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Abstract. We propose a new concept, named piece in hand, which can be applicable to
a wide class of multivariate type public key cryptosystems to enhance their security. The
piece in hand provides such cryptosystems with a new type of trapdoor which is compatible
with the trapdoor originally equipped in them. The piece in hand concept is based on a
new paradigm for public key cryptosystem in general. On the one hand, in most traditional
public key cryptosystems such as the RSA and ElGamal schemes, the public key contains
all the information of the secret key. On the other hand, in our scheme, the piece in hand,
which is a part of the secret key, is not contained in the public key but is taken from
outside of the public key to plug in during the decryption. In this paper, we illustrate how
to apply the piece in hand concept to enhance the security of multivariate type public key
cryptosystems, by presenting the general theory for the use of the concept.
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1 Introduction

In the field of algorithmic research for the construction of new public key cryptosystems, various
methods employing multivariate polynomials have been made actively. One of the backgrounds of
this trend seems to be formed by the sense of emergency against the possibility of advent of quantum
computers in the future. Although public key cryptosystems based on the intractability of prime
factorization or discrete logarithm problem are presently assumed to be secure, there is the growing
concern that such security would not be guaranteed in the quantum computer age. However, the early
attempts in 1980s such as [7, 11] to construct multivariate type public key cryptosystems are made
before such a threat posed by quantum computer are known. The aim of them is to construct a more
efficient public key cryptosystem than the RSA public key cryptosystem. In fact, another motive of
devising new public key cryptosystems in recent years is to implement more fast encryption algorithm
compared with RSA (based on prime factorization), or elliptic curve cryptosystem (based on discrete
logarithm problem). With having the same critical minds, a variety of researches on multivariate type
public key cryptosystems, such as [3, 8, 12, 10, 6, 9, 1, 2, 4, 5, 14], have been conducted so far.

1.1 Piece in Hand Concept for Public Key Cryptosystem

This paper presents useful concept of general framework to enhance any type of multivariate type
public key cryptosystems where the public key is expressed by multivariate polynomials. OQur concept



E(x)

N = pq

Piece in Hand

M =

Public Key

(a) (b) (©)

Figure 1: The difference between the traditional and our public key cryptosystem.

is based on a new paradigm for public key cryptosystem in general. Shown in Figure 1 is the difference
between the traditional paradigm and our new paradigm. In most traditional public key cryptosystems,
the public key contains all the information of secret key, i.e., if unlimited computational power is
available, anyone can compute the secret key from the public key. For example, in the RSA scheme,
(a) of Figure 1, the public key N contains the secret key (p, q) via N = pq, and in the E1Gamal scheme,
(b) of Figure 1, the public key (p, g,y) contains the secret key x as the discrete logarithm of y, where g is
a primitive root of the multiplicative group of residues modulo a prime p, (Z/pZ)*, and y = g* mod p.
In contrast to these traditional schemes, we propose a scheme for public key cryptosystem where a
certain part of the secret key, called piece in hand,' is not contained in the public key but is taken from
outside of the public key to plug in during the decryption. In the public key cryptosystems considered
in the present paper, the public key is expressed by a system of multivariate polynomials F(x), and
a piece in hand is represented by a certain matrix M. Thus, in our scheme, the piece in hand matrix
M is not contained in the public key E(x) but is plugged in during the decryption, as illustrated in
(c) of Figure 1.

1.2 Schemes of Multivariate Type Public Key Cryptosystems

A multivariate type public key cryptosystem such as in [8, 12, 10, 9, 5] can be considered to comply
with the following scheme: Let F; be a finite field which has ¢ elements. A plain text is represented
by a column vector = (x1,2,...,2)", and a cipher text is represented by a column vector y =
(Y1,Y2,---,yn)’, where the components x; and y; are in F;, and T denotes the transpose of vector.
Then the encryption process is given by the following transformation from x to y.

y = E(z) = (Bo Fyo A)(x). (1)

