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Abstract. Construction methods of Boolean functions with cryptographically significant
properties is an important and difficult problem. In this work we investigate the class of
rotation symmetric Boolean functions (RSBFs). These functions are invariant under circu-
lar translation of indices and were mainly introduced for efficient implementation purposes.
First, we derive general results on these functions. Afterwards, we concentrate on plateaued
RSBFs on odd number of variables, which have three valued Walsh Spectra (0,±λ), and
can have maximum nonlinearity. We consider both cases when the number of variables n is
composite and prime. When n is odd and prime, we derive the constructive relation between
balanced/unbalanced plateaued RSBFs and show how from one given such function the com-
plete sub class can be generated. As long as search for one plateaued RSBF is of high com-
plexity, our proposed manipulation technique with Walsh spectra imediately give us the way
to construct many such functions without time consuming. Since the most important prop-
erties of a function are determined via the values of Walsh spectra, then such transformation
technique is important to create new function with, possible, better properties. The appli-

cation of our transformation technique construct a class of
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balanced/unbalanced plateaued RSBFs. In our practical implementation of this technique,
given one balanced PRSBF on n = 11 variables we could construct 185 new such functions.
To find the first function took us several days, whereas to construct new 185 functions took
us just a second. However, this technique can be applied only when the Legendre symbol
(2/n) is −1, and the first such n’s are 3, 5, 7, 11, 13, 19, 29, 37, 43, . . ..

Keywords: algebraic attack, algebraic immunity, Boolean functions, plateaued functions,
balancedness, nonlinearity, combinatorial cryptography, Walsh transform.

1 Introduction

A proper choice of a Boolean function as a nonlinear filter in design of a cipher is an important and
difficult task for cryptography [1–3]. A bad choice of such a function is the bottleneck for correla-
tion and algebraic attacks [4]. Therefore, methods for Boolean functions construction with good
cryptographic properties always were the subject of significant attention in scientific cryptography
(see [1–3] and the references in these papers).

At Eurocrypt 1998, a new class of functions was introduced [5], Rotation Symmetric Boolean
Functions (RSBF), that are invariant under rotation of indices for its input variables. This subject
met a lot of attention, and many results were achieved from that time. In 1998, Pieprzyk and
Qu study RSBFs [6] as components in the round of a hashing algorithm, and found that RSBFs
are useful when an efficient implementation is required. Other research on RSBFs continued in
[7, 8, 1]. These functions appeared to be efficient in implementation [6, 8], reach in terms of good
cryptographic properties [1, 5, 7, 9], strong against of algebraic attacks [4, 10], and can be searched
in an efficient way [1, 11, 12].

1.1 Motivation to Study RSBFs

There are several reasons of why we need to study these functions, and we give them in this
subsection.



1) When efficient evaluation of a function is important, for instance, in the implementation of
MD4, MD5 or HAVAL ciphers, the properties of RSBFs are desirable, since one can reuse
evaluation from previous iterations. It turns out that, for example, a degree 2 RSBF on n
variables takes only 3n−1

2 + 6(m− 1) operations (additions and multiplications) to evaluate in
m consecutive rounds of a hashing algorithm. One can simply consider the Feistel structure 1

[15, 16] of a hashing algorithm as a sequence of iterations where each iteration takes some input
X = (Xk, . . . , X0) and a message block M , and produce the output Y = (Yk, . . . , Y0) using
the rule Y = M + F (Xk−1, . . . , X0) + RSBF (Xk, s). Note that M, Xi, Yi are blocks of N -bits,
and RSBF (Xk, s) is the circular rotation of the block Xk by s positions to the left, and F is
another cryptographic primitive. Therefore, the study of the component RSBF (Xk, s) of such
hashing algorithms is important.

2) At [1, 5, 7, 9, 10], it has been shown that many functions in this class are rich in terms of good

cryptographic properties. Furthermore, the RSBF class is much smaller (≈ 2
2n

n ) comparing to
the space of n-variable Boolean functions (22n

) and, hence, search techniques can be much more
efficient.

3) At Eurocrypt 2004, it has been shown [4] that a function f resists against algebraic attacks
if the minimum degree for its annihilator h is large. In the same work the authors suggested
to consider a new property of Boolean functions – algebraic immunity AI(f), which is the
minimum degree of a nonzero annihilator for the function f , characterizing its strength against
of algebraic attacks. Later on, another group of researches in [10] showed that RSBFs are
rich of functions that are strong against of algebraic attacks. They considered RSBFs with
maximum nonlinearity and correlation immunity. For example, they found 12 RSBFs (7, 2, 4,
56) for which AI(f) = 4 – the maximum possible; there are 6976 RSBFs (8, 1, 6, 116) with the
highest AI(f) = 4; there are all 8406 RSBFs [9, 3, 5, 240] with the highest AI(f) = 4 (there
are no balanced (9, 3, 5, 240) RSBFs [11, 12], and, according to Corollary 1 (item 1) in [10], for
such functions AI(f) is strictly less then 5). From these work we see that the class of RSBFs
contains many functions, which are strong against of algebraic attacks.

4) When the number of variables is odd, then we concentrate on plateaued RSBFs because of the
following reasons. In [10] the authors show that AI(f) is maximum only when f is balanced (for
odd n) and have maximum nonlinearity. From one hand, given a Boolean function on an even
number of input variables, the best possible nonlinearity can be achieved when the magnitudes
of all the Walsh spectra values are the same. However, this is not possible when the number of
input variables is odd. In such a scenario, the functions with three valued Walsh spectra 0,±λ,
which are known as plateaued functions, may be investigated [17, 18].

Summarizing the previous, we believe that the property of rotation symmetry is a good prop-
erty, because it gives us many positive reflections. However, this property could probably leak
information in some way, but nobody could find it so far. All this motivate us to investigate this
class of functions in detail.

1.2 Preliminaries: Definitions and Notations

A Boolean function (BF) on n variables is a mapping {0, 1}n → {0, 1}, and can be defined by its
truth table: f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)]. A BF f is balanced if
its truth table contains an equal number of 1’s and 0’s. Any BF has an unique representation as
a polynomial over F2, called the algebraic normal form (ANF),

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . ., a12...n ∈ {0, 1}. The algebraic degree, deg(f), is the number of
variables in the highest order term with non-zero coefficient.

1 Feistel structures are considered to be strong against different types of attacks, and it was used in
such well-known ciphers as A5/3 [13] (a new encryption standard for mobile communication which was
recently accepted), MUGI [14], and other ciphers.



Many properties of BFs can be described by the Walsh transform (WT ). Let x = (x1, . . . , xn)
and ω = (ω1, . . . , ωn) both belong to {0, 1}n and x · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be a BF on
n variables. Then the Walsh transform of f(x) is a real valued function over {0, 1}n, defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

The vector [Wf (00 . . . 0) . . .Wf (11 . . . 1)] is called Walsh spectra (WS). A Boolean function f is
balanced iff Wf (0) = 0. The nonlinearity of f is given by nl(f) = 2n−1− 1

2 maxω∈{0,1}n |Wf (ω)|. A
function is m-resilient (respectively mth order correlation immune) iff its Walsh spectra satisfies
Wf (ω) = 0, for 0 ≤ wH(ω) ≤ m (respectively 1 ≤ wH(ω) ≤ m).

Following the notation in [1–3] we use (n, m, d, σ) to denote an n-variable, m-resilient BF
with degree d and nonlinearity σ. By [n, m, d, σ] we denote an unbalanced n-variable, mth order
correlation immune BF with degree d and nonlinearity σ.

