output,O) for some O € O, indicating a local output.

That 1is,
fr:SxLpx({efUA) x M — ({L}U ({message} x A)U ({output} x 0)) x S

For convenience, we will write ({message, M) ,S) as (message, M, S) and ({output,O) ,S) as (output, O, S).

Remarks: The definition above does not explicitly determine an initial state or a terminating state.
Termination can be represented as a state which transitions only to itself and outputs only 1. We delay
discussion of initial states until the definition of protocol-execution in Section 3.3.

Also, note that the formalism does not strictly require that the transition mapping above be written in
terms of the participants’ states. It could have been written without them, by mapping directly from the
sequence of past inputs and incoming messages to the next message or local output. In fact, most versions
of the symbolic model take this approach and define protocols only in terms of observable behaviors such
as the transmissions and receptions of messages. (See, for example, [68].) However, we include state as an
explicit parameter as it will be useful for translating symbolic protocols to concrete protocols.

Lastly, the definition above does not require that symbolic protocols be efficiently executable. For ex-
ample, it is perfectly valid to define a protocol in which a participant can receive the encryption of any
message under any public key and output the plaintext as its next action. This generality is characteristic of
symbolic approaches. (See, for example, [63] and [68] again.) Although these approaches are often applied
only to efficient protocols, efficient execution is not often required by their proof-techniques and is thus not
required by their definitions.? In this work, however, we wish to only consider protocols that have an efficient
implementation in the UC framework, and so we limit our attention to protocols that are derived from some
concrete, efficiently implementable protocol (see Section 4).

3.3 The Symbolic Adversary and Symbolic Executions

We start with an informal discussion. An execution of a protocol in the Dolev-Yao model starts by assigning
a role and an initial state to each participant involved. Then, each participant reacts to incoming messages
and inputs according to its current state and the transition function of the protocol. As in the UC model,
the participants can generate outputs and receive inputs. Also like the UC model, the participants cannot
communicate directly with each other, but must send messages to (and receive messages from) the adversary
only.

As in the UC model, the adversary does not need to follow the protocol, and can send to participants any
message that it can compute. However, as opposed to the UC model, the symbolic adversary has only limited
power to create new messages. In particular, every message transmitted by the adversary must be derived
from the adversary’s initial knowledge and the messages previously received from honest participants. The
initial knowledge of the adversary includes:

3 A very notable exception to this rule is the spi-calculus approach [2] which does enforce efficient execution.
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1.
2.
3.

All the public keys (Kpup)

The identifiers of all the principals (M)

The random-string symbols which the adversary itself generates (R 44, € R). Because the set of nonces
is partitioned among the participants and the adversary, the set R 44, Wwill not overlap with the set
Rp, for any honest participant P;. (The fact that the adversary cannot generate the random-string
symbols assigned to uncorrupted parties represents the fact that in a concrete protocol the adversary’s
probability of guessing random strings generated by an honest party is negligible.)

. The decryption keys corresponding to public encryption keys in KCa4,. This includes the public keys

for all the parties in M except for the legitimate (and honest) participants in the protocol.

To derive new message, the adversary has access only to a small number of re-write rules:

decryption of messages with known private keys.
encryption with public keys,

pairing of two known elements, and

separation of a pair into its components.

The trace of a Dolev-Tao execution represents the sequence of adversarial activities in an execution, where
each activity is one of the activities mentioned above. More precisely, the trace of a Dolev-Yao execution
consists of events of four kinds:

1.

Initial-input events of the form [“input”, P, o;, P’, S] in which participant P € M is initialized with role
o € L, the identity P’ € M of the peer with which to interact, and initial state S € S.

Input event of the form [“input”, P;,m;] in which participant P € M receives input m; from the
environment,

Participant events of the form [P;, L;, m;], where participant P; € M either sends m; € O to the
adversary or outputs it as a local output, depending on the value of L; € {output, message}.
Adversary events (given in the definition below) which represent the atomic (symbolic) computations
of the adversary.

The above intuitive discussion is formalized in two steps. First, we define the syntactic structure of a
trace, disregarding the question of consistency with a specific protocol. Next, we define what it means for a
trace to be consistent with a given symbolic protocol.

Definition 4 (Dolev-Yao Traces) A Dolev-Yao trace is a sequence of events

Hy H Hy H3 ... H, o H, 1 H,

where H; is an event of one of the following forms. (Below, m; is an element of the algebra A, P; and P’
are participant names in M, L; is either output or message, and i and j are natural numbers.)

An initial-input event of the form [ “initialize”, P;, 0, P', S| which initializes participant P; with role o,
wmitial state S, and with party P’,

An input event of the form [ “input”, P;, m;],
A participant event of the form [P;, L;, m;], or

An adversary event of one of the following forms (where j, k < i):

113

enc”, j, k,m;] (representing the encryption of m; with the public key of my),

“dec”, j, k,m;] (representing the decryption of m; with the private key of my),

113

extract-17, j, m;] (representing the extraction of messages m;’s first component),

[

[

[ “pair”, j, k,m;] (representing the pairing of m; with message my,),
[

[ 113

extract-r”, j,m;] (representing extraction of m;’s second component),
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“random”, R] for some RinR (representing the generation of a new random nonce),

“name”, P] for some P € M (representing introduction of some participant’s name),

“privkey”, K| for some K € Kaqy (representing the introduction of an encryption key), or

[
[
— [“pubkey”, K| for some K € Kpyp (representing the introduction of an encryption key), or
[
[

“deliver”, j, P;] (representing the delivery of message m; to participant P;).

To be a valid trace for a protocol, a trace must be consistent with the protocol and the limits on the
adversary: the adversary-events must represent valid adversary actions, and each participant-event must be
consistent with the protocol’s transition-relation.

Definition 5 (Valid Dolev-Yao Traces) A Dolev-Yao trace
Hy, Hy H, H; ... H,» H,.1 H,

is valid for protocol P if for each H;:

o If H; =[“enc”, j, k,m;], then j,k < i, my € Kpup, and m; = Enc(m;;mg),
o If H, =[“dec”, j, k,m;], then j, k < i, mg € Kagy, m; = Enc(m;;my),

o If H; = [“pair”, j,k,m;], then j,k <i and m; = m;|my

o If H; = [“extract-1”, j,m;], then j < i and mj = m;|my for some my € A,

o If H; = [“extract-r”, j,m;], then j < i and m; = mg|m; for some my € A,
[ ]

If H; = [“indtialize”, P;, 0, P, S], then no previous event of the form [“initialize”, P;, 0, P",S’] has

occurred in the trace (for any participant P or state S’).

o Ile = (Pi,Li, ml) then

1. The event [ “initialize”, P;, 0, P', S| appears previously in the trace (for some o, P’ and S),

2. The previous event in the trace is an adversary trace of the form [ “deliver”, k, P;] (in which case,
let m = my) or [ “input”, P;, m],

3. S; is the current state of P;,

4. P(Si, 0,m, P;) = (L;j,m;, S.) for some L; € {output, message} and S, € S, and

5. S becomes the new state of P;.

4 Simple Protocols

Inspired by [59], we define a class of protocols, called simple protocols, which use only operations from a
small set. In particular, we provide three things: a domain-specific programming language for expressing
simple protocols, a semantics for this language in the UC framework, and a mapping from such protocols
to their Dolev-Yao counterparts. (Said otherwise, we provide two alternative semantic interpretations of a
program written in the devised language: A concrete interpretation in the UC framework, and a symbolic
interpretation in the Dolev-Yao model.

The programming language for simple protocols is extremely limited, providing only a small number of
commands: randomness generation; encryption and decryption; joining and separation; sending, receiving,
and outputting of messages; and equality testing. Despite having relatively few operations, however, this
language can represent a number of prevalent mutual-authentication and key-exchange protocols from the
literature. We provide examples at the end of this section.

The rest of this section is organized as follows. In Section 4.1, we start by defining the certified public-key
encryption functionality, which will be necessary for expressing the UC semantics. In Section 4.2 we define
both the actual syntax of simple protocols and their semantics. Section 4.3 describes the mapping from
concrete simple protocol to symbolic ones. In Section 4.4, we conclude by presenting two specific simple
protocols: the Dolev-Dwork-Naor protocol and the Needham-Schroeder-Lowe protocol. (It is in Section 4.4.2
that we present two two forms of the Needham-Schroeder-Lower key-exchange protocol that we will use as
examples later in the paper.)
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4.1 The Certified Public-Key Encryption Functionality

First, we present the certified public-key encryption ideal functionality, Fcpks. This functionality can be
viewed as providing a “bridge” between the cryptographic notion of CCA-security and the Dolev-Yao ab-
straction of public-key encryption.

Functionality Fcpke

Fcpkr proceeds as follows, when parameterized by message domain M, a formal encryption function E with
domain M and range {0,1}", and a formal decryption function D of domain {0,1}* and range M U error.
The SID is assumed to consist of a pair SID = (PIDowner, SID'), where PID,wner is the identity of a special
party, called the owner of this instance.

Encryption: Upon receiving a value (Encrypt,SID,m) from a party P, where SID = (PIDowner, SID")
proceed as follows:

1. If this is the first encryption request made by P then notify the adversary that P made an
encryption request.

2. If m ¢ M then return an error message to P.
3. If m € M then:

e If PIDowner is corrupted, then let ciphertext «— Ex(m).
e Otherwise, let ciphertext — Ej(1™!).

Record the pair (m,c), and return c.

Decryption: Upon receiving a value (Decrypt, SID, ¢), with SID = (PIDowner, SID’), from PIDgwner, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If this is the first decryption request made then notify the adversary that a decryption request
was made.

2. If there is a recorded pair (¢,m), then hand m to PIDowner. (If there is more than one value
m that corresponds to ¢ then output an error message to PIDowner.)

3. Otherwise, compute m = D(c), and hand m to PIDowner-

Figure 1: The certified public-key encryption functionality, Fcpky

Functionality Fcpgy is presented in Figure 1. The formalization here is based on past formalizations of the
public-key encryption functionality, Fpky, the closest being the one in [20]. Still, the formulation here differs
from previous ones in a number of respects, outlined below. (We assume familiarity with the formulation
of [20] and the motivating discussions for the approach that appear there. Here, we merely highlight and
motivate the main differences between the formulations.)

First, Fopke is intended to represent an instance of a public-key encryption scheme together with a “key
registration service” which provides ideal binding between the public-key and the identity of the owner of the
corresponding decryption key. In Fcpyy, therefore, there is no explicit key generation. Instead, the session
identifier (SID) of Fepky contains the identity of the legitimate receiver of encrypted messages. That is, if an
instance of Fepir has session identifier SID, then SID is of the form <P|Dm,mm,, SID'> where PIDgyner 18 the
party identifier (PID) of the legitimate decryptor. Thus, it is guaranteed that only the legitimate receiver
can decrypt messages.*

Also, Fepki notifies the adversary whenever a party makes the first encryption request. This is intended
to reflect the fact that in the certified public-key setting, the first encryption must be preceded by some
process that retrieves the appropriate key from the certificate authority or other repository. Similarly, the

4The distinction between Fpkp and Fepxg is analogous to the distinction between Fgiq and Fogrr in [22]. There, Fgig
represents a “bare” signature scheme, and Fceprr represents a signature scheme augmented with a trusted registration service
that allows parties to register their public keys. See more details in Appendix B.
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PROGRAM
COMMAND-LIST

initialize(self, other); COMMAND-LIST
COMMAND COMMAND-LIST
done

receive(v);

send(vc);

output(vc);

newrandom(v);
encrypt(vcl, ve2,v);
decrypt(vcl,vc2,v);
pair(vcl,ve2,v);
separate(vc,vl, v2);
test(vcl == vc2);

COMMAND

(Symbols sid, pid, pid2, v, v1, v2 and so on represent program variables. Symbols vc, vcl, ve2 and so on represent
either a variable or constant. The symbol role represents a binary value.

Figure 2: Grammar for Simple Protocols

adversary is notified at the first decryption request to reflect the fact that participants must publicize their
public keys to the certificate authority.

Finally, we need to make the following additional requirement, which does not appear in [20]. For the
mapping lemma to hold, we need that no string will be too likely to be used as a ciphertext by Fepks. In other
words, we need that the formal encryption algorithm E induces a well-spread distribution on ciphertexts:

Definition 6 A function family {fi}ren, fx : M — R, is well-spread if for any ¢ € R, Pr.— (fx(r) =¢)
is negligible in k.

This requirement is equivalent to requiring that the min-entropy of fj is super-logarithmic in k, or that
collisions occur with negligible probability. Also, the requirement that E be well-spread only guarantees that
a given string is used as a ciphertext with at most negligible probability (rather than, say, exponentially
small). Still, the guarantee is unconditional and independent of the adversary.

Recall that a public-key encryption scheme UC-realizes Fpxy (with respect to non-adaptive corruptions)
if and only if it is CCA-secure [20, 24]. Using techniques similar to those of [22] we have that Fepgp (with a
well-spread formal encryption function) is realizable given any CCA-secure encryption scheme, plus an ideal
“registration service” that allows parties to register their public keys, and obtain in an ideally authenticated
way the values registered by other parties. See Appendix B for more details on how Fcpx can be realized.

