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Abstract. This paper studies the security against differential/linear
cryptanalysis and the pseudorandomness for a class of generalized Feis-
tel scheme with SP round function called GFSP . We consider the mini-
mum number of active s-boxes in some consecutive rounds of GFSP ,i.e.,
in four, eight and sixteen consecutive rounds, which provide the up-
per bound of the maximum differential/linear probabilities of 16-round
GFSP scheme, in order to evaluate the strength against differential/linear
cryptanalysis. Furthermore, We investigate the pseudorandomness of
GFSP , point out 7-round GFSP is not pseudorandom for non-adaptive
adversary, by using some distinguishers, and prove that 8-round GFSP
is pseudorandom for any adversaries.
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1 Introduction

The well-known approaches to attacking block cipher are differential cryptanal-
ysis, proposed by Biham and Shamir[1], and linear cryptanalysis, introduced
by Matsui[2]. Nyberg[3,4]first formalizes the notion of strength against differ-
ential cryptanalysis. Similarly, Chabaud and Vaudenay[5] formalize the notion
of strength against linear cryptanalysis. With those notions, we can study how
to make a cipher scheme resistant against both attacks. This can be achieved
by usual active s-boxes counting tricks. Nyberg and Knudsen[6] give the upper
bounds of differential /linear characteristic probabilities for Feistel scheme,by us-
ing the minimum numbers of differential/linear active s-boxes. Kanda[7] shows
the minimum numbers of differential/linear active s-boxes for Feistel scheme
with SP round function. Another approach in order to study the security of
block ciphers was introduced by Luby and Rackoff [8]in 1988. They have shown
how to formalize security by pseudorandomness, and how to prove the secu-
rity of Feistel scheme—provided that round functions are totally random. They
showed that three round Feistel scheme is pseudorandomness and four round
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Feistel scheme is super-pseudorandomness. Maurer gave a simpler proof for non-
adaptive adversaries[9]. Since then, many researchers tried to improve the results
and prove the pseudorandomness of other schemes(see, for instance,[10∼23]).
Among these papers,[10] and [22] have shown the pseudorandomness of a gener-
alized Feistel scheme called ”Type-1 transformation” by Zheng-Matsumoto-Imai
and CAST256-like Feistel scheme by Moriai-Vaudenay. They showed that seven
round CAST256-like Feistel scheme is pseudorandomness. In their research work,
they just suppose round functions are totally random and didn’t consider the
structure of the round function. In this paper, we study the security of CAST256-
like Feistel scheme with SP round function, which is denoted as GFSP in this
paper, and the linear transformation P in the round function is fixed and s-boxes
are random functions. It is not known whether seven round GFSP scheme is
pseudorandomness, and how many round GFSP scheme is pseudorandomness.
We solve this problem, and show the minimum number of active s-boxes in some
consecutive rounds of GFSP ,i.e.,in four,eight and sixteen consecutive rounds,
which provide the upper bound of the maximum differential/linear probabilities
of 16-round GFSP scheme
This paper is organized as follows: In section 2, we review the GFSP scheme
and definitions. In section 3, we estimate the upper bounds of differential /linear
characteristic probabilities for GFSP4 scheme. Section 4 presents some 7-round
distinguishers for GFSP scheme. In section 5, the pseudorandomness of GFSP
scheme is discussed, and Section 6 concludes the paper.

2 Preliminaries

2.1 GFSP Scheme

This paper we consider type-1 Feistel scheme with n
4 (= ml)-bit SP round func-

tion called GFSP (see Fig.1 and Fig.2). Note that we neglect the effect of the
round key hereafter. S-function is a non-linear transformation layer with m par-
allel l-bit s-boxes. That is ,

Si : ({0, 1}l)m −→ ({0, 1}l)m

xj = (xj,1, . . . , xj,m) −→ zj = Si(xj) = (si1(xj,1), . . . , sim(xj,m)).

P -function is a linear transformation layer,which can be defined by a matrix.

P : ({0, 1}l)m −→ ({0, 1}l)m

zj = (zj,1, . . . , zj,m) −→ yj = P (zj) = (yj,1, . . . , yj,m).

P =




θ11 θ12 · · · θ1m

θ21 θ22 · · · θ2m

. . . . . . . . . . . . . . . .
θm1 θm2 · · · θmm




where θij(1 ≤ i, j ≤ m) are elements in finite field GF (2l).



Finally, the ith round function can be described as follows:

Fi : ({0, 1}l)m −→ ({0, 1}l)m

xj = (xj,1, . . . , xj,m) −→ yj = PSi(xj) = P (zj) = (yj,1, . . . , yj,m).

Let (x4i+3, x4i+2, x4i+1, x4i) denote the input of the (i + 1)th round, the
output of the (i + 1)th round of GFSP scheme is defined as:

x4i+4 = Fi(x4i)⊕ x4i+1,

x4i+5 = x4i+2.

x4i+6 = x4i+3,

x4i+7 = x4i+1.

x4i+3  x4i+2    x4i+1    x4i

x4i+7  x4i+6   x4i+5 x4i+4

Fig. 1. The i-th round transformation

2.2 Definitions

We use the following definitions in this paper.
Definition 1. For any given 4x,4z, Γx, Γz ∈ {0, 1}l, the differential and

linear probabilities of each s-boxes are defined as:

DP s(4x →4z) =
|{x ∈ {0, 1}l|s(x)⊕ s(x⊕4x) = 4z}|

2l

LP s(Γz → Γx) = (2× |{x ∈ {0, 1}l|x · Γx = s(x) · Γz}|
2l

)2

The maximum differential and linear probabilities of s-boxes are defined as:

ps = max
ij

max
4x6=0,4z

DP sij (4x →4z)

qs = max
ij

max
Γx,Γz 6=0

LP sij (Γz → Γx)



si1 si2 sim

            P

Fig. 2. The i-th round function Fi

This means that ps, qs are the upper bounds of the maximum differential and
linear probabilities for all s-boxes.

