
Practical Cryptography in High Dimensional

Tori

Marten van Dijk1, Robert Granger2, Dan Page2, Karl Rubin3, ⋆, Alice
Silverberg3, ⋆⋆, Martijn Stam2, and David Woodruff1, ⋆ ⋆ ⋆

1 MIT CSAIL, {marten, dpwood}@mit.edu
2 Department of Computer Science, University of Bristol,

{granger, page, stam}@cs.bris.ac.uk
3 Department of Mathematics, UC Irvine, {krubin, asilverb}@uci.edu

Abstract. At Crypto 2004, van Dijk and Woodruff introduced a new
way of using the algebraic tori Tn in cryptography, and obtained an
asymptotically optimal n/φ(n) savings in bandwidth and storage for a
number of cryptographic applications. However, the computational re-
quirements of compression and decompression in their scheme were im-
practical, and it was left open to reduce them to a practical level. We
give a new method that compresses orders of magnitude faster than the
original, while also speeding up the decompression and improving on the
compression factor (by a constant term). Further, we give the first effi-
cient implementation that uses T30, compare its performance to XTR,
CEILIDH, and ECC, and present new applications. Our methods achieve
better compression than XTR and CEILIDH for the compression of as
few as two group elements. This allows us to apply our results to ElGa-
mal encryption with a small message domain to obtain ciphertexts that
are 10% smaller than in previous schemes.

Keywords: torus-based cryptography, discrete-log based cryptography

1 Introduction

When Diffie and Hellman introduced their key agreement scheme in a finite
field of prime order, they made the assumption that a birthday attack was the
best one can do (the Pohlig-Hellman algorithm [20] was in submission). Hence
it made sense to use a subgroup of size about that of the field itself. Since then,
the discrete logarithm problem in the multiplicative group of a finite field has
been studied with increased interest. For prime order subgroups the best known
attacks today are the birthday attack in the subgroup itself and the Number
Field Sieve in the full finite field. It is now common practice to use a subgroup
whose cardinality is substantially smaller than the field size. This raises the

⋆ Rubin was supported by NSF grant DMS-0140378.
⋆⋆ Silverberg was supported by NSA grant MDA904-03-1-0033.

⋆ ⋆ ⋆ Woodruff was supported by an NDSEG fellowship.

question whether it is possible to efficiently represent elements in this subgroup
with fewer bits than generic elements of the full field, thus providing compression.

Brouwer, Pellikaan and Verheul [4] showed that compression can be achieved
by going up to an extension field. They conjectured that one can attain a com-
pression ratio of n/φ(n), where n is the degree of the extension. For n = 2, the
LUC cryptosystem [14] already achieved these savings. For n = 6, Brouwer et
al. described a system that was later improved upon by Lenstra and Verheul
[15, 16], resulting in the XTR public key cryptosystem.

Rubin and Silverberg [23] recast the problem of compression for extension
fields in terms of algebraic tori. They showed that if the algebraic torus Tn is
rational, the conjectured compression factor n/φ(n) can in fact be achieved. If
n is the product of at most two prime powers then Tn is known to be rational
[30, 12]. Based on the rationality of T6, Rubin and Silverberg [23] developed the
CEILIDH public key cryptosystem.

Although Tn is not known to be rational in general, van Dijk and Woodruff [6]
show that one can obtain key agreement, signature and encryption schemes with
a compression factor asymptotically n/φ(n) as the number of keys, signatures,
or messages grows, without relying on the rationality of Tn. This helps explain
the potential of, and increasing interest in, torus-based cryptography.

The torus Tn is rational if there are efficiently computable “almost bijec-

tions”4 between Tn(Fq) and F
φ(n)
q , where φ is Euler’s totient function. Though

the tori Tn in general are only conjectured to be rational, it is known [30] that
they are always stably rational, i.e., for every n there is an m such that there is

an “almost bijection” between Tn(Fq) × F
m
q and F

φ(n)+m
q .

Using the fact that Tn is stably rational, van Dijk and Woodruff [6] developed

bijections between Tn(Fq)×F
m
q and F

φ(n)+m
q with m =

∑
d|n, µ(n/d)=−1 d, where

µ is the Möbius function, leading to asymptotically optimal n/φ(n) savings in
bandwidth and storage. However, a major drawback of their solution is its large
computational requirements.

The present work gives a new and efficient construction of bijections be-

tween Tn(Fq) × F
m
q and F

φ(n)+m
q with significantly smaller m than in [6], as

well as an optimised implementation when n = 30. The latter uses some known
techniques [9] to efficiently implement CEILIDH.

Note that n = 30 = 2 · 3 · 5 is the next cryptographically interesting case,
since its compression is up to 20% better than that of systems based on n = 6.
In addition to our computational savings, in this case we are able to reduce the
original affine surplus m = 32 [6] to m = 2. As we show, this reduction has
immediate practical implications.

Since we are interested in the practicality of our construction, we perform
timings for exponentiations, compression and decompression for both the new
T30(Fq) system and for a CEILIDH-based T6(FqL

) system with qL ≈ q5. For an
equivalent of 1024-bit RSA security, the computational costs of the operations

4 The maps may be undefined on a small number of points.

2

in both systems are comparable, while the compression of our scheme is better
by a factor of 5/4 = (30/φ(30))/(6/φ(6)).

Observe that the security of ECC systems is based on a different mathemat-
ical problem and (still) has the advantage that the best known attack is via a
birthday paradox argument. So, one works in a subgroup that is almost the same
size as the elliptic curve itself. Consequently, compression is much less of an is-
sue there. Yet the same ECC systems provide an additional reason to study the
compression methods we do, since the rise of pairing-based cryptography leads
to elements in the torus (although at present no efficient curves with embedding
degree 30 are known). Note that compression for elliptic curves over extension
fields has also been considered [22].

