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Abstrat. Miyaji, Nakabayashi and Takano (MNT) gave families of

group orders of ordinary ellipti urves with embedding degree suitable

for pairing appliations. In this paper we generalise their results by giv-

ing families orresponding to non-prime group orders. We also onsider

the ase of ordinary abelian varieties of dimension 2. We give families of

group orders with embedding degrees 5, 10 and 12.

1 Introdution

Let E be an ellipti urve over a �nite �eld F

q

and suppose that

#E(F

q

) = n = hr ;

where r is the largest prime divisor of n. (For ases of interest, h will be `small'.)

De�ne the embedding degree to be the smallest positive integer k suh that

r j q

k

� 1 :

In other words, k is minimal suh that r j �

k

(q) where �

k

(x) is the k-th ylo-

tomi polynomial (see Setion VI.3 of Lang [11℄). The Weil pairing is a funtion

e : E[r℄�E[r℄! �

r

� F

�

q

k

where �

r

is the set of r-th roots of unity in F

�

q

k

.

Currently one of the most ative areas in ellipti urve ryptography is the

use of the Weil and Tate pairings to onstrut ryptographi protools. A fun-

damental problem in this area is to onstrut ellipti urves E suh that the

embedding degree k is of a suitable size.

One popular solution to the problem is to use supersingular urves. In har-

ateristi two there are urves whih allow k = 4, while in harateristi three

there are urves whih allow k = 6. EÆient implementations using these urves

have been developed [2, 7, 10℄. There are, however, some unfortunate problems

with this approah. First, there are only a small number of suitable group or-

ders available. Seond, due to Coppersmith's index alulus method for disrete

?
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logarithms in �nite �elds of low harateristi, the �eld sizes should be larger

than those used in the ase of large prime harateristi.

Hene it is attrative to use ordinary (i.e., non-supersingular) urves. This is

made possible by the important paper of Miyaji, Nakabayashi and Takano [12℄.

They give families of group orders of ordinary urves with embedding degrees 3,

4 and 6.

In this paper we extend the methods of Miyaji, Nakabayashi and Takano

(MNT) in two diretions. First, we obtain a larger lass of families by inor-

porating ofators into the analysis. This idea has also been used by Sott and

Barreto [15℄, although they do not give expliit families.

The seond diretion taken in the paper is to onsider abelian varieties of

dimension two. Supersingular abelian varieties have already been proposed for

pairing-based ryptography [9, 13℄. For example, one an obtain embedding de-

gree 12 from a supersingular abelian surfae in harateristi two. We give heuris-

tis whih suggest that suitable ordinary abelian surfaes exist. We desribe our

searh for families and give some results. One interesting observation is that

the embedding degree 12 ases in harateristi two an also be realised using

ordinary abelian varieties.

2 The original MNT results

Miyaji, Nakabayashi and Takano [12℄ presented expliit families of group orders

of ordinary ellipti urves with embedding degree 3; 4 and 6. More preisely, they

gave polynomials q(l) and t(l) in Z[l℄ suh that the polynomial n(l) = q(l)+1�t(l)

divides the polynomial �

k

(q(l)). Hene, for any integer value l suh that q = q(l)

is a prime (or prime power) and suh that jt(l)j � 2

p

q, there is an ellipti urve

E over F

q

with n(l) points and embedding degree k. The families they obtained

are presented in Table 1.

k q(l) t(l) n(l)

3 12l

2

� 1 �1� 6l 12l

2

� 6l + 1

4 l

2

+ l+ 1 �l; l+ 1 l

2

+ 2l + 2; l

2

+ 1

6 4l

2

+ 1 1� 2l 4l

2

� 2l+ 1

Table 1. MNT families

In eah ase, q(l) is a quadrati polynomial in l that (heuristially) represents

�(

p

X= logX) prime powers below X . We refer to suh families as quadrati fam-

ilies. Note the requirement on the heuristi density of prime powers represented

by q(l): quadrati polynomials suh as �l

2

+ 17, 6(l

2

+ l + 1), or 2l

2

would not

satisfy this ondition (the last of these (provably!) represents in�nitely many

prime powers, but with the wrong density), whereas q(l) = l

2

would be �ne if it

arose.
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3 Generalisation to ofators

The MNT results in the previous setion over the ases where n = #E(F

q

)

satis�es n j �

k

(q). This is most relevant ryptographially for the ase where

n is prime. However, in ryptography we are also interested in ases where the

group order is `nearly prime', i.e., when n = #E(F

q

) = hr where h > 1 is

small, and r is a prime. We then require merely that r j �

k

(q), and all h the

ofator. In fat we do not mind if r itself is a small multiple of a prime, and we

an therefore insist that gd(h; �

k

(q)) = 1, else we ould redue to a ase with

smaller h. We de�ne � by the equation �

k

(q) = �r.

