
Modified Parameter Attacks: Practical Attacks
Against CCA2 Secure Cryptosystems, and

Countermeasures

Nick Howgrave-Graham, Joe Silverman, Ari Singer, William Whyte

NTRU Cryptosystems

Abstract. We introduce the concept of Modified Parameter Attacks, a
natural extension of the idea of Adapative Chosen Ciphertext Attacks
(CCA2) under which some CCA2 secure systems can be shown to be
insecure. These insecurities can be addressed at the application level, but
can also be addressed when cryptographic schemes are being designed.
We survey some existing CCA2 secure systems which are vulnerable to
this attack and suggest practical countermeasures.

1 Introduction

It is of great interest, when studying cryptosystems, to make statements
about their security under certain attack models. The contribution of this
paper is to suggest an attack model for public key encryption schemes,
stronger than those typically considered at present, within which the se-
curity properties of the scheme can be evaluated.

We start by identifying existing concepts used in the study of public
key encryption schemes. First, we review security properties of indistin-
guishability and non-malleability. Each of these properties can be looked
on as the ability to resist a particular type of attack.

– Indistinguishability: An attacker submits two plaintexts, x0 and
x1, to an encryption oracle, which encrypts one of them and outputs
the ciphertext y. If the attacker cannot identify, with non-negligible
advantage, the plaintext which was used to produce y, the system is
said to have the property of indistinguishability.

– Non-Malleability: An attacker is given a plaintext x and the corre-
sponding ciphertext y. If the attacker can alter y to obtain y′, where
y′ decrypts to a message x′ that is related to x in some simple way,
then the system is said to be malleable. If an attacker cannot per-
form such an alteration, the system is said to have the property of
non-malleability.



In general, three significant types of attack are commonly identified [3,
16]:

– Chosen Plaintext Attack (CPA): The attacker may generate as
many ciphertexts as she likes, but has no access to a decryption oracle.

– Non-Adaptive Chosen Ciphertext Attack (CCA1): The at-
tacker has access to a decryption oracle before seeing the target ci-
phertext y, but no access to the oracle after seeing y. This attack is
also known as a “lunchtime attack”.

– Adaptive Chosen Ciphertext Attack (CCA2): The attacker has
access to a decryption oracle both before and after seeing the target
ciphertext y. Before seeing y, the attacker may query the decryption
oracle with any ciphertext or purported ciphertext. After seeing y,
the attacker may query the decryption oracle with any ciphertext or
purported ciphertext, except y itself.

Until now, it has been generally believed that the strongest possible
security that may be demanded of a cryptosystem is security against
attacks of the form CCA2. In this paper, we propose a new, stronger
form of attack which we call Modified Parameter Attacks. These attacks
can break certain systems which are known to be CCA2 secure. We also
demonstrate simple countermeasures.

2 Modified Parameter Attacks

2.1 Motivation

In cryptographic research, it has been the custom to look on security
against adaptive chosen ciphertext attacks as the property that encryp-
tion schemes should aim to have. Many schemes [2, 6, 14] have been pro-
posed that can be proved to have this property. However, each of these
schemes is typically parameterizable, and the proofs of security assume
that a given key is used only with one parameter set.

This paper looks at vulnerabilities which can be exploited when a
given key is used with more than one set of parameters. As an example of
how this might happen, consider cryptographic standards such as [5, 10,
11, 15]. Here, the convention is that a public encryption key is associated
only with a specific algorithm, not with a specific scheme. For example,
in PKIX [11], an RSA public key in a certificate is accompanied by an
identifier stating that it is an RSA key. Additional identifiers can restrict
its use to (for example) signing only or encryption only, but there is no
standard way to restrict its use to a specific encryption scheme. Instead,



the sender of an encrypted message decides the scheme and the scheme
parameters to use on encryption. These parameters are sent, typically
unprotected and in the clear, along with the ciphertext information, and
the recipient cannot necessarily be certain that the parameters used to
decrypt a message are the same as the ones that were used to encrypt it.
It is certainly an interesting area of study to investigate what might go
wrong if those parameters can be altered.