4.2 The Definition of Simple Protocols

In this section, we provide the programming language for simple protocols. This language contains a small
number of operations for inter-process communication and message-manipulation (including public-key en-
cryption and decryption). For simplicity we restrict the presentation to two-party protocols, where a partici-
pant in a protocol instance has only one peer. First we describe the syntax, or grammar, of simple protocols,
and then we provide the semantics.

Definition 7 (Simple protocols: grammar) A simple protocol is a pair of programs (Ilp,I11), each of
which is given by the grammar in Figure 2.

This language bears many similarities to other languages in the literature. The Cryptographic Protocol
Programming Language (CPPL) [42], for example, also can be used to produce non-looping protocols with
cryptographic messages.® Closer to our purposes, Micciancio and Warinschi [59] also capture a similar notion

51t also contains additional cryptographic operations, and for that matter, has a compiler.
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of simple protocols (though not by that name) via a grammar for cryptographic protocols with Dolev-Yao-
style messages and public-key encryption.

Our grammar, however, differs from these two previous examples in one major respect. In both the
language of [59] and CPPL, one defines a protocol by specifying only the messages. That is, these languages
do not explicitly represent the internal actions of the participants. For our purposes, however, it will be
essential that we formalize the internal state and actions of honest participants. In particular, we will need
to be able to specifically discuss the points at which a participant encrypts or decrypts a message, and so
we make such actions explicit in our grammar.

UC semantics of simple protocols. The semantics of a simple protocol is rather straightforward: It is
a protocol in the UC framework in which the participants execute the relevant programs. However, there
are a few points worth noting:

e The syntax of Definition 7 defines a simple protocol to be a pair of programs, (Ily,I1;). In keeping with
UC framework, however, the semantics of a simple protocol will be phrased in terms of one Turing
machine. This single Turing machine will encode both sides of the protocol, and can be initialized
(through its initial input) to execute exactly one of those two sides.

e This initial input of a UC protocol corresponds to the initial statement of every simple protocol:
initialize(sid, pid, role, pid2,v). This will initialize the Turing machine with a session identifier, SID,
a party identifier, PID, a boolean variable role for the role, and the PID of its peer pid2. The machine
runs the program Il,,., and will use its SID and PID in the calls to Fepkg, as described next.

e All encryption and decryption operations are performed by calling Fepy with session identifier (SID, PID)
and the appropriate parameters. We note that the use of the session and party identifiers is crucial for
the separation among the various instances of Fpky. It is also crucial for the cryptographic realization
of Fepkr; see Appendix B.

e For convenience, the code will enforce a type-scheme like that of the Dolev-Yao framework. It will
do so by “tagging” bit-string values with their type. That is, we let the ITM implementing a simple
protocol tag all variables with a string describing their type. Specifically, A PID is tagged as “name,”
the SID for an instance of Fepky is tagged as “pubkey,” a random value is tagged as a “random,” and
the output of a Fcpig instance is tagged both as an “ciphertext” and with the SID of the Fcpki instance
that produced it. Furthermore, messages which represent pairs also contain enough information to
uniquely determine the two components of the pair.

e To match the UC framework, the semantics will deliberately distinguish between ‘waiting’ (i.e., entering
a waiting state and ‘terminating.” In the UC framework, a Turing machine will enter a waiting state
whenever it produces a communication or output. It can then be re-activated to continue computation.
When a Turing machine ‘terminates’ however, it has ceased computation. If re-activated, it will simply
re-terminate without producing any communication or output.

‘write’ operation.

e Lastly, recall that simple protocols have no loops and their length must be bounded by constant with
respect to the security parameter. Furthermore, all of the allowed operations will execute in time
polynomial in the security parameter. Consequently, simple protocols run in polynomial time.

More formally:

Definition 8 (Simple protocols: semantics) The UC simple protocol associated with a pair of programs
(Tp,I1;) is an ITM M. The transition function for this machine is defined over states Sy = {init} U Sy U Sy,
where init represents the initial state of M and each state in S; (for i € {0,1}) represents three things:

1. The program I1;,
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2. A program program counter ¢; which indicates the ‘current’ command of 11;, and

3. A store ¥; which holds a mapping of variable names in II; to locations on the work tape.

The transition function over these states encodes the execution of either program Iy or I1y. (For convenience,
we will describe this execution in terms of the program 1l;, counter c; and store ¥; directly, rather than in
terms of states s = (I1;, ¢;, ;).

o IfM is in the initial state init, then it will read the following information off its input tape:

The security parameter k,

An ID= (SID, PID),

A role r (either 0 or 1),

A PIDy which represents the party ID for the other participant of this protocol execution.

It then initializes the store to be a default garbage value }HV |, except for

%, (self) = ( “name”, SID, PID)

Y, (other) = (“name”,SID,PID;) .

It also sets the program counter ¢, to the second statement of program I1,., and executes that statement.

o After initialization, the behavior of M depends on the command of I1; indicated by the counter c,:

receive(v): If a receive command has already been executed this activation, M will wait to be
re-activated. If not, or after re-activation, M will read message from communication tape and store
i v. It will then proceed to next command.

send(vc): It will write the value of vc on output tape, set the program counter, and wait for
re-activation.

output(vc): It will write value of vc to local output, set the program counter, and wait for re-
activation.

newrandom(v): It will generate a k-bit random string r, store ( “random”,r) in v, and proceed to
next command.

encrypt(vcl,ve2,v): It will send (Encrypt, (vcl,ID,),vc2) to Fopie with SID = (SID, vcl), receive
¢, and store { “ciphertext”, c,vcl) in v. It will then proceed to next command.
decrypt(vcl,ve2,v): It will send (Decrypt, (vcl,ID),vc2) to Fepks, receive some value m, and
store m in v. It will then proceed to next command.

pair(vcl,ve2,v): It will store ( “pair”,c1,09) in v, where o1 and o2 are the values of vel and vc2,
respectively. It will the proceed to next command.

separate(vc,vl,v2): If the value of vc is { “pair”, o1, 02), M will store o1 in vl and oo in v2 (else,
M will terminate). It then will proceed to next command.

test(vcl == vc2): It will evaluate vcl and ve2. If they are equal, M will continue. (Otherwise, M
will terminate.)

Having provided both the syntax and UC semantics for simple protocols, we turn to their symbolic interpre-

tation.

4.3 Symbolic semantics of Simple Protocols

The structure of simple protocols allows us to associate a Dolev-Yao counterpart with any simple protocol.
We note that the translation of simple protocols to symbolic protocols is phrased entirely in terms of the
grammar of Definition 7, and does not explicitly use the ITM representation of the protocol. Still, given an
ITM representation of a simple protocol it is straightforward to extract the original program in the grammar
of Figure 2, and the corresponding symbolic protocol.
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Definition 9 (Symbolic semantics of simple protocols) Let p = (Ilp,II1) be a simple protocol. Then
P is the Dolev-Yao protocol where:

o The set Sy of states of the protocol p are tuples, containing

1.
2.

A program counter c, specifying which is the ‘next’ command of the program to execute, and
A store function ¥ from variables to elements of A. For simplicity, ¥ will also map constants to
themselves. Furthermore, the store will begin with names (in M) for variables self and other.

In addition, there is a special ‘finished’ state S, .
e The roles of the protocol are L5 = {0,1}

o The

mapping fg is defined as follows. (Recall that the function f is defined in Definition 3.) If the

state S is the ‘finished’ state Sy, then for all (¥,¢) € S5, 0 € L5, me A and A € M,

fﬁ(S, o,m, A) = (L, SJ_)

Else, if S = (£, ¢), then f5(S,0,m, A) is defined inductively on the sequence of commands in Iy and

Hl.'

If ¢ points at a command of the form receive(v), then
J((5, 0,6, A) = (L, (%,0).

For m # ¢,
fﬁ((zv C)a o,m, A) = fﬁ((zla Cl)a 0, €, A)

where ¥ is exactly equal to o except that X' (v) = m and ¢ points to the command after that
pointed to by c in I1,.
If ¢ points at a command of the form output(vc), then

f5((2,¢),0,m, A) = (output, X(vc), (X,c))

where ¢’ points at the next command in II,.
If ¢ points at a command of the form send(vc), then

fﬁ((za C)v 0, m, A) = (messagev Z(VC), (E? Cl))

where ¢’ points at the next command in I1,.
If ¢ points at a command of the form newrandom(v), then

Fol(S.¢), 0,m, A) = f5((', ), 0,m, 4)

where ' points to the command after that pointed to by c in II, and X' is exactly equal to ¥ except
that X' (v) is set to the first nonce-symbol in R 4o not already in the range of 3'.
If ¢ points at a command of the form encrypt(vcl,ve2,v), then

f5((2,¢),0,m, A) = f5((X',),0,m, A)

where ¢’ points to the command after that pointed to by c in II, and X' is exactly equal to X except
that

x X/'(v) = Enc(X(ve2); 3(vcl)) if X(vcl) is a public key, and

x X/'(v) = G otherwise
If ¢ points at a command of the form decrypt(vcl,ve2,v), then

f5((2,¢),0,m, A) = f5((X', ), 0,m, A)

where ¢’ points to the command after that pointed to by c in 11, and X' is exactly equal to ¥ except
that
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* X/'(v) = m if £(ve2) = Enc(m; 3(vcl)), and
x X'(v) =G otherwise
— If ¢ points at a command of the form pair(vcl,vc2,v), then

fﬁ((z’ C), 0, m, A) = fﬁ((z/7 C/), 0, m, A)

where ¢ points to the command after that pointed to by c in 11, and Y’ is exactly equal to ¥ except
that ¥'(v) = X(vcl) B(vc2)
— If ¢ points at a command of the form separate(vcl,vc2,v), then there are two cases:
1. If ¥(vcl) = mlm2, then

5((2,¢),0,m, A) = f5((X',),0,m, A)

where ¢ points to the command after that pointed to by c in I, and X' is exactly equal to ¥
except that ¥'(v1) = ml and ¥'(v2) = m2.
2. FElse,
f5((3,¢),0,m, A) = (L,S1

— If ¢ points at a command of the form test(vcl = vc2), then:
x If B(vcl) = X(ve2) then

f5((Z,¢),0,m, A) = f5((Z,¢),0,m, A)

where ¢’ points to the next command in I1,.
« If B(vcl) # X(ve2) then
fﬁ((zv C)a 0, m, A) = (J—v SL)

— If ¢ points past the last statement in the program, then

fﬁ((zvc)a o, m, A) = (J-v SJ_)

4.4 Examples

Having defined the language of simple protocols, and two interpretations for them, we show that this language
is expressive enough to express some well-known protocols. We start with the Dolev-Dwork-Naor protocol
and the Needham-Schroeder-Lowe (NSL) mutual authentication protocols based on public key encryption.
We also provide two extensions of NSL to a key-exchange protocol.

4.4.1 The Dolev-Dwork-Naor protocol

By the “Dolev-Dwork-Naor protocol” we mean the “message authentication” protocol from the Dolev, Dwork
and Naor paper on non-malleable encryption [29]. (Although we do not consider the specific goal of message
authentication in this paper, we still find this protocol to be a useful demonstration of simple protocols.) In
this protocol, the initiator (A) wishes to authenticate® a message (m) to the responder (B). It begins with
the initiator sending the message in question to the responder:”

A—B:m

The responder chooses a random bit-string (r) and encrypts the message and this string in the initiator’s
public key:
B — A: Enc(rlm; K,)

6That is, guarantee message integrity and sender identification.
"For convenience, we will use the Dolev-Yao notation for this exposition.
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Initiator (M;ni): Responder (M,csp):

initialize(self, other); initialize(self, other);
pair(self, other,0l); receive(il);
send(ol); separate(il, other’, self’);
receive(m2_r_enc); test(self == self’);
decrypt(m2_r_enc,r); test(other == other’);
send(r); newrandomn(r);
pair(Finished, rest,0); pair(m’,r,m_r);
output(0); encrypt(p2, m_r,m_r_enc);
done; send(m_r_enc);
receive(r2);

test(r == r2);
pair(Finished, m’,o);
output(o);

done;

Figure 3: The Dolev-Dwork-Naor protocol. pl is the initiator (sender), p2 is the responder (recipient), s is
the session ID, and m is the transmitted message.

The initiator decrypts and verifies the ‘message’ component of the plaintext. If the message component is
the message in question, it releases the ‘random’ component:

A—B:r

The simple protocols for the Dolev-Dwork-Naor protocol are in Figure 3.

4.4.2 The Needham-Schroeder-Lowe protocol

The Needham-Schroeder (public-key) protocol was originally proposed by Needham and Schroeder in 1978 [61].
It is unclear what formal security goals this protocol was proposed to fulfill: few formal, appropriate defini-

tions existed in 1978. Since that time, however, the protocol was most commonly associated with the goal

mutual authentication. Informally speaking, this goal requires that A only successfully complete a run of the

protocol with input B only if B has begun a run of the protocol with input A, and the same from B to A.

