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Abstra
t. The algorithm proposed by Ha and Moon [2℄ is a 
ounter-

measure against power analysis. The Ha-Moon algorithm has two draw-

ba
ks in that it requires an inversion and has a right-to-left approa
h.

Re
ently, Yen, Chen, Moon and Ha improved the algorithm by removing

these drawba
ks [7℄. Their new algorithm is inversion-free, has a left-to-

right approa
h and employs a window method. They insisted that their

algorithm leads to a more se
ure 
ountermeasure in 
omputing modular

exponentiation against side-
hannel atta
ks. This algorithm, however,

still has a similar weakness observed in [1, 6℄. This paper shows that the

improved Ha-Moon algorithm is vulnerable to di�erential power analysis

even if we employ their method in sele
ting s

i

.

Keywords: Ha-Moon algorithm, randomized exponentiation algorithm,

side-
hannel atta
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1 Introdu
tion

In 2002, Ha and Moon proposed an algorithm in order to prevent power analysis

[2℄. The Ha-Moon algorithm randomizes a se
ret exponent into a signed binary

representation. Many resear
hers are interested in this algorithm be
ause of its

simpli
ity and eÆ
ien
y. Two drawba
ks of the Ha-Moon algorithm are that

it requires an inversion of a group element and re
odes an exponent into a

randomized representation from LSB to MSB (i.e. right-to-left).

Re
ently, Yen, Chen, Moon and Ha improved these drawba
ks of the Ha-

Moon algorithm [7℄; their new algorithm (improved Ha-Moon algorithm) has

a left-to-right approa
h and does not require an inversion of a group element.

Thus, their algorithm 
an be applied in 
omputing modular exponentiations,

su
h as RSA and DSA. They insisted that their algorithm leads to a more se-


ure 
ountermeasure implementing exponentiation against side-
hannel atta
ks.

However, this paper shows that the improved Ha-Moon algorithm is still vul-

nerable to di�erential power analysis (DPA) [3, 4℄. Thus, the improved Ha-Moon

algorithm should not be implemented in restri
ted environments, su
h as smart


ards, for whi
h it was originally designed.
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The remainder of this paper organized as follows: In Se
tion 2, we brie
y

review the improved Ha-Moon algorithm. In Se
tion 3, we propose an atta
k

method that shows the improved Ha-Moon algorithm is still vulnerable to DPA.

2 Improved Ha-Moon Algorithm

This se
tion summarizes the improved Ha-Moon Algorithm. See [7℄ for details.

2.1 Brief Des
ription

Algorithm 1. Improved Ha-Moon algorithm with 2-bit window (Fig. 3 in [7℄)

Input: g;K = (k

n�1

; � � � ; k

0

)

2

where n is even and (k

n�1

k

n�2

)

2

= (01)

2

; (10)

2

; or (11)

2

Output: g

K

1. R[0℄ = 1;R[1℄ = g

2. Pre
omputation: R[2℄ = g

2

; � � � ; R[14℄ = g

14

3. s = �(k

n�1

k

n�2

)

2

4. for i from n� 4 downto 0 step �2 do

4.1 d = �4s

4.2 s =RandomInteger(�1;�3)

4.3 R[0℄ = R[0℄

4

4.4 R[0℄ = R[0℄ �R[d+ s+ (k

i+1

k

i

)

2

℄

5. R[0℄ = R[0℄ �R[�s℄

6. output R[0℄

The improved Ha-Moon algorithm is a left-to-right, inversion-free, and window

1

method. In this algorithm, a randomized exponent d

0

i

is re
oded from the fol-

lowing equation:

d

0

i

� s

i

= (k

i+1

k

i

)

2

� 4s

i+2

where (k

i+1

k

i

)

2

is a se
ret exponent to be re
oded and s

i

2

R

f�1;�2;�3g

whi
h introdu
es randomness in the representation. Sin
e d

0

i

be
omes a positive

integer for all i, there is no inversion operation in Algorithm 1. In Algorithm

1, there are always two squarings and multipli
ation sequen
es, whi
h are not

dummy operations. Thus, the improved algorithm 
an resist SPA-like atta
ks,

su
h as [5℄, and the safe-error atta
k [8℄. Also, the improved Ha-Moon algorithm

may resist Fouque et al.' atta
k [1℄, be
ause ea
h probability of state transitions

seems to be equal.

1

We assume without loss of generality that the window size is 2.
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2.2 Weakness of the Improved Ha-Moon Algorithm

However, the improved Ha-Moon algorithm has a weakness similar to the orig-

inal Ha-Moon algorithm in that there are a few possible intermediate values

[1, 6℄. After pro
essing (k

i+1

k

i

)

2

in Step 4.4, Algorithm 1, R[0℄ be
omes one

of g

(k

n�1

���k

i

)

2

�1

, g

(k

n�1

���k

i

)

2

�2

, and g

(k

n�1

���k

i

)

2

�3

. In other words, there are

only three possible intermediate values in any iteration. Table 1 shows di�er-

ent pattern of intermediate values a

ording to (k

i+1

k

i

)

2

. Ea
h o

urren
e of

g

4(k

n�1

���k

i+2

)

2

+x

i

given (k

n�1

� � � k

i+2

)

2


an be 
he
ked by DPA, su
h as ZEMD

atta
k [4℄. For example, (k

i+1

k

i

)

2

= 0 results peaks in x

i

= �3, �2, and �1 and

(k

i+1

k

i

)

2

= 1 in x

i

= �2, �1, and 0. Thus, we 
an �nd a 
orre
t (k

i+1

k

i

)

2

given

(k

n�1

� � � k

i+2

)

2

.

