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Abstract

Let r, s, n be integers satisfying 0 ≤ r < s < n, s ≥ nα, α > 1/4,
and gcd(r, s) = 1. Lenstra showed that the number of integer divisors
of n equivalent to r (mod s) is upper bounded by O((α − 1/4)−2).
We re-examine this problem; showing how to explicitly construct all
such divisors and incidentally improve this bound to O((α−1/4)−3/2).

1 Introduction

Lenstra [6] gave an existential proof of the following fact: Let r, s, n be
integers satisfying 0 ≤ r < s < n, s ≥ nα, α > 1/4, and gcd(r, s) = 1.
Then the number of divisors of n in the residue class r (mod s) satisfies
an upper bound c(α) depending only on α. He proves the bound c(α) =
O((α − 1/4)−2) by showing a general (non-constructive) result concerning
weight functions of sets.

Here we construct the divisors explicitly, using techniques due to Cop-
persmith [2] for factoring an integer when given some knowledge of its fac-
tors, along with refinements and improved presentation due to Howgrave-
Graham [4, 5].
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Although not explicitly stated in [2] it is shown in [1] that the tech-
niques described in [2] can easily be used to find divisors in residue classes
in polynomial time, whenever α > 1/4 (this is done with regards to lattice
attacks on RSA). We extend this observation by showing exactly which di-
visors may be found for α > 0, and use an analysis of the lattice techniques
to place a bound on the possible number of divisors. This analysis allows
one to improve the asymptotic bound on the number of divisors given in [6]
to c(α) = O((α − 1/4)−3/2).

In Section 4 we outline Lenstra’s original method, and show how this
too can be improved from O((α − 1/4)−2) to O((α − 1/4)−3/2) by the use
of similar ideas. It should be noted though, that although the two methods
yield bounds which can be shown to be asymptotically similar, in practice
the bounds achieved by Lenstra’s methods are considerably better than the
ones implied by our lattice analysis.

We start, in Section 2 by giving an overview of the lattice method and
describe how one can use the LLL lattice reduction algorithm (see [7]) to
explicitly construct the required divisors. The proofs in this section are
deliberately vague, and it is left until Section 3 to give a completely rigorous
proof of our result.

In Section 5 we compare our work with the efficient technique described
in [8] and [9], which works for all α ≥ 0.3, when all the divisors of n are
congruent to 1 modulo s.

In Section 6 we list some of the many interesting questions that still
remain open regarding this problem.

2 An overview of the method

In this section we start by giving an outline of the results and proofs neces-
sary for our result, and then show how to explicitly search for the required
divisors in residue classes. For more details and a complete analysis please
refer to Section 3.

We are concerned with divisors of n of the form (sx + r), and therefore
should start by giving the following trivial result.

Lemma 2.1 Given s, r, n and α with s = nα and α > 1/2, there are at
most two positive divisors of n of the form (sx + r).
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Proof. The divisors of n of the form (sx + r) are paired with those of the
form (sy + r′) where r′ = n/r (mod s), 0 < r′ < s. If s > n1/2 and x ≥ 1
then its corresponding factor must be s × 0 + r′, and so there can be only
one divisor with x ≥ 1, and one with x = 0. This also holds when r = r′.

✷

The rest of the paper is based around the following theorem and corollary.

Theorem 2.1 Given p and n with p = nα, all x such that (p + x) divides
n and |x| < nγ can be found in polynomial time whenever

γh(h − 1) − 2uαh + u(u + 1) < 0,

for some integers h > u > 0. The largest value of γ for which this can hold
is α2 − ǫ.

Proof. We set X = nγ . For the given integers h > u > 0 form the h × h
matrix M(h, u,X) with rows corresponding to the polynomials

qi(x) =

{

nu−i(p + x)i 0 ≤ i ≤ u,
xi−u(p + x)u u < i < h.