1.3 Introduction to Plateaued RSBFs and Previous Work

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define the permutation ρk
n(xi) as

ρk
n(xi) = xi+k mod n. Let (x1, x2, . . . , xn−1, xn) ∈ {0, 1}n. Then we extend the definition as

ρk
n(x1, x2, . . . , xn−1, xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn−1), ρ

k
n(xn)). I.e., ρk

n is a k cyclic rotation
on an n-bit vector.

Definition 1. (RSBF) A Boolean function f is called Rotation Symmetric if for each input
(x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n.

The inputs to a RSBF can be divided into groups so that each consists of all cyclic shifts of one
element. A group of inputs is generated by Gn(x1, x2, . . . , xn) = {ρk

n(x1, x2, . . . , xn)|1 ≤ k ≤ n}.
The number of the groups is denoted by gn. Thus, the number of n-variable RSBFs is 2gn .
A group of inputs can be represented by its representative element Λn,i which is the lexico-
graphically first element belonging to the group. The representative elements are again arranged
lexicographically. The rotation symmetric truth table (RSTT) is defined as the gn-bit string
[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)]. In [1] it was shown that Walsh transform takes the same value
for all elements belonging to the same group, i.e., Wf (u) = Wf (v) if u ∈ Gn(v).

By Burnside’s lemma [7] the number of groups is gn = 1
n

∑

k|n φ(k) 2
n
k ., where φ(k) is the

Euler’s phi-function. By hn,w we denote the number of groups of weight w, which can be recursively

calculated as (2gn,w − 1)2
Pw−1

i=0 gn,i [7].
For efficient work with RSBFs, the matrix nA of size gn × gn were introduced [1]. The matrix

nA for an n variable RSBF is defined as

nAi,j =
∑

x∈Gn(Λn,i)

(−1)x·Λn,j .

Using nA matrix, the Walsh transform for an RSBF can be calculated from its RSTT as

Wf (Λn,j) =

gn−1
∑

i=0

(−1)f(Λn,i)
nAi,j .

Recently, new results on RSBFs for odd number of variables n were received in [12]. Let us
permute the rows and columns of nA in the following way: the first gn/2 rows and columns
correspond to the representative elements Λn,i of even weight, and the second gn/2 rows and
columns correspond to their complements. Then the new matrix, denoted as nA

π, has a nice
structure:

nA
π =

(

nH nH

nH −nH

)

.



Example: Let n = 5 – odd, for which gn = 8. In [1], the group representatives Λn,i are ordered lex-
icographically, i.e., (0, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1),
(0, 1, 1, 1, 1), (1, 1, 1, 1, 1). For 5Aπ the order is (0, 0, 0, 0, 0), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 1, 1, 1, 1),
(1, 1, 1, 1, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1), (0, 0, 0, 0, 1). The new matrix 5Aπ is of a nice sub matrix
structure:

5A =















1 1 1 1 1 1 1 1
5 3 1 1 −1 −1 −3 −5
5 1 1 −3 1 −3 1 5
5 1 −3 1 −3 1 1 5
5 −1 1 −3 −1 3 1 −5
5 −1 −3 1 3 −1 1 −5
5 −3 1 1 1 1 −3 5
1 −1 1 1 −1 −1 1 −1















, 5A
π =















1 1 1 1 1 1 1 1
5 1 −3 1 5 1 −3 1
5 −3 1 1 5 −3 1 1
5 1 1 −3 5 1 1 −3
1 1 1 1 −1 −1 −1 −1
5 1 −3 1 −5 −1 3 −1
5 −3 1 1 −5 3 −1 −1
5 1 1 −3 −5 −1 −1 3















. (1)

The existence of nH-submatrix for odd n follows from the property that

nA
π
r,c = nA

π
r,c+ gn

2
= nA

π
r+ gn

2 ,c = − nA
π
r+ gn

2 ,c+ gn
2

, for c, r = 0, 1, . . . , gn

2 − 1.

Now, for notation purposes let us split the RSTT into two parts, σ1 and σ2, such that RSTT =
σ1 ‖ σ2 ∈ {0, 1}gn , and each σ1, σ2 ∈ {0, 1}gn/2. Let us define a one-to-one mapping function

µσ : σ1 ‖ σ2 ∈ {0, 1}
gn
2 × {0, 1}

gn
2 −→ σ∗

1 ‖ σ∗
2 ∈ {±1}

gn
2 × {±1}

gn
2 ,

such that, if σ1i = 0 then σ∗
1i

= (−1)0 = +1, otherwise σ∗
1i

= (−1)1 = −1. Then the Walsh
transform for any input ω = (00 . . . 0), . . . , (11 . . . 1) is calculated as:

Wf (ω) = ((σ∗
1 nH + σ∗

2 nH) ‖ (σ∗
1 nH− σ∗

2 nH))[ω]. (2)

In this paper we refer w1 = σ∗
1 nH and w2 = σ∗

2 nH as partial Walsh Spectra, or just pWS.

Definition 2. (PRSBF) A Boolean function f is called plateaued if its Walsh spectra is 3-valued
{0,±λ} for any input in (2), where λ is called the amplitude of the function.

According to (2), the Walsh transform in each position ω = i is 3-valued for PRSBFs, i.e.:

w1i + w2i = 0 or ± λ, w1i − w2i = 0 or ± λ. (3)

1.4 Our Contribution

The contribution of this paper can be divided into two general parts:

1) Theoretical results on RSBFs. First, for any n we derive the combinatorial result in a general
case, ηn,t,w – the number of groups of size t with elements of weight w. Sub cases of this formula
were calculated in [7] (hn,w and gn), and [12] (dn,t), and was used to prove other results. This
the most general nonrecursive formula is now proposed and also used to prove our results.
Second, we study plateaued RSBFs and the matrix nA. Our goal is to give an answer whether
we theoretically can find functions with good properties or not, in this class. For this specific
purpose, we consider appropriately chosen pair of columns and give an answer how many
functions in this class lead to a “good” Walsh spectra at the corresponding points.
In the previous work [12] in order to prove the nonexistence of (9, 3, 5, 240), the authors intu-
itively considered the same two columns for the fixed matrix 9A, and proved the nonexistence.
However, their solution was for one specific case, and our contribution in this paper is the
general nonexistence criteria when n is odd composite. Additionally, as an example, we give the
proof of nonexistence of PRSBFs with maximum nonlinearity values such as (9, 3, –, –) with
λ = 32, (15, 5, –, –) with λ = 256, and (21, 7, –, –) with λ = 2048. Although, we say that
the function (15, 3, –, –) with λ = 256 falls our test and, hence, could exist. It means that at
least for n = 9, 15, 21 there is no maximum resilient PRSBF with maximum amplitude and
nonlinearity.



2) Classes of plateaued RSBFs under transformation of Walsh spectra on n odd prime number of
variables. In the first part we considered when n is a composite number, whereas in the second
part we investigate the case when n is odd and prime. During our work with Walsh spectra we
found two observations on the structure of the matrix nA. This matrix can be permuted in a nice
way so that it becomes to be in a compact representation. Finally, we found the way how to use
these observations to derive two simple operations on the truth table of the function (basically,
(a) swapping parts of RSTT and (b) local shifting), which result with the permutation of the
Walsh spectra values, remaining the function to be balanced (unbalanced) plateaued RSBF.
These transformations can permute Walsh spectra (WS) such that, for example, the resiliency
can be increased, since zeros of WS can be “moved” to proper positions. However, we show
that this technique can be applied only when the Legendre symbol (2/n) is −1. The first such
n’s are 3, 5, 7, 11, 13, 19, 29, 37, 43, . . .. We say: “Give us just one balanced plateaued RSBF on 43
variables, and we give you 48771! · 2097151 RSTT transformations back (some of the functions
can be equal to each other depending on the structure of the given initial function)”.