Outline: §2 discusses some tools we use. In §3 we present the new mapping. §4
gives cryptographic applications. In §5 we show how to implement our mapping,
and in §6 we present simulation results.

2 Preliminaries

In this section we provide some background on the algebraic tori used in cryp-
tography. See [23, 24] for more details. Let Fq denote the finite field with q
elements, let φ be Euler’s totient function, and let Φn(x) be the n-th cyclotomic
polynomial. Write Gq,n for the subgroup of F

×
qn of order Φn(q). Let A

n denote
n-dimensional affine space. Recall that the Möbius function µ(m) is 0 if m is not
square-free, and is (−1)k if m is a product of k distinct primes.

2.1 Algebraic Tori

For any positive integer n one can define an algebraic torus Tn over Fq whose
Fq-points consist of the elements of F

×
qn whose norm is one down to every proper

subfield of Fqn/Fq. The following provides some useful properties of Tn (see
Lemma 7 of [23] and Lemma 1 of [2]).

Lemma 1. 1. Tn(Fq) ∼= Gq,n, and thus #Tn(Fq) = Φn(q).
2. If h ∈ Tn(Fq) has prime order not dividing n, then h /∈ Fqd for any d | n

with d < n.

The variety Tn has dimension φ(n). Since Tn(Fq) embeds into F
×
qn , one can

perform the group operation as ordinary multiplication in the field, or use other
more efficient possibilities [9]. The subgroup Tn(Fq) may be regarded as the
“primitive” subgroup of F

×
qn , since by Lemma 1 its elements do not lie in a proper

subfield of Fqn . Thus, Tn(Fq) is believed to be the most cryptographically secure
subgroup of F

×
qn .

2.2 Rationality of Tori over Fq

The interpretation of Gq,n as an algebraic torus is motivated by the possibility,
for some n, to exploit birational maps between Tn and affine space [23].

3

Definition 1. The torus Tn is rational if there is a birational map ρ : Tn(Fq) →
A

φ(n).

That is, Tn(Fq) is rational if there are Zariski open subsets W ⊂ Tn and U ⊂
A

φ(n), and rational functions ρ1, . . . , ρφ(n) ∈ Fq(x1, . . . , xn) and ψ1, . . . , ψn ∈
Fq(y1, . . . , yφ(n)), such that ρ = (ρ1, . . . , ρφ(n)) : W → U and ψ = (ψ1, . . . , ψn) :
U →W are inverse isomorphisms (as quasi-projective varieties).

The existence of a birational map allows one to represent elements of Tn(Fq)
with just φ(n) elements of Fq, providing an effective compression factor of n/φ(n)
over the embedding into Fqn . The torus Tn is known to be rational when n is
either a prime power or a product of two prime powers [30, 12], and is conjectured
to be rational for all n [30].

2.3 CEILIDH

The torus-based public key system CEILIDH was introduced at Crypto 2003 by
Rubin and Silverberg [23]. The system is based on the rational torus T6, and
achieves a compression factor of three. They construct an efficiently computable
bijection

ψ : A
2(Fq) \ V (f) → T6(Fq) \ {1, a},

together with an efficiently computable inverse

ρ : T6(Fq) \ {1, a} → A
2(Fq) \ V (f),

where V (f) denotes a small subvariety of A
2, and 1 and a in T6(Fq) are points

excluded by ρ and ψ. This allows one to represent all (bar two) elements of
T6(Fq) with just two elements of Fq. This system attains the same compression
factor as the public key system XTR [15, 29]. Granger, Page and Stam [9] give
a comparison of XTR and CEILIDH in the case q ≡ 2 mod 9 or q ≡ 5 mod 9.

2.4 Asymptotically Optimal Torus-Based Cryptography

Since Tn is known to be rational only for special values of n, the above ideas do
not lead to an optimal compression factor of n/φ(n) in general. Van Dijk and
Woodruff [6] overcome this problem in the case where several elements of Tn are
to be compressed. They construct a bijection:

θ : Tn(Fq) × (×d|n,µ(n/d)=−1F
×
qd) → ×d|n,µ(n/d)=1F

×
qd . (1)

Specializing their map to the case n = 30 gives

T30(Fq) × F
×
q × F

×
q6 × F

×
q10 × F

×
q15 → F

×
q2 × F

×
q3 × F

×
q5 × F

×
q30 ,

which can be reinterpreted as an “almost bijection” (see [6])

T30(Fq) × A
32(Fq) → A

40(Fq).

4

One can use this map to achieve an asymptotic compression factor of 30/8.
Indeed, to compress m elements of T30(Fq), one can compress an element x and
split its image into y1 ∈ A

8(Fq) and y2 ∈ A
32(Fq). Then y1 forms the affine input

of the next compression. In the end, 8m+32 elements of Fq are used to represent
m elements of T30(Fq). Observe that their map comes from the equation

Φ30(x)(x− 1)(x6 − 1)(x10 − 1)(x15 − 1) = (x2 − 1)(x3 − 1)(x5 − 1)(x30 − 1), (2)

relating the orders of all the different component groups of domain and range.
Since these groups are cyclic, one can map to and from their products as long as
the orders of the component groups are coprime. For the map above there are
some small primes that occur in the order of several component groups, but van
Dijk and Woodruff are able to isolate and handle them separately.