Definition 2. A differential active s-box is defined as an s-box given a non-
zero input difference, while a linear active s-box is defined as an s-box given a
non-zero output mask value.

Definition 3. Let xi = (xi1, . . . , xim) ∈ ({0, 1}l)m, then the Hamming
weight of xi is denoted by

Hw(xi) = |{j|xi,j 6= 0}|.

This means that the Hamming weight of xi equals the number of non-zero l-bit
characters from {0, 1}l of xi.

Definition 4. The branch number Pd of linear transformation P : ({0, 1}l)m −→
({0, 1}l)m is defined as:

Pd = min
z 6=0

(Hw(z) + Hw(P (z)))

2.3 Pseudorandomness

Let Fn,n denote the set of functions from {0, 1}n to {0, 1}n, A n-bit r-round
GFSP scheme GFSP (s11,s12,...,srm) can be regarded as a random function of
Fn,n determined by rm random functions sij ∈ Fl,l, i = 1, . . . , r, j = 1, . . . , m.
We define a perfect random function f∗ of Fn,n as a uniformly drawn element of
Fn,n. In other words,f∗ is associated with the uniform probability distribution
over Fn,n. In proof of pseudorandomness of scheme, we want to upper bound
the probability of any algorithm to distinguish whether a given fixed function
ϕ is an instance of a random function f = GFSP (s11,s12,...,srm) of Fn,n or an
instance of the perfect random function f∗,using less than q queries to ϕ.



Let A be a computationally unbounded distinguisher with an oracle O.
The oracle chooses randomly a function ϕ from GFSP (s11,s12,...,srm) or Fn,n.
The aim of the distinguisher A is to distinguish if the oracle O implements
GFSP (s11,s12,...,srm) or Fn,n . Let p0 denote the probability that A outputs 1
when O implements Fn,n and p1 denote the probability that A outputs 1 when
O implements GFSP (s11,s12,...,srm). That is p0 = Pr(A outputs 1 | O ← Fn,n

and p1 = Pr(A outputs 1 | O ← GFSP (s11,s12,...,srm)). Then the advantage of
the distinguisher A is defined as

AdvA(f, f∗) =| p1 − p0 |

Assume that the distinguisher A is restricted to make at most q queries to the
oracle O, where q is some polynomial in n. We say that A is a pseudorandom
distinguisher if it queries x and the oracle answers y = ϕ(x), where ϕ is randomly
chosen function by O.

Definition 5. A function h : N → R is negligible if for any constant c > 0
and all sufficiently large n ∈ N , h(n) < 1

nc .
Definition 6. Let Bn be an efficiently computable function ensemble. Bn is

called a pseudorandom function ensemble if AdvA is negligible for any pseudo-
random distinguisher A.

In definition 6, a function ensemble is efficiently computable if all functions
in the ensemble can be computed efficiently. The following Theorem 1, which
was first proved in [11], and equivalent versions of which can be found in [23],is
a very useful tool for establishing upper bound on the AdvA.

Theorem 1. Let f be a random function of Fn,n and f∗ a perfect random
function of Fn,n. Let q be an integer. Denote by X the ({0, 1}n)q set of all
x = (x1, . . . , xq) q-tuples of pairwise distinct elements. If there exists a Y subset
of ({0, 1}n)q and two positive real numbers ε1 and ε2 such that
(1) |Y| > 2qn(1− ε1)

(2) ∀x ∈ X ,∀y ∈ Y, P r[x
f−→ y] ≥ 2−qn(1− ε2).

then for any distinguisher A using q queries

AdvA(f, f∗) ≤ ε1 + ε2

3 Estimating the Security against Differential /Linear
Cryptanalysis

For simplification, let m = 4 in this section, denote as GFSP4. We suppose all
s-boxes {s11, s12, s13, s14, s21, . . . } are permutations, so the round functions are
also permutations. Let (x4i+3, x4i+2, x4i+1, x4i) and (4x4i+3,4x4i+2,4x4i+1,4x4i)
denote the input and input difference of the (i + 1)th round. Here we don’t con-
sider the difference value, let ”1” denote the non-zero difference. Hence, non-zero
input difference only have fifteen denotations: 1 = (0001), . . . , 15 = (1111).



3.1 Four Round GFSP4

If input difference is ”1”, we have the following 4-round differential characteris-
tics.

