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Abstra
t. Miyaji, Nakabayashi and Takano (MNT) gave families of

group orders of ordinary ellipti
 
urves with embedding degree suitable

for pairing appli
ations. In this paper we generalise their results by giv-

ing families 
orresponding to non-prime group orders. We also 
onsider

the 
ase of ordinary abelian varieties of dimension 2. We give families of

group orders with embedding degrees 5, 10 and 12.

1 Introdu
tion

Let E be an ellipti
 
urve over a �nite �eld F

q

and suppose that

#E(F

q

) = n = hr ;

where r is the largest prime divisor of n. (For 
ases of interest, h will be `small'.)

De�ne the embedding degree to be the smallest positive integer k su
h that

r j q

k

� 1 :

In other words, k is minimal su
h that r j �

k

(q) where �

k

(x) is the k-th 
y
lo-

tomi
 polynomial (see Se
tion VI.3 of Lang [11℄). The Weil pairing is a fun
tion

e : E[r℄�E[r℄! �

r

� F

�

q

k

where �

r

is the set of r-th roots of unity in F

�

q

k

.

Currently one of the most a
tive areas in ellipti
 
urve 
ryptography is the

use of the Weil and Tate pairings to 
onstru
t 
ryptographi
 proto
ols. A fun-

damental problem in this area is to 
onstru
t ellipti
 
urves E su
h that the

embedding degree k is of a suitable size.

One popular solution to the problem is to use supersingular 
urves. In 
har-

a
teristi
 two there are 
urves whi
h allow k = 4, while in 
hara
teristi
 three

there are 
urves whi
h allow k = 6. EÆ
ient implementations using these 
urves

have been developed [2, 7, 10℄. There are, however, some unfortunate problems

with this approa
h. First, there are only a small number of suitable group or-

ders available. Se
ond, due to Coppersmith's index 
al
ulus method for dis
rete

?
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logarithms in �nite �elds of low 
hara
teristi
, the �eld sizes should be larger

than those used in the 
ase of large prime 
hara
teristi
.

Hen
e it is attra
tive to use ordinary (i.e., non-supersingular) 
urves. This is

made possible by the important paper of Miyaji, Nakabayashi and Takano [12℄.

They give families of group orders of ordinary 
urves with embedding degrees 3,

4 and 6.

In this paper we extend the methods of Miyaji, Nakabayashi and Takano

(MNT) in two dire
tions. First, we obtain a larger 
lass of families by in
or-

porating 
ofa
tors into the analysis. This idea has also been used by S
ott and

Barreto [15℄, although they do not give expli
it families.

The se
ond dire
tion taken in the paper is to 
onsider abelian varieties of

dimension two. Supersingular abelian varieties have already been proposed for

pairing-based 
ryptography [9, 13℄. For example, one 
an obtain embedding de-

gree 12 from a supersingular abelian surfa
e in 
hara
teristi
 two. We give heuris-

ti
s whi
h suggest that suitable ordinary abelian surfa
es exist. We des
ribe our

sear
h for families and give some results. One interesting observation is that

the embedding degree 12 
ases in 
hara
teristi
 two 
an also be realised using

ordinary abelian varieties.

2 The original MNT results

Miyaji, Nakabayashi and Takano [12℄ presented expli
it families of group orders

of ordinary ellipti
 
urves with embedding degree 3; 4 and 6. More pre
isely, they

gave polynomials q(l) and t(l) in Z[l℄ su
h that the polynomial n(l) = q(l)+1�t(l)

divides the polynomial �

k

(q(l)). Hen
e, for any integer value l su
h that q = q(l)

is a prime (or prime power) and su
h that jt(l)j � 2

p

q, there is an ellipti
 
urve

E over F

q

with n(l) points and embedding degree k. The families they obtained

are presented in Table 1.

k q(l) t(l) n(l)

3 12l

2

� 1 �1� 6l 12l

2

� 6l + 1

4 l

2

+ l+ 1 �l; l+ 1 l

2

+ 2l + 2; l

2

+ 1

6 4l

2

+ 1 1� 2l 4l

2

� 2l+ 1

Table 1. MNT families

In ea
h 
ase, q(l) is a quadrati
 polynomial in l that (heuristi
ally) represents

�(

p

X= logX) prime powers below X . We refer to su
h families as quadrati
 fam-

ilies. Note the requirement on the heuristi
 density of prime powers represented

by q(l): quadrati
 polynomials su
h as �l

2

+ 17, 6(l

2

+ l + 1), or 2l

2

would not

satisfy this 
ondition (the last of these (provably!) represents in�nitely many

prime powers, but with the wrong density), whereas q(l) = l

2

would be �ne if it

arose.
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3 Generalisation to 
ofa
tors

The MNT results in the previous se
tion 
over the 
ases where n = #E(F

q

)

satis�es n j �

k

(q). This is most relevant 
ryptographi
ally for the 
ase where

n is prime. However, in 
ryptography we are also interested in 
ases where the

group order is `nearly prime', i.e., when n = #E(F

q

) = hr where h > 1 is

small, and r is a prime. We then require merely that r j �

k

(q), and 
all h the


ofa
tor. In fa
t we do not mind if r itself is a small multiple of a prime, and we


an therefore insist that g
d(h; �

k

(q)) = 1, else we 
ould redu
e to a 
ase with

smaller h. We de�ne � by the equation �

k

(q) = �r.