Some earlier work on ofators appears in [15℄, but they do not give expliit

families. Here we generalise the MNT argument to allow for ofators, indiating

how all urves with presribed ofator and embedding degree may be found.

Other generalisations of the MNT approah have been given in [3, 6℄.

3.1 The details in the ase k = 6

We require �r = �

6

(q) = q

2

�q+1. Applying the same idea as in [12℄, we observe

that

n(h(q + 1 + t)� �) = h(q + 1� t)(q + 1 + t)� hr� = h(3q � t

2

): (1)

Dividing by qh gives

n

q

�

(q + 1 + t)� �=h

�

= 3�

t

2

q

and Hasse's bound for the number of points yields

�4=3 < (q + 1 + t)� �=h < 3 ;

for q > 64. (Hasse's bound readily yields q=n < 4=3 for large enough q, whih

with 3�t

2

=q � �1 yields the lower bound. For the upper bound, suppose instead

that (q=n)(3 � t

2

=q) � 3. With n = q + 1 � t this gives t

2

� 3t + 3 � 0, whih

has no real solutions.)

De�ne w = b�=h and � = �=h � w so that � = (w + �)h. We may assume

that � > 0 sine if h j � then n = hr j �

6

(q) and we are in the original MNT

ase. Furthermore, we may assume that gd(h; �) = 1 or else we redue to a ase

with smaller h.

We have

�4=3+ � < q + 1 + t� w < 3 + � < 4

and so v := q + 1 + t� w 2 f�1; 0; 1; 2; 3g.

Now substitute into equation (1) to obtain the quadrati

t

2

� t(v � �) + (q + 1)(v � �)� 3q:

3



The solutions to this equation are

t =

v � ��

p

�(q; �)

2

where

�(q; �) = (v � �)

2

+ 12q � 4(q + 1)(v � �):

Sine we want t to be an integer it follows that

p

�(q; �) must be of the form

a� � for some integer a.

This equation alone does not provide muh information, so we onsider eah

possible value for v separately. Writing � =

u

h

with u; h o-prime and �xing

v 2 f�1; 0; 1; 2; 3g gives the formulae presented in Table 2. In fat when v = �1,

and h � 2, we have that h� is a positive integer, and hene that

r � h�r = (t

2

� 4q) + t� 1 � t� 1 = O(

p

q) ;

whih is uninteresting, so we omit this from future disussion.

v h

2

�(q; u=h)

�1 4h(4h + u)q + u

2

+ 6uh+ 5h

2

0 4h(3h+ u)q + u

2

+ 4uh

1 4h(2h + u)q + u

2

+ 2uh� 3h

2

2 4h(h+ u)q + u

2

� 4h

2

3 4uhq + u

2

� 2uh� 3h

2

Table 2. �(q; u=h), �xing v.

Reall that we want h

2

�(q; u=h) to be an integer square, say x

2

. It is helpful

to write h

2

�(q; u=h) asM(u; h)+N(u; h)q. Our ondition that h

2

�(q; u=h) = x

2

then gives rise to the requirement that M(u; h) be a quadrati residue modulo

N(u; h). The pairs (M;N) are listed in Table 3.

v M(u; h) N(u; h)

0 u

2

+ 4uh 4h(3h+ u)

1 u

2

+ 2uh� 3h

2

4h(2h+ u)

2 u

2

� 4h

2

4h(h+ u)

3 u

2

� 2uh� 3h

2

4uh

Table 3. Values of M(u; h) and N(u; h).

We now onsider partiular values for h in turn.
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3.2 Curves with ofator h = 2

The ase of ofator h = 2 is the simplest ase. The group order of suh a urve

is #E(F

q

) = 2r where r j (q

2

�q+1). If 2r j (q

2

�q+1) then this ase is overed

by Miyaji et al. So we assume that 2r - (q

2

� q + 1). In this ase u = 1 and

� = 1=2.

The �rst stage is to dedue whih values for v are permissible. Substituting

(u; h) = (1; 2) into table 3 gives the following analysis.

v = 0 : We obtain x

2

� 9 (mod 8 � 7) and so x = �3 + 14l. Now, the equation

x

2

= h

2

�(q; 1=2) = 9 + 56q implies that

q =

l(�3 + 7l)

2

:

One an dedue the orresponding values of t from the formula t = (hv �

u� x)=(2h) and obtain

t =

1� 7l

2

or t = �1�

7l

2

:

Sine the expression for q splits in Q[l℄ this ase is not useful for produing

large prime values for q. In fat, the only possible hoies are l = 2 whih

gives (q; t) = (17;�8) with group order 2 � 13 and l = 3, whih gives (q; t) =

(3

3

;�10) with group order 2 � 19.

v = 1 : This ase yields no solutions sine x

2

� �7 (mod 8 � 5) is insoluble.

v = 2 : The ondition in this ase is x

2

� �15 (mod 8 � 3) and so x = 3 + 6l,

From 9(1 + 2l)

2

= 24q � 15 we dedue that q = (3l

2

+ 3l + 2)=2, whih is

irreduible in Q[l℄.