1 = (0001) → (1001) → (1101) →
{

(1111) = 15
(1110) = 14

Because the round function is permutation, the output difference is non-zero
if the input difference is non-zero. Hence, the first 3-round differential charac-
teristic is clear. For the fourth round, F (4x12) is likely to equal 4x13 when
4x12 and 4x13 are non-zero. Hence, the output difference of the fourth round
have two cases. The input difference of four round functions are all non-zero,
which are 4x0,4x4,4x8 and 4x12. We denote the above 4-round differential
characteristic as follows:

1





4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

Similarly,we have

2
4(3)−−−→ 15 4x44x84x12 4

4(2)−−−→ 13 4x84x12

3





4(1)−−−→ 1 4x0

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

5





4(2)−−−→ 3 4x04x4

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

6





4(1)−−−→ 2 4x4

4(3)−−−→ 15 4x44x84x12

8
4(1)−−−→ 9 4x12

7





4(2)−−−→ 3 4x04x4

4(3)−−−→ 12 4x04x84x12

4(3)−−−→ 13 4x04x84x8

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

9





4(3)−−−→ 7 4x04x44x8

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

10





4(2)−−−→ 6 4x44x8

4(3)−−−→ 15 4x44x84x12

12





4(1)−−−→ 6 4x8

4(2)−−−→ 13 4x84x12

13





4(2)−−−→ 5 4x04x8

4(3)−−−→ 12 4x04x84x12

4(3)−−−→ 13 4x04x84x12

14





4(2)−−−→ 6 4x44x8

4(2)−−−→ 11 4x44x12

4(3)−−−→ 15 4x44x84x12
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



4(2)−−−→ 5 4x04x8

4(3)−−−→ 7 4x04x44x8

4(3)−−−→ 10 4x04x44x12

4(3)−−−→ 11 4x04x44x12

4(3)−−−→ 12 4x04x84x12

4(3)−−−→ 13 4x04x84x12

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

11





4(3)−−−→ 7 4x04x44x8

4(2)−−−→ 8 4x04x12

4(2)−−−→ 9 4x04x12

4(4)−−−→ 14 4x04x44x84x12

4(4)−−−→ 15 4x04x44x84x12

3.2 Eight Round GFSP4

When the input difference is ”1”, the 8-round differential characteristics are the
following:

1





4(4)−−−→ 14





4(2)−−−→ 6, 4x04x44x84x124x204x24

4(2)−−−→ 11, 4x04x44x84x124x204x28

4(3)−−−→ 15, 4x04x44x84x124x204x244x28

4(4)−−−→ 15





4(2)−−−→ 5, 4x04x44x84x124x164x24

4(3)−−−→ 7, 4x04x44x84x124x164x204x24

4(3)−−−→ 10(11), 4x04x44x84x124x164x204x24

4(3)−−−→ 12(13), 4x04x44x84x124x164x244x28

4(4)−−−→ 14(15), 4x04x44x84x124x164x204x244x28

We show the minimum number of differential active s-boxes for 8-round
GFSP4 is equal or lager than 2Pd + 1, which is denoted as N1(S) ≥ 2Pd + 1.

We first exemplify 1
4(4)−−−→ 14

4(2)−−−→ 6.
When 4y = 4x ⊕4z, we have Hw(4y) ≤ Hw(4x) + Hw(4z). Let 4yi =

F (x)⊕ F (x⊕4xi). From the structure of 8-round GFSP4,we have

4y0 = 4x1 ⊕4x4, 4y4 = 4x2 ⊕4x8,
4y8 = 4x3 ⊕4x12, 4y12 = 4x0 ⊕4x16,
4y16 = 4x4 ⊕4x20, 4y20 = 4x8 ⊕4x24,
4y24 = 4x12 ⊕4x28.

From the definition of branch number Pd, we have

Hw(4yi) + Hw(4xi) ≥ Pd



Therefore, we have

Hw(4x0) + Hw(4x1) + Hw(4x4) ≥ Pd,

Hw(4x2) + Hw(4x4) + Hw(4x8) ≥ Pd,

Hw(4x3) + Hw(4x8) + Hw(4x12) ≥ Pd,

Hw(4x0) + Hw(4x12) + Hw(4x16) ≥ Pd,

Hw(4x4) + Hw(4x16) + Hw(4x20) ≥ Pd,

Hw(4x8) + Hw(4x20) + Hw(4x24) ≥ Pd,

Hw(4x12) + Hw(4x24) + Hw(4x28) ≥ Pd.

For 1
4(4)−−−→ 14

4(2)−−−→ 6, Hw(4x1) = 0,

N1(S) = Hw(4x0) + Hw(4x4) + Hw(4x8) + Hw(4x12) + Hw(4x20) + Hw(4x24)
= [Hw(4x0) + Hw(4x1) + Hw(4x4)] + [Hw(4x8) + Hw(4x20) + Hw(4x24)] + Hw(4x12)
≥ 2Pd + 1

Similarly, we can get N2(S) ≥ 2Pd + 1, N3(S) ≥ 2Pd + 1, N4(S) ≥ 2Pd + 1, and
N8(S) ≥ 2Pd + 1. The other cases are as follows:

5

{
N5(S) ≥ Pd + 1, 5

4(2)−−−→ 3
4(1)−−−→ 1, 4x44x84x16

N5(S) ≥ 2Pd + 1, else

6

{
N6(S) ≥ Pd + 2, 6

4(1)−−−→ 2
4(3)−−−→ 15, 4x44x204x244x28

N6(S) ≥ 2Pd + 1, else

7





N7(S) ≥ Pd + 1, 7
4(2)−−−→ 3

4(1)−−−→ 1, 4x04x44x16

N7(S) ≥ Pd + 2, 7
4(3)−−−→ 12

4(1)−−−→ 4, 4x04x84x124x24

N7(S) ≥ Pd + 3, 7
4(3)−−−→ 12

4(2)−−−→ 13, 4x04x84x124x244x28

N6(S) ≥ 2Pd + 1, else

9

{
N9(S) ≥ Pd + 3, 9

4(3)−−−→ 7
4(2)−−−→ 3, 4x04x44x84x164x20

N6(S) ≥ 2Pd + 1, else

10





N10(S) ≥ Pd + 3, 10
4(2)−−−→ 6

4(3)−−−→ 15, 4x44x84x204x244x28

N10(S) ≥ Pd + 1, 10
4(2)−−−→ 6

4(1)−−−→ 2, 4x44x84x20

N6(S) ≥ 2Pd + 1, else

11





N11(S) ≥ Pd + 3, 11
4(3)−−−→ 7

4(2)−−−→ 3, 4x04x44x84x164x20

N11(S) ≥ Pd + 1, 11
4(2)−−−→ 8

4(1)−−−→ 9, 4x04x124x28

N6(S) ≥ 2Pd + 1, else

12

{
N12(S) ≥ Pd + 2, 12

4(1)−−−→ 4
4(3)−−−→ 15, 4x84x204x244x28

N6(S) ≥ 2Pd + 1, else



13





N13(S) ≥ Pd + 2, 13
4(2)−−−→ 5

4(2)−−−→ 3, 4x04x84x164x20

N13(S) ≥ Pd + 2, 13
4(3)−−−→ 12

4(1)−−−→ 4, 4x04x84x124x24

N13(S) ≥ Pd + 3, 13
4(3)−−−→ 12

4(2)−−−→ 13, 4x04x84x124x244x28

N13(S) ≥ 2Pd + 1, else

14





N13(S) ≥ Pd + 3, 14
4(2)−−−→ 6

4(3)−−−→ 15, 4x44x84x204x244x28

N14(S) ≥ Pd + 1, 14
4(2)−−−→ 6

4(1)−−−→ 2, 4x44x84x20

N14(S) ≥ Pd + 2, 14
4(2)−−−→ 11

4(2)−−−→ 8(9), 4x44x124x164x28

N13(S) ≥ 2Pd + 1, else

15





N15(S) ≥ Pd + 2, 15
4(2)−−−→ 5

4(2)−−−→ 3, 4x04x84x164x20

N15(S) ≥ Pd + 2, 15
4(3)−−−→ 7

4(2)−−−→ 3, 4x04x44x84x164x20

N15(S) ≥ Pd + 3, 15
4(3)−−−→ 11

4(2)−−−→ 8(9), 4x04x44x124x164x28

N15(S) ≥ Pd + 2, 15
4(3)−−−→ 12

4(1)−−−→ 4, 4x04x84x124x24

N15(S) ≥ Pd + 3, 15
4(3)−−−→ 12

4(2)−−−→ 13, 4x04x84x124x244x28

N15(S) ≥ 2Pd + 1, else

From the above discussion, we get the following Lemma.

Lemma 1. If round function are permutation, the minimum number of differ-
ential active s-boxes for 8-round GFPN4 scheme is equal or larger than Pd + 1.

3.3 Sixteen Round GFSP4

Theorem 2. If round functions are permutations, the minimum number of dif-
ferential active s-boxes for 16-round GFPN4 scheme is equal or larger than
3Pd + 1.

Proof. We first list the 8-round differentials which satisfy Ni(S) < 2Pd + 1.

5
4(2)−−−→ 3

4(1)−−−→ 1, 6
4(1)−−−→ 2

4(3)−−−→ 15, 7
4(2)−−−→ 3

4(1)−−−→ 1,

7
4(3)−−−→ 12

4(1)−−−→ 4, 7
4(3)−−−→ 12

4(2)−−−→ 13, 9
4(3)−−−→ 7

4(2)−−−→ 3,

10
4(2)−−−→ 6

4(1)−−−→ 2, 10
4(2)−−−→ 6

4(3)−−−→ 15, 11
4(3)−−−→ 7

4(2)−−−→ 3,

11
4(3)−−−→ 7

4(2)−−−→ 3, 11
4(2)−−−→ 8

4(1)−−−→ 9, 12
4(1)−−−→ 4

4(3)−−−→ 15,

13
4(2)−−−→ 5

4(2)−−−→ 3, 13
4(3)−−−→ 12

4(1)−−−→ 4, 13
4(3)−−−→ 12

4(2)−−−→ 13,

14
4(2)−−−→ 6

4(3)−−−→ 15, 14
4(2)−−−→ 6

4(1)−−−→ 2, 14
4(2)−−−→ 11

4(2)−−−→ 8,

14
4(2)−−−→ 11

4(2)−−−→ 9, 15
4(2)−−−→ 5

4(2)−−−→ 3, 15
4(3)−−−→ 7

4(2)−−−→ 3,

15
4(3)−−−→ 11

4(2)−−−→ 8, 15
4(3)−−−→ 11

4(2)−−−→ 9, 15
4(3)−−−→ 12

4(2)−−−→ 13,

15
4(3)−−−→ 12

4(1)−−−→ 4.



Since N1(S) ≥ 2Pd +1, N2(S) ≥ 2Pd +1, N3(S) ≥ 2Pd +1, N4(S) ≥ 2Pd +1,
and N8(S) ≥ 2Pd, the 16-round differential of GFSP4, whose number of active
s-boxes is less than 3Pd + 1, must include in the following differentials.