Here A and B are invertible linear transformations on Fqk and F;", respectively. Thus we can assume
that A is an invertible k¥ X k matrix and B is an invertible n X n matrix, where the entries of both
A and B are in F,. Fj is a nonlinear function from F,* to F,” such that the components in Fp(u)
are polynomials in Fy[u], where F[u] is the set of all polynomials in variables u1,ug,...,u; with
coefficients in F,, and a vector uw = (u1,us, ... ,ug)’ is related to by u = Az. In this scheme, g and
E(x) form the public key, and A, B and Fj form the secret key. E(x) is assumed to be constructed

'In Japanese chess, Shogi, a captured piece is called a piece in hand. Unlike in the case of chess, in Shogi a player
can get in a piece in hand on the board instead of moving a piece on it. In our paradigm, a piece in hand is taken from
the outside of the public key, and is brought into the decryption. However, there is a difference between a piece in hand
in Shogi and our concept: Pieces in hand are a public information in Shogi, whereas a piece in hand is secret in our
paradigm.



so that, without the knowledge about the secret key, it is difficult to decipher  from y = E(x) in
polynomial-time.

Let us consider the situation that Bob has the secret key and Alice transmits her cipher text
y = E(x) to Bob. When Bob receives the cipher text, using the secret key he can efficiently decipher
it to obtain the plain text &. On the other hand, it is intractable for an eavesdropper, Catherine, to
recover  from vy, since she has no knowledge about the secret key and she has to solve the equation
E(x) = y on x directly. The form of the nonlinear function Fj determines the security of this type
of public key cryptosystem, and various methods of constructing Fy have been proposed so far. In a
certain choice of the form of Fy [11, 12], the sequential solution method can be available to Bob in
the decryption. The method is explained in Subsection 1.4 below. In 1986, based on the sequential
solution method, a new public key cryptosystem was proposed by [11], and then the cryptosystem
was broken for the special case where rational functions are used. Later on, in 1989, [12] proposed the
revised version of [11], where birational transformation, named core transformation, was employed.?
The core transformation is a certain type of trapdoor equipped in Fj, and make it difficult to invert
the public key E(x) in combination with the sequential solution method. No attack to this revised
version has been succeeded so far.

In this paper, we propose a new concept, piece in hand (PH, for short), which can be applicable
to any type of public key cryptosystem with the form of (1) in order to enhance its security. Our PH
method is of great generality on the scope of its application. For understandability, however, we first
illustrate a new paradigm introduced by the PH concept, especially based on a sequential solution
type public key cryptosystem such as in [11] and [12]. We describe the way of application of our PH
method in the most general form later.

1.3 Organization

The paper is organized as follows. In Section 2, based on a sequential solution type public key
cryptosystem, we illustrate one form of our PH method along with some example with small values
of parameters. The general procedure to design the secret key of this illustrative cryptosystem is
described in Section 3. Section 4 is devoted to describing how to apply our PH method to any type
of public key cryptosystem with the general form of (1). We then consider the attack by computing
a Grobner basis of the public key, which may be a threat to any type of proposed multivariate type
public key cryptosystem, and we present countermeasures against the attack to keep our PH method
effective in Section 5. We conclude this paper with a discussion about the future direction of our work
in Section 6.

1.4 Sequential Solution Method

As a preliminary to the next section, we here recall the idea of the sequential solution method briefly
by considering the following simple example. In this method, multivariate equations w = Fy(u) on u
are constructed so that they can be solved easily in a sequential manner. For example, the following
equations have a typical form to which the method can be applied.

w3 us GUQ2 4U1U2 2 us
wy | =Fy lus | = 0 2u1?2 5 ug | mod 7. (2)
w1y U1 0 0 3 U1

Note that we here work on the finite field F7. As in this example, in the sequential solution type
public key cryptosystems [11, 12] the nonlinear function Fj is chosen to be represented by an upper

*The paper [12] was originally written in Japanese. We include an English translation of [12] in Appendix. See
Appendix for the detail of the work [12].



triangular matrix whose entries are polynomial or rational functions of the argument of Fj. By the
form of Fy, given wy,ws, w3 € Fr, we can sequentially calculate the values of ui,us and ug in F7 in
this order. The calculation proceeds as follows: First, by (2) we obtain three equations

w1

w = —-mod7? 3)
wo — 5U1

uy = 721“2 mod 7 (4)
wg — 4U1UQ2 - 2U1

ug = e mod 7. (5)

The value of u; is already obtained in (3). By substituting this value into (4), we obtain the value
of ug. Then, by substituting the values of u; and uy into (5), we obtain the value of ug. Thus the
calculation is completed and we obtain the solution of the equations (2) on (u1,ug,us).

