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Abstract. We examine the role of session identifiers (SIDs) in security
proofs for key establishment protocols. After reviewing the practical im-
portance of SIDs we use as a case study the three-party server-based
key distribution (3PKD) protocol of Bellare and Rogaway, proven secure
in 1995. We show incidentally that the partnership function used in the
existing security proof is flawed. There seems to be no way to define a
SID for the 3PKD protocol that will preserve the proof of security. A
small change to the protocol allows a natural definition for a SID and we
prove that the new protocol is secure using this SID to define partnering.

1 Introduction

An important direction in the computational complexity approach for protocol
proofs was initiated by Bellare and Rogaway in 1993 with an analysis of a simple
two party entity authentication and key exchange protocol [5]. They formally de-
fined a model of adversary capabilities with an associated definition of security,
which we refer to as the BR93 model in this paper. Since then, the BR93 model
has been further revised several times. In 1995, Bellare and Rogaway analysed a
three-party server-based key distribution (3PKD) protocol [6] using an extension
to the BR93 model, which we refer to as the BR95 model. The most recent revi-
sion to the model was proposed in 2000 by Bellare, Pointcheval and Rogaway [4],
hereafter referred to as the BPR2000 model. The proof approach by Bellare et
al. has been applied to the analysis of public key transport based protocols [9],
key agreement protocols [10, 20], password-based protocols [4, 7, 8], conference
key protocols [11–14], and smart card protocols [22].

An important difference between the various models is in the way partner
oracles are defined (i.e. the definition of partnership). The BR93 model defines
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partnership using the notion of matching conversations, where a conversation
is a sequence of messages exchanged between some instances of communicat-
ing oracles in a protocol run. Partnership in the BR95 model is defined using
the notion of a partner function, which uses the transcript (the record of all
SendClient and SendServer oracle queries) to determine the partner of an oracle.
The BPR2000 model defines partnership using the notion of session identifiers
(SIDs) and it is suggested that SIDs be the concatenation of messages exchanged
during the protocol run. We examine partnering in the BR95 model and observe
that the specific partner function defined in the proof of security for the 3PKD
protocol is flawed. Consequently, the BR95 proof is invalidated, although not
irreparably so. More interestingly, we also demonstrate that it does not seem
possible to introduce a practical definition of partnership based on SIDs in the
3PKD protocol.

In a real world setting, it is normal to assume that a host can establish several
concurrent sessions with many different parties. Sessions are specific to both the
communicating parties. In the case of key distribution protocols, sessions are
specific to both the initiator and the responder principals, where every session is
associated with a unique session key. To model the real world implementation,
the most recent definition of partnership based on SIDs in the BPR2000 model
seems most natural. SIDs enable unique identification of the individual sessions.
Without such means, communicating hosts will have difficulty determining the
associated session key for a particular session.

We consider the use of SIDs to establish partnership analogous to the use
of sockets in establishing connections between an initiating client process and
a responding server process in network service protocol architecture [23]. A
socket [19, 18] is bound to a port number so that the TCP layer can identify
the application to which that data is destined to be sent, analogous to a SID
being bound to a particular session enabling communicating principals to deter-
mine to which session messages belong. Since the initial development of sockets
in the early 1980s, the use of sockets has been prevalent in protocols such as
TCP/IP and UDP. In fact, Bellare et al. [4] recognised that SIDs are typically
found in protocols such as SSL and IPSec.

The inability to define a unique SID in the 3PKD protocol so that the com-
municating principals can uniquely distinguish messages from different sessions
leads one to question the practicality and usefulness of the protocol in a real
world setting. In our view, the design of any entity authentication and/or key
establishment protocol should incorporate a secure means of uniquely identifying
a particular communication session among the many concurrent sessions that a
communicating party may have with many different parties. One outcome of this
work is such a means of session identification.

We consider the main contributions of this paper to be:

1. the observation that session identifiers are necessary for real world use of
provably secure protocols,

2. demonstration of a flaw in the specific partner function used in the BR95
proof of security that invalidates the proof, and



3. proposal of an improved 3PKD protocol with a proof of security using a
definition of partnership based on SIDs.

The remainder of this paper is structured as follows: Section 2 briefly ex-
plains the Bellare-Rogaway models. Section 3 describes the 3PKD protocol and
the specific partner function used in the existing proof of security for the proto-
col. It also contains a description of a 3PKD protocol run that demonstrates a
flaw in the proof due to its use of an inadequate partner function, followed by a
description of how to fix it. Section 4 demonstrates that it does not seem pos-
sible to successfully introduce a definition of partnership based on SIDs to the
3PKD protocol. We then propose improvements to the 3PKD protocol. Section 5
describes the general notion of the proof of security for the improved protocol.
Finally, Section 6 presents the conclusions.

2 Overview of the Bellare-Rogaway Model

Both the BR93 model [5] and the BPR2000 model [4] define provable security for
entity authentication and key distribution goals. In the same flavour, the BR95
model [6] specifically defines provable security for the key distribution goal. In
this section, we will focus on the BR95 and the BPR2000 definitions of security.

In all three models, the adversary A is a probabilistic machine that controls
all the communications that take place between parties by interacting with a set
of Πi

U1,U2
oracles (Πi

U1,U2
is defined to be the ith instantiation of a principal U1 in

a specific protocol run and U2 is the principal with whom U1 wishes to establish
a secret key). A also interacts with a set of Ψ j

U1,U2
oracles, where Ψ j

U1,U2
is defined

to be the jth instantiation of the server in a specific protocol run establishing a
shared secret key between U1 and U2. The predefined oracle queries are described
informally as follows.