(We define this security goal more formally in Section 6.) However, it was shown by Lowe in 1995 that the

protocol fails to meet this goal and that a ‘fixed’ version does [51, 52].

In this section, we present the “Needham-Schroeder-Lowe” protocol: the Needham-Schroeder protocol as
fixed by Lowe. We also discuss how this protocol might be extended to also act as a key-exchange protocol:
one by which the two participants come to agree on a shared key for symmetric encryption. (We define this
security goal more formally in Section 7.1.) In fact, we will provide two such extensions, which we will later
use to motivate our new definition of symbolic security for key-exchange protocols(Section 7.2).

At its most basic form, the Needham-Schroeder-Lowe protocol consists of three messages between an
initiator A and a responder B. Both parties are assumed to have the public key of the other party. The
initiator A begins the protocol by generating a new random-string symbol (denoted N, for its original
designation as “A’s nonce”). The first message consists of A’s name and this string, encrypted in B’s public
key (Kp).

A — B : Enc(A|Ny; Ki)

B, upon receiving this message, creates a random string N, of its own. It then sends back its name, the
received random string, and the new random string—all encrypted in A’s public key:

B — A: Enc(B|Ny4|Ny; Ka)
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Initiator (Minit): Responder (M ¢sp):

initialize(self, other); initialize(self, other);
newrandom(na); receive(a_na_enc);
pair(self, na,a_na); decrypt(self,a_na_enc,a_na);
encrypt(other, a_na, a_na_enc); separate(a_na,a, na);
send(a_na_enc); test(a == other);
receive(b_na_nb_enc); newrandom(nb);
decrypt(self, b_na_nb_enc, b_na_nb); pair(other, na, b_na);
separate(b_na_nb, b, na_nb); pair(b_na,nb,b_na_nb);
test(b == other); encrypt(other,b_na_nb, b_na_nb_enc);
separate(na_nb, na2, nb); send(b_na_nb_enc);

test(na == na2); receive(nb_enc);
encrypt(other, nb, nb_enc); decrypt(self, nb_enc, nb2);
send(nb_enc); test(nb == nb2);

pair(self, other,a_b); pair(self,[z] b_.ax);
pair(a_b,[z],a_bx); pair(Finished,b_a_x, out);
pair(Finished,a_b_x,out); output(out);

output(out); done;

done;

Version 1: z=na (Initiator’s nonce output as secret key)
Version 2:  x=nb (Responder’s nonce output as secret key)

Figure 4: The Needham-Schroeder-Lowe protocol for key exchange.

A, upon receiving this message, checks two things: that the first component is the name of the intended
responder, and that second component is the random string that it recently created. If so, it re-encrypts the
third component in B’s public key:

A — B : Enc(Ny; Kp)

At this point, A terminates and signals a successful protocol execution. B will do the same upon receiving
the third message iff the plaintext is its recently-generated random string.

Figure 4 holds the simple programs for the Needham-Schroeder-Lowe initiator and responder roles. In
particular, it specifies two versions of these roles which differ only in the values they output. As described
by its authors, the Needham-Schroeder-Lowe protocol has no defined outputs. It has been later noted,
however, that the participants of this protocol exchange random strings and that either of these strings
might subsequently be used as a symmetric key. We incorporate this observation into our simple programs
by having both roles output one of the two random strings to be used as a symmetric key. In the first
version of this protocol, the participants output the random string chosen by the initiator, and in the second
they output the random string chosen by the responder. In Section 7 we show that Version 1 is a secure
key-exchange protocol but that Version 2 is insecure. Before we can do so, however, we must introduce a
crucial technical lemma.

5 The Mapping Lemma
This section presents the Mapping Lemma, sketched in Section 2.3. Recall that this lemma states that

for any simple protocol, the computational adversary (in the UC setting) has only a negligible chance of
producing executions that do not correspond to an execution of a Dolev-Yao adversary. Our presentation
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Activation The resulting event, E

Environment initializes a party with SID, PID, PID1, and [initialize, (SID, PID), (“name”, SID, PID) , (“name”, SID, PID1)]
role.

Adversary deliver message m to party PID [adv, (PID, m].

Adversary outputs message m to the environment (No event is added to the trace)

Party (SID, RID) generates local output m output, PID, m|

[
Party (SID, RID) generates a message m [message, PID, m]
Fcpke is called via (Encrypt, (SID, PID) ,m) and returns [ciphertext, (SID, PID) , m, c|
ciphertext ¢ #.1
Fepke is activated via (Decrypt, (SID, PID), ¢) and returns [dec, (SID, PID) , ¢, m]
message m #.L

Figure 5: The translation of activations to abstract events. These events are used internally by the transfor-
mation of concrete traces into symbolic ones. Activations that do not result in events are not listed.

proceeds in a number of steps, as follows:

1. We define the trace of a protocol-execution in the UC setting with a particular environment and on a
particular input.

2. We define a mapping between such traces and traces of symbolic executions.

3. We show that, for any environment, and except with negligible probability, the trace of running the
environment with a given protocol p maps to a wvalid Dolev-Yao trace against the symbolic protocol
Puc

Although simple in intent, these three steps require a great deal of technical formalism. The reader may
wish to skim or skip this section on a first read.

First, we define the trace of a protocol-execution with a particular environment. (Recall that without
loss of generality the adversary is assumed to be the dummy adversary. See Appendix A.) Intuitively, the
trace of an execution is a sequence of events, each produced by the activation of either the environment, an
honest participant, or an instance of functionality Fpke. Each activation produces either zero or one events,
and the event (if produced) records the type of activation, the party activated, and any relevant inputs and
outputs.

Definition 10 (Traces of concrete protocols) Let p be a simple protocol. Then define TRACE, z(k, 2),
the trace of executing protocol p with the dummy adversary and environment Z on input z and security param-
eter k, to be the distribution of the sequences of events E1||Ez]| ... E, produced by translating each activation
in an execution in EXECp z(k, z) into an event according to the description in Figure 5. (EXEC, z(k,z) is
defined in Appendiz A.) Let TRACEp z denote the ensemble {TRACE, z(k, 2) bren e {0,1}* -

Next, we define a mapping from concrete traces to symbolic traces. This mapping is defined as the output
of a ‘two-pass’ computation, i.e. an algorithm that scans the concrete trace twice. The first pass builds a
partial function from concrete messages (namely, binary strings) to Dolev-Yao messages (namely, elements
from the algebra); the second pass uses that function to map concrete events to events in the Dolev-Yao
trace. We use two phases for clarity; in particular, because a ciphertext may appear in the trace well before
it is actually decrypted by Fcpkg, the translation of a concrete ciphertext to a symbolic ciphertext might
require knowledge of events that occur later in the trace. To handle this dependency, we first scan the trace
to observe all calls to Fepky, and update the partial map accordingly. We then use this information to actually
perform the concrete-to-symbolic mapping on a second pass.

For simplicity, we assume that the atomic symbols of the Dolev-Yao message algebra are ordered in some
way. This is solely so that we may meaningfully speak of the ‘first unused’ symbol of any given type.

Definition 11 (The mapping from concrete traces to symbolic traces) Let p be a simple protocol
and let t be a trace of an execution of p with security parameter k, environment Z with input z and some
fized random input for the involved parties. We define the mapping t of t to a Dolev-Yao trace t to be the
output of the following two-pass algorithm.
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1. In the first pass, the algorithm reads through the trace t character by character, in order, and builds a
partial mapping f from {0,1}* to elements of the algebra A according to the cases below. (Note that
the patterns below may be nested and overlapping. A pattern is recognized as soon as the last character
in the pattern is read.)

e The dedicated UC garbage string }1V| is mapped to the symbolic garbage symbol G.

e When recognizing a pattern {“name” SID,PID): if f({“pid”,SID,PID)) is not yet defined, then
f((“pid”,SID,PID)) := P where P is the first element of M not in the range of f so far. Also,
if f({“key”, (SID,PID))) is not yet defined, then f({ “key”, (SID,PID))) := K where K is the first
element of Kpyupy not yet in the range of f.

o When recognizing a pattern { “random”; o) : if f({ “random”, c)) is not yet defined then f({ “random”, o)) :=
N where N is a nonce symbol. If the current trace event being scanned is an adversary event, then
N is the first symbol in R a4, not already used in the range of f. Otherwise, N is the first symbol
in Np not in the range of f, where P = f({“name”,SID,PID)) and PID is the active principal
i the event, namely PID 1is the principal sending the message or output, or receiving the input,
ingtialization, or ciphertext. (Note that f({ “name”,SID,PID)) is guaranteed to be defined at this
point.)

e When recognizing a pattern (“pair”,o1,02): If f(o1) is not yet defined then f(o1) := G, where
G is the garbage symbol. Similarly, if f(o2) is not yet defined then f(o2) := G. Finally,
f({“pair”,o1,02)) := f(01)|f(02).

e When recognizing a pattern ( “ciphertext”, (SID, PID) ,m, c): At this point both f(m) and f({ “pubkey”, (SID, PID)))
must already be defined. If f({ “ciphertext”, (SID, PID) , c)) is not defined, then f({ “ciphertext”, (SID, PID) , c))
:= Enc(f(m); f({ “key”, (SID, PID)))).

e When recognizing a pattern { “dec”, (SID,PID),c,m): If f(m) is not yet defined, then f(m) :=
G, where G is the garbage symbol. Next, if f({“ciphertext”, (SID,PID),c)) is undefined, then
F{({“dec”, (SID, PID) ,¢)) := Bne(f(m); /({ “ey”, (SID, PID}))).

2. In the second pass, the algorithm constructs the actual }4V| Dolev-Yao trace. Let t = E4||Eq||...||E,
be the concrete trace. Then the resulting Dolev-Yao trace t is produced simulating the execution of the
Dolev-Yao participants. That is, it creates a store (initially empty) to hold a state for each (PID, role)
pair, where states are as defined in Definition 9. It then steps through the events of the concrete trace
as follows.

e IfE; = [initialize, (SID, PID), ( “name”, SID, PID) , { “name”, SID, PID4)], then find P; = f({ “name”, SID, PID)),
P’ = (“name”,SID, PID1), and generate the symbolic event H = | “initialize”, P;, 0, P’, S] where o
1s the given role.

e IfE;, = [output, PID, m| then E; is mapped to the symbolic participant event
[f((“PID”,PID)), output, f(m)].

e IfE; = [message, PID, m] then E; is mapped to the symbolic participant event
[f({“PID” PID)), message, f(m)].

e IfE = [adv,PID,m], then let m = f(m). There are two cases:

(a) There exists a finite sequence of adversary events that produces m; from previous messages of
the trace. Then E is mapped to this sequence of events H;,, H;5... H;  so that the message
of H; yy—1 is m; and H; ,r = [ “deliver”, (i,n’ — 1), P'] (where P’ is the Dolev-Yao name of the
concrete participant who received the message from the concrete adversary).

(b) Otherwise, m is not in the above closure. In this case, E maps to the Dolev-Yao event
[ “fail”, m;].

25



We now show that the mapping defined above is valid. That is, we show that if t is a trace of a simple
protocol p then t is a valid Dolev-Yao trace of the symbolic protocol p, except for negligible probability. We
need to take care of several issues. First, we need to show that the actions of the concrete participants map
to valid actions of the symbolic participants. That is, the messages from the execution of concrete protocol
p map only to symbolic messages that are compatible with the symbolic protocol p. Secondly, we need to
show that the concrete environment is no more powerful than the symbolic adversary. That is, the trace t
does not contain adversary messages whose symbolic interpretations are beyond the ability of the symbolic
adversary to produce.

In the following lemma, we show that these failures occur only with negligible probability, and thus any
concrete execution is almost always mapped to a valid symbolic interpretation. In fact, the only potential
cause for error is the event where the environment guesses either the value of a random string chosen by an
uncorrupted party or the value of a ciphertext generated by Fcpgg.-

Lemma 12 For all simple protocols p, environments Z, and inputs z of length polynomial in the security
parameter k,
Pr [t «+— TRACE, z(k, 2) : t is not a valid DY trace for p] < neg(k)

Proof: Let t be a trace of a simple protocol p. We first show that the probability that t includes an event
of the form [“fail”, m;] is negligible. Next, we show that whenever t does not include such an event, it is a
valid DY trace of protocol p.

Let my, mg, ... denote the messages that appear in the [message,...] events in t, in order of appearance.
Suppose that adversary event of the form [“fail”, m;] occurs, which means that the concrete adversary created
a message m; which cannot be created through a sequence of symbolic-adversary computations We show
that the odds of such an event are negligible:

Let C[S] be the set of symbolic terms that can be generated from ‘initial set’ S C A through a sequence
of adversary actions. (These actions can include the introduction of public names, public keys, and nonces in
Radv.) Thus, C[m; : j < i| is the set of messages that can be generated from messages in the trace previous
to m;, and the situation in question is that m; & Clm; : j < ).