Some earlier work on 
ofa
tors appears in [15℄, but they do not give expli
it

families. Here we generalise the MNT argument to allow for 
ofa
tors, indi
ating

how all 
urves with pres
ribed 
ofa
tor and embedding degree may be found.

Other generalisations of the MNT approa
h have been given in [3, 6℄.

3.1 The details in the 
ase k = 6

We require �r = �

6

(q) = q

2

�q+1. Applying the same idea as in [12℄, we observe

that

n(h(q + 1 + t)� �) = h(q + 1� t)(q + 1 + t)� hr� = h(3q � t

2

): (1)

Dividing by qh gives

n

q

�

(q + 1 + t)� �=h

�

= 3�

t

2

q

and Hasse's bound for the number of points yields

�4=3 < (q + 1 + t)� �=h < 3 ;

for q > 64. (Hasse's bound readily yields q=n < 4=3 for large enough q, whi
h

with 3�t

2

=q � �1 yields the lower bound. For the upper bound, suppose instead

that (q=n)(3 � t

2

=q) � 3. With n = q + 1 � t this gives t

2

� 3t + 3 � 0, whi
h

has no real solutions.)

De�ne w = b�=h
 and � = �=h � w so that � = (w + �)h. We may assume

that � > 0 sin
e if h j � then n = hr j �

6

(q) and we are in the original MNT


ase. Furthermore, we may assume that g
d(h; �) = 1 or else we redu
e to a 
ase

with smaller h.

We have

�4=3+ � < q + 1 + t� w < 3 + � < 4

and so v := q + 1 + t� w 2 f�1; 0; 1; 2; 3g.

Now substitute into equation (1) to obtain the quadrati


t

2

� t(v � �) + (q + 1)(v � �)� 3q:
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The solutions to this equation are

t =

v � ��

p

�(q; �)

2

where

�(q; �) = (v � �)

2

+ 12q � 4(q + 1)(v � �):

Sin
e we want t to be an integer it follows that

p

�(q; �) must be of the form

a� � for some integer a.

This equation alone does not provide mu
h information, so we 
onsider ea
h

possible value for v separately. Writing � =

u

h

with u; h 
o-prime and �xing

v 2 f�1; 0; 1; 2; 3g gives the formulae presented in Table 2. In fa
t when v = �1,

and h � 2, we have that h� is a positive integer, and hen
e that

r � h�r = (t

2

� 4q) + t� 1 � t� 1 = O(

p

q) ;

whi
h is uninteresting, so we omit this from future dis
ussion.

v h

2

�(q; u=h)

�1 4h(4h + u)q + u

2

+ 6uh+ 5h

2

0 4h(3h+ u)q + u

2

+ 4uh

1 4h(2h + u)q + u

2

+ 2uh� 3h

2

2 4h(h+ u)q + u

2

� 4h

2

3 4uhq + u

2

� 2uh� 3h

2

Table 2. �(q; u=h), �xing v.

Re
all that we want h

2

�(q; u=h) to be an integer square, say x

2

. It is helpful

to write h

2

�(q; u=h) asM(u; h)+N(u; h)q. Our 
ondition that h

2

�(q; u=h) = x

2

then gives rise to the requirement that M(u; h) be a quadrati
 residue modulo

N(u; h). The pairs (M;N) are listed in Table 3.

v M(u; h) N(u; h)

0 u

2

+ 4uh 4h(3h+ u)

1 u

2

+ 2uh� 3h

2

4h(2h+ u)

2 u

2

� 4h

2

4h(h+ u)

3 u

2

� 2uh� 3h

2

4uh

Table 3. Values of M(u; h) and N(u; h).

We now 
onsider parti
ular values for h in turn.
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3.2 Curves with 
ofa
tor h = 2

The 
ase of 
ofa
tor h = 2 is the simplest 
ase. The group order of su
h a 
urve

is #E(F

q

) = 2r where r j (q

2

�q+1). If 2r j (q

2

�q+1) then this 
ase is 
overed

by Miyaji et al. So we assume that 2r - (q

2

� q + 1). In this 
ase u = 1 and

� = 1=2.