For example

M(4, 2,X) =











n2 0 0 0
np nX 0 0
p2 2pX X2 0
0 p2X 2pX2 X3











Now apply the LLL lattice reduction algorithm to the rows of this ma-
trix to find a small row b1, and associate with this small lattice vector the
polynomial

b1(x) = b1 ·
(

1,

(

x

X

)

,

(

x

X

)2

,

(

x

X

)3
)

,

where v1 · v2 denotes the vector dot product. Notice that the polynomials
associated with the rows of M(h, u,X) are all zero modulo (p + x0)

u when
evaluated at x = x0 if (p + x0)|n. This means that b1(x) also has this
property since it is an integer linear combination of these polynomials.
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From the LLL bound on the small vector b1 we will then have, for all
|x| < X, that

|b1(x)| < cnu(u+1)/2hX(h−1)/2

for some small multiple c which we shall choose to ignore. The right hand
side is less than nuα whenever

X < n
u(2αh−u−1)

h(h−1) .

or

γh(h − 1) − 2uαh + u(u + 1) < 0.

If b1(x) is such that b1(x0) = 0 (mod (p + x0)
u) for all x0 such that

(p + x0)|n, and also b1(x0) < nuα for all |x0| < X, then any |x0| < X such
that (p + x0)|n must be a root of b1(x) over the integers, and hence may be
found in polynomial time.

For a given h the choice of u that maximizes γ is u = αh − 1/2, which
means that limh→∞ γ = α2. ✷

One can readily extend the result to the following.

Corollary 2.1 All x such that (sx + r) divides n where s = nα and nβ <
|x| < nγ can be found whenever

γh(h − 1) − 2u(α + β)h + u(u + 1) < 0,

for any h > u > 0, and the largest value of γ for which this can hold is
(α + β)2 − ǫ.

Proof. We use the fact that |x| > nβ to put a lower bound on the size of
(sx + r). If s′ = s−1 mod n, then following are both divisible by (sx + r):

n

s′(sx + r) = x + r′′ (mod n)

This implies we form the matrix as before with p = r′′ and now all the rows
are multiplies of (sx + r)u > n(α+β)u, and thus so is b1(x). The remaining
analysis follows that shown before.
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The best choice of u is (α + β)h − 1/2, implying limh→∞ γ = (α + β)2.
✷

Figure 1 below represents the space of possible divisors of the given
integer n, which are less than

√
n. A divisor (sx+ r) corresponds to a point

(logn s, logn x), which means that all such divisors lie under the line drawn
from (0, 1/2) to (1/2, 0), and also that all the divisors we are searching for
lie in a vertical line at (α, logn x). Such a line is drawn for α = 0.29. It will
be useful to refer to this diagram in the following discussion.

For given n, s, r we may use Corollary 2.1 to find some of the divisors
sx+r of n, for any α = logn s > 0. To see exactly which ones these are, notice
that if we set X = nγ , and reduce the relevant lattice, then (by choosing a
sufficiently large h) we will find all divisors with n

√
γ−α < |x| < X = nγ .

Clearly for this range to exist (and thus for the Corollary to be useful) we
require that

√
γ − γ ≤ α,

which is the curved line drawn in Figure 1. The Corollary will therefore
help (to some degree) to find the divisors anywhere in the lower region of
Figure 1, defined by this curve for 0 < α ≤ 1/4, and the line γ = 1/2 − α
for 1/4 < α ≤ 1/2.

For a given α = logn s > 1/4, if we wish to find all the possible divisors
sx + r less than

√
n, then we must let x range between 1 and n1/2−α, and

so we must use the Corollary repeatedly on subsections of this interval1.
As we will see, we may decide to use relatively small values of h, in the
interest of increasing the speed of our method or in bounding the number
of possible divisors. The effect of decreasing h will be to decrease the size
of the intervals, and thus increase the number of them we need consider.
The reason that h has a rôle to play in bounding the number of divisors is
that the degree of the polynomial one obtains, after the lattice reduction,
is h − 1, and we know that all of the relevant divisors of n in this interval
must be factors of this polynomial (so clearly there can be at most h − 1 of
them).