With this in mind, examine the parse tree of m;.® By definition, membership in C[{m; : j < i}] is closed
under pairing and encryption. Thus, if two siblings in the parse tree are both in C[{m; : j < 4}], then their
parent is in C[{m; : j < i}] as well. Consequently, if every path from root to leaf in the parse tree of m; has
a node in C[{m; : j < i}], then m; € C[{m; : j < i}] as well—a contradiction. Thus, there exists some leaf
m; in the parse tree of m; such that the path to m; has no node in C[{m; : j < i}].

However, since m; is in t, we have that in t the adversary has generated a bit-string m that was mapped
to to m;. Call this adversary Ag. Then there exists another adversary, A; that can produce a bit-string m.,
which parses to m,, where m, is a message on the path from m to m;:

e If the path contains a message Enc(m’; K) which is also not in the set C[{m; : j < i}] but is a sub-
encryption (i.e., it appears in the plaintext of some outer encryption) of some m; (j < ¢), then m, is
the first such message.

e If not, then m, = m;.

A; first simulates Ay to produce m, and then recursively walks down the parse tree of m; to m, by applying
deconstructors:

e If m; is a pair mj|ms, then A; separates m = (“pair”, o1||o2) into o1 and oy and recursively operates
on one of them (depending on whether m, is a leaf of m; or my).

e If m = (“ciphertext”, o), then A; adversary must “decrypt” o to continue down to m;. That is, A;
must produce what Fepke would return to the appropriate honest party when called with (Decrypt, o).

8The parse tree of a message is the (unique) tree whose root is the message, and there is an edge from node m to nodes m/
and m/’ if there is a derivation rule in the algebra A that derives message m from messages m’, m/’’. Note that the leaves of the
tree are the basic symbols in A. Also, the out-degree of a node is at most 2.
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As mentioned before, m; € C[{m; : j < i}]. If m; is a sub-encryption of some m; (j < i), then m; = m,
and no further decomposition is necessary. Else, A; must “decrypt” o. If the pair (m, o) is stored in
Forxe (for some m) then because m; is not a sub-encryption of any m; (j < 4) it must be that the
call (Encrypt,m) was made to Fepgr by Ag. Hence, A; (which simulates Ap) records and recalls the
message m which is the “decryption” of o, and recursively operates on it. If, on the other hand, no
pair (m, o) is stored in Fepgp, then the decryption of o is the result of D(o), where D is an algorithm
supplied by Ag. Thus, A; runs D itself to learn the decryption of o.

By recursively applying the above deconstruction operations, A; produces a string m, that maps to m,.There
are two possibilities.

First, m, could be an atomic symbol of the Dolev-Yao algebra which is not in C'[{m; : j < i}]. Notice that
the only atomic symbols that are not in the initial view of the adversary are the random-number symbols
(i.e., symbols in R) that were not generated by the adversary. However, if m, is not in the closure of the
adversary’s view, then the view of A; is completely independent from the string m.. (Independence is argues
as follows. If m, is never included in the parse tree of a message seen by A; then independence is trivial.
The only way for m, to be included in the parse tree of a message seen by A; and still not be in the closure
of Ai’s view is if m, is sent encrypted. However, in this case independence is guaranteed by the code of
Fepks-) Also, since m, was generated by a protocol participant, then we know it is chosen uniformly from
{0,1}*. Thus the probability that A; generates the string m, is 27*. Since there are at most a polynomial
number of k-bit strings in the view of A;, we have that the overall probability that A; generates a string that
maps to m, is poly(k)-27*. This means that the probability that t includes an event of the form [“fail”, m;]
is poly(k) - 27 which is a negligible function.

The second possibility is that m, is of the form Enc(m’; K) and is a sub-encryption of m; (j < ).
However, since m, is not in C'[{m; : j < i}], it is also the case that the view of A; is completely independent
from the string m.,. The value of m, was produced by selecting a random r, and then evaluating the well-
spread function Eg(r). By the definition of well-spread functions, the probability that the adversary can
produce Eg(r), for randomly chosen r € M, is negligible in k. Thus, the adversary has only a negligible
chance of creating the encoding of a m; ¢ C[m; : j < ¢], which means that the event [“fail”, m;] occurs with
only negligible probability.

It remains to show that, whenever event [“fail”, m;] does not occur, the trace t is a valid trace for p.
By definition of the fail event, we have that all the adversary events in t are valid. We now show that the
participant events in t are valid as well. Suppose that a participant event of the form (P}, L;, m;) occurs.
Then we need to show that

P(Sj, 0;, M, Pl) = (Li, m/, Sl)

where

1. The previous event in the trace is an adversary trace of the form [“deliver”, k, P;] (in which case, let
m=my),

2. The event [“initialize”, P;, o;, P’, S| appears previously in the trace (for some o, P’ and S), and
3. 8 is the current state of P;.

However, these facts follow immediately from the definition of the symbolic counterpart of a simple
protocol (Definition 9). The symbolic protocol defined by that mapping exactly mirrors, on the symbolic
level, the UC semantics of the simple protocol. Both the simple protocol and the corresponding symbolic
protocol maintain a store (i.e. mapping) from variables to values. Both protocols also maintain a program
counter, and modify the store as the program counter steps through the program. Furthermore, the symbolic
protocol enforces that for all roles and at all points in the execution, if ¥}, is the store of the UC ITM
running role 7, Eiymb is the store of the symbolic participant running role ¢, and for all variables v,

iymb(v) = f ( ;]C(V)) )
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where f is the mapping created in part 1 of Definition 11. We conclude that the trace t is a valid trace for
p.- O

6 Symbolic analysis of UC mutual authentication

In this section, we demonstrate that one can use symbolic analysis to prove that a given simple protocol
is a secure UC mutual authentication protocol. We do this in three steps. First, we formulate the ideal
mutual authentication functionality, Foy,. Next, we formulate a symbolic criterion that represents mutual
authentication for symbolic protocols. Lastly, we show that a simple protocol p UC-realizes Fo,, if and only
the corresponding symbolic protocol p satisfies the symbolic criterion.

As discussed in the Introduction, the results in this section follow in the footsteps of Micciancio and
Warinschi [59]. Our results differ from theirs, however, in three ways. First, our concrete protocols are simple
protocols that use Fcpxp rather than a fully instantiated encryption scheme. This allows our analysis to be
simple and unconditional, yet still apply to concrete protocols via the composition theorem. Secondly, the
composition theorem allows us to simplify our analysis even further by considering only a single execution of
the protocol execution, while the analysis of [59] directly deals with the much more complex multi-execution
case. Lastly, our result provides a strong security and composition guarantee which is not present in the
results of [59].

When formalizing the definition of mutual authentication, one is presented surprisingly many choices. The
intuition is simple: when one participant in a protocol terminates, it should be the case that the correct
other participant has at least begun and it has the right peer in mind. However, this simple statement
leaves several questions unanswered. Should a protocol guarantee that when one participant has finished
the protocol, the other participant has finished as well as begun? (Although the protocol might guarantee
this for one of the two participants, however, it cannot guarantee this for both.) Should the two participants
agree on their respective roles? For example, is it an error if two participants successfully complete the
protocol, but both are running the role “initiator?” And as a last example, should the protocol enforce a
bijection between successful outputs of the protocol made by the two participants? That is, if the initiator
started the protocol, is it an error for there to be two or more outputs by the responder?

For simplicity, we will use in this paper the most basic variant of mutual authentication. That is, we
only guarantee that if a party P outputs success then the other party at least began the protocol with peer
P. There is no guarantee that the roles are different, and non-equivalent outputs are allowed. Our results,
however, can be easily applied to more restrictive forms of mutual authentication.

6.1 The ideal 2-party mutual authentication functionality

The UC definition of 2-party mutual authentication is embodied in the functionality Fay, (Figure 6). The
functionality simply waits until two parties P and P’ have provided input

(Authenticate, SID,P,P’) and (Authenticate,SID,P’ P)

respectively. Then, upon request of the simulator/adversary, it sends a (Finished) output to either party.
Note that it is possible for a party to get multiple (Finished) outputs, and that there is no requirement
that a (Finished) message is received by both parties.

6.2 Dolev-Yao mutual authentication

In this work, we use the well-accepted symbolic definition of mutual authentication:

Definition 13 (Dolev-Yao 2-party mutual authentication) A Dolev-Yao protocol P provides Dolev-
Yao mutual authentication (DY-MA) if all Dolev-Yao traces for P that include an output message ( Finished|P|P’'|m)
by participant P (where P, P’ &€ M a4, ) include also a previous input message {Starting|P|P’'|m’) by P’.
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Functionality Foy,

1. Initially, set a variable Finished to false.

2. Upon receiving an input (Authenticate,SID,P,P’ RID) from some party P, where RID €
{Initiator, Responder}, do:

(a) If this is the first input (i.e., no tuple is recorded) then record the pair (P, P’).
(b) Else, if the pair (P’, P) is recorded then set Finished to true.
(c) In either case, send the pair (P,P’,RID) to the adversary.

3. Upon receiving from the simulator/adversary a request (Output, SID, P”), if P” is either P or P’, and
Finished is true then send Finished to P”. Else, do nothing.

Figure 6: The 2-party mutual authentication functionality

That is, if one party outputs a “finished” message indicating a successful execution, the other party has at
least output a “starting” message indicating that an execution (with matching values for the participants)
has been at least initiated.

6.3 Soundness and completeness of the symbolic criterion

Theorem 14 Let p be a simple two-party protocol. Then p realizes Foys if and only if the corresponding
symbolic protocol p satisfies Dolev-Yao 2-party mutual authentication.

Proof: Assume first that p does not achieve Dolev-Yao secure mutual authentication. Then there exists a
valid Dolev-Yao trace where one party outputs (locally) (Finished|P|P’|m) before P’ outputs (Starting|P’| P, |m’).
Given this trace, we construct an environment Z in the UC framework that simply follows the adversary
instructions in the given Dolev-Yao trace. (More precisely, Z follows the concrete operations that correspond
to the given Dolev-Yao trace.) Also, we point out that this environment is polynomial in the security pa-
rameter: the number of operations in the Dolev-Yao trace is constant, and performing each operation takes
polynomial time in the security parameter.

When the environment interacts with p, this strategy will produce the same result as in the Dolev-Yao
model: one participant will output Finished before the other party outputs (Authenticate,SID, A, B).
However, this same behavior is simply impossible when interacting with the ideal process for Fsy,, since
in that protocol no simulator can force the dummy parties to produce unmatched output. Thus, this
environment can distinguish the ideal execution model from the real execution model with probability 1,
and so the protocol p cannot securely realize Foy,.

For the other direction, we need to show that if p satisfies Dolev-Yao mutual authentication then p
UC-realizes Foy,. Recall that we use the alternative and equivalent formulation where the adversary that
interacts with p is the dummy adversary that simply forwards all messages from the environment to the
parties and back (see Appendix A). That is, we need to show that there exists a simulator S such that no
environment can distinguish between an interaction with the dummy adversary and the concrete protocol,
and an interaction with S and the ideal protocol for Foy,.

The simulator S (shown in Figure 7) essentially simulates an interaction of p with Z in a straightforward
way. That is:

e S internally simulates the participants P, P, and a copy of Fcpy; for each. At the beginning, neither
of these simulated participants are running.

e When the simulator receives a message (P”, P"”’) from the functionality Fsy, (indicating that the exter-
nal dummy participant P” has received input from the environment and has passed it on to Foy,) it ac-
tivates both instances of Fopkg with SIDs (P, SID) and (P’, SID) respectively (if they have not been acti-
vated yet). It then activates the simulated participant ‘P” on input (Authenticate(SID,’ P”/P"”' RID).
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Figure 7: Simulator for Foy,

e When the simulator receives a message from the environment sent to participant P”, it forwards that
input to the simulated copy 'P”.

e Likewise, when simulated participant 'P” produces a message to send on its communication tape, the
simulator sends this message to the environment.

e When simulated participant ’P” produces a message to send an instance of F¢pgg, the simulator forwards
this to the appropriate instance of Fepkp that it is simulating.

e When the simulated participant 'P” produces local output Finished, the simulator sends the message
(Output, SID, P”) to the functionality Foy,.