The �rst stage is to dedu
e whi
h values for v are permissible. Substituting

(u; h) = (1; 2) into table 3 gives the following analysis.

v = 0 : We obtain x

2

� 9 (mod 8 � 7) and so x = �3 + 14l. Now, the equation

x

2

= h

2

�(q; 1=2) = 9 + 56q implies that

q =

l(�3 + 7l)

2

:

One 
an dedu
e the 
orresponding values of t from the formula t = (hv �

u� x)=(2h) and obtain

t =

1� 7l

2

or t = �1�

7l

2

:

Sin
e the expression for q splits in Q[l℄ this 
ase is not useful for produ
ing

large prime values for q. In fa
t, the only possible 
hoi
es are l = 2 whi
h

gives (q; t) = (17;�8) with group order 2 � 13 and l = 3, whi
h gives (q; t) =

(3

3

;�10) with group order 2 � 19.

v = 1 : This 
ase yields no solutions sin
e x

2

� �7 (mod 8 � 5) is insoluble.

v = 2 : The 
ondition in this 
ase is x

2

� �15 (mod 8 � 3) and so x = 3 + 6l,

From 9(1 + 2l)

2

= 24q � 15 we dedu
e that q = (3l

2

+ 3l + 2)=2, whi
h is

irredu
ible in Q[l℄.

The full parameterised family is

q =

3l

2

+ 3l + 2

2

t =

3 + 3l

2

or t =

�3l

2

:

v = 3 : The 
ongruen
e is x

2

� �15 (mod 8) whi
h implies x = 1 + 2l and

q = (l

2

+ l + 4)=2. Again this is irredu
ible in Q[l℄.

The full parameterised family is

q =

l

2

+ l+ 4

2

t =

3 + l

2

or t = 1�

l

2

:

We have therefore produ
ed two quadrati
 families of ordinary ellipti
 
urves

with 
ofa
tor 2 and embedding degree 6. Sin
e we wish for t to be an integer,

and for q to represent prime powers, we 
an pla
e 
ertain 
ongruen
e 
onditions

on l in ea
h 
ase. When this is done, q and t are expressed as polynomials in

Z[l℄, and these are the (q; t) pairs presented in the tables below.

Using similar analysis for 
ofa
tors up to 5, and some MAGMA [5℄ 
ode, we

get the following theorem.
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Theorem 1. The only quadrati
 families of ellipti
 
urves that have embedding

degree 3, 4, or 6, and 
ofa
tor h in the range 2 � h � 5 are those given by tables

4, 5 and 6. (Note that the parameter l may be 
hosen to be positive or negative.)

h q t

2 8l

2

+ 2l + 1 �2l

56l

2

+ 6l � 1 �14l � 2

56l

2

+ 22l + 1 �14l � 4

3 12l

2

+ 8l + 3 2l + 1

4 16l

2

+ 6l + 3 �2l

48l

2

+ 30l + 5 6l + 2

112l

2

+ 26l + 1 �14l � 2

112l

2

+ 58l + 7 �14l � 4

5 20l

2

+ 12l + 5 2l + 1

140l

2

+ 64l + 7 14l + 3

140l

2

+ 104l + 19 14l + 5

260l

2

+ 44l + 1 �26l � 3

260l

2

+ 164l + 25 �26l � 9

380l

2

+ 112l + 7 �38l � 7

380l

2

+ 192l + 23 �38l � 11

Table 4. Valid pairs (q; t) 
orresponding to k = 3 and 2 � h � 5

These families 
over all the examples found by S
ott and Barreto in [15℄. For

k = 6, h = 4 and `d = 13' (in the notation of their paper) they produ
ed a

strikingly large number of examples. These ones 
ome from our families q(l) =

208l

2

+30l+1 and q(l) = 208l

2

+126l+19, the �rst of whi
h is parti
ularly lu
ky

in generating (q; t) pairs for whi
h the 
onstru
tion of a 
orresponding 
urve via

Complex Multipli
ation works well.

Sele
ting one of these pairs (q; t), it is possible to 
onstru
t an ellipti
 
urve

E=F

q

with q + 1� t points by using Complex Multipli
ation (see, for example,

[4℄ and [18℄). We outline the preparatory details here.

Asso
iated with an ellipti
 
urve is the quantity t

2

� 4q whi
h is negative.

Write

�Dy

2

= t

2

� 4q (2)

where D > 0 is either of the form 4d or d with d square-free. Sin
e Dy

2

� �t

2

�

0; 3 (mod 4), D = 4d when t is even and D = d when t is odd.