This area has not been closely examined at the cryptographic prim-
itive level in the past. Where the issue has been mentioned [18], it has
in general been covered by a statement that a key should have a set of
parameters associated with it at key generation time, and that only these
parameters should be used. It’s not clear how this could be enforced in
practice; it would be better to ensure that there are no risks to the system
even if this principle isn’t followed.

At a higher level, the idea of studying interactions between different
security procedures is well established. The concept of chosen-protocol
attacks is introduced in [12]; studies of secure protocols such as SSL [21]
have warned about version rollback attacks, in which an attacker can
persuade victims to use a different, weaker procedure than the one they
would use by choice. The paper [12] demonstrates that (in its own words)
“a protocol may be quite secure alone, but may lose its security when
another protocol exists that can be carried out with the same key pair”,
and that “A key should typically have only a small number of closely
related uses. There is sometimes a temptation to reuse keys for related
applications. This temptation should be avoided wherever possible.” The
distinction between this paper and theirs is that they concentrate, in
general, on the protocol level, and we concentrate on scheme-level issues.

Nearer the cryptographic primitive level, Haber and Pinkas [9] have
studied interactions between different secure systems, in particular the
question of whether it is safe to use a given key for both a plaintext-aware
encryption scheme and an existentially unforgeable signature scheme. In-
terestingly, their result is that a plaintext aware encryption scheme cannot
be used to break any other cryptographic scheme. This paper presents
counter-examples to their result; we suggest that the resolution lies in
considering exactly what plaintext-awareness means in the context of our
attack model. Shoup [18] has observed an attack on the DHAES encryp-
tion scheme [1] similar in spirit to the attacks presented here. In DHAES,
the sender of an encrypted message may attach a label. If the length of
this label is a fixed parameter, the scheme is secure; if the length of the
label can vary, the scheme is broken unless the length is explicitly com-



mitted to. In this paper we show similar attacks on other CCA2-secure
cryptosystems, and demonstrate that committing to the length of the
various building blocks of the system does not prevent all attacks.

In summary, our motivation is this: if a key is to be used with a
“secure” system, it should not be possible to make the use of that key
break any other “secure” system. We show in this paper that a system
that is CCA2-secure may not be secure in the sense just defined, and
propose a design philosophy to obtain the desired level of security.

2.2 Model

The concept of the Modified Parameter Attack is simple. Consider a pub-
lic key cryptosystem C consisting of the three algorithms {K, E ,D} and
parameterized by the parameter set {P}, such that:

– K takes as input P and produces as output the keypair kpub, kpriv.
– E takes as input P, kpub and the message x, and produces as output

the ciphertext y.
– D takes as input P, kpriv, possibly kpub, and the ciphertext y, and pro-

duces either the decrypted message x′ or an error message indicating
that the decryption has failed.

In a modified parameter attack, the attacker has access to a decryption
oracle, and may query it with any y and any P of their choosing. In
other words, whereas in an adaptive chosen ciphertext attack the attacker
can query the decryption oracle with any y′ 6= y of their choosing, in a
modified parameter attack the attacker can query the decryption oracle
with any (y′,P ′) of their choosing, so long as (y′,P ′) is not exactly equal
to (y,P). Another way of looking at this is to say the attacker has access
to a large number of decryption oracles Di, all using the same key but each
parameterized by a different parameter set Pi, and that only the oracle
whose parameters correspond to those used to encrypt y will refuse to
decrypt y.

So, in this model, what counts as a parameter? To help define this,
we consider differences between the original definition of RSA-OAEP [2]
and two deployed implementations of the scheme [15, 17]. Bellare and Ro-
gaway’s original OAEP construction [2], hereafter referred to as “OAEP-
BR”, is designed for use on l-bit trapdoor permutations f . OAEP-BR is
parameterized by k0 and k1, which are bitlengths, and by a choice of two
hash functions: F , which maps an input string of length k0 to an out-
put string of length l − k0, and G, which maps an input string of length



l − k0 to an output string of length k0. The quantities k0 and k1 satisfy
k0 + k1 < l; the maximum length of message that can be encrypted is
l − (k0 + k1).

To encrypt, the sender does the following:

1. Generates r, a random bit string of length k0.
2. Calculates x′ = F (r)⊕ (x||0k1).
3. Calculates r′ = G(x′)⊕ r.
4. Forms the masked message block b as x′||r′ and encrypts this with the

trapdoor permutation f to get the ciphertext y = f(b).