3 The New Construction

The bijection (1), while asymptotically optimal, leaves open the question of
whether one can obtain better compression for a fixed number of elements. Our
new compression map, given by (4) below (see Theorems 2 and 4), has this
property. Using the fact that Φn(x) =

∏
d|n(xd − 1)µ(n/d), we have

Proposition 1 If p is a prime, and a is a positive integer not divisible by p,
then

Φap(x)Φa(x) = Φa(xp).

The following result can be deduced from Proposition 1 above, using Lemma
6 of [6] (see also pp. 60–61 of [30]). Here, Res denotes the Weil restriction of
scalars (see for example [30] or [24]).

Theorem 2 If p is a prime, q is a prime power, a is a positive integer, qa is
not divisible by p, and gcd(Φap(q), Φa(q)) = 1, then

Tap(Fq) × Ta(Fq) ∼= (ResFqp /Fq
Ta)(Fq) ∼= Ta(Fqp).

The next result follows from Proposition 1, by doing double induction on the
number of prime divisors of n and the number of prime divisors of m.

Theorem 3 If n is square-free and m is a divisor of n, then

Φn(x)
∏

d| n
m

, µ(n
md

)=−1

Φm(xd) =
∏

d| n
m

, µ(n
md

)=1

Φm(xd).

The next result follows from Theorem 3, using the ideas in the proof of Theorem
3 of [6].

Theorem 4 If n is square-free and m is a divisor of n, then there is an effi-
ciently computable bijection (with an efficiently computable inverse)

Tn(Fq) ×
∏

d| n
m

, µ(n
md

)=−1

Tm(Fqd) →
∏

d| n
m

, µ(n
md

)=1

Tm(Fqd).

5

Note that [6] is based on the case m = 1 of Theorem 4. Theorem 4 is most useful
to us when Tm is rational. If Tm is rational, then Theorem 4 gives efficiently
computable “almost bijections” between Tm and A

φ(m), and we have

Tn × A
D(m,n) ∼ A

φ(n)+D(m,n) (3)

where

D(m,n) = φ(m)
∑

d| n
m

, µ(n
md

)=−1

d

and ∼ denotes efficient “almost bijections”. The smaller D(m,n) is, the better
for our applications. Given the current state of knowledge about the rationality
of the tori Tm, we take m with at most two prime factors. Ideally, m = 6. One
could also take m = 2. When m = 6, then (3) gives

T30 × A
2 ∼ A

10 and T210 × A
24 ∼ A

72.

As a comparison with the original bijection (1) for n = 30 which requires 8m+32
elements of Fq to represent m elements in T30(Fq), we see that this provides a
considerable improvement.

Even better, using Proposition 1 and induction on the number of prime
divisors of n, we also obtain the following.

Theorem 5 If n = p1 · · · pk is a product of k ≥ 2 distinct primes, then

Φn(x)

k−1∏

i=2

Φp1···pi
(xpi+2···pk) = Φp1p2

(xp3···pk).

Applying this to n = 210 = 2 · 3 · 5 · 7, one can similarly show

T210(Fq) × T30(Fq) × T6(Fq7) ∼ T6(Fq35).

Now since T6 ∼ A
2, we obtain T210×T30×A

14 ∼ A
70. Using T30×A

2 ∼ A
10 now

gives T210×A
22 ∼ T210×A

10×A
12 ∼ T210×(T30×A

2)×A
12 ∼ T210×T30×A

14 ∼
A

70, so

T210 × A
22 ∼ A

70.

More generally, the above reasoning shows that if n = p1 · · · pk (square-free),
then

Tn × A
φ(p1p2)p3···pn−φ(n) ∼ A

φ(p1p2)p3···pn ,

which for 6 | n gives

Tn × A
n/3−φ(n) ∼ A

n/3. (4)

Using (4), one can compressm elements of Tn(Fq) down to just (m−1)φ(n)+n/3
elements of Fq by either sequential or tree-based chaining as explained in §4.

6

3.1 Applying the Construction to T30

Henceforth we focus on n = 30 since this improves upon previous schemes, has
a straightforward parameter generation (see §5), and will be computationally
efficient. Note that gcd(Φ30(q), Φ6(q)) = 1. Indeed, using the first paragraph of
the proof of Lemma 6 of [6], the only possible prime dividing gcd(Φ30(q), Φ6(q))
is 5, but it is easy to see that regardless of q we have Φ6(q) mod 5 ∈ {1, 2, 3},
which proves our claim. By Theorem 2 we now have

T30(Fq) × T6(Fq) ∼= T6(Fq5).

The compression is based on a sequence of maps

T30(Fq) × (A2(Fq) \ V (f)) → T30(Fq) × T6(Fq) → T6(Fq5) → A
2(Fq5) \ V (f5),

where V (f5) denotes V (f) over Fq5 . We denote by θ the forward composition of
the three maps above, and by θ−1 the composition of the inverses. Note that if
we have m elements in T30(Fq), we compress them down to 8m+ 2 elements of
Fq. Thus the compression outperforms CEILIDH and XTR when as few as two
elements are compressed.

The first and last maps are based on CEILIDH decompression and com-
pression, respectively. We discuss some possibilities for the map σ(·, ·) between
T30(Fq) × T6(Fq) and T6(Fq5) in §5 below.

3.2 Missing points

With regard to the functionality of θ, the only remaining issue is that the outer
two maps based on CEILIDH do not give everywhere-defined injections.

We can slightly modify the CEILIDH maps, so that for compression we get
an injection ψ′ : A

2(Fq) → T6(Fq) × {0, 1} and for decompression an injection
ρ′ : T6(Fq)×{0, 1} → A

2(Fq). Note that ψ′ and ρ′ need not be inverses. The two
missing points in ρ’s domain can easily be added by using a table lookup into
two arbitrarily chosen points in V (f). The resulting map is ρ′.