Miyaji et al noted that, substituting t and q with the formulae they obtained,

the problem 
orresponded to solving a general Pell equation. Similarly, given q

and t as polynomials in l (as in tables 4, 5 or 6), the RHS in (2) is now a

polynomial in l with degree exa
tly 2 and (2) 
an be rewritten as

x

2

� sdy

2

= m: (3)
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h q t

2 8l

2

+ 6l + 3 �2l

3 12l

2

+ 2l + 3 2l + 1

12l

2

+ 10l + 5 �2l

60l

2

+ 14l + 1 �10l � 1

60l

2

+ 26l + 3 �10l � 2

60l

2

+ 34l + 5 10l + 3

60l

2

+ 46l + 9 10l + 4

4 16l

2

+ 14l + 7 �2l

80l

2

+ 38l + 5 �10l � 2

80l

2

+ 58l + 11 10l + 4

208l

2

+ 54l + 3 �26l � 4

208l

2

+ 106l + 13 26l + 6

5 20l

2

+ 2l + 5 2l + 1

20l

2

+ 18l + 9 �2l

260l

2

+ 74l + 5 �26l � 4

260l

2

+ 126l + 15 26l + 6

260l

2

+ 134l + 17 �26l � 7

260l

2

+ 186l + 33 26l + 9

340l

2

+ 46l + 1 �34l � 3

340l

2

+ 114l + 9 34l + 5

340l

2

+ 226l + 37 �34l � 12

340l

2

+ 294l + 63 34l + 14

Table 5. Valid pairs (q; t) 
orresponding to k = 4 and 2 � h � 5

h q t

2 8l

2

+ 6l + 3 2l + 2

24l

2

+ 6l + 1 �6l

3 12l

2

+ 4l + 3 �2l + 1

84l

2

+ 16l + 1 �14l � 1

84l

2

+ 128l + 49 14l + 11

4 16l

2

+ 10l + 5 2l + 2

112l

2

+ 54l + 7 14l + 4

112l

2

+ 86l + 17 14l + 6

208l

2

+ 30l + 1 �26l � 2

208l

2

+ 126l + 19 �26l � 8

5 20l

2

+ 8l + 5 �2l + 1

60l

2

+ 36l + 7 6l + 3

140l

2

+ 36l + 3 �14l � 1

140l

2

+ 76l + 11 �14l � 3

260l

2

+ 96l + 9 26l + 5

260l

2

+ 216l + 45 26l + 11

380l

2

+ 188l + 23 38l + 9

380l

2

+ 268l + 47 38l + 13

Table 6. Valid pairs (q; t) 
orresponding to k = 6 and 2 � h � 5
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After solving this Pell-type equation, one 
an 
onstru
t the 
urve via Complex

Multipli
ation in the usual way.

4 Heuristi
s

In this se
tion we give heuristi
 arguments whi
h predi
t the number of ordinary

abelian varieties of dimension two over F

q

with q �M with moderate embedding

degree. To explain and motivate our methods we �rst dis
uss the ellipti
 
urve


ase.

4.1 Heuristi
s in the ellipti
 
urve 
ase

Let k be a positive integer. Consider the set

S = f(q; n) 2 R

2

: 1 � q �M; jq + 1� nj � 2

p

qg

whose volume is roughly

8

3

M

p

M . Hen
e we expe
t that #(Z

2

\S) is also roughly

8

3

M

p

M .

Now 
onsider the set

S

0

= f(q; n) 2 Z

2

\ S : n j �

k

(q)g:

This set 
ontains the pairs (q;#E(F

q

)) as above whi
h have embedding degree

dividing k, but for the moment we do not restri
t to prime power values of q.

Let us make the reasonable assumption that we expe
t n j �

k

(q) with proba-

bility �(1=n). (The number of solutions to �

k

(x) � 0 (mod n) behaves errati
ally

as n varies, but some re
ent work of S
our�eld [16℄ shows that it is on average


onstant.) Now, approximating n �M we dedu
e that the number of points in

S

0

is roughly �(1=M) times the number of points in Z

2

\ S.

This heuristi
 is supported perfe
tly by the results in the ellipti
 
urve 
ase.

There we �nd that (apart from a �nite number of ex
eptional 
ases) the values

q are quadrati
 in a parameter l, and ea
h su
h q yields two possible group

orders n. Thus there are of order

p

M numbers of points in S

0

, 
orresponding

to �(

p

M) possibilities for l. Note that the quadrati
 families in question are

not exa
tly those tabulated earlier: when k = 3 (respe
tively 6) the relevant

q(l) is 3l

2

� 1 (respe
tively l

2

+1). Considerations of prime-powerness led to the

modi�ed families in table 1. Of 
ourse one expe
ts only �(

p

M= logM) elements

of S

0

for whi
h q is a prime power.

Some related work to the above is the result of Balasubramanian and Koblitz

[1℄ whi
h implies that there are O(

p

M(logM)

9

(log logM)

2

) isogeny 
lasses of

ellipti
 
urves over F

p

with M=2 � p �M , #E(F

p

) = r prime, and r j (p

k

� 1)

for some k � (log p)

2

.
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4.2 Heuristi
s in the abelian surfa
e 
ase

Let A be an abelian variety of dimension 2 over F

q

. The 
hara
teristi
 polynomial

of the Frobenius endomorphism is P (T ) = T

4

+a

1

T

3

+a

2

T

2

+qa

1

T +q

2

and the


oeÆ
ients a

1

and a

2

satisfy 
ertain bounds. Then n = #A(F

q

) = P (1) = q

2

+

a

1

q+a

2

+a

1

+1 and it is known that (

p

q�1)

4

< n < (

p

q+1)

4

. If A is ordinary,

then we get more pre
ise bounds ja

1

j < 4

p

q and �2q+2ja

1

j

p

q < a

2

< a

2

1

=4+2q

(see R�u
k [14℄). Sin
e n � q

2

we generally 
hoose k so that '(k) � 4.