In our simulations we could find (basically, by luck) a 0-resilient PRSBF on n = 11 variables,
and then we could construct a 2-resilient function, using our technique.

Since we could not prove the observations, we decided to divide this approach in two sections.
In Section 3 we describe our observations, and in Section 4 we give the method and the results
which we could prove.

In this paper we in majority study functions on odd number of variables n. It has appeared that
a parallel group of researches studied RSBFs on even n [19], and they concentrated on searching
for Bent functions (these functions exist only when n is odd).

2 Our Theoretical Results on RSBFs

In this section we give combinatorial results on RSBFs. First, we start with a technical result that
counts ηn,t,w — the number of groups which contain exactly t elements of weight w. We note that
all elements in a group have the same weight. In [7] the formula for hn,w – the number of long
cycles groups with elements of weight w was studied in detail, and it appears to be a sub case of
our generalized formula (see Corollary 1(e)).

Lemma 1. For an n-variable RSBF the number of groups with t elements of weight w is

ηn,t,w =







1

t

∑

k|t
qk|w

µ(t/k) ·

(
n/qk

w/qk

)

, for t, w = 1, . . . , n, where qk = n
gcd(n,k)

1, for t = 1, w = 0

0, otherwise

(4)

where µ(t) is the Möbius function [20], i.e., µ(t) = 1, if t = 1; µ(t) = 0, if ei ≥ 2; and
µ(t) = (−1)m, otherwise, when t = pe1

1 pe2
2 . . . pem

m is factorized into powers of m distinct primes,
p1, p2 . . . pm.

Proof:

Let S = {0, 1}n and let x ∈ S. Let pt,w be the number of elements from the set S of weight w
such that ρt

n(x) = x. The number of orbits for these permutors is gcd(n, t), and to fulfill the
requirement ρt

n(x) = x each orbit must contain all 0’s or all 1’s. The number of elements in
each orbit is n

gcd(n,t) and, to have the weight w, we also want that n
gcd(n,t) |w. Then the number

of orbits that will be filled with 1’s is w
n/ gcd(n,t) , that can be placed in pt,w =

(
gcd(n,t)

w
n/ gcd(n,t)

)
ways.

If we define qt = n
gcd(n,t) , then this binomial coefficient is then written as pt,w =

(
n/qt

w/qt

)
. Now,



the recursive formula is:






ηn,1,0 = 1

ηn,t,w = 1
t (pt,w −

∑

k|t

k < t

qk|w

k · ηn,k,w) ⇒
∑

k|t
qk|w

k · dn,k,w = pt,w =

(
n/qt

w/qt

)

,

where t, w = 1, . . . , n. We use the Möbius function [20] to invert the expression:

ηn,t,w = 1
t

∑
k|t

qk|w

µ(t/k) ·
(n/qk

w/qk

)
, from which the proof follows. ⊓⊔

Corollary 1. We can explicitly derive the following nonrecursive formulas:

(a) The number of groups with t elements is dn,t =
∑n

w=0 ηn,t,w = 1
t

∑

k|t µ(t/k)2gcd(n,k);

(b) The number of groups with elements of weight w is gn,w =
∑n

t=1 ηn,t,w;
(c) The total number of groups is gn =

∑n
t=1 dn,t =

∑n
t=1

∑n
w=0 ηn,t,w;

(d) The total number of elements is |S| =
∑n

t=1 t · dn,t =
∑n

t=1

∑n
w=0 t · ηn,t,w = 2n;

(e) The number of groups of full cycle with elements of weight w is hn,w = ηn,n,w;
⊓⊔

The next question is whether a balanced plateaued RSBF with particular properties could
exist or not. For this purpose we introduce the following notation. For a composite n and a prime
number p such that p|n, let us define the following two representative elements:

Λ0 = (00 . . . 0
︸ ︷︷ ︸

n

) and Λp = (0 . . . 01
︸ ︷︷ ︸

p

0 . . . 01
︸ ︷︷ ︸

p

. . . 0 . . . 01
︸ ︷︷ ︸

p
︸ ︷︷ ︸

n/p

).

Note that Λp always contains an odd number of 1’s, hence, in the matrix nH, the corresponding
representative element for Λp is its complement Λ̄p. The idea is to consider two columns of the
matrix nH corresponding to Λ0 and Λp – the columns which are responsible for balancedness of
the function and for n/p-resiliency, respectively. We want to have a test whether the n/p-resilient
function could exist or not by telling whether the Walsh spectra at these points can be 0 or not.
We investigate these two columns jointly.

Lemma 2. Let n be odd composite and p be a prime such that p|n then nH has the following
properties:

(i) the column corresponding to Λ0 contains exactly
dn,t

2 values t;
(ii) if nHi,Λ0

= t then the value nHi,Λp
must be of the form: nHi,Λp

= t− 4t
p r, for some r = [0 . . . n−1

2 ].

Obviously, if gcd(p, t) = 1 ⇒ r = 0;
(iii) if nHi,Λ0

= t then the number of rows in nH where nHi,Λp
= t − 4t

p r is:

#(t, t−
4t

p
r) =

1

t

(
p

2r

)
∑

k|t

µ(t/k)·qk, where qk =







2k−p, if gcd(p, k) = p

1, if gcd(p, k) = 1 and r = 0

0, if gcd(p, k) = 1 and r 6= 0.

(5)

Proof: see Appendix A1 ⊓⊔

Now we are ready to present the nonexistence criteria when n is odd and composite, and also
give examples of applications of the test.

Theorem 1. (Nonexistence test for balanced PRSBFs on n odd composite)
For n odd and composite, let p be a prime number such that p|n. If there exists an (n/p)-resilient
plateaued function with amplitude λ, then it must satisfy to the following test:

Consider columns of nH corresponding to Λ0 and Λp. Let the number of different pairs
(nHi,Λ0

, nHi,Λp
) be m, and the pairs of values themselves are (a0, b0), . . . , (am−1, bm−1). Let pi =



#{(ai, bi)} be the number of appearence of the corresponding pair (ai, bi) in the columns Λ0 and
Λp, calculated by the formula (5). Then, there must exist integers k′

0, . . . , k
′
m−1, k′′

0 , . . . , k′′
m−1, k

∗
i ∈

{0 . . . pi} (k∗
i = k′

i or k′′
i ), such that: for some fixed τ1 ∈ {0, +1} and τ2 ∈ {0, +1,−1}







m−1∑

i=0

aik
′
i =

τ1λ + 2n

4
,

m−1∑

i=0

aik
′′
i =

−τ1λ + 2n

4
,

and







m−1∑

i=0

bik
′
i =

τ2λ + 2
∑m−1

i=0 bipi

4
,

m−1∑

i=0

bik
′′
i =

τ2λ + 2
∑m−1

i=0 bipi

4
.