Given the different cardinalities of T6(Fp) (namely p2 − p + 1) and A
2(Fp)

(namely p2), there are certain points in A
2(Fp) that do not decompress. If we

concentrate on the case p ≡ 2 mod 9 or p ≡ 5 mod 9, then the variety V (f) is
defined by f(v1, v2) = 1 − v2

1 − v2
2 + v1v2. For fixed v2 this has at most 2 roots,

and if this is the case then their difference is (4−3v2
2)

1/2. If this expression equals
2 then v2 = 0, in which case v1 ∈ {−1, 1}. Thus we have a map ψ′ : A

2(Fq) →
T6(Fq) × {0, 1}:

– If f(v1, v2) 6= 0, then ψ′(v1, v2) = (ψ(v1, v2), 0),
– Else if v2 6= 0, then ψ′(v1, v2) = (ψ(v1 + 2, v2), 1),

– Else ψ′(v1, v2) = (ψ(v1 + 1, v2), 1),

where the extra bit indicates whether the input landed in the variety.

7

4 Applications

Our new map saves a significant amount of communication in applications where
many group elements are transmitted. For instance the compression can be used
to agree on a sequence of keys using Diffie-Hellman as in §5.1 of [6]. Other
applications include verifiable secret sharing, electronic voting and mix-nets,
and private information retrieval.

In our applications we compress many elements. This is done by using part of
the output of the i-th element as the affine input for the compression of the (i+1)-
st element. This sequential chaining is simple, but has the drawback of needing
to decompress all elements in order to obtain the first element. Alternatively, one
can use trees to allocate the output of previous compressions. For instance, the
output of the first compression is split into five pieces, which are subsequently
used as the affine input when compressing elements two through six. The output
of the second compression is used to compress elements seven through twelve,
etc. When compressing m elements, decompressing a specific element now takes
O(logm) atomic decompressions on average.

4.1 ElGamal encryption

Our first application is ElGamal encryption with a small message domain, where
we obtain an additional 10% compression over CEILIDH even for the encryption
of a single message. This contrasts starkly with the original mapping of [6] that
cannot be used to achieve any savings for single-message encryption.

Let q and l be primes such that l | Φ30(q). Let g ∈ F
×
q30 have order l, so that

〈g〉 ⊆ T30(Fq). For random a, 1 ≤ a ≤ l − 1, let a be Bob’s private key and
A = ga his public key. Without loss of generality, let M = {0, 1, . . . ,m− 1} be
the set of possible messages. We assume that m, the cardinality of M, is small.
We apply the mapping of §3 to the generalized ElGamal encryption scheme.

Encryption (M):

1. Alice represents the message M as gM ∈ 〈g〉.
2. Alice selects a random integer k, 1 ≤ k ≤ l, and computes d = gk.

3. Alice sets e = gM · (ga)k.

4. Alice expresses d ∈ T6(Fq5) as (d1, d2) ∈ A
8(Fq)×A

2(Fq) ∼= A
2(Fq5) by using

CEILIDH. Alice compresses e ∈ T30(Fq) and d2 ∈ A
2(Fq) as θ(e, d2) = T ,

and outputs (d1, T).

Decryption (d1, T):

1. Bob computes θ−1(T) = (e, d2) and uses CEILIDH to reconstruct d.

2. Bob uses his private key a to recover gM = d−ae.

3. Bob recovers M from gM using the fact that M comes from a small domain
(e.g., using Pollard lambda or a table lookup).

8

The ciphertext is represented as 18 symbols in Fq, which is a 10% improvement
over a solution in which CEILIDH is used to compress both d and e. Note that
the mapping of [6] in §2.4 cannot be used to achieve any savings in this case.

Our scheme preserves homomorphy, that is, without knowing the secret key
a one can compute the encryption of M1 + M2 given encryptions of M1 and
M2 separately. This is useful in applications such as the efficient two-party com-
putations proposed by Schoenmakers and Tuyls [26] which use homomorphic
ElGamal encryption for a small number of messages.

Exactly as for XTR and CEILIDH (with 6 replaced by 30), the security of
our schemes follows from the difficulty of the DDH problem in F

×
q30 , the fact

that T30(Fq) is the primitive subgroup of F
×
q30 , and the fact that our map and

its inverse are efficiently computable.

The representation of M as gM in 〈g〉 is not efficient when m is large. We
leave it as an open problem to adapt our scheme to handle a larger message
domain. We note that one solution is to use hybrid ElGamal encryption instead.
Indeed, we may apply the mapping of §3 to hybrid ElGamal encryption, adapting
a protocol in §5.3 of [6]. In general, though, this solution does not preserve the
homomorphic property.

4.2 ElGamal Signatures

We apply the mapping of §3 to the generalized ElGamal signature scheme, adapt-
ing a protocol in §5.2 of [6]. Here the signature has the form (d, e), where d ∈ 〈g〉
and 1 ≤ e ≤ l−1. The idea is to use part of e in the affine component of θ, which
can be done without any loss since log2 e ≈ 160 while 2 log2 q ≈ 70; see §5.5 for
a discussion of parameters. Since the affine component of [6] is much larger, this
is not possible in their setting.

For a random a, 1 ≤ a ≤ l − 1, let a be Alice’s private key and A = ga her
public key. Let h : {0, 1}∗ → Zl be a cryptographic hash function. We have the
following generalized ElGamal signature scheme for input message M :

Signature Generation (M):

1. Alice selects a random secret integer k, 1 ≤ k ≤ l, and computes d = gk.

2. Alice then computes e = k−1(h(M) − ah(d)) mod l.

3. Alice expresses e as (e1, e2) ∈ F
2
q × {0, 1}∗, computes θ(d, e1) = T , and

outputs (e2,M, T) as her signature.