Motivated by the ellipti
 
urve 
ase, we de�ne

S = f(q; n) : 1 � q �M; jn� q

2

j < 4q

p

qg:

The volume of S is about 3M

5=2

. Similarly, de�ne

S

0

= f(q; n) 2 Z

2

\ S : n j �

k

(q)g:

As before, we assume that the values �

k

(q) are on average evenly distributed

modulo n. Sin
e n �M

2

there is therefore a �(1=M

2

) probability that n j �

k

(q).

It follows that the number of points in S

0

is �(

p

M).

The fa
t that the heuristi
 in the dimension 2 
ase gives results similar to the

ellipti
 
urve 
ase means it is reasonable to hope that families 
ould be obtained

with q a quadrati
 polynomial in some parameter.

5 An alternative approa
h to the MNT method

The powerful arguments of Miyaji, Nakabayashi and Takano for ellipti
 
urves

do not seem to extend to higher dimensions. We shall now take an alternative

approa
h, that although weaker does readily extend, and whi
h will allow us

to �nd in�nite families for abelian varieties of dimension 2. In this se
tion we

introdu
e the ideas in the more familiar ellipti
 
urve setting, and re
over all the

MNT families, before moving to dimension 2.

If we seek families with embedding degree k (3, 4, or 6) where q(l) is a

quadrati
 polynomial in l, then we are looking for

�

k

(q(l)) = n

1

(l)n

2

(l) ;

where n

1

(l) and n

2

(l) are quadrati
 polynomials.

Ignoring any 
onstraints on the leading 
oeÆ
ients, let us 
hara
terise those

quadrati
 polynomials q(l) with rational 
oeÆ
ients for whi
h �

k

(q(l)) splits

over the rationals as a produ
t of two quadrati
 polynomials. We give this for

general k, as we shall wish to 
onsider k = 5, 8, 10, or 12 for the dimension 2

work.

Lemma 1. Let q(l) be a quadrati
 polynomial in l, with rational 
oeÆ
ients,

and let �

k

be a primitive 
omplex k-th root of unity. Then �

k

(q(l)) splits over

the rationals as a produ
t of two irredu
ible polynomials of degree '(k) (Euler's

totient fun
tion) pre
isely when the equation

q(z) = �

k

9



has a solution in Q(�

k

). Otherwise, �

k

(q(l)) is irredu
ible over Q, of degree

2'(k).

Proof. Let � be any root of �

k

(q(z)) = 0. Then q(�) = !

k

is a primitive k-th

root of unity, and !

k

2 Q(�), and hen
e � has degree a multiple of '(k) over Q.

Moreover we see that � has degree '(k) pre
isely when � 2 Q(!

k

), and otherwise

has degree 2'(k). Finally we note that � 2 Q(!

k

) pre
isely when q(z) = !

k

has a

solution in Q(!

k

), and by Galois 
onjugation this o

urs pre
isely when q(z) = �

k

has a solution in Q(�

k

). ut

The MNT families naturally �t into this pi
ture:

{ k = 3, q(l) = 12l

2

� 1. Here q(1=3 + �

3

=6) = �

3

.

{ k = 4, q(l) = l

2

+ l + 1. Here q(�

4

) = �

4

.

{ k = 6, q(l) = 4l

2

+ 1. Here q(�

6

=2) = �

6

.

Of 
ourse more is required than just the solubility of q(z) = �

k

, but this

equation gives us a means of atta
k for the dimension 2 
ase. For example it

immediately shows that no quadrati
 families exist for the 
ase k = 8. Another

alternative is simply to expand out the equation �

k

(q(l)) = n

1

(l)n

2

(l) and at-

tempt to solve the resulting Diophantine system. This is explored further in

[19℄.

One 
an use this idea to �nd qui
kly all quadrati
 families (up to a linear


hange of variables; and most of these families will involve 
ofa
tors) q(l) =

al

2

+ bl+ 
 with integer 
oeÆ
ients and embedding degree k = 3, 4, or 6, for any

�xed a. For example, 
onsider k = 6. We seek q(z) = �

6

with z 2 Q(�

6

). Writing

2az + b = A+B�

6

, this leads to two quadrati
 equations:

B(2A+B) = 4a ;

A

2

�B

2

= b

2

� 4a
 :

Noting that A and B must be integers, the �rst equation gives a �nite set of

possibilities for A and B (for �xed a), and for ea
h of these one 
an test the

solvability of the se
ond equation.

6 Dimension 2: the general strategy

Given the heuristi
s above, we now seek families in dimension 2 that are param-

eterised by quadrati
 polynomials. For 
onvenien
e we spe
ialise Lemma 1 to

the 
ases that are now of interest:

Lemma 2. Let k = 5, 8, 10, or 12, and let �

k

be a primitive 
omplex k-th

root of unity. Let q(l) be a quadrati
 polynomial in l with rational 
oeÆ
ients.

Then �

k

(q(l)) splits over the rationals as a produ
t of two irredu
ible quarti


polynomials pre
isely when the equation

q(z) = �

k

has a solution in Q(�

k

). Otherwise, �

k

(q(l)) is an irredu
ible o
ti
 over Q.