The full parameterised family is

q =

3l

2

+ 3l + 2

2

t =

3 + 3l

2

or t =

�3l

2

:

v = 3 : The ongruene is x

2

� �15 (mod 8) whih implies x = 1 + 2l and

q = (l

2

+ l + 4)=2. Again this is irreduible in Q[l℄.

The full parameterised family is

q =

l

2

+ l+ 4

2

t =

3 + l

2

or t = 1�

l

2

:

We have therefore produed two quadrati families of ordinary ellipti urves

with ofator 2 and embedding degree 6. Sine we wish for t to be an integer,

and for q to represent prime powers, we an plae ertain ongruene onditions

on l in eah ase. When this is done, q and t are expressed as polynomials in

Z[l℄, and these are the (q; t) pairs presented in the tables below.

Using similar analysis for ofators up to 5, and some MAGMA [5℄ ode, we

get the following theorem.
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Theorem 1. The only quadrati families of ellipti urves that have embedding

degree 3, 4, or 6, and ofator h in the range 2 � h � 5 are those given by tables

4, 5 and 6. (Note that the parameter l may be hosen to be positive or negative.)

h q t

2 8l

2

+ 2l + 1 �2l

56l

2

+ 6l � 1 �14l � 2

56l

2

+ 22l + 1 �14l � 4

3 12l

2

+ 8l + 3 2l + 1

4 16l

2

+ 6l + 3 �2l

48l

2

+ 30l + 5 6l + 2

112l

2

+ 26l + 1 �14l � 2

112l

2

+ 58l + 7 �14l � 4

5 20l

2

+ 12l + 5 2l + 1

140l

2

+ 64l + 7 14l + 3

140l

2

+ 104l + 19 14l + 5

260l

2

+ 44l + 1 �26l � 3

260l

2

+ 164l + 25 �26l � 9

380l

2

+ 112l + 7 �38l � 7

380l

2

+ 192l + 23 �38l � 11

Table 4. Valid pairs (q; t) orresponding to k = 3 and 2 � h � 5

These families over all the examples found by Sott and Barreto in [15℄. For

k = 6, h = 4 and `d = 13' (in the notation of their paper) they produed a

strikingly large number of examples. These ones ome from our families q(l) =

208l

2

+30l+1 and q(l) = 208l

2

+126l+19, the �rst of whih is partiularly luky

in generating (q; t) pairs for whih the onstrution of a orresponding urve via

Complex Multipliation works well.

Seleting one of these pairs (q; t), it is possible to onstrut an ellipti urve

E=F

q

with q + 1� t points by using Complex Multipliation (see, for example,

[4℄ and [18℄). We outline the preparatory details here.

Assoiated with an ellipti urve is the quantity t

2

� 4q whih is negative.

Write

�Dy

2

= t

2

� 4q (2)

where D > 0 is either of the form 4d or d with d square-free. Sine Dy

2

� �t

2

�

0; 3 (mod 4), D = 4d when t is even and D = d when t is odd.