(6)

Proof: see Appendix A2 ⊓⊔

In this theorem the first equation gives a condition for function balancedness, and the second
equation performs a simple test that the function is (n/p)-resilient, since Λp column must give us

Walsh spectra equal to 0, if the function is (n/p)-resilient. We have a hypothesis that
∑m−1

i=0 bipi

is always 0. We also think that if a n/p-resilient plateaued RSBF exists, then τ1 and τ2 cannot be
0. The important question is to find the way to search the proper k∗

i ’s quickly, rather then to try
them exhaustively.

The functions of significant interest are balanced plateaued functions with amplitude λ =
2(n+1)/2 [2], because they have highest nonlinearity. We apply the nonexistence test to several
such PRSBFs in the following examples.

Example: Consider (9, 3,−,−) plateaued RSBF with λ = 32. To test whether such function could
exist or not we use Theorem 1 above:

1. Choose p = 3 and test for 9/3 = 3-resiliency. Determine the number of pairs (ai, bi), using
Lemma 2. There are only m = 4 pairs: (1, 1), (3,−1), (9, 9), and (9,−3)

2. We need to find the k∗’s. The conditions are the following:

i (ai, bi) pi = #{(ai, bi)} range for k∗
i

0 (1, 1) 1 k∗
0 ∈ [0 . . . 1]

1 (3, -1) 1 k∗
1 ∈ [0 . . . 1]

2 (9, 9) 7 k∗
2 ∈ [0 . . . 7]

3 (9, -3) 21 k∗
3 ∈ [0 . . . 21]

⇒







1k′
0 + 3k′

1 + 9k′
2 + 9k′

3 = (32τ1 + 512)/4

1k′
0 − 1k′

1 + 9k′
2 − 3k′

3 = (32τ2 + 0)/4

1k′′
0 + 3k′′

1 + 9k′′
2 + 9k′′

3 = (−32τ1 + 512)/4

1k′′
0 − 1k′′

1 + 9k′′
2 − 3k′′

3 = (32τ2 + 0)/4.

A simple search for k∗
0 , . . . , k∗

3 gives us the only two candidates for the half-functions σ’s:

k0 = 0, k1 = 1, k2 = 4, k3 = 9, with τ1 = −1 and τ2 = +1

and the second is:

k0 = 1, k1 = 0, k2 = 3, k3 = 12, with τ1 = +1 and τ2 = −1.

It means that there is no pair of half-functions σ∗ with (τ1, τ2) and (−τ1, τ2). Hence, there is
no 3-resilient plateaued functions on 9 variables.

⊓⊔



We have applied the nonexistence criteria for several balanced plateaued RSBFs with λ = 2
n+1
2 :

Possible candidates kis
Case Pairs τ1 = −1 τ1 = 0 τ1 = +1 Existence

τ2 = −1 τ2 = 0 τ2 = +1 τ2 = −1 τ2 = 0 τ2 = +1 τ2 = −1 τ2 = 0 τ2 = +1
n = 9, p = 3 #(1, 1) = 1 - - 0 - - - 1 - - Do

λ = 32 #(9,−3) = 21 9 12 not
(9, 3,−,−) #(9, 9) = 7 4 3 exist

#(3,−1) = 1 1 0
n = 15, p = 3 #(1, 1) = 1 - - 0 - - - 1 - - Do

λ = 256 #(15,−5) = 819 403 416 not
(15, 5,−,−) #(15, 15) = 272 138 134 exist

#(5, 5) = 3 2 1
#(3,−1) = 1 1 0

n = 15, p = 5 #(1, 1) = 1 0 - 0 - - - 1 - 1 Could
λ = 256 #(15, 3) = 682 264 275 271 282 exist

(15, 3,−,−) #(15,−9) = 341 209 198 211 200
#(15, 15) = 68 68 68 68 68

#(5, 1) = 2 2 1 1 0
#(3, 3) = 1 1 1 0 0

#(5,−3) = 1 0 1 0 1
n = 21, p = 3 #(1, 1) = 1 - - 1 - - - 0 - - Do

λ = 2048 #(21,−7) = 37449 18688 18761 not
(21, 7,−,−) #(21, 21) = 12480 6251 6227 exist

#(7, 7) = 9 8 7
#(3,−1) = 1 0 1

3 Investigation of the nH Matrix

Investigation of the nH matrix construction is at least important in sense of improving search
strategies for functions on larger number of variables. In this section we investigate the structure
of the matrix nH when n is prime and appropriately chosen.

Let x = (x0, x1, . . . , xl−1)
T be some vector. We introduce the permutation matrix πl of size

l× l such that πl ·x = (xl−1, x0, . . . , xl−2), i.e., the matrix πl generates a cyclic shift by 1 position
on an alphabet of l symbols. Note also that (πl ·x)T = xT ·πT

l = xT ·π−1
l . By [πai+b

l ·x] we denote
the matrix of size l × l of the form

[πai+b
l · x] = [πa·0+b

l x πa·1+b
l x . . . π

a·(l−1)+b
l x] =








xb xa+b . . . xa(l−1)+b

xb+1 xa+b+1 xa(l−1)+b+1

...
. . .

...
xb+l−1 xa+b+l−1 . . . xa(l−1)+b+l−1








, (7)

where all indices are taken modulo l. Let us introduce a new symbol
[
b
ti

]
= [π1i+b

l · ti],

where ti is some vector of size l. Thus, the square matrix
[
b

ti

]
is such that each column is the cyclic

shift by 1 of the previous column.

Lemma 3. For n prime
(

2
n−1

2 − 1
)

|
(

gn

2 − 1
)

iff the Legendre symbol (2/n) is −1.

Proof:

For prime n dn,1 = 2, dn,n = 1
nµ(n

1 )21 + 1
nµ(n

n )2n = 2n−2
n , and all the rest dn,t are 0. Hence,

gn

2 −1 = 1
2 (dn,1 +dn,n)−1 = 2n−1−1

n = (2(n−1)/2−1)(2(n−1)/2+1)
n . The denominator n divides one

of the multiples in the product. Therefore, we get that
(

2
n−1

2 − 1
)

| gn

2 −1 only if 2(n−1)/2+1 ≡ 0

mod n, i.e., (2/n) ≡ −1 mod n. ⊓⊔

Denote the matrix ∗
nH to be the matrix nH for which one row and one column, both represented

by Λ0 = (00 . . . 0), are removed. The size of ∗
nH is ( gn

2 − 1)× (gn

2 − 1). Futher results are based on
the following observation.



Observation 1 For n odd prime when (2/p) = −1, the representative elements for rows and
columns of ∗

nH can be permuted by Algorithmπ such that it is constructed by sub matrices of size

(l × l) = (2
n−1

2 − 1) × (2
n−1

2 − 1) (see Lemma 3), each of the form
[
b
ti

]
, where ti’s are some fixed

vectors of size l.

For abuse of notation we define:

sz– the size of sub matrices
[
b

ti

]
of the matrix ∗

nH;

mnum– the number of sub matrices in ∗
nH;

vnum– the number of different vectors used to represent ∗
nH in the

[
b
ti

]
form.