It remains to show that the simulation is valid. Let Z be an environment. We show that if Z distinguishes
between the interaction with the simulator and Fa,,, and the interaction with the protocol, then Z violates
the mapping lemma (Lemma 12), in the sense that is generates with non-negligible probability a trace
ensemble that translates to a symbolic trace that is not valid for the symbolic version of the protocol:

Fix a value k for the security parameter. We observe that the above simulator produces a perfect simula-
tion except when the following bad event occurs: the simulator sends (Output, SID, P”) to the functionality
Foua, but Foy, does not send Finished to dummy party P”. Furthermore, this event only occurs if the func-
tionality did not previously receive both (Authenticate, SID,P” P”/ RID) and (Authenticate, SID, P’ P” RID).
Because the simulator sends (Output, SID, P”) to Fay,, the simulated participant P” produces an output in-
dicating success. Hence, simulated participant P” must have been started by the simulator, which means
that the simulator must have received (P”, P, RID) from Fay,. Thus, the functionality must have received
(Authenticate, SID,P” P”’), RID. Hence, it must have been (Authenticate,SID,P"”' P”) that was not
received by the functionality Foy,.
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Thus, the simulated party P/ was not initialized in the simulator. If we look at the trace t of the
simulated parties of the execution, it must be that party P” output Finished before party P” output
(Authenticate,SID,P”,P” RID). Thus, in the Dolev-Yao trace t that is constructed from the trace t,
participant P” outputs (Finished|P”|P"”'|m) before participant P"’ outputs (Starting|P”’|P”|m’). However,
the protocol p satisfies Dolev-Yao mutual authentication, and so this trace cannot be valid. Thus the
probability that the environment distinguishes the ideal execution from the real one is the same as its
probability to generate traces that translate to invalid symbolic traces—i.e., negligible. [

7 Symbolic analysis of UC key exchange

In this section, we demonstrate that one can use symbolic analysis to prove that a given simple protocol is a
secure UC key exchange protocol. The structure of this section is similar to that of the previous section: we
first recall the ideal key exchange functionality, Foxs. Next, we formulate a symbolic criterion that represents
key-exchange security for symbolic protocols.(For reasons we explain below, this criterion is not the symbolic
model’s traditional definition of security but a new, novel one.) Lastly, we show that a concrete protocol p
UC-realizes Foxg, if and only if the corresponding abstract protocol p satisfies the symbolic criterion.

7.1 The ideal key exchange functionality

Key-exchange protocols require two security guarantees: an agreement property, establishing that the two
parties share a common key, and a secrecy property for the agreed key. The agreement property requires that
if two parties P and P’ obtain keys and associate these keys with each other, then the two keys are equal.
The secrecy requirement requires that in this case the joint key should be “unknown” to the adversary.

In the UC model, these requirements are both captured in the ideal functionality Foxp (Figure 8). This
functionality waits to receive requests from two parties to exchange a key with each other, and then hands a
secretly chosen random key to the parties. (Each party gets the output key only when the adversary instructs.
Furthermore, the key is guaranteed to be random and secret only if both parties are uncorrupted.”)

Functionality Fokyg

Foke proceeds as follows, running with security parameter k. At the first activation, choose and record a
value k <= {0,1}*. Next:

1. Upon receiving an input (EstablishSession,SID,P,P’ RID) from some party P send this input to
the adversary. In addition, if no pair is recorded, or the pair (P’, P) is recorded, then record (P, P’).
(Note that at most two pairs are ever recorded, and if there are two pairs, then they consist of the
same party identities in reverse order.)

2. Upon receiving a request (SessionKey, SID,P”, l;:) from the adversary, do:
(a) If a tuple (P”,P") is recorded, and P" is corrupted, then output (Finished,sid,k) to P".
(Here the adversary determines the key.)
(b) If P is uncorrupted, then Output (Finished, SID, x) to P”.

(c) If no tuple (P”,P"") is recorded, then ignore the request.

Figure 8: The Key Exchange functionality

9The present formulation of Fogg, is slightly different than the formulation in [20]. But the difference only affects the expected
order of receiving the initial inputs from the parties, and does not affect the secrecy and authenticity properties of the exchange.
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7.2 Dolev-Yao key exchange

Our definition of Dolev-Yao key exchange is somewhat more complex. As in the case of mutual authentica-
tion, the intuition is simple: if both participants terminate, then they must output the same secret symmetric
key R. (Recall that in our version of the Dolev-Yao model, random strings can also be used as symmetric
keys.) However, our symbolic definition of “secrecy” will differ from existing ones. Most previous work in
the Dolev-Yao model defines a ‘secret’ key to be one which adversary is unable to reproduce in totality. By
contrast, the standard definitions in cryptographic security define a ‘secret’ key as one which is indistin-
guishable from random. We show that the traditional criterion is insufficient for guaranteeing security of
key exchange protocols, even if all the cryptography is “perfect.” We will thus use, in this work, a symbolic
criterion the approach which requires that the adversary be unable to distinguish the real secret key from a
random one even when presented with both during the protocol.

We first demonstrate the weakness of the traditional symbolic criterion, via an example. Then, we
formulate the new criterion.

7.2.1 The traditional symbolic criterion

Most previous attempts to formalize a symbolic security goal for key-exchange protocols have the same basic
intuition: A protocol is a secure key exchange protocol if there is no run of the protocol between two honest
and uncorrupted participants in which the adversary also learns the secret key. In our terminology, this
could be stated as follows.

A symbolic key-exchange protocol P is secure if there is no Dolev-Yao trace t valid for P, where
participant P produces an output message (finished|P|P’|R), and where there is an adversary
event containing exactly the symbolic expression R.

That is, the trace may contain adversary events that have messages in which R appears as an (encrypted)
element, but none of these messages will be the expression R.

We show that this criterion does not guarantee key-secrecy in reasonable protocol environments. Specif-
ically, we show an example of a protocol that satisfies the above symbolic criterion, but which is arguably
insecure in any reasonable sense. The protocol is Version 2 of the Needham-Schroeder-Lowe protocol in
Figure 4. (In this version, the key is the random string N; chosen by the responder.) It has been shown that
this protocol satisfies the above symbolic criterion and that N, cannot be produced by the adversary. (See,
for example, [68].) However, consider the scenario where the initiator completes an exchange and locally
outputs N, as its session key. It then begins executing another protocol with the responder, and uses Nj to
send an encrypted message M. Furthermore, the encryption method is one-time-pad, and M is either “buy”
or “sell”. In this scenario, then, the adversary obtains the ciphertext C'= M @ N,. If the it can distinguish
Ny, from a random nonce, note, then it can tell if M is “buy” or “sell.”

How can it do this? Note that the initiator might send this ciphertext before the responder has received
its third message. The adversary knows that the plaintext of the third message is either C' & “buy” or
C @ “sell”. Consequently, the adversary can choose one of these, encrypt it in the responder’s public key,
and send it to the responder as the third message of the Needham-Schroeder-Lowe protocol. The responder
will regard the Needham-Schroeder-Lowe protocol as successfully completed only if the plaintext of the third
message is Np. This, if the adversary can tell whether the responder completed the protocol successfully
(which is a safe assumption) it can also tell if it correctly guessed the value of the plaintext, which in turn
tells it whether the initiator wanted to buy or sell.

We note that the above scenario can be translated to an attack in the UC framework. Indeed, it is possible
to show that this protocol (or, rather, its concrete counterpart) does not UC-realize Foxi. Specifically, suppose
the environment lets the protocol execute normally until the point where the initiator terminates and outputs
N. The environment wishes to learn whether N is the session key of the protocol or a random key generated
by Foxg. It therefore follows the following strategy:

e It chooses a random bit.
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e If it chose 1, it encrypts N in the responder’s public key and sends the ciphertext to the responder.

e If it chose 0, it chooses a random value N’, encrypts that in the responder’s public key, and sends that
ciphertext to the responder.

If the protocol is being executed and N is the valid key, then the ciphertext sent to the responder will be
valid exactly half the time — and the environment knows which half. Thus, the adversary will be able to
predict the participant’s behavior perfectly. If the protocol execution is being simulated, on the other hand,
then both ciphertexts will be completely independent of the simulated execution. Therefore, no simulator
will be able to guess the expected response with probability greater than %, and the adversary’s prediction
will be wrong half of the time. By taking advantage of this gap, the environment will be able to distinguish
between the real and ideal settings with high advantage. Thus, the traditional symbolic criterion (though
interesting and perhaps valid for some contexts) cannot imply that a simple protocol implements F2ke. For
our purposes, then, we need a new symbolic criterion of our own devision.

As a final remark, we note that the other variant of the Needham-Schroeder-Lowe protocol (where the
session keys is N, rather than Np) does not fall prey to the above attack. It is, in fact secure—a fact that
we prove later via an automated analysis (Section 8).

7.2.2 The new symbolic criterion

Our symbolic criterion essentially translates to the symbolic model the approach of “real or random security”
that is typical in cryptographic notions of security. That is, we consider two worlds. In the first, real, world,
the adversary is given the real (symbolic) session key as soon as one participant outputs it. In the other, fake,
world, the adversary is given a symbolic key at the same point, but the symbol so provided is a new fresh
symbol. The key is ‘secret’ if the two situations looks exactly the same to the adversary, no matter how the
adversary behaves. More precisely, we define the adversary strategy as the sequence of adversary deductions
and transmissions made by an adversary in an execution. Then we wish to require that any adversary
strategy will produce the same trace in the both scenarios. While this captures the desired intuition, there
are two technical complications that must be considered:

1. Traces in the fake world will include a key symbol not found in the first world, and so direct equivalence
will be impossible. What we require instead is that, for any adversary strategy, the trace produced in
the real world and the trace produced in the fake world be the same when the fresh key is ex post facto
renamed to the real session key.

2. Although equality after renaming is strong enough to imply security of a protocol in the UC framework,
it is too strong to allow the converse. That is, a Dolev-Yao protocol that satisfies this definition will
correspond to a concrete protocol that securely realizes Fox, but the opposite is not necessarily true.
The reason for this is that the definition, as stated above, requires that the ‘real’ trace and ‘fake’
trace be exactly the same (after renaming). This prohibits the possibility that the two traces might
differ, but only in a way that is unobservable by the adversary. (For example, the two traces might
have different encrypted messages, as long as the encryption key is the same and is not known to the
adversary.) Thus, our final definition requires only that the two traces be equivalent in their observable
behavior. Fortunately, previous work by Abadi and Rogaway [4] (expanded upon by Herzog [43]) has
already captured the observable part of a trace in their definition of a pattern. Thus, we will only
require that the patterns of the ‘real’ trace and the ‘fake’ trace be the same.

We formalize this criterion as follows. First we define the notion of an adversary strategy. This definition
specifies the sequence of operations performed by the adversary in a given execution. It is different from
the trace in that it does not specify the actual symbols being processed, and can thus be thought of as the
“code” of the symbolic adversary. Next, we define the notion of a public pattern of a message.

Definition 15 (Adversary Strategy) Let an adversary strategy be a sequence of adversary events that
respect the Dolev-Yao assumptions. That is, a strateqgy V is a sequence of instructions I, I...I,, where
each I; has one of the following forms, where i, j, k are integers:
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o [“receive”, ]

o [fenc”, j, k1]

[“dec”, j, k]

o [“pair”, j, k.1l

[ “extract-17, j,1]
o [“extract-r”, j,i
o [“random”, i

o [“name”, ]

[“pubkey”, i
o [“privkey”, ]
o [“deliver”, j, P}

When ezxecuted against protocol P, a strategy U produces the following Dolev-Yao trace W(P). Go over the
instructions in U one by one, and:

o For each [ “receive”,i| instruction, if this is the first activation of party P;, or P; was just activated with
a delivered message m, then add to the trace a participant event (PJ{, L, m) which is consistent with the
protocol P. Else output the trace L.

e For any other instruction, add the corresponding event to the trace, where the index i is replaced by m;,
the message expression in the ith event in the trace so far. (If adding the event results in an invalid
trace then output the trace L.)

Definition 16 (Public-key pattern [4, 43]) Let T C Kpyy, and m € A. We recursively define the func-
tion p(m,T) to be:

e p(K,T)=K if K€K
e p(AT)=Aif Ac M
e p(N,T)=N if NeR
o p(N1|N2,T) = p(N1,T)|p(N2, T)

) | Enc(p(m,T); K) ifKeT
p(Bne(m; K), T) = { (T) g (where T is the type tree of m) otherwise

Then pattern,,, (m,T'), the public-key pattern of an Dolev-Yao message m relative to the set T, is
p(m, Kpup NC{m} UT)).

Ift = Hy, Ha, ... Hy, is a Dolev-Yao trace where event H; contains message m; then pattern,,, (t,T) is exactly
the same as t except that each m; is replaced by p(m;, Kpyup N CISUT]) where S = {my,ma,...m,}. The
base pattern of a message m, denoted pattern (m), is defined to be pattern,, (m,0), and pattern (t) is defined
to be pattern,, (t,0).

Definition 17 (Variable Renaming) Let Ry, Ry be random-strings symbols, and let t be an expression
in the algebra A. Then t g, g, is the expression where every instance of Ry is replaced by Ry.
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Definition 18 (Symbolic Criterion for Key Exchange) A Dolev-Yao protocol P provides Dolev-Yao
two-party secure key exchange (DY-2SKE) if

1. (Agreement) For all Py and Py & Mag, and Dolev-Yao traces valid for P in which Py outputs
(Starting|Po|P1|m) and Py outputs (Starting|Pi|Polm’), if participant Py produces output message
(Finished|mg) and participant Py produces output message (finished|m;), then myg = Py|Pi|R and
my = Py|Py|R for some R € R.

2. (Real-or-random secrecy) Let Py be the protocol P except that a fresh fake key Ry is output by termi-
nating participants in place of the real key R,.. Then for every adversary strategy ¥,

pattern (¥(P)) = pattern (¥(Py)(r;—r,])

Note that this criterion neither implies is not implied by our symbolic mutual-authentication criterion.
The MA criterion does not imply secrecy of any values. This criterion, on the other hand, allows successful
termination of one party without any participation by the peer.