Signature Verification (e2,M, T):

1. Bob computes θ−1(T) = (d, e1) and recovers e.

2. Bob accepts the signature if and only if Ah(d)de = gh(M).

We note that in practice one has the alternative of using Schnorr’s signature
scheme, which already achieves optimal compression.

9

4.3 Voting Schemes

We will discuss a recent voting scheme by Kiayias and Yung [11], which is based
on the discrete logarithm problem and for which we propose to use T30. We give
a comparison with a cutting edge scheme based on Paillier encryption due to
Damg̊ard and Jurik [5].

Let L denote the number of voters. Each voter has a secret key ai, and a
public key gai . The i-th voter chooses L random exponents si,j ∈ Zl which
satisfy

∑
j si,j = 0, where j ranges from 1 to L (the scheme is self-tallying,

which basically means that the voters themselves serve as the talliers). Voter i
computes and posts gajsi,j for all j, and a zero-knowledge proof that his post is
well-formed. Define tj =

∑
i si,j and observe that

(a)
∑

j tj = 0,
(b) tj is a random element in Zl if at least one user is honest.

From the posts, the j-th voter can compute gajtj , and then by using aj can also
compute gtj . If f is another public generator of 〈g〉, the vote of the j-th voter
is a bit bj from which he can calculate and post gtjf bj . From all such posts,

we have
∏

j g
tjf bj = f

∑
j

bj . Since the tally
∑

j bj ≤ L, it can be found with

Pollard’s lambda method in O(
√
L) multiplications (and one already needs Θ(L)

multiplications to compute
∏

j g
tjf bj).

Damg̊ard and Jurik [5] propose a similar scheme as Kiayias and Yung, but
use Paillier encryption [19] as a starting point. Again, there are L voters, L
secret keys Ski and public keys Pki. The i-th voter chooses L random integers
si,j in a predefined range with

∑
j si,j = 0. Voter i posts EPkj

(si,j) for all j, and
a zero-knowledge proof that these values are well-formed. Define tj as above,
and observe properties (a) and (b) again hold (the latter statistically). From the
posts, voter j computes EPkj

(tj), and using Skj gets tj . If his vote is bj , he
then posts pj = tj + bj . Observe that

∑
j pj =

∑
j bj. Hence, tallying is more

efficient than in the scheme of Kiayias and Yung, using L additions versus O(L)
multiplications.

Although the Paillier-based scheme can be expected to be faster, a scheme
based on T30 is considerably more compact. We give an analysis of the communi-
cation required for both schemes under the assumption that one wants log2 n =
1024, and that one achieves the same level of security with 30 log2 q = 1024 and
a subgroup size of 160 bits.

The communication of the Kiayias-Yung scheme is dominated by the sending
of gajsi,j for all i, j, together with their zero-knowledge proofs. When looking
at the zero-knowledge proofs used, one sees that each voter transmits 4L group
elements and L exponents. Thus we can use T30 compression in Fq30 here. This
results in roughly 4L ·8 log2 q+160L = 32L log2 q+160L ≈ 1253L bits per voter.

The communication of the Damg̊ard-Jurik scheme is similarly dominated by
the sending of the EPKj

(si,j) for all i, j with their zero-knowledge proofs. We
note that their encryption scheme E is not exactly the same as that of Paillier,
but a modification of it where the ciphertext size is at least 3 log2 n bits, n being
an RSA modulus. Moreover, each proof that EPKj

(si,j) is well-formed costs at

10

least 5 log2 n bits. Thus 8L log2 n = 8192L bits are transmitted per voter in this
stage.

Hence our improvement is roughly a factor of 6.5. An additional optimization
is for the bulletin board to compress the list of public keys gai when distributing
this at the beginning. We note that although we improve in communication and
bulletin board size, the computational workload has clearly increased.

4.4 Mix-nets

A typical re-encrypting mix-net involves M servers that each process n cipher-
texts. To process the batch, a server randomly permutes and rerandomises the
ciphertexts. In the literature, both ElGamal and Paillier type schemes are used.
We save on the communication for both sequential and parallel mix-nets [8].
In a sequential re-encrypting mix-net, server i processes the n ciphertexts, then
passes them to server i+1, and after the M -th server is done, they perform some
kind of threshold decryption. Here n·M bits are communicated using either Pail-
lier or ElGamal, but we save using ElGamal together with T30 compression. Our
savings is a factor of 30/8. In parallel mixing, the servers process disjoint batches
of input ciphertexts in parallel, and in between processing rounds they transmit
n/M ciphertexts to each other, and again we save using T30 compression.

5 Representations and Algorithms for T30

In this section we discuss implementation issues concerning field representation,
key generation, and efficient exponentiation.

5.1 Field Representations

Since T30(Fq) ⊂ F
×
q30 , we need a model of the latter that permits fast multipli-

cation, squaring, inversion and a fast Frobenius automorphism. We also require
arithmetic for T6, over both Fq and Fq5 . Since T30(Fq) ⊂ T6(Fq5), we may model
the arithmetic of T30(Fq) by the latter, possibly at the risk of losing some opti-
mizations.