(8)

Algorithmπ: Permutation of nH for Observation 1

input: n — odd prime such that (2/n) = −1, denotes the number of variables
∗

nH[i][j] — reduced nH matrix, i, j = [0, . . . , gn
2

− 1]
output: permuted ∗

nH

(1) Constants: sz = 2
n−1

2 − 1; mnum = 1

n
(2

n−1
2 + 1); p0 = −n + 2 - the values to be placed on the

main diagonal of ∗

nH; p1 = n − 4 - the values to be placed along the main diagonal;
(2) First permutation

for d = 0 . . . mnum − 1
| in the row d ∗ sz find p0 at some position i ≥ d ∗ sz. Swap columns (i, d ∗ mnum);
| in the column d ∗ sz find p1 at some position i > d ∗ sz. Swap rows (i, d ∗ mnum + 1);
| in the row d ∗ sz + 1 find p0 at some position i > d ∗ sz. Swap columns (i, d ∗ mnum + 1);
| for k = 1 . . . sz − 2
| | find i > d ∗ sz + k such that ∗

nH[i][d ∗ sz + k − 1] = ∗

nH[i][d ∗ sz + k] = p1.
| | Swap the rows (i, d ∗ sz + k + 1);
| | find i > d ∗ sz + k such that ∗

nH[d ∗ sz + k + 1][i] = p0.
| | Swap the columns (i, d ∗ sz + k + 1);

(3) Refining permutation
Now the matrix ∗

nH consists of sub matrices of the form [πa·i+b
sz · tx].

We continue to refine the structure of ∗

nH by the following steps:
a) for each d = 1 . . . mnum − 1 consider the sub matrix ∗

nH[0 . . . sz − 1][d ∗ sz . . . (d + 1) ∗ sz − 1],
which is of the form [πa·i+b

sz · tx]. Since gcd(a, sz) = 1, it is possible to permute the rows

in the matrix ∗

nH s.t. the form of the sub matrix becomes to be [π1·i+b
sz · tx], i.e.,

�

b′

tx

�

.
If we enumerate the rows of the sub matrix as {0, 1, 2, . . . , sz − 1}, then the desired

permutation is {0a, 1a, 2a, . . . , (sz − 1)a} mod (sz) give us the sub matrix
�

b′

tx

�

;
b) for each d = 1 . . . mnum − 1 consider the sub matrix ∗

nH[d ∗ sz . . . (d + 1) ∗ sz − 1][0 . . . sz − 1],
which again can be of the form [πa·i+b

sz · tx]. We can transform this sub matrix to the form
�

b′

ty

�

permuting the corresponding columns of ∗

nH in a similar way as in (a).

The result of Algorithmπ is that all sub matrices of ∗
nH become to be of the form

[
b
tx

]
, where

b and tx can be different for each sub matrix. However, the observation above is not proved
yet, it is an open question. The first primes for which such permutation can be applied are n =
3, 5, 11, 13, 19, 29, 37, 43, . . ., according to Lemma 3. For example, permuted 5H (with Λ0-row and
column) for n = 5 looks like this (see also (1)):







1 1 1 1
5 −3 1 1
5 1 −3 1
5 1 1 −3







, (9)

where the representative elements for the rows are in the order: (00000), (00011), (00101), (01111);
and for the columns are in the order: (00000), (00101), (00011), (01111). There is only 1 sub matrix,

which is denoted as
[

0
t0

]
, where t0 = {−3, 1, 1}T .

For notation purposes let us introduce a new matrix nM to be the matrix of size mnum×mnum,
where each cell contains the corresponding sub matrix of ∗

nH, after Algorithmπ, i.e., ∗
nH = nM,



which means that ∗
nH can be written now in a short way via the matrix nM, since each cell is a

sub matrix of the form
[

b

tx

]
. In the example above with n = 5 the matrix nM is of size 1× 1, and

nM[0][0] =
[

0

t0

]
.

As a bit larger example we present the structure of the nH-matrix for n = 11 variables: 11M
is of size 3 × 3 and g11 = 188; the number of different vectors is 2, their size is 31:
t0 = { -9, 7, 7, 3, 7, 3, 3, -5, 7, 3, 3, -1, 3, -1, -5, -1, 7, 3, 3, -5, 3, -1, -1, -1, 3, -5, -1, -1, -5, -1, -1 }T

t1 = { 3, 3, 3, -1, -1, -1, -5, 3, -1, -1, 3, -1, -1, -1, -1, -1, -5, -1, 3, -5, 3, -1, 3, 3, -1, -5, -1, 3, -1, -1, -5 }T

11M =







[
0
t0

] [
0
t1

] [
0
t1

]

[
0

t1

] [
26

t0

] [
13

t1

]

[
0

t1

] [
13

t1

] [
26

t0

]







(10)

For the complete and detailed description of 11H and 13H, including the order of representative
elements for nH, one can see Appendix B1 and Appendix B2, respectively. The structure of 19M is
presented in Appendix B3, in order to see clearly that the second observation (see further) works.

 1 11   1 11   111   111   1

n
n

n
n

n
n

n

n
0/1

0

r0

r1

c0 c1

k-th row

k-th column

�

a0

ti

�

�

a1

ti

�

�

b0

tj

� �

b1

tj

�

nM[r0][c0] nM[r0][c1]

nM[r1][c0] nM[r1][c1]

S′

0

S′

1

S′

v

W ′

0 W ′

1 W ′

v

...
...

...

...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·· · ·· · ·· · ·

. . .

nH

pWS ⇒

nM[0][0] nM[0][1]

nM[1][0] nM[1][1]

nM[0][v]

nM[1][v]

nM[v][0] nM[v][1] nM[v][v]

Fig. 1. Property of nM (left), and data structures for nH after Algorithmπ (right).

In Figure 1 (right) the structure of permuted matrix nH in terms of the matrix nM is depicted.
Now we make the second observation, in particular, the property of the matrix nM.

Observation 2 If n is odd prime for which (2/n) = −1, then the matrix nM has the following
properties:

(i) the main diagonal is represented by the same vector t0, i.e., nM[k][k] =
[
bk

t0

]
;

(ii) each row (column) contains exactly one item with t0, whereas all the rest items with vectors
ti are doubled in the same row (column);

(iii) the matrix is symmetric, i.e., nM[i][j] = nM[j][i];

(iv) select k-th row and k-th column (as shown in Figure 1 (left)). For i, j = 1, . . . , n−1
2 there are

exactly two rows r0 and r1 (according to (ii)), for which nM[r0][k] =
[
a0

ti

]
and nM[r1][k] =

[
a1

ti

]
(the same ti), and there are exactly two columns c0 and c1 where nM[k][c0] =

[
b0

tj

]
and



nM[k][c1] =
[
b1

tj

]
. The following property holds:

{

nM[r0][c0] = πa0−a1+b0−b1
nM[r1][c1]

nM[r0][c1] = πa0−a1−b0+b1
nM[r1][c0].

(11)

⊓⊔
4 Transformation Technique on Walsh Spectra: Method to Construct

a Group of New Plateaued RSBFs

Assume we have found one balanced plateaued RSBF on n odd prime number of variables when
(2/n) = −1. We will show how the results from the previous section can be used to create many
balanced plateaued functions from the known one. Moreover, we will show that the Walsh spectra
for these new functions will be a permutation of the Walsh spectra of the initial function, and we
also derive the transformation rules to generate these new functions.

Assume we have one balanced PRSBF, then its the first half-RSTT can be written as (S′
0, . . . , S

′
mnum−1)

– a set of row-vectors (we do not consider the value for Λ0), and the second half-RSTT is
(S′′

0 , . . . , S′′
mnum−1), as shown in Figure 1 (right). The first partial Walsh Spectra (without the

point corresponding the column Λ0) is (W ′
0, . . . , W

′
mnum−1) – a set of row-vectors, where

W ′
k =

mnum−1∑

i=0

S′
i · nM[i][k],

and similar for the second pWS = (W ′′
0 , . . . , W ′′

mnum−1). The sub part of RSTT S′
i corresponds

to the representative elements in the vector Rr,i. The sub part of pWS W ′
j corresponds to the

representative elements in the vector Rc,j . Schematicaly, the data structures are shown in Fig-
ure 1 (right). Note, that if any two rows (6= Λ0) are swapped, then the function is still balanced,
since all rows, except Λ0, at the column Λ0 have the same value, equal to n.