11
4(2)−−−→ 8

4(1)−−−→ 9
4(3)−−−→ 7

4(2)−−−→ 3, 15
4(3)−−−→ 11

4(2)−−−→ 9
4(3)−−−→ 7

4(2)−−−→ 3,

14
4(2)−−−→ 11

4(2)−−−→ 9
4(3)−−−→ 7

4(2)−−−→ 3, 6
4(1)−−−→ 2

4(3)−−−→ 15
4(2)−−−→ 5

4(2)−−−→ 3,

6
4(1)−−−→ 2

4(3)−−−→ 15
4(3)−−−→ 7

4(2)−−−→ 3, 6
4(1)−−−→ 2

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 8,

6
4(1)−−−→ 2

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 9, 6
4(1)−−−→ 2

4(3)−−−→ 15
4(3)−−−→ 12

4(2)−−−→ 13,

6
4(1)−−−→ 2

4(3)−−−→ 15
4(3)−−−→ 11

4(1)−−−→ 4, 10
4(2)−−−→ 6

4(3)−−−→ 15
4(2)−−−→ 5

4(2)−−−→ 3,

10
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 7

4(2)−−−→ 3, 10
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 8,

10
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 9, 10
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 12

4(2)−−−→ 13,

10
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 12

4(1)−−−→ 4, 12
4(1)−−−→ 4

4(3)−−−→ 15
4(2)−−−→ 5

4(2)−−−→ 3,

12
4(1)−−−→ 4

4(3)−−−→ 15
4(3)−−−→ 7

4(2)−−−→ 3, 12
4(1)−−−→ 4

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 8,

12
4(1)−−−→ 4

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 9, 12
4(1)−−−→ 4

4(3)−−−→ 15
4(3)−−−→ 12

4(2)−−−→ 13,

12
4(1)−−−→ 4

4(3)−−−→ 15
4(3)−−−→ 12

4(1)−−−→ 4, 14
4(2)−−−→ 6

4(3)−−−→ 15
4(2)−−−→ 5

4(2)−−−→ 3,

14
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 7

4(2)−−−→ 3, 14
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 8,

14
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 11

4(2)−−−→ 9, 14
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 12

4(2)−−−→ 13,

14
4(2)−−−→ 6

4(3)−−−→ 15
4(3)−−−→ 11

4(1)−−−→ 4, 7
4(3)−−−→ 12

4(2)−−−→ 13
4(2)−−−→ 5

4(2)−−−→ 3,

7
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(1)−−−→ 4, 7
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(2)−−−→ 13,

13
4(3)−−−→ 12

4(2)−−−→ 13
4(2)−−−→ 5

4(2)−−−→ 3, 13
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(1)−−−→ 4,

13
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(2)−−−→ 13, 15
4(3)−−−→ 12

4(2)−−−→ 13
4(2)−−−→ 5

4(2)−−−→ 3,

15
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(1)−−−→ 4, 15
4(3)−−−→ 12

4(2)−−−→ 13
4(3)−−−→ 12

4(2)−−−→ 13.

From the structure of 16-round GFSP4, we have

4y0 = 4x1 ⊕4x4, 4y4 = 4x2 ⊕4x8,
4y8 = 4x3 ⊕4x12, 4y12 = 4x0 ⊕4x16,
4y16 = 4x4 ⊕4x20, 4y20 = 4x8 ⊕4x24,
4y24 = 4x12 ⊕4x28, 4y28 = 4x16 ⊕4x32,
4y32 = 4x20 ⊕4x36, 4y36 = 4x24 ⊕4x40,
4y40 = 4x28 ⊕4x44, 4y44 = 4x32 ⊕4x48,
4y48 = 4x36 ⊕4x52, 4y52 = 4x40 ⊕4x54,
4y56 = 4x44 ⊕4x60, 4y60 = 4x48 ⊕4x64.



Form the definition of branch number Pd, If 4xi 6= 0,then

Hw(4yi) + Hw(4xi) ≥ Pd

Therefore, we have

If 4x0 6= 0, then Hw(4x0) + Hw(4x1) + Hw(4x4) ≥ Pd.

If 4x4 6= 0, then Hw(4x2) + Hw(4x4) + Hw(4x8) ≥ Pd.

If 4x8 6= 0, then Hw(4x3) + Hw(4x8) + Hw(4x12) ≥ Pd.

If 4x12 6= 0, then Hw(4x0) + Hw(4x12) + Hw(4x16) ≥ Pd.

If 4x16 6= 0, then Hw(4x4) + Hw(4x16) + Hw(4x20) ≥ Pd.

If 4x20 6= 0, then Hw(4x8) + Hw(4x20) + Hw(4x24) ≥ Pd.

If 4x24 6= 0, then Hw(4x12) + Hw(4x24) + Hw(4x32) ≥ Pd.

If 4x28 6= 0, then Hw(4x16) + Hw(4x28) + Hw(4x28) ≥ Pd.

If 4x32 6= 0, then Hw(4x20) + Hw(4x32) + Hw(4x36) ≥ Pd.

If 4x36 6= 0, then Hw(4x24) + Hw(4x36) + Hw(4x40) ≥ Pd.

If 4x40 6= 0, then Hw(4x28) + Hw(4x40) + Hw(4x44) ≥ Pd.

If 4x44 6= 0, then Hw(4x32) + Hw(4x44) + Hw(4x48) ≥ Pd.

If 4x48 6= 0, then Hw(4x36) + Hw(4x48) + Hw(4x52) ≥ Pd.

If 4x52 6= 0, then Hw(4x40) + Hw(4x52) + Hw(4x56) ≥ Pd.

If 4x56 6= 0, then Hw(4x44) + Hw(4x56) + Hw(4x60) ≥ Pd.

If 4x60 6= 0, then Hw(4x48) + Hw(4x60) + Hw(4x64) ≥ Pd.