To decrypt, the recipient does the following:

1. Uses the inverse trapdoor permutation f−1 to recover the candidate
masked message block B = f−1(y).

2. Splits B into the two blocks X ′ and R′, given by the first l − k0 and
the last k0 bits respectively.

3. Calculates R = G(X ′)⊕R′.
4. Calculates X = F (R)⊕X ′.
5. Checks to see if the last k1 bits of X are equal to 0k1 . If this is the case,

the recipient outputs the first l − (k0 + k1) bits of X as the message
x. Otherwise, the recipient outputs “error”.

In this context, k0, k1, F and G are obviously parameters. However,
inspection of OAEP as specified in PKCS#1 versions 2 and higher [15]
and in SET [17] leads to a slightly broader definition. In OAEP-BR, the
message block before masking looks like

[x||checkData||r],

where checkData = 0k. In OAEP-PKCS1, the message block looks like

[r||checkData||x],

where checkData is the hash of some information. And in OAEP-SET,
the message block looks like

[checkData||x||r],

with checkData = 0k again. Both OAEP-PKCS1 and OAEP-SET have
the same security properties as the ideal OAEP-BR (modulo some small
vulnerabilities discovered by Manger [13]), but the specific implementa-
tions are very different.



So we can imagine an attacker who can alter k0 and k1, but addition-
ally we can imagine that the attacker has the power to state which of
the bits in the unmasked decrypted message belong to x, which to r, and
which to checkData. Essentially, we can imagine the attacker imposing
any interpretation of the bits they like, so long as it doesn’t break the
IND-CCA2 properites of the system. This means, in particular:

– No parameter indicating a bitlength may be lowered below a level that
makes integrity checks effectively meaningless.

– All hash functions used to instantiate random oracles must behave,
as much as possible, like random oracles. In other words, an attacker
can’t persuade someone to encrypt or decrypt with a hash function
whose output is (for example) the reverse of the output of SHA-1, or
the output of SHA-1 plus 1.

The principle is that both the sender and the recipient are making a
good-faith effort to implement a secure cryptosystem and the attacker
can make them use any other cryptosystem that, considered in isolation,
is at least as secure.

We now survey two CCA2 secure cryptosystems which can be broken
by attacks of this type. Their common theme is that, although they per-
form an integrity check, this check guarantees only that the recipient has
decrypted the same message block as the sender encrypted, not that the
recipient has recovered exactly the same message.

3 Modified Parameter Attacks on RSA-OAEP

3.1 Review

OAEP was introduced by Bellare and Rogaway [2], who showed it to
be CCA1 secure. Although Shoup [19] showed that OAEP is not CCA2
secure in the general case, it was demonstrated by Fujisaki et al. [8] that
when OAEP is combined with the RSA function it is, in fact, CCA2
secure. In this section we describe a modified parameter attack that breaks
indistinguishability for some forms of OAEP.

OAEP-BR was described in the previous section. Its important char-
acteristic for purposes of this discussion is that the message sender con-
structs a block of the form

[x||checkData||r],
where checkData = 0k1 , and that the process of hashing and masking uses
r separately from (x||checkData) but treats (x||checkData) as a single
unit.



3.2 Modified Parameter Attacks

Now consider an attacker who wants to distinguish between two messages.
If they change F or G, decryption will almost certainly fail under the ran-
dom oracle assumption. Likewise, they cannot change k0, because this is
the length of input to F , and changing the input to F will cause decryp-
tion to fail under the random oracle assumption. The attacker instead
does the following:

1. Selects two messages x0 and x1, such that x0 ends with a zero byte
and x1 does not.

2. Submits these two messages to the encryption oracle and receives back
the ciphertext y encrypted with the parameters {k0, k1, F, G}.

3. Submits the ciphertext y to the decryption oracle with the parameters
{k0, k1 + 8, F, G}.

4. If the decryption oracle outputs “error”, the attacker identifies x1 as
the encrypted message. If the decryption oracle does not output an
error, the attacker identifies x0 as the encrypted message.

Here, the weakness arises because the integrity check that is performed
ensures only that the recipient has retrived (x||0k1), not x itself.