It should also be mentioned at this point, that since the lattice techniques
are concerned with the absolute value of x, we do end up finding the divisors,
s(−x) + r = −(sx − r) as well by this process, and so these are counted by

1We should also remember that there may a divisor of n with x = 0, i.e. r itself.
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h − 1 too. It is not presently known how to place a bound on the number
of divisors of the form sx + r for just x > 0 using these lattice techniques.

As an example of this, for α = 0.29 it turns out to be optimal (with
respect to bounding the number of divisors) to choose 7 intervals. Working
from the bottom one first these are parametrized by

(hi, ui) = (5, 1), (8, 2), (9, 3), (11, 4), (13, 5), (14, 6)

which implies that

logn Xi = γi = 0, 0.04, 0.08, 0.11, 0.14, 0.17, 0.19, 0.21

are the values defining the partitioning of the interval [0, 0.21] (these sub-
intervals are also indicated in Figure 1). The total number of divisors of the
form sx + r or sx− r for α = 0.29 is thus twice (because we must count the
divisors more than

√
n too) the sum of the hi−1 plus two (to count the fact

that 1 and n may also equal r mod s); namely 132 in this example.

In general to work out the optimal way to split the intervals, one may
assume one wants m intervals, and then exhaustively search2 the possible
hi and ui, where β0 = 0 and

βi = γi−1 =
2ui(α + βi−1)hi − ui(ui + 1)

hi(hi − 1)

Notice that these interval partitions are linear in α. With m intervals we
require that βm > 1/2 − α, which we may solve, to determine the least α
with at most 2(

∑

(hi − 1) + 1) divisors sx ± r.

Table 5.2 in Section 5 indicates the α at which increasing the number of
intervals becomes preferable to increasing the values of h in any interval.

2This search space can be considerably reduced by only searching near the optimal

values shown in Lemma 2.2, when an estimate of α is known.
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Figure 1: A description of the divisors one can find
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Figure 2: The bounds on the number of divisors

α

The upper curve in Figure 2 above represents the bound on the number
of divisors achieved by this process for α ≥ 0.29. The lower curve is the
presently best known bounds for α ≥ 1/3; which can be seen to be consider-
ably better (ending up by a factor of slightly more than 2). It would be an
interesting exercise to see if one could align these two sets of results more
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closely.

To analyze the asymptotic behavior of the upper curve in Figure 2, we
can do the following analysis.

Lemma 2.2 The number of divisors of n of the form (sx+ r) less than
√

n
is approximately bounded by

c(α) ≤ πα

(α − 1/4)3/2
.

“Proof”. Starting with β = 0, and increasing to β = 1/2−α, we choose h
and u to imply a γ which minimizes the density of divisors (h− 1)/(γ − β).
These values are

h =

⌈

2α

(α + β)2 − β

⌉

,

u = ⌊(α + β)h⌋ ,

γ =
2(α + β)uh − u(u + 1)

h(h − 1)
.

The density of divisors then satisfies

h − 1

γ − β
<

4α

((α + β)2 − β)2
.

Since this an increasing function for all β < 1/2 − α we have that

h − 1 < (γ − β)
4α

((α + β)2 − β)2
<

∫ γ

v=β

4α

((α + v)2 − v)2
dv.

This means that

∑

h − 1 <

∫ 1/2−α

0

4α

((α + v)2 − v)2
dv

<
πα

(α − 1/4)3/2
.

✷

In the next section we go through the fine details of what we have alluded
to in the above “proof”. This mainly means tightening the analysis, and
being specific about all the required integers values.
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3 The construction

Lemma 3.1 Assume given integers h > u > 0 and reals α, β, γ satisfying

0 < α < 1
0 ≤ β < γ ≤ 1 − α

u(u + 1) + γh(h − 1) − 2(α + β)uh < 0.

Then there exists an effectively computable integer n0 > 0 such that for all
integers 0 < r < s < n with

n > n0

s ≥ nα

gcd(r, s) = gcd(s, n) = 1,

the number of pairs of integers (d, x) satisfying

d|n
d = sx + r

nβ ≤ x ≤ nγ

is bounded above by h−1. We give a procedure to find these divisors in time
polynomial in (u, h, log n).