Miyaji et al noted that, substituting t and q with the formulae they obtained,

the problem orresponded to solving a general Pell equation. Similarly, given q

and t as polynomials in l (as in tables 4, 5 or 6), the RHS in (2) is now a

polynomial in l with degree exatly 2 and (2) an be rewritten as

x

2

� sdy

2

= m: (3)
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h q t

2 8l

2

+ 6l + 3 �2l

3 12l

2

+ 2l + 3 2l + 1

12l

2

+ 10l + 5 �2l

60l

2

+ 14l + 1 �10l � 1

60l

2

+ 26l + 3 �10l � 2

60l

2

+ 34l + 5 10l + 3

60l

2

+ 46l + 9 10l + 4

4 16l

2

+ 14l + 7 �2l

80l

2

+ 38l + 5 �10l � 2

80l

2

+ 58l + 11 10l + 4

208l

2

+ 54l + 3 �26l � 4

208l

2

+ 106l + 13 26l + 6

5 20l

2

+ 2l + 5 2l + 1

20l

2

+ 18l + 9 �2l

260l

2

+ 74l + 5 �26l � 4

260l

2

+ 126l + 15 26l + 6

260l

2

+ 134l + 17 �26l � 7

260l

2

+ 186l + 33 26l + 9

340l

2

+ 46l + 1 �34l � 3

340l

2

+ 114l + 9 34l + 5

340l

2

+ 226l + 37 �34l � 12

340l

2

+ 294l + 63 34l + 14

Table 5. Valid pairs (q; t) orresponding to k = 4 and 2 � h � 5

h q t

2 8l

2

+ 6l + 3 2l + 2

24l

2

+ 6l + 1 �6l

3 12l

2

+ 4l + 3 �2l + 1

84l

2

+ 16l + 1 �14l � 1

84l

2

+ 128l + 49 14l + 11

4 16l

2

+ 10l + 5 2l + 2

112l

2

+ 54l + 7 14l + 4

112l

2

+ 86l + 17 14l + 6

208l

2

+ 30l + 1 �26l � 2

208l

2

+ 126l + 19 �26l � 8

5 20l

2

+ 8l + 5 �2l + 1

60l

2

+ 36l + 7 6l + 3

140l

2

+ 36l + 3 �14l � 1

140l

2

+ 76l + 11 �14l � 3

260l

2

+ 96l + 9 26l + 5

260l

2

+ 216l + 45 26l + 11

380l

2

+ 188l + 23 38l + 9

380l

2

+ 268l + 47 38l + 13

Table 6. Valid pairs (q; t) orresponding to k = 6 and 2 � h � 5
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After solving this Pell-type equation, one an onstrut the urve via Complex

Multipliation in the usual way.

4 Heuristis

In this setion we give heuristi arguments whih predit the number of ordinary

abelian varieties of dimension two over F

q

with q �M with moderate embedding

degree. To explain and motivate our methods we �rst disuss the ellipti urve

ase.

4.1 Heuristis in the ellipti urve ase

Let k be a positive integer. Consider the set

S = f(q; n) 2 R

2

: 1 � q �M; jq + 1� nj � 2

p

qg

whose volume is roughly

8

3

M

p

M . Hene we expet that #(Z

2

\S) is also roughly

8

3

M

p

M .

Now onsider the set

S

0

= f(q; n) 2 Z

2

\ S : n j �

k

(q)g:

This set ontains the pairs (q;#E(F

q

)) as above whih have embedding degree

dividing k, but for the moment we do not restrit to prime power values of q.

Let us make the reasonable assumption that we expet n j �

k

(q) with proba-

bility �(1=n). (The number of solutions to �

k

(x) � 0 (mod n) behaves erratially

as n varies, but some reent work of Sour�eld [16℄ shows that it is on average

onstant.) Now, approximating n �M we dedue that the number of points in

S

0

is roughly �(1=M) times the number of points in Z

2

\ S.

This heuristi is supported perfetly by the results in the ellipti urve ase.

There we �nd that (apart from a �nite number of exeptional ases) the values

q are quadrati in a parameter l, and eah suh q yields two possible group

orders n. Thus there are of order

p

M numbers of points in S

0

, orresponding

to �(

p

M) possibilities for l. Note that the quadrati families in question are

not exatly those tabulated earlier: when k = 3 (respetively 6) the relevant

q(l) is 3l

2

� 1 (respetively l

2

+1). Considerations of prime-powerness led to the

modi�ed families in table 1. Of ourse one expets only �(

p

M= logM) elements

of S

0

for whih q is a prime power.

Some related work to the above is the result of Balasubramanian and Koblitz

[1℄ whih implies that there are O(

p

M(logM)

9

(log logM)

2

) isogeny lasses of

ellipti urves over F

p

with M=2 � p �M , #E(F

p

) = r prime, and r j (p

k

� 1)

for some k � (log p)

2

.
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4.2 Heuristis in the abelian surfae ase

Let A be an abelian variety of dimension 2 over F

q

. The harateristi polynomial

of the Frobenius endomorphism is P (T ) = T

4

+a

1

T

3

+a

2

T

2

+qa

1

T +q

2

and the

oeÆients a

1

and a

2

satisfy ertain bounds. Then n = #A(F

q

) = P (1) = q

2

+

a

1

q+a

2

+a

1

+1 and it is known that (

p

q�1)

4

< n < (

p

q+1)

4

. If A is ordinary,

then we get more preise bounds ja

1

j < 4

p

q and �2q+2ja

1

j

p

q < a

2

< a

2

1

=4+2q

(see R�uk [14℄). Sine n � q

2

we generally hoose k so that '(k) � 4.