– The SendClient(U1, U2, i,m) query allows A to send some message m of her
choice to Πi

U1,U2
at will. Πi

U1,U2
, upon receiving the query, will compute what

the protocol specification demands and return to A the response message
and/or decision. If Πi

U1,U2
has either accepted with some session key or

terminated, this will be made known to A.
– The SendServer(U1, U2, i,m) query allows A to send some message m of her

choice to some server oracle Ψ i
U1,U2

at will. The server oracle, upon receiving
the query, will compute what the protocol specification demands and return
the response to A.

– The Reveal(U1, U2, i) query allows A to expose an old session key that has
been previously accepted. Πi

U1,U2
, upon receiving this query and if it has

accepted and holds some session key, will send this session key back to A.
– The Corrupt(U1,KE) query allows A to corrupt the principal U1 at will, and

thereby learn the complete internal state of the corrupted principal. The
corrupt query also gives A the ability to overwrite the long-lived key of the
corrupted principal with any value of her choice (i.e. KE). This query can
be used to model the real world scenarios of an insider cooperating with



the adversary or an insider who has been completely compromised by the
adversary.

– The Test(U1, U2, i) query is the only oracle query that does not correspond to
any of A’s abilities. If Πi

U1,U2
has accepted with some session key and is being

asked a Test(U1, U2, i) query, then depending on a randomly chosen bit b, A
is given either the actual session key or a session key drawn randomly from
the session key distribution. The use of the Test(U1, U2, i) query is explained
in Section 2.4. Note that Πi

U1,U2
must be fresh, as defined in Section 2.3.

The definition of security depends on the notions of partnership of oracles and
indistinguishability. In the BR95 model, partnership of oracles is defined using
a partner function whose purpose is to enable a mapping between two oracles
that should share a secret key on completion of the protocol execution. In the
BPR2000 model, partnership of oracles is defined using SIDs. The definition of
partnership is used in the definition of security to restrict the adversary’s Reveal

and Corrupt queries to oracles that are not partners of the oracle whose key the
adversary is trying to guess. To avoid confusion, we will explicitly indicate which
definition of partnership is used.

2.1 Notion of partnership in the BR95 Model: a Partner Function

No explicit definition of partnership was given in the BR95 model since there
is no single partner function fixed for any protocol. Instead security is defined
predicated on the existence of a suitable partner function. Before defining the
partner function, we need the notion of a transcript. A transcript T is defined
to be a sequence of communication records, where a communication record is a
combination of SendClient and SendServer queries and responses to these queries.
At the end of a protocol run, T will contain the record of the Send queries and
the responses.

Definition 1 (BR95 Partner Function) A partner function f in the BR95
model is syntactically defined to be a polynomial-time mapping between an ini-
tiator oracle and a partnering responder oracle (if such a partner exists), which
uses the transcript T to determine the partner of an oracle.

Let A and B be some initiator and responder principals, and also i and j
be some instances of A and B respectively. The notation f i

A,B(T ) = j denotes

that the partner oracle of Πi
A,B is Πj

B,A. The initial values f i
A,B(T ) = ∗ and

f j
B,A(T ) = ∗ mean that neither Πi

A,B nor Πj
B,A has a BR95 partner. Two oracles

are BR95 partners if, and only if, the specific BR95 partner function in use says
they are. The specific BR95 partner function used in the proof of security for
the 3PKD protocol will be discussed in Section 3.3.

2.2 Notion of partnership in the BPR2000 Model: SIDs

Partnership in the BPR2000 model is given by Definition 2. It is defined using
the notion of SIDs, whose construction is by the concatenation of message flows



in the protocol. In the BPR2000 model, an oracle who has accepted will hold
the associated session key, a SID and a partner identifier (PID). Note that any
oracle that has accepted will have at most one BPR2000 partner, if any at all. In
Section 4.1, we demonstrate that it does not seem possible to define partnership
based on SIDs for the 3PKD protocol.

Definition 2 (BPR2000 Definition of Partnership) Two oracles, Πi
A,B and

Πj
B,A, are BPR2000 partners if, and only if, both oracles have accepted the same

session key with the same SID, have agreed on the same set of principals (i.e. the
initiator and the responder of the protocol), and no other oracles besides Πi

A,B

and Πj
B,A have accepted with the same SID1.

2.3 Notion of Freshness

Definitions of security in both BR95 and BPR2000 models depend on the notion
of freshness of the oracle to whom the Test query is sent. Freshness is used to
identify the session keys about which A ought not to know anything because A
has not revealed any oracles that have accepted the key and has not corrupted
any principals knowing the key. Definition 3 describes freshness in the BR95
model, which depends on the notion of partnership in Definition 1.

Definition 3 (BR95 Definition of Freshness) Oracle Πi
A,B is fresh (or it

holds a fresh session key) at the end of execution, if, and only if, oracle Πi
A,B

has accepted with or without a partner oracle Πj
B,A, both oracle Πi

A,B and its

partner oracle Πj
B,A (if such a partner oracle exists) have not been sent a Reveal

query, and the principals A and B of oracles Πi
A,B and Πj

B,A (if such a partner
exists) have not been sent a Corrupt query.

The definition of freshness in the BPR2000 model restricts the adversary A from
sending a Corrupt query to any principal in the protocol. We adopt the BR95
version because it offers a tighter definition of freshness since for Πi

A,B to be
fresh, the adversary is not restricted from sending Corrupt queries to principals
apart from the principals of oracle Πi

A,B and its partner oracle Πj
B,A (if such a

partner exists).

2.4 Definition of Security

Security in both the BR95 and BPR2000 models is defined using the game G,
played between a malicious adversary A and a collection of Πi

Ux,Uy
oracles for

players Ux, Uy ∈ {U1, . . . , UNp
} and instances i ∈ {1, . . . , Ns}. The adversary A

runs the game simulation G, whose setting is as follows.