Theorem 2. Let n is odd prime for which (2/n) = −1. The following basic transformations of
the first half-RSTT (S′

0, . . . , S
′
mnum−1) permute the partial Walsh spectra (W ′

0, . . . , W
′
mnum−1), but

remain Walsh transform for the column Λ0 unchanged:

T1. The “local” cyclic shift S′
i → S′

i · π
a in each sub-RSTT for all i = 0, . . . , mnum − 1 results in

a locally cyclic shifted pWS as: W ′
i → W ′

i · π
−a, for all i;

T2. Based on Observation 2(iv) we can perform swaps of S′
i’s. For any parameter of this kind of

transformation k = 0, . . . , vnum − 1 the basic operation is:
For all different pairs (r0, r1) for which nM[r0][k] =

[
a0

tx

]
and nM[r1][k] =

[
a1

tx

]
substitute the

sub-RSTTs as (S′
r0

, S′
r1

) → (S′
r1

· πa1−a0 , S′
r0

· πa0−a1), i.e., swap and cyclic shift. This will

permute the pWS in the similar way, i.e., for all pairs (c0, c1), for which nM[k][c0] =
[
b0

ty

]

and nM[k][c1] =
[
b1

ty

]
the transformation becomes (W ′

c0
, W ′

c1
) → (W ′

c1
· πb1−b0 , W ′

c0
· πb0−b1).

Proof:

1) A new pWS after such permutation is equal to

mnum−1∑

l=0

S′
l · π

a · nM[l][i] =

mnum−1∑

i=0

S′
l · nM[l][i] · π−a = W ′

i · π
−a;

2) Consider the values r0, r1, c0, c1, such that nM[r0][k] =
[
a0

tx

]
, nM[r1][k] =

[
a1

tx

]
, nM[k][c0] =

[
b0

ty

]
, nM[k][c1] =

[
b1

ty

]
. Let l0 and l1 denote the sum contributed by the sub-RSTTs S′

r0

and S′
r1

in W ′
c0

and W ′
c1

, respectively, before the transformation. Then

{

l0 = S′
r0

· nM[r0][c0] + S′
r1

· nM[r1][c0]

l1 = S′
r0

· nM[r0][c1] + S′
r1

· nM[r1][c1].



After the substitution (S′
r0

, S′
r1

) → (S′
r1

· πa1−a0 , S′
r0

· πa0−a1) for the same columns c0 and
c1 the contribution will be changed l0 → l′0 and l1 → l′1 as follows:

{

l′0 = S′
r1

· πa1−a0 · nM[r0][c0] + S′
r0

· πa0−a1 · nM[r1][c0]

l′1 = S′
r1

· πa1−a0 · nM[r0][c1] + S′
r0

· πa0−a1 · nM[r1][c1].

With Observation 2(iv) we rewrite:

{

l′0 = S′
r1

· πa1−a0 · πa0−a1+b0−b1 · nM[r1][c1] + S′
r0

· πa0−a1 · πa1−a0+b0−b1 · nM[r0][c1]

l′1 = S′
r1

· πa1−a0 · πa0−a1+b1−b0 · nM[r1][c0] + S′
r0

· πa0−a1 · πa1−a0+b1−b0 · nM[r0][c0]

⇒

{

l′0 = S′
r1nM[r1][c1]π

b1−b0 + S′
r0nM[r0][c1]π

b1−b0

l′1 = S′
r1nM[r1][c0]π

b0−b1 + S′
r0nM[r0][c0]π

b0−b1
⇒

{

l′0 = l1π
b1−b0

l′1 = l0π
b0−b1

Since b’s do not depend on rows, then after the transformation (S′
r0

, S′
r1

) → (S′
r1
·πa1−a0 , S′

r0
·

πa0−a1) for all i = 0, . . . , vnum−1, the partial Walsh spectra will be transformed accordingly
as (W ′

c0
, W ′

c1
) → (W ′

c1
· πb1−b0 , W ′

c0
· πb0−b1), for all i = 1, . . . , vnum − 1.

⊓⊔

If the transformation operations T1 and T2 are done in parallel for both S′
∗’s and S′′

∗ ’s, then,
obviously, they result in a new balanced/unbalanced PRSBF. The number of different mixtured
transformations that generate a new PRSBF is given as follows.

Corollary 2. The number of joint transformations is

(

2
n−1

2 + 1

n

)

! ·
(

2
n−1

2 − 1
)

. (12)

Proof:

Note, that n|
(

2
n−1

2 + 1
)

, otherwise (2/n) 6= −1. The number of permutations of the form T1

is the size of sub matrices sz. We can also note that since the main diagonal of nM is filled
with t0-items, all the permutations of the second kind T2 are “orthogonal”, and any possible
permutation of S′

i’s can be then achieved by a sequence of transformations of the second kind.
⊓⊔

The result above means that in searching for PRSBFs we do not need to worry much about
highest resiliency property, because it can be derived by manipulations on Walsh spectra (means
that the corresponding manipulations must be done on RSTT). We have implemented this ma-
nipulation technique on a usual PC, and tested on different instances.

As an example, after several days of searching for a PRSBF in our simulations we have found
(by luck) a 0-resilient PRSBF on n = 11 number of variables with amplitude λ = 64. Using
the manipulation tecnique we could construct 185 new PRSBFs, and the best was a 2-resilient
(11, 2,−,−) plateaued RSBF with λ = 64. Here is the truth table (211 points) of this function in
hexadecimal representation (first bit is for the input (00 . . . 0), etc.):

7ACCA5B1 8D769E57 84B63A39 92AC273A 80348F3D 4FDC5EC2 9359C8E0 193B0BD9

C5000F71 91BE0AE6 64BBF2F5 76E9F119 961A2793 E094F901 47C34E8F 15DBF283

B4775014 15FE2A02 C613CBE8 4498ED68 7970CACE AB1CFF32 6F6DFCC6 AA4602D3

977956CD 1C7BD60E FC44C721 EE831552 616BE15A 25B885FA 0333A2DA EF0C904F

CA353E6F 26454234 0637BEE8 5D88551D B03D560A A5CFE9D5 643586D1 B9A37DC1

6FC67E00 A598A4B8 DC8A16F4 BBEA0A0D 7DEB6DE2 EAB1A17C 999C343C 150CB24B

876B2B86 2768F0F7 47E03B9F A72D51F9 BAE03424 E06E5803 F9B8851E 56667249

391238CF B85733DD 48628AC1 D436EAC9 544B4F5F 8809E689 E9BF01A1 971175FF
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Appendix A: Proofs

A1. Proof for Lemma 2

(i) Let for some row i the representative element is Λ, then the value nHi,Λ0
=
∑

x∈G(Λ)(−1)x·0,
and is actually equal to the number of summands, i.e., the number of elements in the group
G(Λ).