The base field Fq We base our implementation on high performance arithmetic
in Fq using the representational method of Montgomery [17, 3]. For T30 one is
likely to use characteristics q between 32 and 64 bits long, corresponding to a 2-
word value on a 32-bit architecture. We are careful to distinguish between those
small, 2-word values required by T6(Fq5) and more general values of q (which we
need for comparison purposes). Essentially, we employ the trivial program spe-
cialisation techniques described by Avanzi [1] to construct compact, straight line
code sequences for the 2-word case. This affords a significant improvement over
code for general sizes of q. Other than the length, we do not rely on assumptions
on the value of q, although one could expect incremental improvements by doing
so. Also, our choice of extension degree poses some congruence conditions on q.

11

The extension Fq5 We use a degree five subfield of the degree 10 extension
Fq[t]/(Φ11(t)), and use the Gaussian normal basis {t+t10, t7+t4, t5+t6, t2+t9, t3+
t8}. For this to work we require that q 6= ±1 mod 11 [18]. Since the extension
degree is small, we perform inversions using the Itoh-Tsujii algorithm [10].

The torus T6 For the torus T6 we take q ≡ 2 mod 9 or q ≡ 5 mod 9 and use
arithmetic based on the degree six extension field defined by adjoining a primitive
ninth root of unity to the base field, as in [28, 23, 9]. Note that in T6 we have
virtually free inversion, as it is just the cube of the Frobenius automorphism.

5.2 Compression and Decompression

Our new compression and decompression algorithms require two components:
CEILIDH and CRT. We use an implementation of CEILIDH as given in [9].

Although it seems that Chinese remaindering is straightforward, there is some
flexibility in choosing the map σ : T30(Fq)× T6(Fq) → T6(Fq5). Following [6] we
have σ(x, y) = xβyα, where αΦ30(q) + βΦ6(q) = 1. The inverse is given by
σ−1(z) = (zΦ6(q), zΦ30(q)). The cost of the forward computation (i.e., σ) is an
exponentiation in T30(Fq), an exponentiation in T6(Fq), and a multiplication.
Depending on the context, the exponentiation in T30(Fq) may be combined with
an exponentiation performed as part of a particular protocol. The inverse is a
double exponentiation.

Also attractive is the simple σ′(x, y) = xy with inverse (σ′)−1(z) = (zy−1, y)
where y = zαΦ30(q). Clearly the forward map only costs a multiplication. For the
inverse we first compute y using a single exponentiation. Note that the exponent
here is larger than in the case of σ, but the total amount of exponent is similar
in both cases (although asymptotically it is not the total amount that counts,
it is what is relevant in practice). Moreover, we are typically concerned with
the case where the preimage x ∈ T30(Fq) has an order l dividing Φ30(q) so we
know that z has order dividing l(q2 − q + 1), which we can use to reduce the
exponent αΦ30(q). As noted before, the computation of y−1 is virtually free, so
this method is clearly preferable to the first suggestion.

5.3 Arithmetic Costs

Let M,A, S and I represent the cost of multiplication, addition, squaring and
inversion in Fq, respectively. In Table 1 (cf. [9, Lemma 3]) we detail the relative
costs for arithmetic in Fq5 , and for both T6(Fq) and T6(Fq5). Compression and
decompression are based on CEILIDH.

5.4 Exponentiation in T30

In protocols, one is required to perform one of three operations involving ex-
ponentiation: a single exponentiation in T30(Fq), a double exponentiation in
T30(Fq), or a single exponentiation in T6(Fq5) (for the map (σ′)−1 described

12

Fq5 T6(Fq) T6(Fq5)

Multiply 15M + 75A 18M + 53A 270M + 1615A
Square 6M + 21A 90M + 555A
Inverse 65M + 300A + I 2A 10A
Frobenius 0 1A 5A

Compress 15M + 31A + I 290M + 1580A + I
Decompress 27M + 52A + I 470M + 2585A + I

Table 1. Arithmetic costs.

above). Since T30(Fq) ⊂ T6(Fq5), we can perform all three of these in T6(Fq5)
using the methods developed in [28]; the main properties one can exploit are the
degree two Frobenius automorphism and fast squaring.

In a subgroup of order l where l|(q10 − q5 + 1), we write an exponent m as
m ≡ m1 +m2q

5 mod l, where m1 and m2 are approximately half the bit-length
of l (as in [28]). One can find m1 and m2 very quickly having performed a one-
time Gaussian two dimensional lattice basis reduction, and using this basis to
find the closest vector to (m, 0)T . Having split the exponent, to compute am

for random a and m, we perform a double exponentiation am1(aq5

)m2 using the
Joint Sparse Form (JSF) of the integers m1 and m2 [27], which on average halves
the number of pairs of non-zero bits in their paired binary expansion. The use
of the JSF in the above is possible since we have virtually free inversion.

To perform a double exponentiation, we split both exponents as with the
single exponentiation, and perform the necessary four-fold multi-exponentiation
as a product of two double exponentiations, combining the required squarings.

In general one may also be able to exploit the additional structure of T30,
which possesses an automorphism of degree eight, namely, the Frobenius auto-
morphism. One can in principle employ exactly the same method as above and
perform an eight-fold multi-exponentiation. However for the parameter sizes we
consider in this paper, we use a much simpler method based on the q-ary ex-
pansion of an exponent m. Specifically, since our value of q will be small we can
write an exponent m as m =

∑
miq

i.

For our implementation where q30 has size approximately 1024 bits, expo-
nentiating by a 160 bit exponent consists of five terms in the q-ary expansion,
and hence we perform a five-fold multi-exponentiation. To perform this one can
use ideas of Proos [21], which extend the JSF to more than two exponents.
However due to the amount of precomputation required, for exponents of cryp-
tographic interest we use a naive combination of the JSF and the non-adjacent
form (NAF). This results in an effective exponent length of around the same size
as q, significantly reducing the number of squarings needed for exponentiation.