1 Although the original paper required both parties to accept with the same PID, we
have corrected this typographical error.



– Stage 1: A is able to send any SendClient, SendServer, Reveal, and Corrupt

oracle queries at will in the game simulation G.

– Stage 2: At some point during G, A will choose a fresh session on which
to be tested and send a Test query to the fresh oracle associated with the
test session. Note that the test session chosen must be fresh (in the sense
of Definition 3). Depending on the randomly chosen bit b, A is given either
the actual session key or a session key drawn randomly from the session key
distribution.

– Stage 3: A continues making any SendClient, SendServer, Reveal, and Corrupt

oracle queries of its choice. (In the BR95 model, this stage is omitted and
A was required to output the guess bit b′ immediately after making a Test

query. However, such a requirement is not strong enough, as discussed by
Canetti and Krawczyk [15]. They mentioned including this stage to fix the
problem, as proposed by Bellare, Petrank, Rackoff, and Rogaway in an un-
published paper.)

– Stage 4: Eventually, A terminates the game simulation and outputs a bit
b′, which is its guess of the value of b.

Success of A in G is measured in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2 × Pr[b = b′] − 1.

The BPR2000 model defines security for both entity authentication and key
establishment goals, whilst the BR95 model defines security only for key estab-
lishment. In this paper, we are interested only in the notion of key establishment
in the BPR2000 model since the 3PKD protocol does not consider entity authen-
tication as its security goal. We require the definition of a negligible function.

Definition 4 ([1]) A function ǫ(k) : N → R in the security parameter k, is
called negligible if it approaches zero faster than the reciprocal of any polynomial.
That is, for every c ∈ N there is an integer kc such that ǫ(k) ≤ k−c for all k ≥ kc.

The definition of security for the protocol is identical in both the BR95
model and the BPR2000 model, with the exception that different definitions of
partnership and freshness are used in the respective models.

Definition 5 (Definition of Security [4, 6]) A protocol is secure in the BR95
model and secure under the notion of key establishment in the BPR2000 model
if both the validity and indistinguishability requirements are satisfied:

1. Validity: When the protocol is run between two oracles in the absence of a
malicious adversary, the two partner oracles accept the same session key.

2. Indistinguishability: For all probabilistic, polynomial-time (PPT) adversaries
A, AdvA(k) is negligible.



3 A Flaw in the BR95 Proof of the 3PKD Protocol

In this section, we describe the 3PKD protocol and an execution of the protocol
run in the presence of a malicious adversary, followed by an explanation of the
specific partner function used in the BR95 proof. Using an execution of the
protocol as a case study, we demonstrate that the specific partner function used
in the BR95 proof enables a malicious adversary to reveal a session key at one
oracle, where the same session key is considered fresh at a different, non BR95
partner oracle.

3.1 3PKD Protocol

The 3PKD protocol in Figure 1 involves three parties, a trusted server S and
two principals A and B who wish to establish communication. The security
goal of this protocol is to distribute a session key between two communication
principals (i.e. the key establishment goal), which is suitable for establishing a
secure session. Forward-secrecy and mutual authentication are not considered in
the protocol. However, concurrent executions of the protocol are possible.

In the protocol, the notation {message}Kenc
AS

denotes the encryption of some
message under the encryption key Kenc

AS and the notation [message]KMAC
AS

de-
notes the computation of MAC digest of some message under the MAC key
KMAC

AS . Kenc
AS is the encryption key shared between A and S, and KMAC

AS is the
MAC key shared between A and S. Both keys, Kenc

AS and KMAC
AS , are independent

of each other.

1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, {SKAB}Kenc
AS

]KMAC
AS

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RB , {SKAB}Kenc
BS

]KMAC
BS

Fig. 1. 3PKD protocol

The protocol begins by having A randomly select a k-bit challenge RA and
send it to the B with whom she desires to communicate. Upon receiving the
message RA from A, B also randomly selects a k-bit challenge RB and sends RB

together with RA as a message (RA, RB) to the server S. S, upon receiving the
message (RA, RB) from B, runs the session key generator to obtain a session key
SKAB , which has not been used before. S then encrypts SKAB with Kenc

AS and
Kenc

BS to obtain ciphertexts αA and αB , and computes the MAC digests βA and
βB of the strings (A,B,RA, {SKAB}Kenc

AS
) and (A,B,RB , {SKAB}Kenc

BS
) under

the keys KMAC
AS and KMAC

BS respectively. S then sends messages (αA,βA) and
(αB ,βB) to A and B respectively in Steps 3a and 3b of the protocol.



3.2 Execution of Protocol Run in the Presence of a Malicious
Adversary

Figure 2 depicts an example execution of the 3PKD protocol run in the presence
of a malicious adversary, which will be used to demonstrate that the specific
partner function used in the BR95 proof enables a malicious adversary to reveal
a session key at one oracle, where the same session key is considered fresh at a
different, non partner oracle. Consequently, the BR95 proof will be shown to be
invalid.

1. A −→ B (intercepted by A) : RA

1(A). A (impersonating A) −→ B : RE

2. B −→ S (intercepted by A) : RE , RB

2(A). A (impersonating B) −→ S : RA, RB

3a. S −→ A : {SKA,B}Kenc
AS

, [A, B, RA, {SKA,B}Kenc
AS

]KMAC
AS

3b. S −→ B : {SKA,B}Kenc
BS

, [A, B, RB , {SKA,B}Kenc
BS

]KMAC
BS

Fig. 2. Execution of protocol run in the presence of a malicious adversary

An active adversary A intercepts and deletes the message RA sent by A
to B. A then sends a fabricated message RE to B impersonating A. B, upon
receiving the message RE , and believing that this message originated from A,
also randomly selects a k-bit challenge RB and sends RB together with RE as
a message (RE , RB) to the server S. A then intercepts and deletes this message
(RE , RB), and sends the fabricated message (RA, RB) to S impersonating B. S,
upon receiving the message (RA, RB) from A, and believing that this message
originated from B, runs the session key generator to obtain a unique session key
SKAB , which has not been used before. S encrypts SKAB with the respective
principals’ encryption keys (i.e., Kenc

AS and Kenc
BS ) to obtain the ciphertexts αA

and αB respectively. S also computes the MAC digests (i.e., βA and βB) of the
strings (A,B,RA, {SKAB}Kenc

AS
) and (A,B,RB , {SKAB}Kenc

BS
) under the respec-

tive keys KMAC
AS and KMAC

BS . S then sends the messages (αA, βA) and (αB , βB)
to A and B respectively in Steps 3a and 3b of the protocol.