Proof.

We will calculate n0 later.

For a given instance (n, r, s) of our problem, because gcd(n, s) = 1,
we can find an integer m = s−1r (mod n), using the extended Euclidean
algorithm.

Consider the polynomials

pi(x) =

{

nu−i(x + m)i 0 ≤ i ≤ u
xi−u(x + m)u u < i < h

If d0 = sx0 + r is a divisor of n in the desired range, then each pi(x0) is a
multiple of du

0 . This follows because x0 + m = s−1d0 (mod n).

Any integer linear combination of the pi yields a polynomial which eval-
uates, at x0, to a multiple of du

0 .

Let X = ⌊nγ⌋ be the upper bound on the values of |x| under considera-
tion.
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We build an h× h matrix M whose columns correspond to powers of x,
and whose rows correspond to the polynomials pi, in the sense that mij is
Xj times the coefficient of xj in the polynomial pi(x). M is lower triangular,
so its determinant is given by the product of its diagonal elements, namely
det(M) = nu(u+1)/2Xh(h−1)/2.

We consider the rows of M to be the basis of an integer lattice. We
apply the lattice basis reduction algorithm from [7] to find a relatively short
element of this lattice: a row vector v whose L2 norm satisfies

‖ v ‖=




∑

j

v2
j





1/2

≤ 2(h−1)/4(det(M))1/h.

Interpreting this row as a polynomial, which is to be evaluated at the
point x0, we compute:

|v(x0)| ≤
√

h ‖ v ‖≤ 2(h−1)/4
√

h
(

nu(u+1)/2Xh(h−1)/2
)1/h

.

The hypotheses imply

u(u + 1) + γh(h − 1) − 2(α + β)uh = −ǫ < 0.

We select

n0 = 1 +

⌊

(

2(h−1)/4
√

h
)2h/ǫ

⌋

.

Then we have

|v(x0)| ≤
(

2(h−1)/4
√

h
) (

nu(u+1)/2Xh(h−1)/2
)1/h

< (n
ǫ/2h
0 )

(

nu(u+1)/2Xh(h−1)/2
)1/h

<
(

nǫnu(u+1)Xh(h−1)
)1/2h

≤
(

nǫ+u(u+1)+γh(h−1)
)1/2h

=
(

n2(α+β)uh
)1/2h

= n(α+β)u

< du
0 .

The last inequality follows from d0 > x0s ≥ nα+β. Since v(x0) is a multiple
of du

0 , and we have just seen |v(x0)| < du
0 , we conclude v(x0) = 0.
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Thus for all x0 in the range nβ ≤ x0 ≤ nγ we know that v(x0) = 0,
so that x0 is a root of v. Then h − 1 = deg(v) is an upper bound on the
number of divisors in that range. Further, we can compute these divisors by
building the matrix, doing lattice basis reduction, and solving a univariate
polynomial over the integers, all of which are polynomial-time operations.

✷

Lemma 3.2 Given α > 1/4 there is an integer n0 > 0 such that for all
integers n > n0 and s > nα and 0 < r < s < n with gcd(r, s) = gcd(s, n) =
1, the number of divisors d of n with d ≤ √

n and d ≡ r (mod s) is bounded
above by

1 +
πα

(α − 1/4)3/2
+

2α

α − 1/4
.

We give a procedure to find these divisors in time polynomial in (log n, (α−
1/4)−1).

Corollary 3.1 Given α > 1/4 there is an integer n0 > 0 such that for all
integers n > n0 and s > nα and 0 < r < s < n with gcd(r, s) = gcd(s, n) =
1, the number of divisors d of n with d ≡ r (mod s) is bounded above by

2 +
2πα

(α − 1/4)3/2
+

4α

α − 1/4
.

We give a procedure to find these divisors in time polynomial in (log n, (α−
1/4)−1).