3.3 Effect on Deployed Systems, and Countermeasures

Although this attack is effective against OAEP-BR, it does not necessarily
apply to deployed systems, and there are simple countermeasures. We now
survey existing variants of OAEP for their security against this attack.

A simple countermeasure would be to have F take as input a string
of length (k0 + k1), specifically (0k1 ||r), and to have G take as input a
string of length l − (k0 + k1). This way, any alteration to k0 or k1 will
alter the input to F ; under the random oracle assumption, this will make
successful decryption negligibly unlikely. This countermeasure is effective,
but not particularly generic: the countermeasures below are preferred.

OAEP-PKCS1 [15] uses a slightly stronger countermeasure. In this
version of the scheme, we require k0 = k1 (they are both defined as the
output length of an appropriate hash function), and instead of performing
the integrity check by looking for a string of zeroes in a specified loca-
tion, we look for the hash of a known, public string, called the “encoding
parameters”. These encoding parameters, however, are optional and are
not linked directly to the message, and the approach seems like an en-
gineering countermeasure to the attack rather than a more fundamental
cryptographic approach.



The form of RSA-OAEP specified in the SET documents [17] is not
characterized by variable parameters. The specification requires 1024-bit
keys, SHA-1, and an eight-byte checkData equal to 03 00 ... 00. We
make two comments about this. First, if in a specific implementation
the length of checkData was variable, rather than fixed, an equivalent
attack to the one described against OAEP-BR would work against OAEP-
SET. It is easy to imagine an engineer allowing this flexibility at some
API level, anticipating later versions of the protocol with longer check
strings. Additionally, there is a rather more interesting attack which uses
OAEP-BR to break OAEP-SET, and vice versa. Recall that in OAEP-BR
the message block, before masking, looks like [x||checkData||r], while in
OAEP-SET it looks like [checkData||x||r]. The attack does the following:

1. Selects two messages x0 and x1, such that x0 begins with 03 00 ...
00 and x1 does not.

2. Submits these two messages to an encryption oracle using OAEP-BR
and receives back the ciphertext y.

3. Submits the ciphertext y to a decryption oracle using OAEP-SET.
4. If the decryption oracle outputs “error”, the attacker identifies x1 as

the encrypted message. If the decryption oracle does not output an
error, the attacker identifies x0 as the encrypted message.

We note that this attack does not apply to OAEP-PKCS1. This is because
OAEP-PKCS1 places r at the beginning, not the end, of the message
block.

In the SAEP+ construction due to Boneh [4], the sender does not use
the string (x||0k1) in step 2 of the encryption. Instead, using the hash
functions G, H, the sender constructs:

s = H(r)⊕ (x||G(x||r))
w = s||r,

and encrypts w. On decryption, the recipient recovers and checks G(x||r).
It appears, although we do not prove it here, that this prevents all modi-
fied parameter attacks: the use of H(r) guarantees that r has been recov-
ered correctly, and the use of G(x||r), given that r has been recovered,
guarantees that x has been recovered correctly.

The OAEP+ construction due to Shoup [19], which inspired SAEP+,
takes a similar approach. In OAEP+, using an additional hash function
H ′, the sender constructs:

s = (G(r)⊕ x)||H ′(r||x),
t = H(s)⊕ r,

w = s||t,



and encrypts w. This construction also appears immune to parameter
altering attacks: G(r) guarantees that r has been recovered, and H ′(r||x)
guarantees that x has been recovered. Our recommendation would be
that any future standards that adopt an OAEP-based system seriously
consider the use of OAEP+ or SAEP+.

3.4 MPA Attacks on RSA-OAEP: Conclusions

In this section, we have surveyed different implementations of RSA-OAEP,
and demonstrated that some are more vulnerable than others to parame-
ter altering attacks. In particular, we have shown an interaction between
OAEP-SET and OAEP-BR which allows a decryption oracle for one to
be used to break the other. In comparing those constructions which resist
MPA to those which fail against it, we draw the following design conclu-
sion: Integrity checks should guarantee that the decrypter has
recovered the correct message, not the correct message block.
This principle will be further endorsed by our study of another CCA2
secure scheme, that due to Fujisaki and Okamoto [6, 7].