10



To apply this Lemma, we suppose that az

2

+ bz + 
 = �

k

for some rational

numbers a, b, 
, and some z 2 Q(�

k

). Completing the square, and 
learing

denominators of all rational numbers (in
luding those appearing in z) we get an

equation of the shape

a

1

w

2

+ b

1

= 


1

�

k

;

where a

1

, b

1

, 


1

2 Z, and w 2 Z[�

k

℄. Then sin
e a

1

divides 


1

�

k

� b

1

, we must

have that a

1

divides both 


1

and b

1

, so we are redu
ed to

w

2

+ b

2

= 


2

�

k

;

where b

2

, 


2

2 Z and w 2 Z[�

k

℄.

Writing

w = A+B�

k

+ C�

2

k

+D�

3

k

;

with A, B, C, D 2 Z, expanding w

2

and equating 
oeÆ
ients of powers of �, we

get (from the �

2

and �

3


oeÆ
ients) two homogeneous quadrati
s in four integer

variables A, B, C, D that must vanish simultaneously.

Eliminating any one of the four variables (by 
omputing a resultant), we

get a homogeneous quarti
 in three variables. (In fa
t, by 
areful 
hoi
e of the

variable to be eliminated, we 
an produ
e a homogeneous 
ubi
.) In ea
h 
ase this

de�nes an ellipti
 
urve (there is always a solution 
orresponding to a = 
 = 0).

By studying the set of points on this ellipti
 
urve, we learn about possible

quadrati
 families of dimension 2 abelian varieties with embedding degree k.

Not every point on the ellipti
 
urve gives rise to a quadrati
 family. The

pro
ess of 
onverting a point on the ellipti
 
urve to a quadrati
 q(l) may fail

for any of the following reasons:

1. there may be points on the ellipti
 
urve that do not lift ba
k to points on

both of the quadrati
 forms in A, B, C, D;

2. a solution w = A+ B�

k

+ C�

2

k

+D�

3

k

may yield w

2

2 Q, in whi
h 
ase the

`quadrati
' polynomial q(l) is in fa
t linear, in whi
h 
ase �

k

(q(l)) does not

split;

3. we need �b

2

to be a square modulo 


2

if we are to �nd suitable integers a, b,


 (and note that if �b

2

is a square modulo 


2

then we may have more than

one square-root to 
onsider);

4. even if all goes well and we �nd a quadrati
 q(l) with �

k

(q(l)) splitting, there

may be no values of l for whi
h q(l) is a prime power.

The examples below will illustrate how one 
an pat
h things up if the two

fa
tors of �

k

(q(l)) do not have the same leading 
oeÆ
ient.

Given any q(l) = al

2

+bl+
 with integer 
oeÆ
ients su
h that �

k

(q(l)) splits,

the same is true if we perform any Z-linear 
hange of variables l 7! rl + s. We

regard q

1

(l) and q

2

(l) as equivalent if we 
an transform one into the other in this

way (note that this does not de�ne an equivalen
e relation, as we do not insist

that our transformation is invertible over Z). As remarked above in point 3, a

single point on the ellipti
 
urve may give rise to more than one inequivalent

q(l) = al

2

+ bl + 
 with the same leading 
oeÆ
ient a. We may suppose, by

s
aling if ne
essary, that g
d(a; b)

2

does not divide a, and then by translating

and/or 
hanging the sign of l we 
an insist that 0 � b � jaj.

11



7 Dimension 2: the details

7.1 k = 8

With notation as in the previous se
tion, the two equations that must be satis�ed

by integer variables A, B, C, D are

2AD + 2BC = 0 ; (4)

and

2AC +B

2

�D

2

= 0 : (5)

Sin
e A (or C) appears only to the �rst degree, we 
hoose to eliminate A to

give

2BC

2

+B

2

D �D

3

= 0 :

Putting X = �2D, Y = 4C, Z = B, we get the Weierstrass equation for an

ellipti
 
urve

Y

2

Z = X

3

� 4XZ

2

:

This 
urve has rank 0, and just four points: (0 : 0 : 1), (2 : 0 : 1), (�2 : 0 : 1), and

(0 : 1 : 0). We 
onsider ea
h of these points in turn, and produ
e a 
ontradi
tion

in ea
h 
ase.

The point (0 : 0 : 1) 
orresponds to (B : C : D) = (1 : 0 : 0), but then we


annot solve equation (5) for A.

All other points lead to w

2

2 Q, so that q(l) is linear rather than quadrati
.

We have established

Theorem 2. There is no quadrati
 polynomial q(l) = al

2

+ bl + 
 with a, b,


 2 Q and a 6= 0 su
h that �

8

(q(l)) splits into two quarti
 fa
tors. Hen
e there is

no quadrati
 family of ordinary abelian varieties of dimension 2 and embedding

degree 8.