7.3 Soundness and completeness of the symbolic criterion

Theorem 19 Let p be a simple protocol. Then p UC-realizes Foxg if and only if p achieves Dolev-Yao secure
key-exchange.

Proof: We first consider the ‘if’ direction of the statement. Suppose that p does not satisfy Dolev-Yao key
exchange. Then one of two events occur, each of which allows the environment to distinguish an interaction
with Foyxp from an interaction with p. Either:

e There exists a DY trace where participants P and P’ produce outputs (finished|P|P,|R) and (finished|P’|P,|R’),
respectively, where either R’ # R or P # P, or P’ # P,. The adversary strategy for this trace is then
mapped to a concrete environment that simply performs the same sequence of calculations, receptions,
and transmissions. (Recall that this sequence has some constant, finite length.) Thus, the environment
can produce the same behavior in the concrete model. However, this behavior will never arise in the
ideal model with Foyy, since the functionality will always distribute the same x to both parties. Thus,
the environment can easily tell whether it is interacting with Foky or with p.

e Or, it might be the case that there exists an adversary strategy ¥ such that

pattern (¥(p)) # pattern (Y(B;)ir,—r.]) -

Also here, there exists an environment that distinguishes between an execution of the concrete protocol
and the ideal process for Foxg: the environment simply performs the finite sequence of calculations,
receptions, and transmissions that is described in the strategy W. It then translates the trace t of the
execution to a symbolic trace t using the transformation in Definition 11, except that it makes sure
that the key exchanged by the protocol and key output by the participants are mapped to the same
symbol; that is, if they are mapped to different symbols, the one which receives the mapping second is
mapped to the symbol already assigned to the other. (Notice that the trace of the concrete execution
is deducible from the view of the environment.)

Then, the environment checks whether the pattern of t equals pattern (\IJ(Ef)[ Ry Rr])- If the patterns
are equal then the environments outputs “ideal”. Otherwise, it outputs “real”.

To see that this environment is a good distinguisher between the real and the ideal cases, we observe
that: (a). If the environment interacts with protocol p, then t is the result of strategy ¥ interacting
with the p. Thus, t = U(p), and pattern (t) = pattern (¥(p)). (b). In contrast, if the environment
interacts with the ideal protocol for Fokp, then the key output by the participants is independent
from the simulator’s view. Thus, t results from strategy V¥ interacting with a protocol run which is
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Figure 9: The simulator for Foyy

actually independent of the key output by the participants. Thus, t = ¥(p;)(g;.r,], and pattern (t) =
pattern (\IJ(E)[RfHRT]). Thus, the fact that

pattern (V(p)) # pattern (\Il(ﬁf)[Rf,_)Rr])
means that the environment can always distinguish the real setting from the ideal setting.

Thus, if the Dolev-Yao protocol p does not satisfy Dolev-Yao key exchange, then there exists an environment
which can distinguish the Fox; model from p.

To show the other direction, we need to provide a simulator (i.e., an adversary) S such that no environment
can tell whether it is interacting with the ideal protocol for Fox; and S or with the concrete protocol p and
the dummy adversary. The simulator S proceeds as follows. (S is similar to the simulator used in the proof
of soundness of the symbolic mutual authentication criterion.)

e S internally simulates the participants P, P’, and two instances of Fepgs. At the beginning, none of
these simulated participants are running.

e When the simulator receives a message (SID, P, P’,RID) from the functionality Fox; (indicating that
the external dummy participant P has received input from the environment and has passed it on to
Foke) it activates the simulated participant P with input

(SID, P, P',RID).

e Likewise, when simulated participant P” produces a message to send on its communication tape, the
simulator sends this message to the environment.
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e When the simulator receives input for the dummy adversary to send to participant P”, it sends that
input to the copy P” that it is simulating internally.

e When simulated participant P” produces a message to send an instance of F¢pyg, the simulator forwards
this to the appropriate instance of Fpiy that it is simulating.

e When the simulated participant P produces local output (“Finished’, P"||P"||v), the simulator
sends the message (Session-key, sid, P”,v) to the functionality Foyg.

It remains to show that the simulation is valid, namely that any environment distinguishes between the
above simulated execution and a real execution only with negligible probability. We first assert two facts. The
first fact essentially shows that the environment view of an execution of the protocol is distributed identically
to its view of the ideal interaction, as long as the traces of the two execution translate to symbolic traces
whose public patterns are identical. This means that the only way for an environment to distinguish between
the protocol execution and the ideal process is to make sure that the public pattern of the symbolic trace
generated from its interaction is different in the two cases. The second fact states that, for any environment,
the random variable describing the public pattern of the symbolic trace generated from its concrete trace
is distributed identically in the protocol execution and the ideal process. (Both facts hold only under the
condition that the mapping from concrete to symbolic traces does not fail. However, the mapping lemma
guarantees that failure occurs only with negligible probability.)

Let t be the random variable describing the trace of the execution of p, and let t be the random variable
describing symbolic trace obtained from t by applying the mapping from the Mapping Lemma (Lemma 12).
Similarly, let tF2ke be the random variable describing the trace of the interaction of Z with Foxy and S, and
let tF2xe be the random variable describing the symbolic trace obtained from tF2xe by applying the same
mapping. (tF2xe is a distribution on traces which are not necessarily traces of simple protocols. Still, we can
apply the mapping to such traces.) Then, we have:

Claim 20 Fiz an environment Z and a value k of the security parameter. Let 7' be some valid trace of
the symbolic protocol p, and let T = pattern (7') be the public-key pattern of ™. Then, the following two
distributions are identical:

o The view of Z from an execution of p, given that pattern (t) = 7.

e The view of Z from an ideal interaction with Foxy and S, given that pattern (tF2KE) = 7. from tT2xe by

applying the mapping from the Mapping

Proof: Whenever 7’ is a valid trace of p, the value of 7 completely determines the view of Z in both
executions, up to the choices of the nonces and the ciphertexts. However, by the definition of simple
protocols we have that in both the concrete execution and the symbolic executions the distribution of each
new nonce and ciphertext is independent of all other choices made in the system. (Here we use the fact that
ciphertexts generated by Fepip are statistically independent of the plaintext.) O

Claim 21 Fiz an environment Z. Then, conditioned on the events that t and t™2xe are valid traces of p, we
have that pattern (t) is distributed identically to pattern (tFQKE>.

Proof: Assume for simplicity that Z is deterministic. (No generality is lost here since Z gets arbitrary, non-
uniform input.) Now, the only randomness in the interaction with the protocol p comes from p; specifically
it comes from the generation of nonces by parties and the generation of ciphertexts by Fcpxs. Let t,. denote
the concrete UC trace of executing protocol p when the protocol’s randomness is fixed to value 7.
Similarly, the only randomness in the ideal process comes from the simulator S and Foyg. Let tf?SKF‘ denote
the concrete UC trace resulting from running Z in the ideal process with Fox; and S, with randomness r for
S and randomness s for Fox;. Here we make use of the fact that S essentially simulates a full execution of
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the protocol: We require that the use of r by S is identical to the use of r by the protocol, in the sense that
each value 7 results in the same values for the nonces and ciphertext in the ideal and real traces.

2KE

We claim that, for any r and s, pattern ( E,s ) = pattern (t,). (Note that this in particular means that

pattern ( EZSKE) does not depend on s.) To see this, we observe that the difference between £r2KE

5

and t, is

that in t, the outputs of the parties are the outputs of the protocol p, whereas in tE?SKE the outputs of the
parties are generated by Foxp. These outputs contain the identities of the peers and the session key.

We first note that, in both cases, the identities in the outputs are the true identities of the peers. In tEZQKE

this fact is guaranteed by the definition of Foxp, whereas in t, this fact holds since t, is a valid trace of the
symbolic protocol p, and p satisfies the symbolic agreement property for key exchange.

Now, assume for contradiction that pattern ( EQSKF) # pattern (t,) for some r and s, and let 7 be the

longest joint prefix of the two public patterns. Let m denote the next element in pattern (t,), and let mF2xe

denote the next element in pattern ( E%KE) Then, we have that m # m™2xe, and both m and m™2xe are the
public patterns of either a message or an output generated by one of the parties. We show that this contradicts
the symbolic real-or-random criterion for p: Let ¥ be the adversary strategy that corresponds to the trace 7.
That is, ¥ is the (unique) strategy such that 7 = ¥(p). Then, (7, m) = pattern (¥(p)). However, we have that

(1,mF2xe) = pattern (tf%"”

), and it follows from the definition of the ideal process (ie. Foxy and the simulator

S) that pattern (tEQgKE) = pattern (\Il(bf)[RfHRr]). Consequently, pattern (U(p)) # pattern (\I/(ﬁf)[RfﬂRr}),
in contradiction to the symbolic real-or-random property of p.[J

We prove the validity of the simulation based on the above two claims and the mapping lemma. Let t
be the distribution over traces of the interaction of Z in the real setting. From the mapping lemma, t is
overwhelmingly likely (i.e., the probability is negligibly less than 1) to map to a valid symbolic trace t. In
this case, Claim 21 above asserts that the probability distribution of pattern (t) is distributed identically to

pattern (tFQKE). Claim 20 then implies that the view of the environment is distributed identically to the

view the environment would have seen had it been interacting with the functionality /simulator. Thus, it is
only with negligible probability that the view of the environment will depend on whether the environment
is interacting with the protocol execution or with the ideal process. [J

8 Automated Analysis of Needham-Schroeder-Lowe

In this section, we show how an automated protocol verification tool was used to verify that the Needham-
Schroeder-Lowe protocol (version 2 of Section 4.4.2) satisfies our new symbolic key-exchange property. In
particular, we note that our definition of “real-or-random” secrecy is very close to Blanchet’s notion of
“strong secrecy” [12]. Intuitively, a protocol maintains “strong secrecy” of a value if a change to the value
is undetectable to any “observational context” (i.e., adversary strategy). Thus, a key-exchange protocol P
maintains real-or-random secrecy for the session key if and only if a protocol P’ maintains strong secrecy,
where P’ is derived by adding to P a final event where a candidate (real or random) session key is released
to the adversary.

Thus, real-or-random secrecy of Needham-Schroeder-Lowe version 1 (NSLv1) is verified by the ProVerif [13]
specification of Figure 10.10 (This same specification verifies key-agreement as well.) By way of contrast, we
present the analogous specification for Needham-Schroeder-Lowe version 2 (NSLv2) in Figure 11. This pro-
tocol does not enforce real-or-random security for the session key, and so the verification of this specification
fails as expected.

10This specification was derived from the pineedham — corr — orig specification distributed with the ProVerif source.
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Each specification has two parts: a header and a process specification. Each header specifies a channel
(c) and a session key (sesk) as free variables; a definition of asymmetric encryption; a function (host) from
keys to names; and a number of goals:

e Secrecy of the private keys,
e Real-or-random secrecy of the session key, and
e Key agreement

The form of the last two goals requires some explanation, but first we describe the process of the specification.
The process will consist of two communicating sub-processes: one for the initiator and one for the responder.
These sub-processes exactly execute the Needham-Schroeder-Lowe protocol with two additions. First, the
sub-processes will signal their successful completion and value for session key via the keyA and keyB. Second,
they will output a fixed constant (either Na or Nb) which may or may not be the session key. (The actual
process specification initiates these two sub-processes and runs them in parallel.)

Having described the process specification, we can describe how the security goals are actually phrased.
The real-or-random secrecy goal is phrased as a non-interference property: that the behavior of no context
(adversarial strategy) depends on the value of the secret key. In particular, the behavior of no adversary
strategy will change when the value of the session key is changed from the constant output at the end of the
protocol to a different constant (either Naa or Nbb).

The key-agreement specification, on the other hand, is phrased as an implication: if the responder outputs
a key, then the initiator has already output the same key. Because each participant can output a key exactly
once, this is actually a stronger form of our key-agreement property.

Acknowledgments We thank Shai Halevi and Akshay Patil for very useful comments and discussions.
In particular, the former discovered a bug in a previous version of the proof of Theorem 19, and the later
discovered a bug in a previous formulation of Fepyg.
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(*xx*x* Header skxx¥kx)
free c.

(*Session key*)
private free sesk.

(* Public key cryptography *)

fun pk/1.

fun encrypt/2.

reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)
fun host/1.

(* Secrecy assumptions *)
not skA.
not skB.
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(*xx*x* Header skxx¥kx)
free c.

(* Public key cryptography *)

fun pk/1.

fun encrypt/2.

reduc decrypt(encrypt(x,pk(y)),y) = x.

(* Host *)
fun host/1.
private reduc getkey(host(x)) = x.

(* Secrecy assumptions *)
not skA.
not skB.

(* Session key *)
private free sesk.

(* Prove real-or-random and agreement *)
noninterf sesk among (Nb, Nbb).
query ev:Bkey(x) ==> ev:Akey(x).