Motivated by the ellipti urve ase, we de�ne

S = f(q; n) : 1 � q �M; jn� q

2

j < 4q

p

qg:

The volume of S is about 3M

5=2

. Similarly, de�ne

S

0

= f(q; n) 2 Z

2

\ S : n j �

k

(q)g:

As before, we assume that the values �

k

(q) are on average evenly distributed

modulo n. Sine n �M

2

there is therefore a �(1=M

2

) probability that n j �

k

(q).

It follows that the number of points in S

0

is �(

p

M).

The fat that the heuristi in the dimension 2 ase gives results similar to the

ellipti urve ase means it is reasonable to hope that families ould be obtained

with q a quadrati polynomial in some parameter.

5 An alternative approah to the MNT method

The powerful arguments of Miyaji, Nakabayashi and Takano for ellipti urves

do not seem to extend to higher dimensions. We shall now take an alternative

approah, that although weaker does readily extend, and whih will allow us

to �nd in�nite families for abelian varieties of dimension 2. In this setion we

introdue the ideas in the more familiar ellipti urve setting, and reover all the

MNT families, before moving to dimension 2.

If we seek families with embedding degree k (3, 4, or 6) where q(l) is a

quadrati polynomial in l, then we are looking for

�

k

(q(l)) = n

1

(l)n

2

(l) ;

where n

1

(l) and n

2

(l) are quadrati polynomials.

Ignoring any onstraints on the leading oeÆients, let us haraterise those

quadrati polynomials q(l) with rational oeÆients for whih �

k

(q(l)) splits

over the rationals as a produt of two quadrati polynomials. We give this for

general k, as we shall wish to onsider k = 5, 8, 10, or 12 for the dimension 2

work.

Lemma 1. Let q(l) be a quadrati polynomial in l, with rational oeÆients,

and let �

k

be a primitive omplex k-th root of unity. Then �

k

(q(l)) splits over

the rationals as a produt of two irreduible polynomials of degree '(k) (Euler's

totient funtion) preisely when the equation

q(z) = �

k

9



has a solution in Q(�

k

). Otherwise, �

k

(q(l)) is irreduible over Q, of degree

2'(k).

Proof. Let � be any root of �

k

(q(z)) = 0. Then q(�) = !

k

is a primitive k-th

root of unity, and !

k

2 Q(�), and hene � has degree a multiple of '(k) over Q.

Moreover we see that � has degree '(k) preisely when � 2 Q(!

k

), and otherwise

has degree 2'(k). Finally we note that � 2 Q(!

k

) preisely when q(z) = !

k

has a

solution in Q(!

k

), and by Galois onjugation this ours preisely when q(z) = �

k

has a solution in Q(�

k

). ut

The MNT families naturally �t into this piture:

{ k = 3, q(l) = 12l

2

� 1. Here q(1=3 + �

3

=6) = �

3

.

{ k = 4, q(l) = l

2

+ l + 1. Here q(�

4

) = �

4

.

{ k = 6, q(l) = 4l

2

+ 1. Here q(�

6

=2) = �

6

.

Of ourse more is required than just the solubility of q(z) = �

k

, but this

equation gives us a means of attak for the dimension 2 ase. For example it

immediately shows that no quadrati families exist for the ase k = 8. Another

alternative is simply to expand out the equation �

k

(q(l)) = n

1

(l)n

2

(l) and at-

tempt to solve the resulting Diophantine system. This is explored further in

[19℄.

One an use this idea to �nd quikly all quadrati families (up to a linear

hange of variables; and most of these families will involve ofators) q(l) =

al

2

+ bl+  with integer oeÆients and embedding degree k = 3, 4, or 6, for any

�xed a. For example, onsider k = 6. We seek q(z) = �

6

with z 2 Q(�

6

). Writing

2az + b = A+B�

6

, this leads to two quadrati equations:

B(2A+B) = 4a ;

A

2

�B

2

= b

2

� 4a :

Noting that A and B must be integers, the �rst equation gives a �nite set of

possibilities for A and B (for �xed a), and for eah of these one an test the

solvability of the seond equation.

6 Dimension 2: the general strategy

Given the heuristis above, we now seek families in dimension 2 that are param-

eterised by quadrati polynomials. For onveniene we speialise Lemma 1 to

the ases that are now of interest:

Lemma 2. Let k = 5, 8, 10, or 12, and let �

k

be a primitive omplex k-th

root of unity. Let q(l) be a quadrati polynomial in l with rational oeÆients.