(ii) Let the group at i-th row corresponds to some representative element Λ = (an−1an−2 . . . a0),
and let I0 = {0, p, 2p, . . . , (n

p − 1)p} be the set of indices taken modulo t, and its size is n/p.
Define p sums:

ci =
∑

j∈(i+I0) mod t

aj ( mod 2), where i = 0, 1, . . . , p − 1. (13)

Define also h =
∑p−1

i=0 ci — the number of ci = 1. Then, obviously, nHΛ,Λp
= ((−1)·h+(+1)·

(p− h))n
p · t

n = (t− 2t
p h). The value nHΛ,Λp

now depends only on the value h ∈ [0 . . . p− 1].

Consider l = lcm(p, t) then {0, p, 2p, . . . , (l − 1)p} ≡ {l · p, (l + 1)p, (l + 2)p, . . . , (2l − 1)p}
mod t. Then ai mod t = a(i+l) mod t, and, hence, we can now redefine the set of indices I0

such that the values ci’s are unchanged: I0 = {0, p, 2p, . . . , (l/p− 1)p}, which is of size l now.
Also note that since p is prime, l = lcm(p, t) can only be t or p · t.
Let pt(h) is the number of values x ∈ {0, 1}n such that ρt

n(x) = x and for these x the number
of ci : ci = 0 is h. To calculate the value pt consider two cases:
(a) if gcd(p, t) = p, then p|t. Then consider I0 = {0, p, 2p, . . . , (l−1)p} mod t has t/p values,

and for any i = 0, . . . , p− 1 ⇒ (a + I0)∩ I0 ≡ ∅. It means that the values for t− p points
of x can be chosen randomly, and the rest values for p point correspond to the certain
values of ci’s. In this case pt =

(
p
h

)
· 2t−p;

(b) if gcd(p, t) = 1, then lcm(p, t) = p · t, and I0 = {0, p, 2p, . . . , (p·t
p −1)p} ≡ {0, 1, 2, . . . , (t−

1)p} mod t, i.e., for any i = 0, . . . , p − 1 ⇒ (i + I0) ≡ I0 mod t. It means that c0 =
c1 = . . . = cp−1. The representative element Λ is even, and its weight is h · n

p and must
be even. Hence, all ci’s are 0, i.e., pt = 1 if h = 0, otherwise pt = 0. Note, by the similar
reasons h is even, i.e. h = 2r for some r = [0 . . . n−1

2 ].
Combining a) and b) we found pt =

(
p
h

)
· qt, where qt is defined as in (5). Let dt(h) be the

number of groups where the elements such that ρt
n(x) = x, and h number of ci’s are 1’s.

Note also that h is the same for all elements of the same group. The recursive function for
dt(h) is:

dt(h) =
1

t
(pt(h) −

∑

k|t,k<t

k · dk(h)) ⇒ pt(h) =
∑

k|t

k · dk(h)

We use the Möbius function to invert the expression:

dt(h) =
1

t

∑

k|t

µ(t/k)pk,

from which the result follows.
⊓⊔

A2. Proof for Theorem 1

Assume there is a Boolean function σ = (σ1||σ2), for which the partial Walsh spectras for the
column Λ0 are τ1λ/2 and −τ1λ/2, and for the column Λp are both τ2λ/2. We represent the
column Λ0 as a set of m blocks, each containing pi numbers of ai. The first half of the function
can be characterized by the set k′

0 . . . k′
m−1 — the number of 0’s in each block. Obviously, k′

i is
bounded by [0 . . . pi]. The same we can say for the second half of the Boolean function. Assume
we found k∗

i ’s, then partial Walsh spectras are expressed



1) For the column Λ0: pWSΛ0 =
∑m−1

i=0 (ai ·k∗
i −ai(pi−k∗

i )) = −τ1λ/2 or +τ1λ/2 ⇒
∑m−1

i=0 (2ai ·

k∗
i ) −

∑m−1
i=0 (ai · pi) = ±τ1λ/2 ⇒

∑m−1
i=0 aik

′
i = τ1λ+2n

4 and
∑m−1

i=0 aik
′′
i = −τ1λ+2n

4 .
2) For the column Λp by the same way we get a similar formula (instead of ai’s we use bi’s, and
instead of (+τ1,−τ1) solution we should test for (+τ2, +τ2) solution). ⊓⊔

Appendix B1: The structure of 11H

11M is of size 3 × 3, g11 = 188. The number of different vectors is 2, their size is 31:
t0 = { -9, 7, 7, 3, 7, 3, 3, -5, 7, 3, 3, -1, 3, -1, -5, -1, 7, 3, 3, -5, 3, -1, -1, -1, 3, -5, -1, -1, -5, -1, -1 }T

t1 = { 3, 3, 3, -1, -1, -1, -5, 3, -1, -1, 3, -1, -1, -1, -1, -1, -5, -1, 3, -5, 3, -1, 3, 3, -1, -5, -1, 3, -1, -1, -5 }T

11M =







[
0

t0

] [
0

t1

] [
0

t1

]

[
0
t1

] [
26
t0

] [
13
t1

]

[
0

t1

] [
13

t1

] [
26

t0

]







(14)

Representative elements for rows of 11H are in the order: 0, 3, 5, 15, 17, 51, 85, 255, 9, 27, 45,

119, 153, 427, 703, 63, 33, 99, 165, 495, 163, 335, 189, 231, 293, 879, 219, 365, 887, 411, 683, 1023, 39, 105,

187, 423, 349, 479, 83, 245, 249, 89, 235, 317, 237, 311, 363, 751, 243, 169, 507, 53, 95, 71, 201, 347, 763,

111, 139, 413, 469, 509, 29, 57, 75, 221, 359, 373, 503, 101, 175, 159, 77, 215, 303, 183, 315, 429, 759, 207,

149, 447, 43, 125, 113, 147, 437, 735, 123, 141, 371, 343, 383, 23.

Representative elements for columns of 11H are in the order: 0, 683, 411, 887, 365, 219, 879, 293,

231, 189, 335, 163, 495, 165, 99, 33, 63, 703, 427, 153, 119, 45, 27, 9, 255, 85, 51, 17, 15, 5, 3, 1023, 509,

469, 413, 139, 111, 763, 347, 201, 71, 95, 53, 507, 169, 243, 751, 363, 311, 237, 317, 235, 89, 249, 245, 83,

479, 349, 423, 187, 105, 39, 29, 383, 343, 371, 141, 123, 735, 437, 147, 113, 125, 43, 447, 149, 207, 759, 429,

315, 183, 303, 215, 77, 159, 175, 101, 503, 373, 359, 221, 75, 57, 23.