We exemplify 11
4(2)−−−→ 8

4(1)−−−→ 9
4(3)−−−→ 7

4(2)−−−→ 3, whose non-zero inputs
for round functions are 4x04x124x284x324x364x404x484x52, and 4x4 =
4x8 = 4x16 = 4x20 = 4x24 = 4x44 = 4x56 = 4x60 = 0. Hence, the number
of active boxes is

Hw(4x0) + Hw(4x12) + Hw(4x28) + Hw(4x32) + Hw(4x36) + Hw(4x40)
+Hw(4x48) + Hw(4x52)

= [Hw(4x0) + Hw(4x12)] + Hw(4x28) + [Hw(4x32) + Hw(4x36)] +
[Hw(4x40) + Hw(4x52)] + Hw(4x48)

≥ Pd + Pd + Pd + 2 = 3Pd + 2

We can prove the other differentials similarly. There is a kind of ”duality”
relation between differential cryptanalysis and linear cryptanalysis. Hence, from
Theorem 2 we have the following theorem.

Theorem 3. Let pS and qS be the maximum differential/linear probabilities of
all s-boxes{s11, s12, s13, s14, s21, . . . , s16,4}. If the round functions are permuta-
tions, then, the maximum differential/linear characteristic probabilities of 16-
round GFSP4 scheme are bounded by (ps)3Pd+1and (qs)3Pd+1, respectively.



4 7-Round Distinguishers

We discuss the pseudorandomness of n-bit r-round GFSP scheme
GFSP (f11,f12,...,frm) hereafter, where fij(i = 1, . . . , r, j = 1, . . . , m) are rm inde-
pendent random functions from {0, 1}l to {0, 1}l. We first present some 7-round
distinguishers.

Choose
x3 = (x, a3,2, · · · , a3,m), x2 = (a2,1, a2,2, · · · , a2,m),
x1 = (a1,1, a1,2, · · · , a1,m), x0 = (a0,1, a0,2, · · · , a0,m).

where x take values in {0, 1}l, ai,j are constants in {0, 1}l. Thus, the input of
the 4th round can be written as follows:

x15 = (a15,1, a15,2, · · · , a15,m), x14 = (a14,1, a14,2, · · · , a14,m),
x13 = (a13,1, a13,2, · · · , a13,m), x12 = (x⊕ a12,1, a12,2, · · · , a12,m).

where ai,j(12 ≤ i ≤ 15, 1 ≤ j ≤ m) are entirely determined by ai,j(0 ≤ i ≤ 3, 1 ≤
j ≤ m) and functions fi,j(1 ≤ i ≤ 3, 1 ≤ j ≤ m) , so ai,j(12 ≤ i ≤ 15, 1 ≤ j ≤ m)
are constants when fi,j(1 ≤ i ≤ 3, 1 ≤ j ≤ m) are fixed.

In the 4th round a transformation on x12 = (x⊕a12,1, a12,2, · · · , a12,m) using F4

is as follows:

x12 = (x⊕ a12,1, a12,2, · · · , a12,m)
F4−−→ (θ11y ⊕ b1, θ11y ⊕ b2, . . . , θ11y ⊕ bm)

where y = f41(x⊕a12,1), bj(1 ≤ j ≤ m) are entirely determined by a12,j(2 ≤
j ≤ m) and f4j(2 ≤ j ≤ m), thus bj(1 ≤ j ≤ m) are constants when f4j(2 ≤ j ≤
m) are fixed. Therefore, the input of the 5th round is

x19 = x12,
x18 = x15,
x17 = x14,
x16 = x13 ⊕ F4(x12) = (θ11y ⊕ b1 ⊕ a13,1, . . . , θ11y ⊕ bm ⊕ a13,m).

The one block of output for 7th round is as follows:

x29 = x16 = (θ11y ⊕ b1 ⊕ a13,1, . . . , θ11y ⊕ bm ⊕ a13,m)

So we get x29,1 ⊕ x29,2 = b1 ⊕ a13,1 ⊕ b2 ⊕ a13,m is a constant. Similarly we
have the following lemma:

Lemma 2. Let P = (x3, x2, x1, x0) and P ∗ = (x∗3, x
∗
2, x

∗
1, x

∗
0) be two plain-

texts of 7-round GFSP , C = (x31, x30, x29, x28) and C∗ = (x∗31, x
∗
30, x

∗
29, x

∗
28)

be corresponding ciphertexts, x0,i denote the i − th sub-block of x0. If x0 =
x∗0, x1 = x∗1, x2 = x∗2, x3,1 6= x∗3,1, x3,j = x∗3,j(2 ≤ j ≤ m), then for any subset
I ⊆ {1, 2, . . . , m}, if |I| is even, then

⊕

j∈I

x29,j =
⊕

j∈I

x∗29,j



5 Pseudorandomness of GFSP

5.1 7-Round GFSP Is not a Pseudorandom Function

Theorem 4. Let f11, . . . , f1m, f21, . . . , f7m be 7m independent random func-
tions from {0, 1}l to {0, 1}l and f∗ be the perfect random function on {0, 1}n

and f = GFSP (f11,f12,...,f7m). There exists a non-adaptive distinguisher A with
q queries such that:

AdvA ≥ 1− 2−
n(m−1)

8

Proof. We consider a distinguisher A as follows.
1.A randomly chooses two plaintexts P = (x3, x2, x1, x0) and P ∗ = (x∗3, x

∗
2, x

∗
1, x

∗
0)

such that x0 = x∗0, x1 = x∗1, x2 = x∗2, x3,1 6= x∗3,1, x3,j = x∗3,j(2 ≤ j ≤ m).
2.A sends them to the oracle and receives the ciphertexts C = (x31, x30, x29, x28)

and C∗ = (x∗31, x
∗
30, x

∗
29, x

∗
28) from the oracle.