Proof. (of Corollary 3.1) Apply Lemma 3.2 twice, the second time with
r′ ≡ n/r (mod s). Divisors d of n larger than

√
n and equivalent to r

(mod s) correspond to divisors d′ of n smaller than
√

n and equivalent to r′

(mod s) by dd′ = n. ✷

Proof. (of Lemma 3.2). The divisors d = sx + r with n0 ≤ x ≤ n1/2−α

include all those we are interested in, with the possible exception of d = r
corresponding to x = 0 < n0. This is the first “1” in the formula.

The closed interval I = [0, 1/2 − α] contains logn x. We will divide I
into sub-intervals Ij = [βj , γj), j = 1, 2, . . . , J , with β1 = 0, γj = βj+1,
and γJ > 1/2 − α. We will provide uj, hj for each interval, satisfying the
conditions of Lemma 3.1. At most hj − 1 values x lie in each sub-interval
Ij , and the sum

∑

(hj − 1) will give the desired bound.
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For fixed α and for each β = βj in turn, we choose parameters u, γ, h so
as to minimize the density of roots in the neighborhood: with at most h− 1
divisors in the range [nα+β, nα+γ), we strive to minimize (h − 1)/(γ − β).

To this end, we set

h =
⌈

2α
(α+β)2−β

⌉

u = ⌊(α + β)h⌋
so that

2α
(α+β)2−β ≤ h < 2α

(α+β)2−β + 1

(α + β)h − 1 < u ≤ (α + β)h.

We also select γ in the range

β < γ < γmax =
2(α + β)uh − u(u + 1)

h(h − 1)
,

so that the hypothesis of Lemma 3.1 is satisfied.

For fixed α, β, h, with u at either of its extrema we have

γmax ≥ (α + β)2h2 − (α + β)h

h(h − 1)
=

(α + β)2h − (α + β)

h − 1

and the same holds for u in the interior of its allowed range, by convexity.
Then

γmax − β ≥ ((α + β)2 − β)h − α

h − 1
.

The numerator of this expression is minimized when h is minimized, at
h = 2α/((α + β)2 − β), yielding

numerator ≥ α.

The denominator is maximized when h is maximized, at

h = 2α/((α + β)2 − β) + 1,

yielding

denominator <
2α

(α + β)2 − β
.

We conclude

γmax − β >
α

2α/((α + β)2 − β)

=
1

2

[

(α + β)2 − β
]

,
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and the density satisfies

h − 1

γmax − β
<

4α

((α + β)2 − β)2
.

Notice that the density function f(β) = 4α
((α+β)2−β)2

is an increasing

function of β for β < 1/2 − α, so that

h − 1 < (γmax − β)f(β) <

∫ γmax

β
f(v)dv.

So we can select γ slightly less than γmax so that we still have

h − 1 <

∫ γ

β
f(v)dv.

Let uj, hj , γj be defined by (u, h, γ), and let the value n0 from Lemma 3.1
be known as n0,j. Lemma 3.1 then tells us that the number of divisors
d = xs + r with βj ≤ logn x < γj is at most hj − 1, as long as n > n0,j.

Continue to produce intervals [βj , γj) until γJ > 1/2 − α. Then upper
bound hJ by its largest possible value,

hJ =

⌈

2α

(α + βJ)2 − βJ

⌉

≤
⌈

2α

((α + (1/2 − α))2 − (1/2 − α)

⌉

<
2α

α − 1/4
+ 1

hJ − 1 <
2α

α − 1/4

The total number of divisors is now bounded by

1 +
∑J−1

j=1 (hj − 1) + (hJ − 1) ≤ 1 +
∑J−1

j=1

∫ γj

βj
f(v)dv + 2α

α−1/4

< 1 +
∫ 1/2−α
0 f(v)dv + 2α

α−1/4

= 1 +
∫ 1/2−α
0

4αdv
((α+v)2−v)2 + 2α

α−1/4

= 1 + 4α
∫ 0
−1/2+α

dx
((x+1/2)2−(x+1/2−α))2

+ 2α
α−1/4 ;

the latter equation coming from the substitution v = x + 1/2 − α;

= 1 + 4α
∫ 0
−1/2+α

dx
(x2+(α−1/4))2 + 2α

α−1/4

< 1 + 4α
∫ 0
−∞

dx
(x2+(α−1/4))2 + 2α

α−1/4

< 1 + 4α π/4

(α−1/4)3/2 + 2α
α−1/4

< 1 + πα
(α−1/4)3/2 + 2α

α−1/4 .