The experien
e of the ellipti
 
urve 
ase, and the heuristi
 analysis above,

make this result surprising. We expe
t of the order of

p

M= logM suitable pairs

(q; n) for the �eld order and group order with q � M , but we 
an prove that

none of these �t into quadrati
 families. Similarly in the 
ases below, where we

do �nd families, we 
annot say that these families 
over all possible pairs (q; n).

7.2 k = 12

The relevant equations for A, B, C, D are now

2AD + 2BC + 2CD = 0 ; (6)

and

2AC +B

2

+ C

2

+ 2BD = 0 : (7)

Eliminating A gives the ellipti
 
urve de�ned by

C

3

+ 3AC

2

+ (2A

2

�B

2

)C +AB

2

= 0 :

12



Putting X = �6C, Y = 6B, Z = A� C we get

ZY

2

= X

3

� 7X

2

Z + 12XZ

2

:

This ellipti
 
urve has rank 0, and torsion group of order 8, with torsion points

(0 : 1 : 0), (0 : 0 : 1), (6 : 6 : 1), (2 : �2 : 1), (4 : 0 : 1), (3 : 0 : 1), (6 : �6 : 1),

(2 : 2 : 1).

(X : Y : Z) = (0 : 1 : 0) Here (A : B : C) = (0 : 1 : 0), and equation (7)

gives (A : B : C : D) = (0 : 2 : 0 : �1), so w is an integer multiple of 2�

12

� �

3

12

,

leading to a = 0, and q(l) linear.

(X : Y : X) = (0 : 0 : 1) Here (A : B : C) = (1 : 0 : 0), and equation (6)

gives (A : B : C : D) = (1 : 0 : 0 : 0), so w is an integer square, again leading to

a = 0.

(X : Y : Z) = (4 : 0 : 1) Here (A : B : C) = (1 : 0 : �2), and equation (6)

gives (A : B : C : D) = (1 : 0 : �2 : 0), so w is an integer multiple of 1� 2�

2

12

,

leading to a = 0.

(X : Y : Z) = (3 : 0 : 1) Here (A : B : C) = (1 : 0 : �1), but we 
annot solve

equation (7) for D.

(X : Y : Z) = (2 : �2 : 1) Here (A : B : C) = (2 : �1 : �1), and equation

(6) gives (A : B : C : D) = (2 : �1 : �1 : �1), so w is an integer multiple of

2� �

12

� �

2

12

� �

3

12

, b

2

= 0, and 


2

is an integer multiple of �6.

Arguing as in the previous 
ase, we have a = 6t

2

, 
 = 6s

2

, b = 12st, and

after a linear 
hange of variable we have

q(l) = 6l

2

:

This 
an never equal a prime power.

Sin
e negating a point on the 
urve 
orresponds to repla
ing �

12

by ��

12

,

another primitive 12th root of unity, the point (2 : 2 : 1) merely repeats this

family.

Similarly the remaining two points redu
e to a single 
ase.

(X : Y : Z) = (6 : 6 : 1) Here (A : B : C) = (0 : 1 : �1), and equation

(6) gives (A : B : C : D) = (0 : 1 : �1 : �1), so w is an integer multiple of

�

12

� �

2

12

� �

3

12

, b

2

= 0, and 


2

is an integer multiple of �2.

Sin
e ��

12

is also a primitive 12-th root, we may restri
t to a > 0 without

loss, and then a must be twi
e a rational square; say a = 2t

2

. Then 8t

2


 = b

2

,

so 
 is also twi
e a square; say 
 = 2s

2

. Then b = 4st.
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Thus the most general quadrati
 q(l) that serves for this 
ase is

q(l) = 2(tl + s)

2

;

where t and s are rational numbers, with t 6= 0. Up to a linear 
hange of variable,

we have just one family, with q(l) = 2l

2

. This is only of interest when l = 2

m

is a power of 2, giving q = 2

2m+1

, n = 4l

4

� 4l

3

+ 2l

2

� 2l + 1. Writing

n = q

2

+a

1

(q+1)+a

2

+1 with a

1

= �

p

2q and a

2

= q, we see that this in
ludes

the known supersingular 
ase in 
hara
teristi
 2 with embedding degree 12 (see

[9℄). Nudging a

1

and a

2

, we 
an �nd ordinary abelian varieties with a

1

= �2l+1

and a

2

= 4l

2

+ 1.

Note that the family q(l) = 2l

2

is not a quadrati
 family, sin
e l must be

restri
ted to powers of 2. Heuristi
ally, most 
ases are not 
overed by this family.

Theorem 3. There are no quadrati
 families of ordinary abelian varieties of

dimension 2 and embedding degree 12. For any m there are abelian varieties of

dimension 2 and embedding degree 12 over the �eld with q = 2

2m+1

elements,

with q

2

�

p

2q(q + 1) + q + 1 points, in
luding both supersingular and ordinary


ases. The parameters for the ordinary 
ase are

n = q

2

�

p

2q(q + 1) + q + 1 ; a

1

= �

p

2q + 1 ; a

2

= 2q + 1 :

7.3 k = 5

The relevant equations for A, B, C, D are now

2AD + 2BC � 2BD � C

2

= 0 ; (8)

and

2AC +B

2

� C

2

� 2BD = 0 : (9)

Eliminating D gives the ellipti
 
urve de�ned by

2A

2

C +AB

2

� 2ABC �AC

2

�B

3

+ 2B

2

C = 0 :

First treat the 
ase A=0. If also B = 0, then (A : B : C : D) = (0 : 0 : 0 : 1),

w = �

3

5

, and we �nd the in�nite family q(l) = l

2

.