4 Modified Parameter Attacks on the Fujisaki-Okamoto
Scheme

4.1 Review

The Fujisaki-Okamoto scheme [6, 7] provably converts a probabilistic public-
key encryption scheme that is secure in the sense of IND-CPA to one that
is secure in the sense of IND-CCA2 (and therefore NM-CCA2). The con-
struction is simple. Let the original probabilistic algorithm be represented
by

Epk(x, r),

where x is the message of length l to be encrypted, and r is a set of coin
tosses of appropriate length. Then the encryption under the FO scheme
is

ĒH,k
pk (x, r) = Epk(x||r, H(x||r)),

where r is now a set of coin tosses of length k, and x is restricted to
being of length l−k. On decrypting a ciphertext y, the recipient recovers
(x||r) and checks that Epk(x||r, H(x||r)) = y; if the check succeeds, the
recipient outputs x, and if it fails they output the error string.



4.2 MPA Attacks on Fujisaki-Okamoto

We demonstrate two attacks, one of which depends on altering the pa-
rameter k, the other of which is more sophisticated.

First, consider an attacker who can alter the parameter k. As in the
OAEP case above, there is a simple attack which breaks indistinguisha-
bility, as follows. The attacker:

1. Selects two messages x0 and x1, which differ in at least one byte other
than the last byte.

2. Submits these two messages to the encryption oracle and receives back
the ciphertext y encrypted with the parameters {k, H}.

3. Submits the ciphertext y to the decryption oracle with the parameters
{k + 8,H}.

4. The decryption will succeed, and will output all but the last byte of
the xi which was encrypted.

The attacker can thus distinguish between the two messages.
Second, consider the possibility that there might be two different im-

plementations of FO in common use: one which encrypts (x||r, H(x||r))
and one which encrypts (r||x, H(r||x)). This is exactly analogous to the
difference between OAEP-BR and OAEP-SET exploited in the previous
section, and enables a similar attack. The attacker:

1. Selects two messages x0 and x1, which differ in at least one bit in their
first l − 2k bits.

2. Submits these two messages to the encryption oracle to be encrypted
in the mode (r||x), and receives the ciphertext y.

3. Submits the ciphertext y to the decryption oracle, claiming that it
was encrypted in the mode (x||r).

4. The decryption will succeed and return a “plaintext” x′. The attacker
takes x′, discards the first k bits, and compares the remaining bits to
the first l − 2k bits of x0, x1.

4.3 Countermeasures and Suggestions

It would clearly be useful to redesign the FO construction so that it
requires the recipient to distinguish between the message x and the ran-
domness r, and to confirm that the message they received is the same
as the message sent. We discuss three countermeasures: first, one which
turns out to be unsatisfactory, and then two that appear to solve the
problem.



First, consider the following construction:

Ē ′ H,k
pk (x, r) = Epk(x||r,H(len(x)||x||len(r)||r)),

where len(x) and len(r) denote the length in bits of x and r respectively
(these will, of course, be l − k and k). This construction defeats the first
attack outlined above, which relied on an attacker being able to alter k
at will; now, any alteration to k will alter len(x) and prevent the check
from succeeding. However, it fails when there are two different implemen-
tations, one (say E ′1) which encrypts using H(len(x)||x||len(r)||r)) and
one (say E ′2) which encrypts using H(len(r)||r||len(x)||x)). In this case,
the attacker proceeds as follows:

1. Selects two messages x0 and x1.
2. Submits these two messages to the encryption oracle to be encrypted

by E ′1 with the length of r set to k.
3. Submits the ciphertext y to the decryption oracle, claiming that it

was encrypted by E ′2 with the length of the randomness set to l − k.
4. The decryption will succeed and return a “plaintext” x′ which is ex-

actly the r used in encryption. The attacker then encrypts x0 and x1

using this r, and selects the xi which recovered y.

It is clear that even a construction which ensures that the recipient has a
message of the correct length is vulnerable to attack. What is necessary
is that the recipient unambiguously identifies what part of the decrypted
block is the data, and what part is the randomness

Second, consider a version of FO that takes the following form:

Ē ′′ H,k
pk (x, r) = Epk(x||r,H(G(“message”||x)||r)).