Then �

k

(q(l)) splits over the rationals as a produt of two irreduible quarti

polynomials preisely when the equation

q(z) = �

k

has a solution in Q(�

k

). Otherwise, �

k

(q(l)) is an irreduible oti over Q.
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To apply this Lemma, we suppose that az

2

+ bz +  = �

k

for some rational

numbers a, b, , and some z 2 Q(�

k

). Completing the square, and learing

denominators of all rational numbers (inluding those appearing in z) we get an

equation of the shape

a

1

w

2

+ b

1

= 

1

�

k

;

where a

1

, b

1

, 

1

2 Z, and w 2 Z[�

k

℄. Then sine a

1

divides 

1

�

k

� b

1

, we must

have that a

1

divides both 

1

and b

1

, so we are redued to

w

2

+ b

2

= 

2

�

k

;

where b

2

, 

2

2 Z and w 2 Z[�

k

℄.

Writing

w = A+B�

k

+ C�

2

k

+D�

3

k

;

with A, B, C, D 2 Z, expanding w

2

and equating oeÆients of powers of �, we

get (from the �

2

and �

3

oeÆients) two homogeneous quadratis in four integer

variables A, B, C, D that must vanish simultaneously.

Eliminating any one of the four variables (by omputing a resultant), we

get a homogeneous quarti in three variables. (In fat, by areful hoie of the

variable to be eliminated, we an produe a homogeneous ubi.) In eah ase this

de�nes an ellipti urve (there is always a solution orresponding to a =  = 0).

By studying the set of points on this ellipti urve, we learn about possible

quadrati families of dimension 2 abelian varieties with embedding degree k.

Not every point on the ellipti urve gives rise to a quadrati family. The

proess of onverting a point on the ellipti urve to a quadrati q(l) may fail

for any of the following reasons:

1. there may be points on the ellipti urve that do not lift bak to points on

both of the quadrati forms in A, B, C, D;

2. a solution w = A+ B�

k

+ C�

2

k

+D�

3

k

may yield w

2

2 Q, in whih ase the

`quadrati' polynomial q(l) is in fat linear, in whih ase �

k

(q(l)) does not

split;

3. we need �b

2

to be a square modulo 

2

if we are to �nd suitable integers a, b,

 (and note that if �b

2

is a square modulo 

2

then we may have more than

one square-root to onsider);

4. even if all goes well and we �nd a quadrati q(l) with �

k

(q(l)) splitting, there

may be no values of l for whih q(l) is a prime power.

The examples below will illustrate how one an path things up if the two

fators of �

k

(q(l)) do not have the same leading oeÆient.

Given any q(l) = al

2

+bl+ with integer oeÆients suh that �

k

(q(l)) splits,

the same is true if we perform any Z-linear hange of variables l 7! rl + s. We

regard q

1

(l) and q

2

(l) as equivalent if we an transform one into the other in this

way (note that this does not de�ne an equivalene relation, as we do not insist

that our transformation is invertible over Z). As remarked above in point 3, a

single point on the ellipti urve may give rise to more than one inequivalent

q(l) = al

2

+ bl +  with the same leading oeÆient a. We may suppose, by

saling if neessary, that gd(a; b)

2

does not divide a, and then by translating

and/or hanging the sign of l we an insist that 0 � b � jaj.

11



7 Dimension 2: the details

7.1 k = 8

With notation as in the previous setion, the two equations that must be satis�ed

by integer variables A, B, C, D are

2AD + 2BC = 0 ; (4)

and

2AC +B

2

�D

2

= 0 : (5)

Sine A (or C) appears only to the �rst degree, we hoose to eliminate A to

give

2BC

2

+B

2

D �D

3

= 0 :

Putting X = �2D, Y = 4C, Z = B, we get the Weierstrass equation for an

ellipti urve

Y

2

Z = X

3

� 4XZ

2

:

This urve has rank 0, and just four points: (0 : 0 : 1), (2 : 0 : 1), (�2 : 0 : 1), and

(0 : 1 : 0). We onsider eah of these points in turn, and produe a ontradition

in eah ase.

The point (0 : 0 : 1) orresponds to (B : C : D) = (1 : 0 : 0), but then we

annot solve equation (5) for A.

All other points lead to w

2

2 Q, so that q(l) is linear rather than quadrati.

We have established

Theorem 2. There is no quadrati polynomial q(l) = al

2

+ bl +  with a, b,

 2 Q and a 6= 0 suh that �

8

(q(l)) splits into two quarti fators. Hene there is

no quadrati family of ordinary abelian varieties of dimension 2 and embedding

degree 8.

The experiene of the ellipti urve ase, and the heuristi analysis above,

make this result surprising. We expet of the order of

p

M= logM suitable pairs

(q; n) for the �eld order and group order with q � M , but we an prove that

none of these �t into quadrati families. Similarly in the ases below, where we

do �nd families, we annot say that these families over all possible pairs (q; n).