With regard to decompression, the exponent in this case is slightly longer
than for a single exponentiation. Again we use a q-ary expansion, consisting of
seven terms in this instance, and apply the JSF to three pairs of them and the
NAF to the remaining one.

13

q l

2229155309 931607823866669709267930039057677132828697751771
2527138379 963373263959318090938089232997832791220899903311
2559356147 922800311037389261880873570251585702571121590451
2925130259 899122187666688780457417063691715267976198516591
3020282723 734463532846449031549478184170595775906318188901
3734718203 789572131486790156853093352977895757720566978441

Table 2. Parameter examples with 32-bit primes q

q l

9909125592335111369 1056384871088595423227115173568048528184621140903052910805301
10640772970658245433 3170119585137777422832938014760851013504258723575431018642871
11042402719715204339 1179345732085674283659621603717770735788409366766144466686061
11391285666382073129 1293678412210548537320558698939727346786705884728706067133651
11868436123416952031 1230352242796051691760643717809792393751225110105630495113071
17174393702711641469 1070675878645369998848869455205552403869773154208635001001721

Table 3. Parameter examples with 64-bit primes q

Note that for larger parameter choices, one can clearly construct more effi-
cient multi-exponentiation methods than those we have optimised for 1024 bit
fields. We omit the details.

5.5 Parameter Selection

Rubin and Silverberg discuss parameter selection for T30 in §3.10 of [25]. We
followed their method, starting with primes p ≡ 1 mod 30 of about 30 (resp.,
61) bits, finding 32-bit (resp., 64-bit) primes q of order 30 mod p such that q ≡ 2
mod 9 and q ≡ 7 mod 11, then using the Elliptic Curve Method to remove small
prime factors from Φ30(q)/p, and checking to see if what remains is a prime of
about 160 (resp., 200) bits. This results in parameters with q a 32-bit (resp., 64-
bit) prime with the property that the order of T30(Fq) is divisible by a 160-bit
(resp., 200-bit) prime l. These choices give security equivalent to 960-bit (resp.,
1920-bit) RSA security.

By suitably optimizing the Elliptic Curve Method parameter choices, we were
able to generate parameters at a rate of about one example every minute or two
for 32-bit primes q (with 160-bit primes l), using a Macintosh G5 dual 2.5GHz
computer. For 64-bit primes q, we obtained examples with l a prime of between
198 and 202 bits at a rate of one every few hours. The parameters are like Diffie-
Hellman parameters, in the sense that the same parameters can be used for all
users, and for many applications do not need to be changed frequently. In Table
2 we list some examples with 32-bit primes q and 160-bit primes l. In Table 3
we list some examples with 64-bit primes q and 200-bit primes l.

14

FqL
FqS

FqS
5 T6(FqL

) T30(FqS
)

Addition 0.80µs 0.52µs 0.82µs
Frobenius 0.48µs 1.64µs 1.10µs
Square 2.51µs 0.61µs 13.80µs 21.61µs
Multiply 2.58µs 0.62µs 3.78µs 32.30µs 65.92µs
Inverse 92.71µs 2.04µs 16.03µs 1.82µs 1.29µs

Table 4. Timings of basic field and torus arithmetic.

T6(FqL
) T30(FqS

)

Compression

Compress 131.30µs 0.13ms
Decompress 188.61µs 4.92ms

Exponentiation

Binary 5.21ms 9.12ms
Sliding Window 4.39ms 7.53ms
q-ary 3.11ms
JSF Single 2.79ms 4.57ms

Table 5. Timings for exponentiations

6 Timings

In order to understand the real-world performance of our construction, we imple-
mented the entire system and ran a number of timing experiments. Our main goal
is to compare the performance of an implementation of T6(FqL

) using CEILIDH
against an implementation of T30(FqS

) of similar cardinality using our construc-
tion. Here, we denote the special cases of large and small q as qL and qS . We
used log2(qL) ≈ 5 · log2(qS) ≈ 176 bits, so that in both cases, there is a subgroup
of roughly log2(l) ≈ 160 bits in size. These parameters heuristically provide the
equivalent of 1024-bit RSA security.

We constructed our implementation entirely in C++, apart from small se-
quences of assembly language to accelerate arithmetic in Fq, using the GCC 3.4.2
compiler suite. The timing experiments were carried out on a Linux based PC
housing a 2.8 GHz Intel Pentium 4 processor and 1 GB of memory. We selected
our system parameters as in §5.5. In all of our timing experiments we generated
random operands and averaged the timings of many experiments to get a rep-
resentative result. Note that exponents are reduced modulo l in all cases. Our
sliding window had a maximum size of four.

Table 4 shows timings for basic field and torus arithmetic. Arithmetic in
FqL

is used in T6(FqL
) and arithmetic in FqS

and FqS
5 is used in T30(FqS

).
One interesting feature of these results is the low cost ratio between inversion
and multiplication in FqS

, which is potentially interesting to follow up. Table 5
details the cost of mapping between different representations (compress and

15

decompress) and the cost of different exponentiation methods which might be
used within an actual cryptosystem.

It is difficult to get an exact comparison with other work on ECC and XTR,
partly because of differences in host processor and levels of optimisation used
by different authors in producing benchmark timings. However, a comparison
with the highly optimised ECC results of Avanzi [1], for example, gives some
insight. For similar levels of security, direct comparison shows an exponentia-
tion in T30(FqS

) is only around twice as costly as an ECC point multiplication;
correcting for the difference in processors still means that T30(FqS

) is at least
competitive. The case of XTR is easier to compare against since we essentially use
the same experimental platform as that given in Granger, Page and Stam [9].
It turns out that XTR is marginally faster. Solely from the point of view of
performance, we conclude that our construction is a competitive alternative to
existing cryptosystems.