Immediately after both A and B have verified and accepted with the session
key SKAB , A sends a Reveal query to A and obtains the session key SKAB from
A. This enables the adversary A to break the protocol as shown in the following
section. Figure 3 shows the oracle queries associated with Figure 2.

3.3 The Partner Function used in the BR95 Proof

The specific partner function used in the BR95 proof is defined in two parts,
namely the partner of the responder oracle and the partner of the initiator
oracle. Let f be the partner function defined in the BR95 proof, Πi

A,B be the

initiator oracle, and Πj
B,A be the responder oracle. Both values f i

A,B(T ) and



On query of q: Return: Append to T :

SendClient(A, B, i, ∗) RA 〈q, RA〉
SendClient(B, A, j, RE) (RE , RB) 〈q, (RE , RB)〉
SendServer(A, B, s, (RA, RB)) ((αA,i, βA,i), (αB,j , βB,j)) 〈q, ((αA,i, βA,i), (αB,j , βB,j))〉
SendClient(A, B, i, (αA,i, βA,i)) AcceptA,i 〈q, AcceptA,i〉
SendClient(B, A, j, (αB,j , βB,j))AcceptB,j 〈q, AcceptB,j〉
Reveal(A, B, i) SKA,B,i

Fig. 3. Oracle queries associated with Figure 2

f j
B,A(T ) are initially set to ∗, which means that neither Πi

A,B nor Πj
B,A is BR95

partnered. The description of f is now given, where T is the transcript with
which the adversary terminates the execution of the protocol run.

BR95 partner of the initiator oracle: The first two records of T associated
with queries of the oracle Πi

A,B are examined. If the first record indicates

that Πi
A,B had the role of an initiator oracle, was sent a SendClient(A,B, i, ∗)

query and replied with RA, and the second record indicates that Πi
A,B ’s re-

ply to a SendClient(A,B, i, (αA, βA)) was the decision Accept, then T is ex-
amined to determine if some server oracle, Ψk

A,B , sent a message of the form
(αA, β′

A) for some β′
A. If so, determine if this message was in response to a

SendServer(A,B, k, (RA, RB)) query for some RB, and if this is also true, de-
termine if there is a unique j such that an oracle Πj

B,A generated a message

(RA, RB). If such an oracle Πj
B,A is found, then set f i

A,B(T ) = j, meaning that

the BR95 partner of Πi
A,B is Πj

B,A.

Suppose that the adversary terminates the execution of the protocol run in
Figure 3 with some transcript T1. According to the BR95 partner function f ,
Πi

A,B has no BR95 partner because although there is a SendServer(A,B, k, (RA, RB))

query for some RB, there does not exist a unique j such that an oracle Πj
B,A

generated a message (RA, RB). Hence, f i
A,B(T1) = ∗.

BR95 partner of the responder oracle: The first two records of T associated with
queries of the oracle Πj

B,A are examined. If the first record indicates that Πj
B,A

had the role of a responder oracle, and was sent a SendClient(B,A, j,RA) query,
and the second record indicates that Πj

B,A accepted, then determine if there is

a unique i such that an oracle Πi
A,B generated a message RA. If such an oracle

Πi
A,B is found, then set f j

B,A(T ) = i, meaning that the BR95 partner of Πj
B,A

is Πi
A,B .

For the execution of the protocol run in Figure 3, Πj
B,A has no BR95 partner

because although Πj
B,A accepted, there does not exist a unique oracle Πi

A,B that

it generated a message RE (recall RE is fabricated by A). Hence, f j
B,A(T1) = ∗.

Hence, we have shown that the protocol state is not secure since A can reveal a
fresh non partner oracle, either Πi

A,B or Πj
B,A, and find the session key accepted



by Πj
B,A or Πi

A,B respectively. It is possible to fix the flawed partner function
used in the BR95 model, as shown below.

The only differences between the fixed definition of an initiator’s partner
and the original definition are that the server may think that the initiator and
responder roles are swapped, and that the nonce output by B on behalf of A,
R′

A, need not be identical to the nonce output by A itself, RA. The definition of
a responder’s partner has been made analogous to that of an initiator’s partner.
Using the fixed partner function in our example execution, Πi

A,B ’s partner is

Πj
B,A and Πj

B,A’s partner is Πi
A,B .

Fixed BR95 partner of the initiator oracle: The first two records of T associ-
ated with queries of the oracle Πi

A,B are examined. If the first record indicates

that Πi
A,B had the role of an initiator oracle, was sent a SendClient(A,B, i, ∗)

query and replied with RA, and the second record indicates that Πi
A,B ’s reply

to a SendClient(A,B, i, (αA, βA)) was the decision Accept, then T is examined
to determine if some server oracle, Ψk

A,B or Ψk
B,A, sent a message of the form

(αA, β′
A) for some β′

A. If so, determine if this message was in response to a
SendServer(A,B, k, (RA, RB)) or SendServer(B,A, k, (RB , RA)) query for some
RB, and if this is also true, determine if there is a unique j such that an oracle
Πj

B,A generated a message (R′
A, RB) for any R′

A. If such an oracle Πj
B,A is found,

then set f i
A,B(T ) = j, meaning that the BR95 partner of Πi

A,B is Πj
B,A.