3. Finally, A outputs 1 if and only if for any 1 ≤ j1 < j2 ≤ m,

x29,j1 ⊕ x29,j2 = x∗29,j1 ⊕ x∗29,j2

Suppose that the oracle implements f∗, then it is clear that p0 = 2−
n(m−1)

8 .
Next suppose that the oracle implements f = GFSP (f∗11,f∗12,...,f∗7m). Using lemma
2, we get p1 = 1. Therefore, we obtained that

AdvA(f, f∗) ≥ 1− 2−
n(m−1)

8

which is non-negligible. Hence, 7-round GFSP is not a pseudorandom func-
tion.

5.2 8-Round GFSP Is a Pseudorandom Function

Theorem 5. Let f∗11, . . . , f
∗
1m, f∗21, . . . , f

∗
8m be 8m independent random func-

tions from {0, 1}l to {0, 1}l and f∗ be the perfect random function on {0, 1}n

and f = GFSP (f∗11,f∗12,...,f∗8m). If the branch number of linear transformation
P : ({0, 1}l)m → ({0, 1}l)m is m + 1, then for any adaptive distinguisher A with
q queries we have

AdvA(f, f∗) ≤ 13q22−
n
4

Proof. Let us first introduce some notation. We consider a X =
(X1, X2, . . . , Xq) = (xi

3, x
i
2, x

i
1, x

i
0)i∈[1,...,q] q-tuple of n-bit f input words. We de-

note the corresponding q-tuple of f output words by Z = (zi
35, x

i
34, x

i
33, x

i
32)i∈[1,...,q].

We denote the (xi
k)i∈[1,...,q] and (yi

k)i∈[1,...,q] q-tuples of n
4 -bit words by x

[1∼q]
k

and y
[1∼q]
k . Let (x4i+3, x4i+2, x4i+1, x4i) be the input of (i + 1)th round and the

output of ith round, and let xj = (xj,1, . . . , xj,m). Let I 6=n denotes the subset of
({0, 1}n)q consisting of all the q-tuples of pairwise distinct {0, 1}n values.



We now define X = I 6=n , Y = (Y 1, . . . , Y q) = {(yi
3, y

i
2, y

i
1, y

i
0)i∈[1,...,q] | (y[1∼q]

3 ∈
I 6=n

4
)∧ (y[1∼q]

2 ∈ I 6=n
4
)∧ (y[1∼q]

1 ∈ I 6=n
4
)∧ (y[1∼q]

0 ∈ I 6=n
4
)}. We want to establish a lower

bound on the size of Y and the Pr[X → Y ] for any X q-tuple in X and Y q-tuple
in Y and show that there exists ε1 and ε2 real numbers satisfying conditions of
theorem 1.

Let us first establish a lower bound on |Y|. We have:

|Y| ≥ 2qn(1− Pr[(y[1∼q]
3 /∈ I 6=n

4
) ∨ (y[1∼q]

2 /∈ I 6=n
4
) ∨ (y[1∼q]

1 /∈ I 6=n
4
) ∨ (y[1∼q]

0 /∈ I 6=n
4
)])

≥ |Y| ≥ 2qn[1−
∑

1≤i<j≤q

Pr(yi
3 = yj

3)− · · · −
∑

1≤i<j≤q

Pr(yi
0 = yj

0)]

≥ |Y| ≥ 2qn[1− 2q(q − 1)2−
n
4 ]

So ε1 = 2q(q − 1)2−
n
4 .

Now, given any X q-tuple in X and any Y q-tuple in Y, let us establish a
lower bound on Pr[X → Y ].

Pr[X → Y ] = Pr[Y i = (yi
3, y

i
2, y

i
1, y

i
0) = (xi

35, x
i
34, x

i
33, x

i
32), i = 1, . . . , q]

Y i = (xi
35, x

i
34, x

i
33, x

i
32) if and only if

yi
0 = xi

32 = xi
29 ⊕ F8(xi

28),
yi
1 = xi

20 = xi
17 ⊕ F5(xi

16),
yi
2 = xi

24 = xi
21 ⊕ F6(xi

20),
yi
3 = xi

28 = xi
25 ⊕ F7(xi

24).

Let Ai be the event [Y i = (xi
35, x

i
34, x

i
33, x

i
32)], A = A1 ∧ A2 ∧ · · · ∧ Aq. Let

B16, B20, B24 and B28 be the event [x[1∼q]
16 ∈ I 6=n

4
], [x[1∼q]

20 ∈ I 6=n
4
], [x[1∼q]

24 ∈ I 6=n
4
] and

[x[1∼q]
28 ∈ I 6=n

4
], respectively. Let B = B16 ∧B20 ∧B24 ∧B28.

P r[X → Y ] = Pr[Y i = (yi
3, y

i
2, y

i
1, y

i
0) = (xi

35, x
i
34, x

i
33, x

i
32), i = 1, . . . , q]

= Pr[A] ≥ Pr[A|B]Pr[B]

Because f51, f51, . . . , f8m are independent random functions, we have Pr[A|B] =
(2−n)q.