(***xx**x Process specification ¥kkx*x)
let processA =
(¥ Message 1 *)

new Na;

out(c, encrypt((Na, hostA), pkB));

in(c, m);

let (=Na, NX2, =hostB) = decrypt(m, skA) in
(* 0K *)

event Akey(NX2);
out(c, encrypt(NX2, pkB));
out(c, Nb).

let processB =
(* Message 1 *)
in(c, m);
let (NY, =hostA) = decrypt(m, skB) in
(* Message 2 *)
out(c, encrypt((NY, sesk, hostB), pkA));
(* Message 3 *)
in(c, m3);
if sesk = decrypt(m3, skB) then
(x OK *)
event Bkey(sesk);
out(c, Nb).

process new skA; let pkA = pk(skA) in
new skB; let pkB = pk(skB) in
let hostA = host(skA) in
let hostB = host(skB) in
new Nb;
new Nbb;
(processA | processB)

Figure 11: A ProVerif specification to verify NSLv2
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The UC framework

We summarize of the UC security framework [20]. For brevity and simplicity, we describe a somewhat
restricted variant; Still, the summary is intended to provide sufficient detail for verifying the treatment in
this work. The description below is rather terse, building on the high-level sketch of Section 2.1. Further
elaboration and justification of definitional choices appears in [20].

A.1 The basic model

We first present the underlying model of computation, which provides the basic mechanics on top of which
the notion of protocol security is defined.
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Interactive Turing Machines (ITMs). The basic computing element is an Interactive Turing Machine
(ITM), which represents a program written for a distributed system. The UC framework uses a formalism
of an ITM that augments the original formalism of [40, 35] with some additional structure, for the purpose
of capturing protocols in multi-party, multi-instance systems. Specifically, an ITM is a Turing machine
with the following additional constructs. It has three special tapes that represent three different types of
information coming from external sources: The input tape represents information coming from the “calling
protocol”; the communication tape represents information coming from other parties over communication
links; the subroutine output tape represents information coming from “subroutine protocols;”. In addition,
an ITM has a special identity tape which cannot be written on by the ITM transition function, or program.
The contents of the identity tape is interpreted as two values: A session-identifier (SID), representing a
specific protocol session, and a party identifier (PID), representing an identity of a party within that session.
(The party identifier typically corresponds to a “party” or a physical computer, and is used in multiple
sessions.) Finally, to the standard ITM syntax we add the ability to perform an external write instruction.
The semantics of this instruction are defined below.

Systems of ITMs. Running programs in a distributed system is captured as follows. An ITM instance
(IT = (M,ID) is an ITM M (namely, a program) along with a string ID = (SID, PID), called the identity
of p. An ITT represents a running instance of the program M where the identity ID is written on its identity
tape. A system of ITMs is a pair (M, C), where M is an ITM and C : {0,1}" — {0,1}" is a control function
that determines the effect of the external write commands.

An execution of a system (M,C) of ITMs, on input z, consists of a sequence of activations of ITIs.
Initially, the system consists of a single ITI with program M, some fixed identity (say, ID = (0,0)), and =
written on the input tape. This ITI, called the initial ITI, is then activated.

In each activation of an ITI, the active ITI runs its program. The execution ends when the initial ITI
halts. The output of an execution is the output of the initial ITT.

It remains to specify the effect of the external-write operation. This operation specifies a target ITI
(namely, program and identity), a tape out of {input, communication, subroutine output}, and data to be
written. When an external-write operation is carried out, the control function C' is applied to the sequence
of external write requests in the execution so far. Then:!!

1. If C returns 1 then:

(a) If an ITT with the same identity as the target ITI does not exist in the system then a new ITI
with the specified program and identity is added to the system.
(b) The specified data is written to the specified tape of the (unique) ITI whose identity agrees with
the identity in the external write command, along with the identity of the writing ITT.
In either case, the active ITI becomes inactive and the target ITI is activated.

2. If C returns 0, or the active ITI halts, then the initial I'TT is activated.

3. If C returns another value, then this value is interpreted as a description of an ITM M. The effect is as
in Case 1, except that the program of the target ITI is taken to be M rather than the value specified
in the external write command.

Subroutines. An ITI p is a subroutine of ITI i/ in an execution if x wrote to the input tape of p or u'
wrote to the subroutine output tape of p’.

11 A more formal description in terms of sequences of configurations can be extracted from this description. See [20]. Also, in
[20] the semantics of an external write operation are somewhat more complex, for the purpose of obtaining additional expressive
power. The restricted semantics presented here are sufficient for our purposes. (The main difference is that in [20] the adversary
is allowed to create new ITIs by delivering messages to them. This allows capturing those natural situations where new parties
are “prompted to join” from within the protocol instance, rather than being invoked by other protocols. However, it also allows
a situation where ITIs receive inputs and subroutine outputs from ITIs whose code is unknown and untrusted; this requires
special model provisions such as letting the target ITI know the code of the writing ITI in some cases.)
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Protocols and protocol instances. A protocol is formalized as a single I'TM, that represents the pro-
grams to be run by all the intended participants. (When the protocol specifies several different roles, the
ITM describes the programs for all the roles. The role is then given as part of the input.) An instance (or,
session) of a protocol p with session identifier SID, within a system of ITMs, is the set of ITIs that run the
program p and whose session identifier is SID.

Polynomial Time ITMs. We consider ITMs that run in probabilistic polynomial time (PPT), where
PPT is defined as follows: An ITM M is PPT if there exists a constant ¢ > 0 such that, for any ITI p
with program M, at any point during its run, and for any contents of the random tape, the overall number
of steps taken is at most n¢, where n is the overall number of bits written to the input tape of p minus
the overall number of bits written by p to input tapes of other ITIs. (The purpose of this definition is to
have syntactically verifiable conditions which guarantee that running a system of I'TMs does not consume
“super-polynomial resources”. In particular, it can be seen that an execution of a system of I'TMs, where
the initial ITM is PPT, and the control function is polytime computable, can be simulated on a standard
PPT Turing machine.)

A.2 Defining security of protocols

Recall that protocols that securely carry out a given task are defined via comparison with an ideal process
for carrying out the task. Formalizing this notion is done in several steps, as follows. First, we define the
process of executing a protocol in the presence of an adversarial environment. We then define what it means
for one protocol to “emulate” another protocol. Next, we define the “ideal process” for carrying out the task
in terms of a special idealized protocol. A protocol is said to securely carry out the task if it emulates the
idealized protocol for that task.

The model for protocol execution. The model for executing a protocol p is parameterized by a security
parameter k € N, and three ITMs: the ITM p, an ITM A called the adversary, which represents the adversarial
activity against a single instance of p, and an ITM Z, called the environment, which represents the rest of
the system. Specifically, to run protocol p on input z, execute the system of ITMs (Z,Cap). It remains to
describe the control function Ca p, namely the external write capabilities of each ITI.

In essence, the definition of C' captures a model where a single instance of p interacts with Z and A.
Z controls the inputs to parties and reads the outputs. All communication (via the communication tapes)
must pass through A. In addition, the parties of p can create subroutine I'TIs, can write to the input tapes
of the subroutines, and receive outputs from the subroutine on the subroutine output tapes of the calling
parties. More precisely:

External writes by the environment: The environment can write only to the input tapes of other ITIs. The
program of the first ITI invoked by the environment is set (by the control function) to be the program
of the adversary A. The programs of all the other ITIs that the environment writes to are set to be
the protocol p.'2 In addition, the session IDs of all the ITIs invoked by the environment (other than
the adversary) must be the same. That is, let s denote the SID of the first ITT to be invoked with
program p. Then all the remaining I'TIs invoked by the environment must have SID s. Consequently,
all the ITIs invoked by the environment, except for the adversary, belong to the same instance of p.

External writes by the adversary: The adversary can write only to the communication tapes of ITIs. In
addition, it is not allowed to create new I'TIs; namely, if the adversary performs an external write request
with non-existing target ITI, the control function returns 0. (As mentioned above, this restriction is
not imposed in [20], resulting in a more expressive but somewhat more complex model.)

12The reason for having the control function (rather than the environment) determine the program p is to allow a situation
where the program p is changed into another program p’ without having the environment being necessarily aware of the change.
This detail is necessary for the definition of protocol emulation to make sense.
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External writes by other ITIs: An ITI p other than the environment and the adversary can write only to
the subroutine output tapes of ITIs that have previously written to the input tape of u, to the input
tapes of ITIs that p has invoked, and to the input tapes of ITIs with the same session ID as p. In
addition, it can write to the communication tape of the adversary. (Writing to input tapes of ITIs is
the same session ID will become useful when defining ideal protocols.)

We also use the convention that creation of a new ITI must be done by writing to the input tape of that
ITT; the data written in this activation must start with 1%.

Let EXEC, a,z(k, z) denote the output distribution of environment Z when interacting with parties running
protocol p on security parameter k and input z. Let EXECp A,z denote the ensemble {EXECp A z(K, 2) }renr,ze{0,13* -

Protocol emulation. Informally, we say that a protocol p UC-emulates protocol p’ if for any adversary
A there exists an adversary A’ such that no environment Z, on any input, can tell with non-negligible
probability whether it is interacting with S and parties running p, or it is interacting with A’ and parties
running p’. This means that, from the point of view of the environment, running protocol p is ‘just as good’
as interacting with p’. This notion is formalized as follows. A distribution ensemble is called binary if it
consists of distributions over {0,1}. We have:

Definition 22 Two binary distribution ensembles { X (k,a)}ycnr aeqo,11+ and{Y (K, )}y aeqo,1y+ are called
indistinguishable (written X ~Y ) if for any c,d € N there exists ko € N such that for all k > ko and for all
kd
a€{0,1}" we have
|Pr(X(k,a) =1) —Pr(Y(k,a) =1)| < k™°.

Definition 23 (Protocol emulation) Let p and p’ be protocols. We say that p UC-emulates p’ if for any
adversary A there exists an adversary A’ such that for any environment Z that outputs a value in {0,1} we
have

EXECp A7,z = EXECp A 7.

This work makes use of the following simplified formulation of UC-emulation. Let the dummy adversary
D be the adversary that merely reports to the environment all the messages sent by the parties, and follows
the instructions of the environment regarding which messages to deliver to parties. Then, it is enough to
prove security with respect to the dummy adversary. That is:

Definition 24 (Protocol emulation with the dummy adversary) Let p and p’ be protocols. We say
that p UC-emulates p’ with the dummy adversary if there exists an adversary A’ such that for any environment
Z that outputs a value in {0,1} we have

EXECp a7,z = EXECp D,z.

Claim 25 ([20]) Protocol p UC-emulates protocol p’ iff p UC-emulates p’ with respect to the dummy adver-
sary.

Ideal functionalities and ideal protocols. A key ingredient in the ideal process for a given task is the
ideal functionality that captures the desired behavior, or in other words, the specification of that task. The
ideal functionality is modeled as an ITM (representing a “trusted party”) that interacts with the parties and
the adversary.

For convenience, the process for realizing an ideal functionality is represented as a special type of protocol,
called an ideal protocol. In the ideal protocol I for ideal functionality F all parties simply hand their inputs to
an I'TT with program F, session ID that is equal to the local session ID, and party ID set to some fixed value,
say L. Whenever a party in Ir receives a value from F on its subroutine output tape, it immediately copies
this value to the subroutine output tape of the ITI that invoked it. We call the parties of the ideal protocol
dummy parties. The adversary interacting with the ideal protocols is called the simulator and denoted S.

Definition 26 (Realizing functionalities) Let p be a protocol, and let F be an ideal functionality. We
say that p UC-realizes F if p UC-emulates Ig, the ideal protocol for F.
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A.3 Composition theorems

Universal Composition. Let r be a protocol that uses one or more instances of some protocol f as a
subroutine, and let p be a protocol that UC-emulates f. The composed protocol rP/f is constructed by
modifying the program of r so that calls to f are replaced by calls to p. Similarly, subroutine outputs coming
from p are treated as subroutine outputs coming from f. The universal composition theorem says that
protocol rP/f behaves essentially the same as the original protocol r. That is:

Theorem 27 (universal composition [20]) Let p,f,r be protocols, such that p UC-emulates f. Then the
protocol r?/f UC-emulates r. In particular, if v UC-realizes an ideal functionality F then so does rP/f.

Universal composition with joint state. We start with a motivational discussion. Informally speaking,
the UC theorem implies that if a protocol p UC-realizes some functionality F then multiple concurrent
instances of p UC-realize multiple concurrent instances of F. Consequently, instead of directly analyzing the
security of the multi-instance system, it suffices to analyze the security of a single instance, and deduce the
security of the multi-instance system from the UC theorem.

However this type of analysis is valid only when the instances of p have mutually disjoint local states
and local randomness. That is, all the parties of an instance of r, and their subroutines, must be disjoint
from the parties and sub-parties of other instances. In contrast, in many cases we have a system where
multiple concurrent instances of some protocol r use the same instance of an underlying subroutine, p. In
the case of this paper, the relevant example is that of multiple instances of a pairwise key-exchange or
mutual authentication protocols, where all instances use the same instance of a long-term authentication
mechanism (say, digital signatures, public-key encryption, or a pre-shared key). In these cases it is impossible
to “de-compose” the system into protocol instances with disjoint local states; thus the UC theorem cannot
be directly applied to deduce the security of the system from the security of a single instance.