7.2 k = 12

The relevant equations for A, B, C, D are now

2AD + 2BC + 2CD = 0 ; (6)

and

2AC +B

2

+ C

2

+ 2BD = 0 : (7)

Eliminating A gives the ellipti urve de�ned by

C

3

+ 3AC

2

+ (2A

2

�B

2

)C +AB

2

= 0 :

12



Putting X = �6C, Y = 6B, Z = A� C we get

ZY

2

= X

3

� 7X

2

Z + 12XZ

2

:

This ellipti urve has rank 0, and torsion group of order 8, with torsion points

(0 : 1 : 0), (0 : 0 : 1), (6 : 6 : 1), (2 : �2 : 1), (4 : 0 : 1), (3 : 0 : 1), (6 : �6 : 1),

(2 : 2 : 1).

(X : Y : Z) = (0 : 1 : 0) Here (A : B : C) = (0 : 1 : 0), and equation (7)

gives (A : B : C : D) = (0 : 2 : 0 : �1), so w is an integer multiple of 2�

12

� �

3

12

,

leading to a = 0, and q(l) linear.

(X : Y : X) = (0 : 0 : 1) Here (A : B : C) = (1 : 0 : 0), and equation (6)

gives (A : B : C : D) = (1 : 0 : 0 : 0), so w is an integer square, again leading to

a = 0.

(X : Y : Z) = (4 : 0 : 1) Here (A : B : C) = (1 : 0 : �2), and equation (6)

gives (A : B : C : D) = (1 : 0 : �2 : 0), so w is an integer multiple of 1� 2�

2

12

,

leading to a = 0.

(X : Y : Z) = (3 : 0 : 1) Here (A : B : C) = (1 : 0 : �1), but we annot solve

equation (7) for D.

(X : Y : Z) = (2 : �2 : 1) Here (A : B : C) = (2 : �1 : �1), and equation

(6) gives (A : B : C : D) = (2 : �1 : �1 : �1), so w is an integer multiple of

2� �

12

� �

2

12

� �

3

12

, b

2

= 0, and 

2

is an integer multiple of �6.

Arguing as in the previous ase, we have a = 6t

2

,  = 6s

2

, b = 12st, and

after a linear hange of variable we have

q(l) = 6l

2

:

This an never equal a prime power.

Sine negating a point on the urve orresponds to replaing �

12

by ��

12

,

another primitive 12th root of unity, the point (2 : 2 : 1) merely repeats this

family.

Similarly the remaining two points redue to a single ase.

(X : Y : Z) = (6 : 6 : 1) Here (A : B : C) = (0 : 1 : �1), and equation

(6) gives (A : B : C : D) = (0 : 1 : �1 : �1), so w is an integer multiple of

�

12

� �

2

12

� �

3

12

, b

2

= 0, and 

2

is an integer multiple of �2.

Sine ��

12

is also a primitive 12-th root, we may restrit to a > 0 without

loss, and then a must be twie a rational square; say a = 2t

2

. Then 8t

2

 = b

2

,

so  is also twie a square; say  = 2s

2

. Then b = 4st.
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Thus the most general quadrati q(l) that serves for this ase is

q(l) = 2(tl + s)

2

;

where t and s are rational numbers, with t 6= 0. Up to a linear hange of variable,

we have just one family, with q(l) = 2l

2

. This is only of interest when l = 2

m

is a power of 2, giving q = 2

2m+1

, n = 4l

4

� 4l

3

+ 2l

2

� 2l + 1. Writing

n = q

2

+a

1

(q+1)+a

2

+1 with a

1

= �

p

2q and a

2

= q, we see that this inludes

the known supersingular ase in harateristi 2 with embedding degree 12 (see

[9℄). Nudging a

1

and a

2

, we an �nd ordinary abelian varieties with a

1

= �2l+1

and a

2

= 4l

2

+ 1.

Note that the family q(l) = 2l

2

is not a quadrati family, sine l must be

restrited to powers of 2. Heuristially, most ases are not overed by this family.

Theorem 3. There are no quadrati families of ordinary abelian varieties of

dimension 2 and embedding degree 12. For any m there are abelian varieties of

dimension 2 and embedding degree 12 over the �eld with q = 2

2m+1

elements,

with q

2

�

p

2q(q + 1) + q + 1 points, inluding both supersingular and ordinary

ases. The parameters for the ordinary ase are

n = q

2

�

p

2q(q + 1) + q + 1 ; a

1

= �

p

2q + 1 ; a

2

= 2q + 1 :

7.3 k = 5

The relevant equations for A, B, C, D are now

2AD + 2BC � 2BD � C

2

= 0 ; (8)

and

2AC +B

2

� C

2

� 2BD = 0 : (9)

Eliminating D gives the ellipti urve de�ned by

2A

2

C +AB

2

� 2ABC �AC

2

�B

3

+ 2B

2

C = 0 :

First treat the ase A=0. If also B = 0, then (A : B : C : D) = (0 : 0 : 0 : 1),

w = �

3

5

, and we �nd the in�nite family q(l) = l

2

.

