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Abstract. In this paper we discuss the example of APN permutation
introduced in the paper “On the Generalized Linear Equivalence of Func-
tions over Finite Fields” [1], presented at Asiacrypt 2004. We show that
the permutation given in [1] is indeed classically linearly equivalent to a
power monomial. More in general, we show that no new class of APN
functions can be discovered starting from permutation polynomials of
the type used in [1] applied on the APN monomial x

3.

1 Introduction

The concept of generalized functional linear equivalence has been introduced in
[1]; the idea is to define a geometric representation of function f : Fp

m → Fp
n

with p prime and m, n ≥ 1 onto the linear space Fp
m+n. Every function is

associated with an implicit embedding, i.e. a set of vectors that contains the
information of the function truth table. Two functions f, g are generally linearly
equivalent if the embedding of g can be obtained from the embedding of f by
means of an invertible linear transformation acting on the whole linear space.

In [1], Sect. 4, Example 2 contains the specification of an APN permutation
obtained starting from the power monomial x3 over GF(23) which is claimed to
be classically not equivalent to x3. In the next Section we show that all functions
generated in this way are indeed classically affine equivalent to the inverse of the
power monomial x3.

2 Revised Claim

Consider the APN power monomial f(x) = x3 defined over GF(2n). The partic-
ular permutation polynomial p(x) under discussion is of the form (1), where the
conditions to be verified are that b2 = ac, 2n mod 3=2 and a, b, c, d ∈ GF(2n).

p(x) = ax3 + bx2 + cx + d (1)

This permutation polynomial can be re-written as (2), if x3 is a power permu-
tation.

p(x) = (ex + f)3 + k = e3x3 + e2fx2 + ef2x + f3 + k (2)



In fact, every choice of a in (1) implies a unique choice of e in (2) and every
choice of c consequently implies a unique choice of f ; the condition b2 = ac is
then a tautology since it is always true that e4f2 = e3ef2. The choice for d forces
a unique choice of the constant k. The cases when x3 is not a permutation are
not of interest, since this implies that GCD(3,2n − 1) 6= 1, that in turn implies
2n − 1 = 3m and finally 2n mod 3=1 and in this case (1) is not a permutation
polynomial.

This said, every function obtained from x3 by means of a generalized linear
transformation and of the form (3), where M and N are arbitrarily chosen n×n

binary matrices, can always be re-written as (4). This includes the function in
[1], Example 2.

ax3 + bx2 + cx + d → Mx + Nx3 (3)

(ex + f)3 + k → Mx + Nx3 (4)

Now, let us operate the substitution y = (ex+ f)3 + k, or x = e−1(y + k)
1

3 +
e−1f ; if we re-write (4) in an explicit form using y we obtain (5) and then (6).

y → M(e−1(y + k)
1

3 + e−1f) + N(e−1(y + k)
1

3 + e−1f)3 (5)

y → M(e−1(y + k)
1

3 + e−1f) + N(e−3(y + k) + e−3f3

+e−3f(y + k)
2

3 + e−3f2(y + k)
1

3 ) (6)

We can note that, by defining two opportune n × n binary matrices P and
Q, and a constant k′ ∈ GF(2n), (6) can be re-written1 as (7), which is classically

affine equivalent to the power monomial y
1

3 , i.e. the inverse of y3, if and only if
matrix Q is non-singular. The values of P and Q are given in (8) and (9), where
the S matrix is associated with the squaring operation, and matrices Ei and F i

are associated with the constant multiplication times ei and f i.

y → Py + Q(y + k)
1

3 + k′ (7)

P = NE−3 (8)

Q = ME−1 + N(E−3FS + E−3F 2) (9)

Thus if det(Q) is null the function is not classically equivalent to y
1

3 ; exploit-
ing the fact that the matrices Ei and F i commute, and that S represents the
squaring operation we can write:

Q = ME−1 + N(FSE−3·2
n−1

+ E−3F 2) =

= ME−1 + N(FSE−2
n−1

−1 + E−3F 2) =

= (M + N(FSE−2
n−1

+ E−2F 2))E−1 =

= (M + N(E−1FS + E−2F 2))E−1 (10)

1 This is possible since the squaring operation is always linear in finite fields with even
characteristic.



However, the function is obtained with a generalized transformation and to pre-
serve the APN property the determinant of matrix T associated with the gen-
eralized affine transformation must be positive. Matrix T is given by:

T =

(

E2FS + EF 2 E3

M N

)

and its determinant is given by:

det(T ) = det(E3)det(M + NE−3(E2FS + EF 2)) (11)

Eventually, looking at (10) and (11) the two constraints to be satisfied are:

det(M + N(E−1FS + E−2F 2)) = 0 (12)

det(M + N(E−1FS + E−2F 2)) 6= 0 (13)

that always lead to contradiction. If the obtained function is generally equiv-
alent to x3 it is also classically equivalent to x

1

3 . Thus, we can conclude that
no non-trivial APN function can be produced starting from the given permu-
tation polynomial class; this may be possible starting from other permutation
polynomial classes, and/or other APN monomials.
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