Appendix B2: The structure of 13H

13M is of size 5 × 5, g13 = 632. The number of different vectors is 3, their size is 63:
t0 = { -11, 9, 9, 5, 9, 5, 5, -3, 9, 5, 5, -3, 5, 1, -3, -7, 9, 5, 5, 1, 5, 1, -3, 1, 5, -3, 1, -3, -3, 1, -7, 1, 9, 5, 5,

-3, 5, -3, 1, -7, 5, 1, 1, 1, -3, -3, 1, 1, 5, -3, -3, -7, 1, 1, -3, 1, -3, -7, 1, 1, -7, 1, 1 }T

t1 = { -3, 1, 1, 1, -3, -7, 5, 1, 1, 1, 1, -7, 1, 5, 1, 1, -3, 1, -3, 5, -3, 1, -3, -3, -3, -3, 1, 5, 1, 1, -3, -3, 1, -3,

-7, 5, 1, 5, 5, 1, -3, -3, 1, 1, -7, 1, 5, -3, 5, -3, 5, 1, 1, -3, 1, 1, 1, -3, -3, 1, 1, -3, -3 }T

t2 = { 5, 1, -3, 1, 1, -3, -3, 1, -3, 1, -3, 1, -3, -3, 1, -3, 5, 1, 1, 1, 1, -3, -3, -3, -3, -3, 1, 1, -3, 1, -7, 1, 5, -3,

1, -7, 5, 5, 5, 1, 1, 1, -3, 1, -3, 1, 1, -7, 1, 1, -7, 5, 1, 1, 5, 1, -3, -3, 5, 1, -3, -3, 5 }T

13M =













[
0
t0

] [
0
t1

] [
0
t2

] [
0
t1

] [
0
t2

]

[
0
t1

] [
26
t0

] [
51
t1

] [
38
t2

] [
13
t2

]

[
0

t2

] [
51

t1

] [
39

t0

] [
13

t2

] [
26

t1

]

[
0
t1

] [
38
t2

] [
13
t2

] [
26
t0

] [
51
t1

]

[
0

t2

] [
13

t2

] [
26

t1

] [
51

t1

] [
39

t0

]













Representative elements for rows of 13H are in the order: 0, 3, 5, 15, 17, 51, 85, 255, 33, 99, 165,

495, 547, 1331, 2735, 1023, 9, 27, 45, 119, 153, 427, 765, 231, 297, 891, 843, 1501, 1655, 1363, 2815, 63, 65,

195, 325, 975, 581, 1743, 693, 2015, 323, 655, 633, 717, 1879, 1343, 189, 455, 585, 1755, 2779, 3519, 219,

365, 951, 1179, 2907, 3567, 795, 1325, 3823, 819, 1365, 4095, 489, 571, 1235, 2775, 2031, 197, 335, 573,

921, 1195, 2943, 123, 141, 407, 697, 1439, 373, 927, 293, 879, 603, 1773, 1771, 1963, 1013, 249, 267, 797,

1253, 1517, 887, 1203, 2743, 2043, 53, 95, 225, 291, 869, 1455, 751, 627, 1357, 3007, 243, 277, 831, 149,

447, 139, 413, 679, 1277, 237, 311, 857, 1515, 983, 969, 729, 1899, 1781, 1003, 347, 1005, 441, 715, 1885,

1871, 669, 1853, 933, 1263, 723, 1909, 1661, 469, 639, 77, 215, 377, 711, 1181, 1901, 1757, 1883, 1973, 893,

459, 605, 1767, 1323, 3039, 483, 549, 1647, 683, 2045, 29, 39, 105, 187, 461, 599, 1247, 363, 957, 915, 1205,

3551, 435, 725, 1919, 83, 245, 287, 281, 811, 1405, 479, 275, 821, 1375, 383, 71, 201, 303, 567, 1227, 2795,

1983, 163, 485, 559, 615, 1237, 3067, 111, 177, 467, 629, 1695, 349, 999, 329, 987, 873, 1467, 1723, 1711,

703, 159, 269, 739, 1191, 1469, 955, 1229, 2747, 1791, 43, 125, 135, 393, 667, 1965, 989, 825, 1355, 3063,

207, 337, 1011, 169, 507, 209, 371, 917, 1215, 183, 473, 619, 1725, 943, 591, 621, 1719, 1403, 863, 437, 735,

315, 845, 1495, 1487, 741, 1511, 663, 1271, 813, 1399, 1523, 343, 1017, 89, 235, 317, 839, 1175, 1463, 1499,

1751, 1391, 763, 423, 745, 1851, 1333, 3055, 399, 553, 1659, 853, 1535, 23, 57, 75, 221, 359, 937, 1275, 429,

759, 807, 1197, 3575, 411, 685, 2039, 101, 175, 497, 305, 851, 1525, 503, 401, 691, 2005, 509, 113, 147.

Representative elements for columns of 13H are in the order: 0, 1365, 819, 3823, 1325, 795, 3567,

2907, 1179, 951, 365, 219, 3519, 2779, 1755, 585, 455, 189, 1343, 1879, 717, 633, 655, 323, 2015, 693, 1743,

581, 975, 325, 195, 65, 63, 2815, 1363, 1655, 1501, 843, 891, 297, 231, 765, 427, 153, 119, 45, 27, 9, 1023,

2735, 1331, 547, 495, 165, 99, 33, 255, 85, 51, 17, 15, 5, 3, 4095, 1781, 1899, 729, 969, 983, 1515, 857, 311,

237, 1277, 679, 413, 139, 447, 149, 831, 277, 243, 3007, 1357, 627, 751, 1455, 869, 291, 225, 95, 53, 2043,

2743, 1203, 887, 1517, 1253, 797, 267, 249, 1013, 1963, 1771, 1773, 603, 879, 293, 927, 373, 1439, 697, 407,

141, 123, 2943, 1195, 921, 573, 335, 197, 2031, 2775, 1235, 571, 489, 1003, 71, 383, 1375, 821, 275, 479,

1405, 811, 281, 287, 245, 83, 1919, 725, 435, 3551, 1205, 915, 957, 363, 1247, 599, 461, 187, 105, 39, 29,

2045, 683, 1647, 549, 483, 3039, 1323, 1767, 605, 459, 893, 1973, 1883, 1757, 1901, 1181, 711, 377, 215, 77,

639, 469, 1661, 1909, 723, 1263, 933, 1853, 669, 1871, 1885, 715, 441, 1005, 347, 201, 1403, 1719, 621, 591,

943, 1725, 619, 473, 183, 1215, 917, 371, 209, 507, 169, 1011, 337, 207, 3063, 1355, 825, 989, 1965, 667,

393, 135, 125, 43, 1791, 2747, 1229, 955, 1469, 1191, 739, 269, 159, 703, 1711, 1723, 1467, 873, 987, 329,

999, 349, 1695, 629, 467, 177, 111, 3067, 1237, 615, 559, 485, 163, 1983, 2795, 1227, 567, 303, 863, 113,

509, 2005, 691, 401, 503, 1525, 851, 305, 497, 175, 101, 2039, 685, 411, 3575, 1197, 807, 759, 429, 1275,

937, 359, 221, 75, 57, 23, 1535, 853, 1659, 553, 399, 3055, 1333, 1851, 745, 423, 763, 1391, 1751, 1499,

1463, 1175, 839, 317, 235, 89, 1017, 343, 1523, 1399, 813, 1271, 663, 1511, 741, 1487, 1495, 845, 315, 735,

437, 147.
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19M =

























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



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

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

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
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
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






[
0
t0

] [
0
t1

] [
0
t2

] [
0
t3

] [
0
t4

] [
0
t5

] [
0
t6

] [
0
t7

] [
0
t8

] [
0
t9

] [
0

t10

] [
0

t11

] [
0

t12

] [
0

t13

] [
0
t1

] [
0
t2

] [
0
t3

] [
0
t4

] [
0
t5

] [
0
t6

] [
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t7

] [
0
t8
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0
t9
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t10
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t11
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t12
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t13
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[
0
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467
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][
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t2

][
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t4

][
312
t3

][
326
t8

] [
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] [
421
t9

][
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t5
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t3

][
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t11

] [
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t7
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t1
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t13
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t12

][
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][
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][
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t11

][
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t6
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][
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][
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t8
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] [
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][
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t5

][
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][
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t10

]
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t4
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t2

][
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t11
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] [
141

t9

][
334
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483
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][
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][
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][
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][
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t12
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]
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