The Universal Composition with Joint State (JUC) theorem [25] provides a means to deduce the security
of the multi-instance case from the security of a single instance, even when multiple instances use some joint
state, or a joint subroutine. Informally, using this theorem we can deduce the following. Let r be a protocol
that uses multiple instances of some protocol p as subroutine, s be a protocol that UC-realizes, within a
single instance, multiple instances of p. Then the variant of r that replaces all the multiple instances of p
with a single instance of s UC-emulates r.

For a more rigorous treatment, we restrict ourselves to the case of realizing functionalities, rather than
general emulation. Given an ideal functionality F, let F, the multi-session extension of F, be the ideal
functionality that represents multiple independent instances of F within a single instance. That is, F expects
to receive inputs of the form (sid, ssid,v), where sid is the SID of F, and ssid (for “sub-session identifier”)
is an arbitrary string. Upon receiving such an input, F internally invokes a instance of F whose SID is ssid,
and forwards the input (ssid,v) to that instance. (If such an instance already exists then F simply forwards
(ssid,v) to it.) When an internal instance of F generates output (ssid,v) to some party, F generates output
(sid, ssid,v) to the same party.

Now, the universal composition with joint state operation, Juc, is defined as follows. We start with
a protocol R that uses as subroutines multiple instances of the ideal protocol If, and a protocol p that
UC-realizes F. (Using the above terminology, protocol R represents the multi-instance version of protocol r.)
Then the composed protocol RP/Fl is identical to R with the exception that, at the onset of the computation,
R[P/Fl instructs each party to invoke a instance of p with some arbitrary sid, say a fixed value. Then, each
call (ssid,v) to the instance ssid of F is replaced with an input (sid, ssid,v) to the instance sid of r, and
each output (sid, ssid,v) of the instance sid of r is treated as a value v received from instance ssid of F.
Then, the JUC theorem states that protocol RIP/Fl UC-emulates protocol R. That is:

Theorem 28 ([25]) Let F be an ideal functionality, let R be a protocol, and let p be a protocol that UC-
realizes F. Then the composed protocol RIP/Fl UC-emulates protocol p.
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B From simple protocols to fully specified ones.

We provide further details regarding how to instantiate the public-key encryption module used by simple
protocols. (See sketch in Section 2.2.) Section B.1 describes how to realize multiple instance of Fepyg (having
the same decryptor) using a single instance of Fepkg. Section B.2 describes how to realize Fepyr given ideal
certification and a public-Key encryption scheme that is secure against adaptive chosen ciphertext attacks.

B.1 Realizing multiple instances of F_,,; using a single instance

We present a simple protocol that realizes multiple instances of Fpky that have the same receiver, using only
a single instance of Fcpks. This protocol, combined with the JUC theorem and the results of Section B.2,
provide a straightforward and efficient way for substantiating the use of Fcpkr in simple protocols.

The multi-session extension of Fcpyz. The multi-session extension of Fepkp, denoted lip\KE, is obtained
from Fepip via the transformation described above. For clarity, we present an explicit description of IipK\F
in Figure 12 below. (For simplicity, we assume that all the sub-sessions have the same Domini M, formal
encryption function E, and formal decryption function D.)

Functionality @

—

Fcpke proceeds as follows, when parameterized by message domain M, a function E with domain M and
range {0,1}", and function D of domain {0,1}" and range M Uerror. The session identifier SID is assumed
to consist of a pair SID = (PIDowner, SSID, SID')7 where PIDowner is the identity of a special party, called
the owner of this instance, and SSID is a sub-session identifier.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P, where SID = (PIDowner, SSID, SID")
proceed as follows:

1. If this is the first encryption request made by P then notify the adversary that P made an
encryption request.

2. If m ¢ M then return an error message to P.
3. If m € M then:

e If PIDowner is corrupted, then let ciphertext « Ex(SSID, m).
e Otherwise, let ciphertext « E(SSID, 1‘m|).

Record the tuple (m, ¢, SSID), and return c.

Decryption: Upon receiving from PIDyyner a value (Decrypt, SID, c) with SID = (PIDowner, SSID, SID'),
proceed as follows. (If the input is received from another party then return an error message.)

1. If this is the first decryption request then notify the adversary that P made an encryption
request.

2. If there is a recorded tuple (¢, m,SSID), then hand m to PIDowner. (If there is more than one
value m that corresponds to ¢ and SSID then output an error message to PIDowner.)

3. Otherwise, compute m = D(c, SSID), and hand m to PIDowner-

Figure 12: The multi-session extension of Fepyy

Realizing F;;E. We show how to realize functionality Ii,; using a single instance of Fepkp. Specifically,
we describe a simple protocol that allows each party to maintain a single copy of the decryption algorithm

for all the decryption requests made to Iir; The protocol, denoted ESI (for Encrypt the Session ldentifier), is
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presented in Figure 13. The idea is to have the parties encrypt the sub-session identifier SSID together with
the message. The decryptor then verifies that the decrypted text contains the correct sub-session identifier.

Protocol EsI

Encryption: When activated with input (Encrypt, SID, m), where SID = (PIDowner, SSID, SID’), call Fepkr
with input (Encrypt, SID” = (PIDowner, SID’),m’ = (SSID, m)), and output the returned ciphertext
c.

Decryption: When activated within party PlDowner with input (Decrypt,SID,c), with SID =
(PIDowner, SSID, SID’), call Fepkr with input (decrypt, SID” = (PIDowner, SID’), ¢). If the returned
plaintext is of the form (SSID, m) then output m. Else output an error message L.

—

Figure 13: The protocol for realizing Fqpi; using a single instance of Fepky.

Claim 29 Protocol ES1 UC-realizes Ii;;

Proof: Let A be an adversary that interacts with protocol ESI. We construct an adversary S so that no
environment can tell whether it is interacting with S and the ideal protocol for Iir;g or with A and ESI. In
fact, notice that we can safely set S to be identical to A. In particular, the only interaction between A and
ESI is when Fepgp; notifies A at the first encryption/decryption request by each party. Similarly, the only
interaction between S and l%; is when Ii;;; notifies S at the first encryption/decryption request by each
party.

It remains to define the formal encryption and decryption algorithms E’ and D’ in Ii; These are
determined as follows. Given input (SSID,1™), E’ runs E(17+I55'Pl) and outputs the result. (If the input is
of the form (SSID,m) for m ¢ 1* then E is given input (SSID,m).) Given input (SSID,¢), D’ runs D(c). If
the obtained plaintext is of the form (SSID,m) then D’ outputs m. Else, D’ outputs L.

Let Z be an environment (not necessarily polynomial time). It can be verified that the view of Z from
an interaction with an adversary A and the ideal protocol for Iﬁ (with E" and D’) is identical to its view
from an interaction with A and ESI (which uses Fepie with E and D). 0.

B.2 Realizing F..,. using concrete encryption

We show how to realize Fqpxs given the plain, unauthenticated public-key functionality Fpkg, and a regis-
tration functionality Frge. The functionality is given in Figure 14. (Our formulation of Fpgg is the same as
functionality Fpyg from [20], except that here the formal encryption function E is required to be well-spread.
See more discussion in Section 4.1.) The treatment here closely mimics the treatment in [22] of realizing
certification given signature schemes and a registration service.

The primary difference between Fpyp and Fepky is that in Fepke there are no encryption keys; instead
messages are encrypted directly to the identity of the recipient. (In other words, Fepkr provides ideal binding
between a public key and its “owner.”) In contrast, Fyky does not provide any binding between the public key
and the identity of the intended decryptor. In particular, there is no security guarantee regarding messages
that were encrypted with public keys other that the key given to the legitimate decryptor.

Recall that previous formulations of Fpgp could be realized in a simple way (with respect to non-adaptive
party corruptions) given any CCA-secure encryption scheme [20, 24]. This remains true for this formulation.
Let S = (G,E,D) be a public-key encryption scheme. Then the protocol mg (given in [24]) is defined as
follows:

e When activated within some P; and with input (KeyGen, id), run the algorithm G, output the encryption
key e, and record the decryption key d.
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Functionality FPKE

Frie proceeds as follows, when parameterized by message domain ensemble M = {Mj}renr, a family of
formal encryption algorithms {E.}., and a family of formal decryption algorithms {Dg}, for unregistered
ciphertexts.

Key Generation: Upon receiving a value (KeyGen, SID) from some party P, verify that SID = (P, SID")
for some SID’. If not then ignore the input. Else:

1. Hand (KeyGen,SID) to the adversary.
2. Receive a value e from the adversary.
3. Record e, and output e to P.

Encryption: Upon receiving a value (Encrypt, SID,e’,m) from a party P, where SID = (PIDowner, SID’)
proceed as follows:

1. If m ¢ M then return an error message to P.
2. If m € M then:
o If PIDyyner is corrupted, or € # e, then let ciphertext < Ej(m).
e Otherwise, let ciphertext — Ej(1™!).
Record the pair (m,c), and return c.

Decryption: Upon receiving a value (Decrypt, SID, ¢), with SID = (PIDow,Le,.,SID'), from PIDoyner, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (¢, m), then hand m to PIDowner. (If there is more than one value
m that corresponds to ¢ then unique decryption is not possible, In this case, output an error
message to PIDowner.)

2. Otherwise, compute m = D(c), and hand m to PIDowner-

Figure 14: The public-key encryption functionality, Fpkg

e When activated within some party P; and with input (Encrypt, id,e’,m), return E(e/,m,r) for a ran-
domly chosen 7.

e When activated within some party P; and with input (Decrypt, id, ¢), return D(d’, ¢).

Theorem 30 Let S = (G, E, D) be a public-key encryption scheme. Let E'(r) = E(e,0,7) and D’(c) = D(d, ¢),
where the pair (e,d) is drawn randomly from KeyGen(1%). Let FEK’ED be Fpxr parameterized by encryption

algorithm E' and decryption algorithm D’. Then the protocol mg UC-realizes Ffé;:D iff S is CCA-secure.
Furthermore, if S is CCA-secure then E' is well-spread.

Here we show how to realize Fopkg given Fpig, so long as one has access to an additional, simple “service”
that ties public values to principals. Such a ‘registration’ functionality, Fppq, is give in Figurel5. Our
protocol, Pggne, for realizing Fepyp given ideal access to both Fpy and Frpg, is given in Figure 16. We show:

Claim 31 Protocol Pygne UC-realizes Fepgy, when given ideal access to Fpxy and Fryg.

Proof: The proof proceeds along the lines of the proof in [22] for the case of constructing a certification
service from signature schemes and a registration service. Let A be an adversary that interacts with parties
running Pgpne. We construct a simulator S such that, for any environment Z, the view of an interaction
with the simulator S and Fcpyy, is distributed identically to the view of an interaction with the adversary A
and protocol Pgpye. As usual, the simulator contains within it a copy of A, the parties, and for each party
it simulates a copy of Fpx; and Fppg. All messages from Z to A and back are forwarded. In addition, S
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Functionality FREG

Frec proceeds as follows:

e Upon receiving the first message (Register,SID,v) from party P, send (Registering,SID,v) to the
adversary. Upon receiving (ok) from the adversary, and if this is the first message from P, then
record the pair (P, v).

e Upon receiving the message (Retrieve, PID) from a party P’, send message (Retrieve, PID) to the
adversary and wait for the adversary to return a message ok. Then, if there is a recorded pair (PID, v)
output (Retrieve, PID,v) to P’. Otherwise, if there is no recorded pair, return (Retrieve, PID, L).

Figure 15: The registration functionality, Fppq

Protocol PRENC

Given as parameters the families {E.}, and {Dq}, of the functionality it is to realize, protocol Pgrexc acts
as follows:

Initialization: At the first activation an instance of Fpkg is instantiated with the families {E.}, and
{Da}4- party PIDowner sends message (KeyGen, (PIDowner; SIDowner)) to Frke, gets message e. Next,
PIDowner sends (Register, (PIDowner, SIDowner), €) to Frec.

Encryption: When activated with message (Encrypt, (SID, PID), m), party P does:

e First, P checks whether it has a recorded public key e. If not, then P sends (Retrieve, SID) to
Free and waits. It receives a message (Retrieve, SID, e) checks that e # L. If it is, return L.
Else, record the public key e.

e If e # L then send (Encrypt, (SID,PID),e,m) to Fpxe. Receive value ¢ from Fpxr and output
it. Also, record the pair (m,c).

Decryption: Upon being activated with message (Decrypt,SID,c) where SID = (P,s), party P sends
(Decrypt, SID, ) to Fpxr. It waits for and outputs the response.

Figure 16: The registered encryption protocol, Prgye

simulates for A the interaction with A and Pygye. Here the only such interaction happens at the initialization
stage. (Recall that encryption and decryption are done without involving the adversary.) The initialization
interaction and is simulated as follows. When notified by Fcpx;; that some party P made the first encryption
request, S simulates for A the process where P retrieves the public encryption key from Fppg. In addition,
at the first notification by Fepke (either an encryption or decryption), S simulates for A the process of
registration by PIDyyner- It is straightforward to verify that the view of Z identical in the two cases. [
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