Fixed BR95 partner of the responder oracle: The first two records of T associ-
ated with queries of the oracle Πj

B,A are examined. If the first record indicates

that Πj
B,A had the role of a responder oracle, was sent a SendClient(B,A, j,R′

A)

query and replied with (R′
A, RB), and the second record indicates that Πj

B,A’s
reply to a SendClient(B,A, j, (αB , βB)) was the decision Accept, then T is ex-
amined to determine if some server oracle, Ψk

A,B or Ψk
B,A, sent a message of the

form (αB , β′
B) for some β′

B . If so, determine if this message was in response to a
SendServer(A,B, k, (RA, RB)) or SendServer(B,A, k, (RB , RA)) query for some
RA, and if this is also true, determine if there is a unique i such that an or-
acle Πi

A,B generated a message RA. If such an oracle Πi
A,B is found, then set

f j
B,A(T ) = i, meaning that the BR95 partner of Πj

B,A is Πi
A,B .

4 A Revised Protocol

We now revisit the construction of SIDs in the BPR2000 model and demonstrate
that it does not seem possible to define partnership based on SIDs in the 3PKD
protocol. We then propose an improvement to the 3PKD protocol with a natural
candidate for the SID. Consequently, the protocol is practical in a real world
setting.



4.1 Defining SIDs in the 3PKD Protocol

Bellare, Pointcheval, and Rogaway [4] suggested that SIDs can be constructed on-
the-fly using fresh unique contributions from the communicating participants.
Uniqueness of SIDs is necessary since otherwise two parties may share a key
but not be BPR2000 partners, and hence the protocol would not be considered
secure. Within the 3PKD protocol, the only values that A and B can be sure
are unique are RA and RB. However, the integrity of only one of RA and RB is
preserved cryptographically for each party in the protocol. Since the integrity of
a SID consisting of RA and RB is not preserved cryptographically, attacks such
as the one proposed in Section 3 are possible. An alternative would be to use an
externally generated SID, such as a counter, but the use of such a SID would be
inconvenient. Hence, it does not seem possible to use SIDs to successfully define
partnership in the 3PKD protocol.

4.2 An Improved Provably Secure 3PKD Protocol

In order for partnership to be defined using the notion of SIDs in the 3PKD
protocol, we propose an improvement to the protocol as shown in Figure 4. In
the improved 3PKD protocol, S binds both values composing the SID, RA and
RB, to the session key for each party, using the MAC digests in message flows
3a and 3b.

1. A −→ B : RA

2. B −→ S : RA, RB

3a. S −→ A : {SKAB}Kenc
AS

, [A, B, RA, RB , {SKAB}Kenc
AS

]KMAC
AS

, RB

3b. S −→ B : {SKAB}Kenc
BS

, [A, B, RA, RB , {SKAB}Kenc
BS

]KMAC
BS

Fig. 4. An Improved Provably Secure 3PKD Protocol

The primitives used in the protocol are the notions of a secure encryption
scheme [16] and a secure message authentication scheme [17]. Both notions are
now relatively standard. For the security of the underlying encryption scheme,
we consider the standard definitions of indistinguishability of encryptions (IND)
due to Goldwasser and Micali [16] and chosen-plaintext attack (CPA). For the
security of the underlying message authentication scheme, we consider the stan-
dard definition of existential unforgeability under adaptive chosen-message at-
tack (ACMA) due to Goldwasser, Micali, and Rivest [17].

Theorem 1 The improved 3PKD protocol is a secure key establishment protocol
in the sense of Definition 5 if the underlying message authentication scheme is
secure in the sense of existential unforgeability under ACMA and the underlying
encryption scheme is indistinguishable under CPA.



5 Security Proof

The proof of Theorem 1 generally follows that of Bellare and Rogaway [6], but
is adjusted to the different partnering function used. The validity of the proto-
col is straightforward to verify and we concentrate on the indistinguishability
requirement. The security is proved by finding a reduction to the security of
the underlying message authentication scheme and the underlying encryption
scheme.

The general notion of the proof is to assume that there exists an adversary A
who can gain a non-negligible advantage in distinguishing the test key in game
G (i.e. AdvA(k) is non-negligible), and use A to break the underlying encryption
scheme or the message authentication scheme. In other words, we consider an
adversary A that breaks the security of the protocol.

Using results of Bellare, Boldyreva and Micali [2], we may allow an adversary
against an encryption scheme to obtain encryptions of the same plaintext under
different independent encryption keys. Such an adversary is termed a multiple
eavesdropper, ME . In the 3PKD protocol, the server, upon receiving a message
from the responder principal, sends out two ciphertexts derived from the encryp-
tion of the same plaintext under two independent encryption keys. Hence, we
consider a multiple eavesdropper ME who is allowed to obtain encryptions of
the same plaintext under two different independent encryption keys. The formal
definition of ME is given by Definition 6.

Definition 6 ([2, 6]) Let Ω = (K, E ,D) be an encryption scheme with security
parameter k, SE be the single eavesdropper and ME be the multiple eavesdropper,
and OkA

and OkB
be two different independent encryption oracles associated with

encryption keys kA and kB. We define the advantage functions of SE and ME
to be:

AdvSE(k) = 2 × Pr[SE ← OkA
; (m0,m1

R
← SE); θ

R
← {0, 1}; γA

R
← OkA

(mθ)

: SE(γA) = θ] − 1

AdvME(k) = 2 × Pr[ME ← OkA
,OkB

; (m0,m1

R
← ME); θ

R
← {0, 1};

γA
R
← OkA

(mθ), γB
R
← OkB

(mθ) : ME(γA, γB) = θ] − 1

Lemma 1 ([2]) Suppose the advantage function of SE against the encryption
scheme is ǫk. Then the advantage function of ME is at most 2 × ǫk.