Here, G is an additional hash function, and “message” is the ASCII
string “message”. The use of G on x but not r guarantees that the
recipient has distinguished between x and r; the use of the “message”
string prevents an attack that switches the roles of x and r (we assume
that, although the attacker is at liberty to define infinitely many CCA2-
secure systems, she can’t alter the English language). So long as k is
sufficiently long, and the output of G is sufficiently long, this construc-
tion appears both CCA2 secure and immune to modified parameter at-
tacks. Other constructions with similar properties are possible, such as
ĒH,k

pk (x, r) = Epk(x⊕G(“randomness””||r)||r,H(x||r)).
Finally, consider the following version of FO:

Ē ′′′ H,k
pk (x, r) = Epk(x||r,H(ID||x||r)).



Here, ID is an identifier for the parameter set. Its inclusion amounts to
having the sender and recipient attest to the parameter set that they are
using, such that decryption will fail unless both parties are using the same
parameters.

This proposal represents a third way between the two schemes above.
So long as all parameter sets include the ID first, not last, in the input
to H, this scheme appears secure. However, if some schemes are in use
that input the ID last, some attacks similar to those described earlier
will clearly be possible. We recommend that all new public key schemes
adopt this approach, and ensure that the ID is always the first data
input into H.

5 Conclusions

We have introduced the concept of Modified Parameter Attacks and
shown how they may be used to break CCA2 secure encryption schemes.

This paper leaves open several areas of possible future investigation.
First, and most fundamentally, the question is raised: what is the strongest
possible attack model in which we can make statements about the prov-
able security of encryption schemes? If such a model could be formalised,
it would naturally replace CCA2 as the “right” notion of security. Part of
this research would be to come up with a definition of plaintext awareness
reconciling our results and those of [9].

Second, we have suggested countermeasures but not proved their ef-
fectiveness. This is an obvious area for future research. One potential
countermeasure is to take a specification of the parameters as one of the
inputs to the system. In this paper, however, we have focussed on prov-
ing knowledge of the exact message sent. This is because of the difficulty
of unambiguously and completely specifying parameters, when our def-
inition of “parameters” includes the specification of how the individual
bits in the message block are to be interpreted. Countermeasures built on
committing to the message itself seem both more satisfying and easier to
specify correctly.

Finally, we note that both OAEP and Fujisaki-Okamoto, as originally
specified, imply that the length of a message is fixed. Where we have
talked about a guarantee that the recipient has recovered the message,
not the message block, it has been this fixed-length message that we’ve
been talking about. In practice, however, the actual message to be trans-
mitted is typically shorter than this and must be padded to the appro-
priate length using padding that can be unambiguously removed. Recent



work by Vaudenay in the symmetric context [20] has demonstrated that
there may be subtle issues concerned with performing this padding and
unpadding. It would be interesting to extend the investigations of this
paper to encompass the use of unambiguous padding methods.

Constructing a secure encryption scheme is a difficult problem, and
made all the more difficult by the fact that the recipient of a message
cannot rely on being 100% certain of the parameters used to encrypt
that message. In this paper, we have posed an interesting challenge to
developers of secure encryption schemes: the scheme should have security
properties which hold not only against ciphertexts generated with that
scheme, but against ciphertexts generated with any encryption scheme.

References

1. M. Abdalla, M. Belalre, P. Rogaway, DHIES: An encryption
scheme based on the Diffie-Hellman Problem, available from
http://www.cs.ucsd.edu/users/mihir/crypto-research-papers.html. Extended
abstract, entitled “The Oracle Diffie-Hellman Assumptions and an Analysis of
DHIES”, was in Topics in Cryptology - CT-RSA 01, D. Naccache, Ed., Lecture
Notes in Computer Science 2020, Springer-Verlag, pp. 143-158, 2001.

2. M. Bellare, P. Rogaway, Optimal asymmetric encryption, in Proc. Eurocrypt 1994,
A. De Santis, Ed., Lecture Notes in Computer Science 950, Springer-Verlag, pp.
92-111, 1994.

3. M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, Relations between notions of
security for public-key encryption schemes, in Proc. Crypto 1998, H. Krawwczyk,
Ed., Lecture Notes in Computer Science 1462, Springer-Verlag, pp. 26-45, 1998.