This (at last!) really is a quadrati family: any prime (power) l will make

q(l) a prime power. We then have n(l) = l

4

� l

3

+ l

2

� l + 1. It inludes a

supersingular family, with a

1

= �

p

q and a

2

= q, but also inludes ordinary

varieties, for example with a

1

=

p

q � 1 and a

2

= 2q + 1.

If instead (still in the ase A = 0) B = 2C 6= 0, then (A : B : C : D) = (0 : 8 :

4 : 3), and we �nd that (up to a linear hange of variables) q(l) = �10l

2

�5l�2:

this annot represent prime powers, being always negative.

Now, by saling, we may set A=1. Making the hange of variables

t = �2T = �2(1�B)=C ; s = (4T

2

+ 2T

3

)C � 1� 2T � 2T

2

;
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gives a birational transformation to the urve

E : s

2

= t

3

� 2t

2

� 2t+ 1 :

The map is not de�ned when C = 0, so we need to onsider this ase separately:

we �nd that either (A : B : C : D) = (1 : 0 : 0 : 0) or (A : B : C : D) = (2 : 2 :

0 : 1). The former gives q(l) linear; the latter gives the family q(l) = 5l

2

, whih

an only give a prime power if l is a power of 5. We get a family, but exponential

rather than quadrati.

Any remaining in�nite families orrespond to rational points on E. Now E

has rank 1, and a torsion subgroup of order 2. A set of generators for the group

is

fP = (�1; 0); Q = (0; 1)g :

We an try a few points on this urve, transform bak to values for (A : B :

C : D), and see whether we an pik up any new families.

For example, the point (s; t) = (5=8; 1=4) gives (A : B : C : D) = (1 : 4 : 24 :

�64), and this leads to q(l) = 1010l

2

+ 485l+ 59 or q(l) = 1010l

2

+ 525l+ 69.

For the �rst of these possibilities, unfortunately, �

5

(q(l)) splits as a produt

of two quartis whose leading oeÆients are in the ratio of 101

2

: 4

2

, and we

annot tolerate a frational ofator of 101=4. In this example, we an path

things up via the transformation l 7! 101l� 62, giving a quadrati family (with

ofator h = 4)

q(l) = 10303010l

2

� 12600255l+ 3852429 :

The seond possibility, q(l) = 1010l

2

+ 525l+ 69 is more pleasant, giving us

immediately a quadrati family, with ofator h = 404. This is reorded in table

7, along with other families found from small-height points.

7.4 k=10

The ase k = 10 is essentially the same as k = 5, via the transformation �

5

7!

��

10

. Any q(l) is replaed by �q(l). So, for example, the useless q(l) = �10l

2

�

5l� 2 an be replaed by q(l) = 10l

2

+5l+2. This gives a quadrati family with

ofator h = 4.

One should not get the impression from these arefully seleted examples

that all points on the ellipti urve give rise to a family for one of k = 5 or

k = 10. As in the ase k = 12 we �nd that many points on the urve are useless.

Summing up for embedding degrees 5 and 10, we have the following theorem.

Theorem 4. For k = 5 and k = 10 there exist quadrati families of ordinary

dimension 2 abelian varieties that have embedding degree k. These inlude those

given in table 7. Any others orrespond to points on a rank one ellipti urve,

as detailed above.
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k h q a

1

a

2

5 1 l

2

�jlj + 1 �1

l� 1 2l

2

+ 1

404 1010l

2

+ 525l + 69 �20l � 5 505l

2

+ 255l + 32

�20l � 4 �505l

2

� 270l � 38

�20l � 6 1515l

2

+ 780l + 102

10 4 10l

2

+ 5l+ 2 �1 5l

2

+ 5l + 2

0 �5l

2

� 1

�2 15l

2

+ 10l + 5

1 �15l

2

� 5l� 4

11 11l

2

+ 10l + 3 l 2l + 1

l+ 1 �11l

2

� 8l� 3

l� 1 11l

2

+ 12l + 5

l� 2 22l

2

+ 22l + 9

11 55l

2

+ 40l + 8 15l + 4 165l

2

+ 110l + 20

Table 7. Some quadrati families for embedding degrees k = 5 and k = 10. As before,

l may take positive or negative values, exept for the �rst example where the sign is

onstrained by the lower bound on a

2

.
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