7 Conclusions

We construct an efficient “almost bijection” between T30(Fq) × A
2(Fq) and

A
10(Fq) which achieves better compression than XTR and CEILIDH for the

compression of as few as two group elements. We give several applications, and
obtain ElGamal ciphertexts that are 10% smaller than in previous schemes. We
also develop an efficient implementation, using a variety of techniques for reduc-
ing the computational requirements and obtaining a scheme much more practical
than that in [6]. From experimental results we conclude that our construction is
a competitive alternative to the best existing public key cryptosystems.

References

[1] R.M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations. CHES’04, LNCS 3156, 148–162.

[2] W. Bosma, J. Hutton and E. R. Verheul. Looking beyond XTR. Asiacrypt’02,
LNCS 2501, 46–63.

[3] A. Bosselaers, R. Govaerts and J. Vandewalle. Comparison of Three Modular
Reduction Functions. Crypto’94, LNCS 773, 175–186.

[4] A.E. Brouwer, R. Pellikaan and E.R. Verheul. Doing More with Fewer Bits.
Asiacrypt’99, LNCS 1716, 321-332.

[5] I. Damgard and M. Jurik. A Length-Flexible Threshold Cryptosystem with Ap-
plications ACISP’03, LNCS 2727, 350–364.

[6] M. van Dijk and D. Woodruff. Asymptotically Optimal Communication for Torus-
Based Cryptography. Crypto’04, LNCS 3152, 157–178.

[7] S. Goldwasser and S. Micali. Probabilistic Encryption. In Comp. Sys. Sci, 28(1),
270–299, 1984.

[8] P. Golle and A. Juels. Parallel Mixing. In Computer and Communications Security
(CSS), ACM, 220–226, 2004.

[9] R. Granger, D. Page, and M. Stam. A comparison of CEILIDH and XTR. ANTS-
VI, LNCS 3076, 235–249, 2004.

16

[10] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in
GF (2m) Using Normal Bases. In Info. and Comp., 78(3), 171–177, 1988.

[11] A. Kiayias and M. Yung. Self-Tallying Elections and Perfect Ballot Secrecy.
PKC’02, LNCS 2274, 141–158.

[12] A.A. Klyachko. On the Rationality of Tori with Cyclic Splitting Field (Russian).
In Arithmetic and Geometry of Varieties, Kuybyshev Univ. Press, 73–78, 1988.

[13] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Foundations of Computer Sci-
ence (FOCS), IEEE Press, 364–373, 1997.

[14] M.J.J. Lennon and P.J. Smith. LUC: A New Public Key System. In IFIP TC11
Ninth International Conference on Information Security IFIP/Sec, 103–117, 1993.

[15] A.K. Lenstra and E.R. Verheul. The XTR Public Key System. Crypto’00, LNCS
1880, 1–19.

[16] A.K. Lenstra and E.R. Verheul. An Overview of the XTR Public Key System.
In Public-Key Cryptography and Computational Number Theory, Verlages Walter
de Gruyter, 151–180, 2001.

[17] P.L. Montgomery. Modular Multiplication Without Trial Division. In Math.
Comp., 44, 519–521, 1985.

[18] M. Nöcker. Data structures for parallel exponentiation in finite fields. PhD Thesis,
Universität Paderborn, 2001.

[19] P. Paillier. Public-key cryptosystems based on composite degree residuaosity
classes. Eurocrypt’99, LNCS 1592, 223–238.

[20] S.C. Pohlig and M.E. Hellman. An Improved Algorithm for Computing Loga-
rithms over GF(p) and its Cryptographic Significance. In IEEE Trans. on IT, 24,
106–110, 1978.

[21] J. Proos. Joint Sparse Forms and Generating Zero Columns when Combing.
University of Waterloo, Technical Report CORR 2003-23.

[22] K. Rubin and A. Silverberg. Supersingular Abelian Varieties in Cryptology.
Crypto’02, LNCS 2442, 336–353.

[23] K. Rubin and A. Silverberg. Torus-Based Cryptography. Crypto’03, LNCS 2729,
349–365.

[24] K. Rubin and A. Silverberg. Algebraic Tori in Cryptography. In High Primes and
Misdemeanours: Lectures in Honour of the 60th birthday of Hugh Cowie Williams,
Fields Institute Communications Series 41, American Mathematical Society, 317–
326, 2004.

[25] K. Rubin and A. Silverberg. Using Primitive Subgroups to Do More with Fewer
Bits. ANTS-VI, LNCS 3076, 18–41, 2004.

[26] B. Schoenmakers and P. Tuyls, Practical Two-Party Computation Based on the
Conditional Gate, Asiacrypt’04, LNCS 3329, 119–136.

[27] J.A. Solinas. Low-Weight Binary Representations for Pairs of Integers. University
of Waterloo, Technical Report CORR 2001-41.

[28] M. Stam and A.K. Lenstra. Efficient Subgroup Exponentiation in Quadratic and
Sixth Degree Extensions. CHES’02, LNCS 2523, 318–332.

[29] M. Stam and A.K. Lenstra. Speeding Up XTR. Asiacrypt’01, LNCS 2248, 125–
143.

[30] V.E. Voskresenskĭı. Algebraic Groups and Their Birational Invariants. Transla-
tions of Mathematical Monographs 179, American Mathematical Society, 1998.

[31] A. Yamamura and T. Saito. Private Information Retrieval Based on the Subgroup
Membership Problem. ACISP’01, LNCS 2119, 206–220.

17