This estimate holds for all n > max n0,j, so we set n0 = maxn0,j, and we
are done. ✷
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4 Lenstra’s method

Our bound on the density of divisors allows relatively more divisors near the
middle, d ≈ n1/2, and fewer near the ends, d ≈ n0, n1. By contrast, Lenstra’s
original proof covered the unit interval with intervals of fixed length ǫ, and
proved a uniform bound on the number of roots whose log (base n) lie in
any ǫ-interval. His result was O((α − 1/4)−2) roots overall. If one follows
Lenstra’s proof but instead covers the unit interval with intervals with vari-
able length ǫ and computes independently the bounds on the number of
roots in each interval, one gets the same O((α − 1/4)−3/2) bound as the
present approach. We outline here this improvement, borrowing liberally
from Lenstra’s paper.

For a positive integer k put

V (k) = {pt : p prime, t ∈ Z, t ≥ 1, pt divides k}

and define a weight w on each set V (k) by w({pt}) = logn p. It follows that
w(V (k)) = logn k.

Choose parameters β, ǫ with α ≤ β and β + ǫ ≤ 1. (Warning: Lenstra’s
β corresponds to our β + α.) Set m = |Dβ | where

Dβ = {d : d|n, d ≡ r (mod s), β log n ≤ log d < (β + ǫ) log n}.

Set D = V (d).

Consider d, d′ ∈ Dβ and the corresponding sets D = V (d),D′ = V (d′).
We have β ≤ w(D), w(D′) < β + ǫ. In particular w(D) and w(D′) differ by
less than ǫ. Subtracting (D∩D′) we find that w(D−D′) and w(D′−D) also
differ by less than ǫ. The larger is at least α = logn s, so the smaller is strictly
greater than α−ǫ. (Essentially this is using the fact that gcd(d, d′) ≤ |x−x′|
when d = sx + r, d′ = sx′ + r). The symmetric difference D∆D′ satisfies
w(D∆D′) > 2α − ǫ. Summing over all unordered pairs of di ∈ Dβ we have

∑

1≤i<j≤m

w(Di∆Dj) >

(

m

2

)

(2α − ǫ).

For each prime power pt|n, let x denote the corresponding multiset ele-
ment, and set mx = ♯{i : x ∈ Di}. We have

∑

1≤i<j≤m

w(Di∆Dj) =
∑

x

(mx)(m − mx)w({x})

14



Set

τ =
∑

x

mx

m
w({x}) =

1

m

∑

i

w(Di)

so that
β ≤ τ < β + ǫ.

By convexity3 of the function t(m − t) we find

∑

x

(mx)(m − mx)w({x}) ≤ (mτ)(m(1 − τ)),

which is the fundamental equation which allows us to treat the intervals
separately (rather than considering the (constant) bound of m2/4).

Combining, we see
(

m

2

)

(2α − ǫ) < m2τ(1 − τ)

(m − 1)(2α − ǫ) < 2mτ(1 − τ)

1 − 1

m
=

m − 1

m
<

τ(1 − τ)

α − (ǫ/2)

m <
α

α + τ2 − τ − ǫ
2

Let

ǫ = α + τ2 − τ = (α − 1

4
) + (τ − 1

2
)2 > 0.

Then we find

m <
2α

α + τ2 − τ

m

ǫ
<

2α

(α + τ2 − τ)2

As before, the latter fraction represents a density of roots. This density
corresponds to half of our f(τ − α). We then integrate from 0 to 1, taking
care of details in a manner similar to the previous section, which yields an
upper bound of about

πα

(α − 1
4)3/2

for the total number of divisors.

3This is covered in more detail in the Appendix A.
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5 Results

With respect to bounding the number of divisors, the previously best known
results for α ≥ 1/3 are as follows:

Table 5.1 The best known bounds for given α ≥ 1/3.