As a consequence of Lemma 1, an encryption scheme secure against IND-
CPA in the single eavesdropper setting will also be secure against IND-CPA in
the multiple eavesdropper setting [2].

An overview of the proof of Theorem 1 is now provided (a complete proof
appears in Appendix A). The proof is divided into two cases since the adversary
A can either gain her advantage against the protocol by forging a MAC digest
with respect to some user’s MAC key or gain her advantage against the protocol
without forging a MAC digest.



5.1 Adaptive MAC Forger F

Following the approach of Bellare, Kilian and Rogaway [3], we quantify security
of the MAC scheme in terms of the probability of a successful MAC forgery
under adaptive chosen-message attack, which we denote by Pr[SuccF (k)]. For
the MAC scheme to be secure under chosen-message attack, Pr[SuccF (k)] must
be negligible. In other words, the MAC scheme is considered broken if a forger
F is able to produce a valid MAC forgery for a MAC key unknown to it.

The first part of the proof of security for the improved 3PKD protocol as-
sumes that the adversary A gains her advantage by forging a valid MAC digest
for a MAC key that A does not know. More precisely, we define MACforgery to be
the event that at some point in the game A asks a SendClient(B,A, j, (αB,j , βB,j))

query to some fresh oracle Πj
B,A, such that the oracle accepts, but the MAC

value βB,j used in the query was not previously output by a fresh oracle. We
then construct an adaptive MAC forger F against the security of the message
authentication scheme using A, as shown in the following attack game, GF .

– Stage 1: F is provided permanent access to the MAC oracle Ox′ associated
with the MAC key x′ throughout GF .

– Stage 2: F runs A to produce a valid MAC forgery for the MAC key x′

that is known to neither F nor A. By examining all oracle queries made by
A, F outputs the MAC forgery.

The objective of F is to output a valid MAC forgery for a MAC message which
was not previously asked of Ox′ . It is shown in the proof that Pr[MACforgery] ≤
Np · Pr[SuccF (k)], where Np is polynomial in the security parameter, k. Hence,
Pr[MACforgery] is negligible if the message authentication scheme in use is secure.

5.2 Multiple Eavesdropper Attacker ME

The second part of the proof assumes that the adversary A gains her advantage
without forging a MAC digest. We construct another algorithm ME that uses
A against the security of the encryption scheme, whose behaviour is described
by the attack game GME shown below and in Figure 5. The objective of ME is
to correctly predict the challenge bit θ in the game simulation GME (i.e. have
θ′ = θ).

– Stage 1: ME is provided permanent access to two different encryption or-
acles OkA

and OkB
associated with encryption keys kA and kB respectively

throughout the game GME .
– Stage 2: ME chooses a pair of messages (m0,m1) of equal length and hands

them to the challenger. The challenger then chooses a random challenge bit,

θ (i.e., θ
R
← {0, 1}), and returns the ciphertexts γA and γB to ME , where

γA = EkA
(mθ) and γB = EkB

(mθ).
– Stage 3: ME runs A to determine whether m0 or m1 was encrypted as

γA and γB . By examining all oracle queries made by A, ME outputs her
prediction, θ′.



ME

Stage 1

Stage 2

Stage 3

Stage 4

Oracle Queries

Test Query

Oracle Queries

Output guess bit b′

Access to OkA
and OkB

m0, m1

γA, γB

Output θ′
A

Fig. 5. Game GME

We denote the probability that ME correctly guesses the challenge bit θ
by Pr[SuccME(k)], and observe that for the encryption scheme to be IND-CPA,
AdvME(k) = 2 × Pr[SuccME(k)] − 1 must be negligible. It is shown in the proof
that (AdvA(k)|MACforgery) = N2

p Ns · AdvME(k), where Np and Ns are polyno-

mial in the security parameter. Hence, (AdvA(k)|MACforgery) is negligible if the
encryption scheme in use is secure.

5.3 Conclusion of Proof

The proof concludes by observing that:

AdvA(k) = (AdvA(k)|MACforgery) × Pr[MACforgery]

+ (AdvA(k)|MACforgery) × Pr[MACforgery]

≤ Pr[MACforgery] + (AdvA(k)|MACforgery)

Hence, AdvA(k) is negligible when the encryption scheme and message authenti-
cation scheme in use are secure against IND-CPA and secure against existential
forgery under ACMA respectively, and therefore the improved 3PKD protocol
is also secure.



6 Conclusion and Future Work

By making a small change to the 3PKD protocol we have allowed SIDs to be
defined in a natural way. This makes the improved protocol a more useful tool
for practical applications since we have provided a simple way to identify which
secure session key should be used on which communication channel. At the same
time we would argue that the resulting definition of partnering is more intuitive,
and consequently we believe that our proof of security is more straightforward
than the one presented by Bellare and Rogaway in their original paper.

As a result of our findings we would recommend that all provably secure pro-
tocols should use partnering definitions based on SIDs. This situation is common
for two-party protocols [4, 10, 15]; even if a SID is not explicitly used in the secu-
rity definition, one can easily be defined from the fresh inputs of each principal.
When it comes to multi-party protocols the situation is not so clear. While pro-
tocols which use only broadcast messages [21] have a natural SID, protocols
which utilise point-to-point messages do not have this property [12, 13]. It would
be interesting to know whether the protocols without broadcast messages can
be provided with a secure means to obtain a shared SID.
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A Proof of Theorem 1

The security of the improved protocol is proved by finding a reduction to the
security of the encryption scheme and the message authentication scheme. Let
Ns be the maximum number of sessions between any two parties in the protocol
run and Np be the maximum number of players in the protocol run, where both
Ns and Np are polynomial in the security parameter k.