Note that, in this atta
k, a third of the samples are meaningful and the others

are treated as noise, be
ause the possible distribution of intermediate values is

three.

Table 1. Intermediate values, g

4(k

n�1

���k

i+2

)

2

+x

i

, after pro
essing (k

i+1

k

i

)

2

x

i

(k

i+1

k

i

)

2
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2.3 Yen et al.'s Method

Yen et al. suggested a method to prevent this atta
k. Their method is sele
ting

s

i

= �1 or �2 when (k

i+1

k

i

)

2

= 0 or 2 as well as sele
ting s

i

= �2 or �3

when (k

i+1

k

i

)

2

= 1 or 3. The allowed parameters are summarized in Table 2.

Their method 
an make (k

i+1

k

i

)

2

= 0 and 1(2 and 3) indistinguishable. For this

reason, they insisted that the atta
k in the previous se
tion 
an be avoided by

this method.

3 Proposed Atta
k

Unfortunately, Yen et al.'s method does not provide additional randomness in

the intermediate values. The indistinguishability after pro
essing (k

i+1

k

i

)

2


an

be removed in the su

essive iteration. After pro
essing (k

i�1

k

i�2

)

2

in Step 4.4,

Algorithm 1, R[0℄ be
omes

g

16(k

n�1

���k

i+2

)

2

+4(k

i+1

k

i

)

2

+(k

i�1

k

i�2

)

2

+s

i�2
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Table 2. Parameters with the Yen et al.'s method

s

i+2

(k

i+1

k

i

)

2

(s

i

; d

0

i

)

�1 0 (�2, 2) or (�1, 3)

�1 1 (�3, 2) or (�2, 3)

�1 2 (�2, 4) or (�1, 5)

�1 3 (�3, 4) or (�2, 5)

�2 0 (�2, 6) or (�1, 7)

�2 1 (�3, 6) or (�2, 7)

�2 2 (�2, 8) or (�1, 9)

�2 3 (�3, 8) or (�2, 9)

�3 0 (�2, 10) or (�1, 11)

�3 1 (�3, 10) or (�2, 11)

�3 2 (�2, 12) or (�1, 13)

�3 3 (�3, 12) or (�2, 13)

where s

i�2

2 f�1;�2;�3g. Table 3 shows possible values of R[0℄ after pro
essing

(k

i�1

k

i�2

)

2

. If (k

n�1

� � � k

i+2

)

2

is known, we 
an determine (k

i+1

k

i

)

2

and 
lassify

(k

i�1

k

i�2

)

2

into a group A (0 or 1) or a group B (2 or 3).

Algorithm 2. ZEMD-like atta
k on the improved Ha-Moon algorithm

Output: K

1. gather suÆ
iently many power tra
e samples of g

K

w

for di�erent g

w

's.

2. for i from n� 2 downto 2 step �2 do

2.1 for x from �2 to 13 step 1 do

2.1.1 divide the samples into two sets S1 and S2 a

ording to a de
ision fun
tion,

su
h as the Hamming weight of g

16(k

n�1

���k

i+2

)

2

+x

w

2.1.2 get the bias signal as D = average(S1) � average(S2)

2.1.3 re
ord an appearan
e of a spike in D

2.2 determine (k

i+1

k

i

)

2

and 
lassify (k

i�1

k

i�2

)

2

into a group A or B a

ording to

re
ords in Step 2.1.3

3. guess (k

1

k

0

)

2

4. output K

For example, if a spike is re
orded in Step 2.1.3, Algorithm 2 when x = 6 and

(or) 7, then we 
an �nd that (k

i+1

k

i

)

2

is 2 and (k

i�1

k

i�2

)

2

is 
lassi�ed into

a group A. Thus, we 
an determine a se
ret exponent K ex
ept (k

1

k

0

)

2

, of

whi
h we 
an 
lassify the group, A or B; the size of the sear
h spa
e from the

remaining ambiguity in (k

1

k

0

)

2

is only two. In addition, our atta
k does not

assume anything beyond ZEMD atta
k.

That is, the improved Ha-Moon algorithm is vulnerable to DPA. Yen et al.'s

method does not prevent DPA. Rather it helps DPA to break the improved Ha-

Moon algorithm by in
reasing the rate of meaningful power tra
es from a third

to a half, be
ause their method makes the possible distribution of intermediate

values be two. Even enlarging the range of the intermediate values will not
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Table 3. Intermediate values, g

16(k

n�1

���k

i+2

)

2

+x

i�2

, after pro
essing (k

i�1

k

i�2

)

2

x

i�2

(k

i+1

k

i

)

2

�2 �1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 A A B B

1 A A B B

2 A A B B

3 A A B B

A means (k

i�1

k

i�2

)

2

= 0 or 1, and

B means (k

i�1

k

i�2

)

2

= 2 or 3.

in
rease the 
omplexity of DPA signi�
antly, but only de
rease the rate in inverse

proportion to the range.

4 Con
lusion

The improved Ha-Moon algorithm introdu
ed interesting properties, su
h as a

left-to-right approa
h, inversion-free and window method. This paper, however,

shows that the improved Ha-Moon algorithm does not resolve one 
riti
al prop-

erty of the Ha-Moon algorithm: its vulnerability to DPA. The improved Ha-Moon

algorithm should be used with another randomizing 
ountermeasure.
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