α 1/2 2/5 3/8 4/11 13/37 9/26 31/92 1/3
(approx.) (.5) (.4) (.375) (.364) (.351) (.346) (.337) (.333)

c(α) 2 4 6 7 8 9 10 11

Our results do not compare well with the above; mainly, it is thought,
because we are counting the number of divisors of the form sx−r as well. Out
of interest the following table indicates the α at which it becomes preferable
to increase the number of intervals, rather than increase the value of h in
any one of them, together with the bound on the number of divisors at this
α.

Table 5.2 The first α for which it is best to increase the number of intervals.

# intervals α (approx.) c(α)

1 5/12 (0.417) 6
2 7/18 (0.389) 10
3 23/65 (0.354) 20
4 55/166 (0.331) 32
5 6799/21420 (0.317) 48
6 6233/20440 (0.305) 72
7 24159/81550 (0.296) 100

6 Conclusions

One reason that the lattice bounds are worse is that they actually count the
divisors in residue classes of the form sx− r as well. It would be nice if one
could remove this necessity, and further align our result with Lenstra’s.

It would also be interesting to know if the divisors indicated by Figure 1,
completely describe those that can be found in polynomial time. If such a
statement could be shown to be true, then it poses the problem of how hard
the remaining divisors are to find. To find the divisors in the top left of this
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diagram is clearly equivalent to the hardest factorization problem (since one
may exhaustively search for small enough r and s), but are there a series of
complexity classes that lead up to this?

In contrast to the given problem, is that of actually constructing numbers
n with a given number of divisors in the same residue class. Cohen (see [3])
has shown that there are an infinitely many numbers with 6 divisors in the
same residue class, i.e. those of the form n = (2x + 1)(x2 + 1)(x2 + x +
1)(2x2 − x + 1)(2x2 + x + 1) with r = 1 and s = (2x + 1)(x2 + 1)− 1. Since
s > n1/3 for all x > 5 we have that c(1/3) ≥ 6. Comparing this with the
known upper bound of 11 divisors, shows there is plenty of work needed in
aligning these two sets of results.

The techniques of Section 3 worked out the optimal parameters for
bounding the number of divisors, not for speed of finding them. In or-
der to promote the use of this algorithm in finding divisors in residue classes
in practice, it would be nice to suggest good practical choices of parameters
for any α. However, choosing semi-optimal parameters relies on having a
good estimate of lattice reduction running times. At present we leave this
as an open question.
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A A proof of convexity

In Section 4 we required the following result with respect to the convexity
of the function t(m − t).

Theorem A.1 For any set of real numbers x1, . . . , xn, with associated (real)
positive weights w1, . . . , wn we have that

(

n
∑

i=1

wi

)(

n
∑

i=1

xi(m − xi)wi

)

≤
(

n
∑

i=1

xiwi

)(

n
∑

i=1

(m − xi)wi

)

Proof. Let δ be the righthand side minus the lefthand side, i.e.

δ =

(

n
∑

i=1

xiwi

)(

n
∑

i=1

(m − xi)wi

)

−
(

n
∑

i=1

wi

)(

n
∑

i=1

xi(m − xi)wi

)

,
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By introducing a second summation variable j, and bringing both summa-
tion to the front we have

δ =
n
∑

i=1

n
∑

j=1

wiwj(xi(m − xj) − xi(m − xi))

Note that the (polynomial) coefficients of each of the w2
i terms disap-

pear, so there are only n(n− 1)/2 unique wiwj terms remaining. If we now
performing our grouping by these terms, then we have:

δ =
n
∑

i=1

i−1
∑

j=1

wiwj(xi(m − xj) − xi(m − xi) + xj(m − xi) − xj(m − xj))

=
n
∑

i=1

i−1
∑

j=1

wiwj(x
2
i − 2xixj + x2

j )

=
n
∑

i=1

i−1
∑

j=1

wiwj(xi − xj)
2

≥ 0

✷

19