The proof is divided into two cases since the adversary A can either gain
her advantage against the protocol while forging a MAC digest with respect to
some user’s MAC key or gain her advantage against the protocol without forging
a MAC digest. The proof assumes that there exists an adversary A that has a
non-negligible advantage against the protocol, and shows that this implies that
either the encryption scheme or the message authentication scheme is insecure.

A.1 Adaptive MAC Forger F

For the first part of the proof, assume that at some stage A asks a SendClient(B,
A, j, (αB,j , βB,j)) query to some fresh oracle, Πj

B,A, such that Πj
B,A accepts, but

the MAC digest value βB,j used in the SendClient(B,A, j, (αB,j , βB,j)) query was
not previously output by a fresh oracle. Hence, Pr[MACforgery] is non-negligible.
We construct an adaptive MAC forger F against the security of the message
authentication scheme using A. We define an attack game GF as follows.

– Stage 1: F is provided permanent access to the MAC oracle Ox′ associated
with the MAC key x′ throughout the game GF .
• F randomly chooses a principal U , where U ∈ {U1, . . . , UNp

}. U is F ’s
guess at which principal A will choose for the MAC forgery.

• F randomly generates the list of MAC keys for the {U1, . . . , UNp
} \ {U}

principals.
• F randomly generates the list of encryption keys of the {U1, . . . , UNp

}
principals.

– Stage 2: F runs A and answers all oracle queries from A. This can be done
in a straightforward manner since F can respond to all oracle queries from A
as required using the keys chosen in Stage 1 and Ox′ . In addition, F records
all the MAC digests it receives from Ox′ . If, during its execution, A makes
an oracle query that includes a forged MAC digest for U , then F outputs
the MAC forgery as its own, and halts. Otherwise, F halts when A halts.

The random choice of U by F means that the probability that U is the party
for whom A generates a forgery (if A generates any forgery at all) is at least
1/Np. Hence, the success probability of F is

Pr[SuccF (k)] ≥
Pr[MACforgery(k)]

Np

.

Hence
Pr[MACforgery] ≤ Np · Pr[SuccF (k)].



Since we know that Np is polynomial in the security parameter k and AdvF (k)
is negligible by definition of the security of the message authentication scheme,
Pr[MACforgery] is also negligible.

A.2 Multiple Eavesdropper Attacker ME

For the second part of the proof, assume that AdvA(k) is non-negligible, but
that A achieves this advantage without forging a MAC digest. Recall that ME
hands a pair of messages (m0,m1) to the challenger and receives γA = EkA

(mθ)
and γB = EkB

(mθ), which are encryptions under two different keys of one of the
messages.

ME runs A to determine whether m0 or m1 was encrypted as γA and γB .
By examining all oracle queries made by A, ME outputs her prediction, θ′. The
details of the game GME in Figure 5 are explained as follows.

Stage 1: ME is provided permanent access to two different encryption oracles
OkA

and OkB
associated with encryption keys kA and kB respectively.

Stage 2: ME chooses a pair of messages (m0,m1) of equal length and hands them
to the challenger. The challenger then chooses a random challenge bit, θ (i.e.,

θ
R
← {0, 1}), and returns the ciphertexts γA and γB to ME , where γA = EkA

(mθ)
and γB = EkB

(mθ). ME then randomly chooses the following:

– target initiator and responder principals, A and B, where A,B
R
←{U1, . . . , UNp

},

– target session between A and B whose instance at the server is u (i.e. the

session of Ψu
A,B), where u

R
←{1, . . . , Ns},

– list of encryption keys (i.e. Kenc
Ui

) for all participants except A and B, and

list of MAC keys (i.e. KMAC
Ui

) for all participants.

Stage 3: ME runs A to determine whether m0 or m1 was encrypted as γA and
γB . By examining all oracle queries made by A, ME outputs her prediction, θ′. A
makes a series of SendClient(U1, U2, ι,m), SendServer(U1, U2, ι,m), Reveal(U, ι),
and Corrupt(U,K) oracle queries to ME , which can be answered by ME as
explained below. At some point during GME , A makes a Test(U1, U2, ι) query on
some fresh oracle (in the sense of Definition 3), which ME must also answer.

On receipt of SendClient(U1, U2, ι,m) queries:

– If U1 = initiator, U2 = responder, and m = ∗, then this will start a
protocol run. This query can be successfully answered by ME and the
outgoing message is some randomly chosen k-bit challenge RU1

.

– If U1 = responder, U2 = initiator, and m is some k-bit challenge RU1
,

then ME will successfully answer with RU1
, RU2

, where RU2
is some

randomly chosen k-bit challenge.



– If UI = initiator, UR = responder (where {U1, U2} = {UI , UR}), and the
message m = ({SKU1,U2,ι}Kenc

U1

, [UI , UR, RUI
, RUR

, {SKU1,U2,ι}Kenc
U1

]KMAC
U1

).

All session keys (if accepted) are known from the SendServer(U1, U2, ι,m)
queries, since we assume that A is not able to produce any MAC forg-
eries. Hence, if the MAC digest verifies correctly, the MAC digest must
be authentic (i.e. must have been generated by ME during a SendServer

query) and in this case, ME will output the decision δ = accept . Other-
wise, ME will output the decision δ = reject , as the protocol specification
demands.