This (at last!) really is a quadrati
 family: any prime (power) l will make

q(l) a prime power. We then have n(l) = l

4

� l

3

+ l

2

� l + 1. It in
ludes a

supersingular family, with a

1

= �

p

q and a

2

= q, but also in
ludes ordinary

varieties, for example with a

1

=

p

q � 1 and a

2

= 2q + 1.

If instead (still in the 
ase A = 0) B = 2C 6= 0, then (A : B : C : D) = (0 : 8 :

4 : 3), and we �nd that (up to a linear 
hange of variables) q(l) = �10l

2

�5l�2:

this 
annot represent prime powers, being always negative.

Now, by s
aling, we may set A=1. Making the 
hange of variables

t = �2T = �2(1�B)=C ; s = (4T

2

+ 2T

3

)C � 1� 2T � 2T

2

;
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gives a birational transformation to the 
urve

E : s

2

= t

3

� 2t

2

� 2t+ 1 :

The map is not de�ned when C = 0, so we need to 
onsider this 
ase separately:

we �nd that either (A : B : C : D) = (1 : 0 : 0 : 0) or (A : B : C : D) = (2 : 2 :

0 : 1). The former gives q(l) linear; the latter gives the family q(l) = 5l

2

, whi
h


an only give a prime power if l is a power of 5. We get a family, but exponential

rather than quadrati
.

Any remaining in�nite families 
orrespond to rational points on E. Now E

has rank 1, and a torsion subgroup of order 2. A set of generators for the group

is

fP = (�1; 0); Q = (0; 1)g :

We 
an try a few points on this 
urve, transform ba
k to values for (A : B :

C : D), and see whether we 
an pi
k up any new families.

For example, the point (s; t) = (5=8; 1=4) gives (A : B : C : D) = (1 : 4 : 24 :

�64), and this leads to q(l) = 1010l

2

+ 485l+ 59 or q(l) = 1010l

2

+ 525l+ 69.

For the �rst of these possibilities, unfortunately, �

5

(q(l)) splits as a produ
t

of two quarti
s whose leading 
oeÆ
ients are in the ratio of 101

2

: 4

2

, and we


annot tolerate a fra
tional 
ofa
tor of 101=4. In this example, we 
an pat
h

things up via the transformation l 7! 101l� 62, giving a quadrati
 family (with


ofa
tor h = 4)

q(l) = 10303010l

2

� 12600255l+ 3852429 :

The se
ond possibility, q(l) = 1010l

2

+ 525l+ 69 is more pleasant, giving us

immediately a quadrati
 family, with 
ofa
tor h = 404. This is re
orded in table

7, along with other families found from small-height points.

7.4 k=10

The 
ase k = 10 is essentially the same as k = 5, via the transformation �

5

7!

��

10

. Any q(l) is repla
ed by �q(l). So, for example, the useless q(l) = �10l

2

�

5l� 2 
an be repla
ed by q(l) = 10l

2

+5l+2. This gives a quadrati
 family with


ofa
tor h = 4.

One should not get the impression from these 
arefully sele
ted examples

that all points on the ellipti
 
urve give rise to a family for one of k = 5 or

k = 10. As in the 
ase k = 12 we �nd that many points on the 
urve are useless.

Summing up for embedding degrees 5 and 10, we have the following theorem.

Theorem 4. For k = 5 and k = 10 there exist quadrati
 families of ordinary

dimension 2 abelian varieties that have embedding degree k. These in
lude those

given in table 7. Any others 
orrespond to points on a rank one ellipti
 
urve,

as detailed above.
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k h q a

1

a

2

5 1 l

2

�jlj + 1 �1

l� 1 2l

2

+ 1

404 1010l

2

+ 525l + 69 �20l � 5 505l

2

+ 255l + 32

�20l � 4 �505l

2

� 270l � 38

�20l � 6 1515l

2

+ 780l + 102

10 4 10l

2

+ 5l+ 2 �1 5l

2

+ 5l + 2

0 �5l

2

� 1

�2 15l

2

+ 10l + 5

1 �15l

2

� 5l� 4

11 11l

2

+ 10l + 3 l 2l + 1

l+ 1 �11l

2

� 8l� 3

l� 1 11l

2

+ 12l + 5

l� 2 22l

2

+ 22l + 9

11 55l

2

+ 40l + 8 15l + 4 165l

2

+ 110l + 20

Table 7. Some quadrati
 families for embedding degrees k = 5 and k = 10. As before,

l may take positive or negative values, ex
ept for the �rst example where the sign is


onstrained by the lower bound on a

2

.
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