P r[B] = 1− Pr[B16 ∨B20 ∨B24 ∨B28]
≥ 1− [Pr(B16) + Pr(B20) + Pr(B24) + Pr(B28)]

≥ 1− [
∑

i 6=j

Pr(xi
16 = xj

16) +
∑

i 6=j

Pr(xi
20 = xj

20) +
∑

i 6=j

Pr(xi
24 = xj

24) +
∑

i 6=j

Pr(xi
28 = xj

28)]



Next,we estimate Pr(xi
16 = xj

16), P r(xi
20 = xj

20), P r(xi
24 = xj

24) and Pr(xi
28 =

xj
28).

Pr(xi
16 = xj

16)

= Pr(xi
16 = xj

16|xi
12 6= xj

12)Pr(xi
12 6= xj

12) + Pr(xi
16 = xj

16|xi
12 = xj

12)Pr(xi
12 = xj

12)

≤ Pr(xi
16 = xj

16|xi
12 6= xj

12) + Pr(xi
12 = xj

12)

Let us now estimate Pr(xi
12 = xj

12).
case 1 If (xi

2, x
i
1, x

i
0) = (xj

2, x
j
1, x

j
0),then xi

3 6= xj
3, so that Pr(xi

12 = xj
12) = 0.

case 2 If (xi
2, x

i
1, x

i
0) 6= (xj

2, x
j
1, x

j
0)

Pr(xi
12 = xj

12)

= Pr(xi
12 = xj

12|xi
8 6= xj

8)Pr(xi
8 6= xj

8) + Pr(xi
12 = xj

12|xi
8 = xj

8)Pr(xi
8 = xj

8)

≤ Pr(xi
12 = xj

12|xi
8 6= xj

8) + Pr(xi
8 = xj

8)

From xi
12 = xi

9⊕F3(xi
8), the SP network of round function and f31, f32, . . . , f3m

are random functions, we have

Pr(xi
12 = xj

12|xi
8 6= xj

8) ≤ (2−l)m = 2−
n
4

Further, estimate Pr(xi
8 = xj

8).
case 2.1 If (xi

1, x
i
0) = (xj

1, x
j
0), then xi

2 6= xj
2, so that Pr(xi

8 = xj
8) = 0.

case 2.2 If (xi
1, x

i
0) 6= (xj

1, x
j
0), then Pr(xi

4 = xj
4) =

{
0 xi

0 = xj
0

2−
n
4 xi

0 6= xj
0

Pr(xi
8 = xj

8)

= Pr(xi
8 = xj

8|xi
4 6= xj

4)Pr(xi
4 6= xj

4) + Pr(xi
8 = xj

8|xi
4 = xj

4)Pr(xi
4 = xj

4)

≤ Pr(xi
8 = xj

8|xi
4 6= xj

4) + Pr(xi
4 = xj

4)

From xi
8 = xi

5⊕F2(xi
4),，the SP network of round function and f21, f22, . . . , f2m

are random functions, we have

Pr(xi
8 = xj

8|xi
4 6= xj

4) ≤ (2l)m = 2−
n
4

In all cases, Pr(xi
8 = xj

8) ≤ 2× 2−
n
4 , Hence we obtain

Pr(xi
12 = xj

12) ≤ 3× 2−
n
4 .

Thus

Pr(xi
16 = xj

16)

≤ Pr(xi
16 = xj

16|xi
12 6= xj

12) + Pr(xi
12 = xj

12)
≤ 2−

n
4 + 3× 2−

n
4 = 4× 2−

n
4



Similarly, we have

Pr(xi
20 = xj

20) ≤ 2−
n
4 + 4× 2−

n
4 = 5× 2−

n
4

Pr(xi
24 = xj

24) ≤ 2−
n
4 + 5× 2−

n
4 = 6× 2−

n
4

Pr(xi
28 = xj

28) ≤ 2−
n
4 + 6× 2−

n
4 = 7× 2−

n
4

thus

Pr[B] ≥ 1− q(q − 1)
2

× 22× 2−
n
4

Hence, we have

Pr[X
f−→ Y ] ≥ (2−

n
4 )q[1− 11q(q − 1)2−

n
4 ]

We can notice that Pr[X
f∗−−→ Y ] = (2−n)q, so we can apply Theorem 1 with

ε1 = 2q(q − 1)2−
n
4 and ε2 = 11q(q − 1)2−

n
4 . We have

AdvA(f, f∗) ≤ ε1 + ε2 ≤ 13q22−
n
4

This shows that the eight round GFSP is a pseudorandom function for any
adaptive adversaries.

6 Concluding Remarks

Evaluating the security of block cipher mostly includes two aspects, the one is
to evaluate the strength against differential/linear cryptanalysis and other at-
tacks, the other is to study the pseudorandomness of the cipher scheme. In this
paper we study the strength against differential/linear cryptanalysis and pseu-
dorandomness of a generalized Feistel scheme with SP round function called
GFSP . We focused on the minimum number of active s-boxes in some consecu-
tive rounds of GFSP4, i.e., in four, eight and sixteen consecutive rounds, since
we can determine the upper bounds of the maximum differential/linear prob-
abilities using the branch number of linear transformation P . As a result, we
give the upper bounds of the maximum differential/linear probabilities of 16-
round GFSP4 scheme. Furthermore, we study the pseudorandomness of GFSP .
We first present some distinguishers of 7-round GFSP , then point out 7-round
GFSP is not pseudorandom for non-adaptive adversary. Finally, we prove 8-
round GFSP is pseudorandom for any adversaries.
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