– If UI = initiator, UR = responder (where {U1, U2} = {UI , UR}), and m ∈
{(γA, [UI , UR, RUI

, RUR
, γA]KMAC

U1

), (γB , [UI , UR, RUI
, RUR

, γB ]KMAC
U1

)}. Both

γA and γB are given as input to ME and hence known to ME . With the
assumption that A is not able to produce any MAC forgeries, if the MAC
digest verifies correctly, then the MAC digest must have been generated
by ME during a SendServer query. In this case, ME will output the de-
cision δ = accept, otherwise ME will output the decision δ = reject , as
the protocol specification demands.

– In all other cases the input to the SendClient query is invalid, so ME will
randomly choose a bit θ′ as its response and hand it to the challenger.
Hence, SendClient queries can be correctly answered by ME .

On receipt of SendServer(U1, U2, ι,m) queries:
Message m must be of the form (RU1

, RU2
), where RU1

and RU2
are some

k-bit challenges, otherwise ME will randomly choose a bit θ′ as its response
and hand it to the challenger.

– If this is the target session (i.e. U1 = A, U2 = B, and ι = u), then ME
will compute the MAC digest using the respective MAC keys and output
(γA, [U1, U2, RU1

, RU2
, γA]KMAC

A
) and (γB , [U1, U2, RU1

, RU2
, γB ]KMAC

B
) to

U1 and U2 respectively.
– If this is not the target session, ME will compute the MAC digest using

the respective MAC keys and output (αU1
, [U1, U2, RU1

, RU2
, αU1

)]KMAC
U1

)

and (αU2
, [U1, U2, RU1

, RU2
, αU2

)]KMAC
U2

) to U1 and U2 respectively, where

αU1
= OkA

(SKU1,U2,ι) if U1 = A, αU1
= {SKU1,U2,ι}Kenc

U1

if U1 6= A,

αU2
= OkB

(SKU2,U1,ι) if U2 = B, and αU2
= {SKU2,U1,ι}Kenc

U2

if U2 6= B.

– In all other cases the input to the SendServer query is invalid, so ME will
randomly choose a bit θ′ as its response and hand it to the challenger.
Hence, SendServer queries can be correctly answered by ME .

On receipt of Reveal(U1, U2, ι)) queries:

– If Πι
U1,U2

has accepted and it forms the target session (i.e. {U1, U2} =
{A,B}) and the last flow that Πι

U1,U2
received had the form (α, β), where

α ∈ {γA, γB}), then ME will randomly choose a bit θ′ as its response
and hand it to the challenger.

– If this session has accepted but it is not the target session, then ME will
output the session key SKU1,U2,ι, since all session keys are known from
the SendServer(U1, U2, ι,m) queries.



– In all other cases the input to the Reveal query is invalid, so ME will
randomly choose a bit θ′ as its response and hand it to the challenger.
Hence, Reveal queries can be correctly answered by ME .

On receipt of Corrupt(U,K) queries:
– If U ∈ {A,B} (i.e. A is trying to corrupt the initiator or responder

principal of the target session), then ME will randomly choose a bit θ′

as its response and hand it to the challenger.
– If U ∈ {U1, . . . , UNp

} \ {A,B}, then ME will hand all internal infor-
mation for U to A, update U as corrupted and also update Kenc

U to be
K.

On receipt of Test(U1, U2, ι) query:
– If this is the target session (i.e. {U1, U2} = {A,B} and the last flow

that Πι
U1,U2

received had the form (α, β), where α ∈ {γA, γB}), then
ME will answer the query with m0, else ME will randomly choose a
bit θ′ as its response and hand it to the challenger. After making a
Test query and getting an answer of the form SKU1,U2,ι from ME , A
continues interacting with the protocol and eventually outputs a guess

bit b′, where b′
R
←{0, 1}. ME then outputs θ′ = b′ as its response and

hands it to the challenger.

The random choices of A, B, and u by ME mean that the probability that
the target session is the same as the session that A chooses as the Test session
is 1

N2
pNs

. We claim that if the target session and Test session are the same, and

the Test session is fresh, then ME will succeed whenever A succeeds and fail
whenever A fails. To see that this is true, suppose Πi

A,B and Πj
B,A receive γA

and γB and both accept. If A attempts to reveal either of these oracles, then
neither will be considered fresh. This can be seen since the valid MAC digests
mean that both oracles have the same SID, and the random generation of both
components of the SID implies that no other (honest) party will have accepted
with the same SID, and thus Πi

A,B and Πj
B,A are partners (since it is easy to

verify that the other partnership requirements are also met). We also observe
that no other oracle apart from Πi

A,B and Πj
B,A accepts after receiving γA and

γB since only one server instance outputs a valid MAC digest for this pair of
ciphertexts, and this server instance only outputs a valid MAC digest for one
pair of nonces.

It is easy to verify that when the target session and Test session are differ-
ent, or when the Test session is not fresh, ME outputs a random bit, so has
probability of 1

2
of succeeding. Hence, ME ’s success probability is given by

Pr[SuccME(k)] =
N2

p Ns − 1

2N2
p Ns

+
Pr[b′ = b|MACforgery]

N2
p Ns

=
N2

p Ns − 1

2N2
p Ns

+
(AdvA(k)|MACforgery) + 1

2N2
p Ns

2 · Pr[SuccME(k)] − 1 =
N2

p Ns − 1

N2
p Ns

+
(AdvA(k)|MACforgery) + 1

N2
p Ns

− 1



AdvME(k) =
(AdvA(k)|MACforgery)

N2
p Ns

(AdvA(k)|MACforgery) = N2

p Ns · AdvME(k) ,

where Pr[b′ = b|MACforgery] is the probability that A succeeds given that A does
not make any MAC forgeries and (AdvA(k)|MACforgery) is the advantage of A
given that A does not make any MAC forgeries. Since we know that both Np

and Ns are polynomial in the security parameter k and AdvME(k) is negligible
by definition of the security of the encryption scheme, (AdvA(k)|MACforgery) is
also negligible.