4. D. Boneh, Simplified OAEP for the RSA and Rabin functions, in Proc. Crypto
2001, J. Killian, Ed., Lecture Notes in Computer Science 2139, Springer-Verlag,
pp. 275-291, 2001.

5. D. Eastlake, J. Reagle (editors), XML Encryption Syntax and Process-
ing, W3C Candidate Recommendation, W3C, 2002. Draft available from
http://www.w3.org/Encryption/2001/Drafts/xmlenc-core/.

6. E. Fujisaki, T. Okamoto, How to enhance the security of public-key encryption
at minimum cost, in Proc. PKC ’99, H. Imai, Y. Zheng, Eds., Lecture Notes in
Computer Science 1560, Springer-Verlag, pp. 53-68, 1999.

7. E. Fujisaki, T. Okamoto, How to enhance the security of public-key encryption at
minimum cost, IEICE Trans. Fundamentals, Vol E83-A, Number 1 pp 24-32, 2000.

8. E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, RSA-OAEP is secure under
the RSA assumption”, in Proc. Crypto 2001, J. Killian, Ed., Lecture Notes in
Computer Science 2139, Springer-Verlag, pp. 260-273, 2001.

9. S. Haber, B. Pinkas, Combining Public Key Cryptosystems, in Proc. ACM Com-
puter and Security Conference, November 2001, ACM Press, pp. 215-224, 2001

10. R. Housley, RFC 2630: Cryptographic Message Syntax, Internet Activities Board,
1999. Available at http://www.rfc-editor.org/. [ CHECK ME! ]



11. R. Housley, W. Ford, W. Polk, D. Solo, RFC 2459: Internet X.509 Public Key In-
frastructure Certificate and CRL Profile, Internet Activities Board,1999. Available
at http://www.rfc-editor.org/.

12. J. Kelsey, B. Schneier, D. Wagner, Protocol Interactions and the Chosen Protocol
Attack, in Proc. Security Protocols - 5th International Workshop, B. Christianson,
B. Crispo, T. M. A. Lomas, M. Roe, Eds., Lecture Notes in Computer Science
1361, Springer-Verlag, pp. 91-104, 1997

13. J. Manger, A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS#1, in Proc. Crypto 2001, J. Killian,
Ed., Lecture Notes in Computer Science 2139, Springer-Verlag, pp. 230-238, 2001.

14. T. Okamoto, D. Pointcheval, REACT: Rapid Enhanced-Security Asymmetric Cryp-
tosystem Transform, in Proc. CT-RSA 2001, D. Naccache, Ed., Lecture Notes in
Computer Science 2020, Springer-Verlag, pp. 159-175, 2001.

15. Public Key Cryptography Standards (PKCS), PKCS#1 v2.1: RSA Cryptography
Standard, Draft 2, 2001. Available at http://www.rsasecurity.com/rsalabs/pkcs/.

16. C. Rackoff, D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen
ciphertext attack, in Proc. Crypto 1991, J. Feigenbaum, Ed., Lecture Notes in
Computer Science 576, Springer-Verlag, pp. 433-444, 1992.

17. SET Secure Electronic Transaction LLC, SET Secure Electronic Transac-
tion Specification Book 3: Formal Protocol Definition, 1997. Available at
http://www.setco.org/download.html

18. V. Shoup, A Proposal for an ISO Standard for Public Key Encryp-
tion (version 2.1), preprint, available from http://www.shoup.net or
http://eprint.iacr.org/2001/112.pdf.

19. V. Shoup, OAEP reconsidered, in Proc. Crypto 2001, J. Killian, Ed., Lecture Notes
in Computer Science 2139, Springer-Verlag, pp. 239-259, 2001.

20. S. Vaudenay, Security Flaws Induced by CBC Padding - Applications to SSL, IPSec,
WTLS, . . . in Proc. Eurocrypt 2002, L. Knudsen, Ed., Lecture Notes in Computer
Science 2332, Springer-Verlag, pp. 534-546, 2002.

21. D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol, in Proc. Second USENIX
Workshop on Electronic Commerce, USENIX Press pp. 29–40, 1996. Available at
http://www.counterpane.com/ssl.html