2 Illustration of PH method Based on Sequential Solution Method

In this section, we outline our illustrative multivariate type public key cryptosystem which is designed
to demonstrate the procedure for enhancing the security by the PH method. This cryptosystem is a
sequential solution type public key cryptosystem.

2.1 Scheme of the Illustrative Cryptosystem

In our illustrative cryptosystem, the nonlinear function Fj is chosen as follows: Let Q = (g; ;) be an
n x k matrix of rank k whose entries are in F,, and let F' = (f; ;) be an n X n matrix such that
each entries f; ; in F is in F,[v], where a vector v = (vy,vs,...,v,)T is related to u by v = Qu.
We call F' a nonlinear matriz. Then the encryption of our public key cryptosystem is given by the
transformation (1) with Fy(u) = FQu, i.e., y = E(x) = BFQAx. We assume that n > k. Since Q
is an n X k matrix with n > k, the expression v is redundant in representing the content of u = Ax.
Thus we call @) a redundantization matriz since () redundantizes any vector on which () operates.
Then (A, B, @, F) constitutes a part of the whole secret key. F' should be designed in such a way that
anyone who only knows the part (A, B,Q, F') of the secret key cannot efficiently recover a plain text
from the corresponding cipher text.

Now we introduce a PH matrix, which is the last component of the secret key. Let M = (m; ;) be
an h X n matrix whose entries m; ; are in F,. M has the function for simplifying F' by multiplying
itself to F' from the left. We denote by H the result M F of the multiplication. As a result, Bob can
efficiently recover the plain text x from the cipher text y by solving the following equation on x:

HQAxz = MB 1y, (6)

which follows from (1). We call M a PH matriz. The detail of the construction of M will be explained
in Section 3

The public key is the pair (¢, E(x)), where E(x) is the system of multivariate polynomials obtained
by expanding the products BFQ) Az and then trimming them. Using the public key, Alice encrypts any
plain text vector & to generate the corresponding cipher text vector y, where y = E(x) = BFQAw,
and then sends y to Bob.

The secret key is the quintuple (A4, B, Q, F, M). On receiving y, Bob first multiplies B~! to y to
obtain w = B~'y. Bob then multiplies M to w, and the following equations on u are obtained by

(6).
Mw = Hv (7)
v = Qu. (8)



Due to the effect of PH matrix M, the above system of multivariate equations on u can be solved
efficiently by the predetermined method such as the sequential solution method. Finally, by solving
u = Ax on x, Bob obtains the plain text vector .

The encryption and decryption processes are schematically represented in Figure 2.
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Figure 2: Encryption and decryption in PH matrix method

2.2 Example with Small Values of Parameters

Before giving the general prescription for choosing @, F', and M in our PH matrix method, we give
below an example with small values of parameters for our illustrative cryptosystem, where these
matrices are appropriately chosen. We here set ¢ = 7 and therefore we work on the finite field F7. We
then set k = h = 3 and n = 5. Thus the plain text vectors and the cipher text vectors are in F7% and
F°, respectively.

We choose the secret key (A, B, Q, F, M) as follows. The square matrices A and B are chosen to
be the identity matrix. The redundantization matrix ) is chosen as

1 3 5
0 4 2
Q=101 1 9)
0 0 6
0 0 1
The nonlinear matrix F' is chosen as
fi 3fe 0 3fy 1
0 291 f3 5fs 1
F=10 2fy 4fs fi 24392,
2f1 691 2fz3 2fs 3+ 592
fi 3f2 2fs 2fs 5

where the entries f1, fo, f3, f4,91 and gs are polynomial functions of the redundant vector v to which
u is made redundant by the redundantization matrix ). Note here that 2g;, 691,392 and 5gs will be



removed in the decryption process due to the effect of the PH matrix M which is chosen to be

M =

S Ot =

6 1 5 0

000 2]. (11)
4 3 1 5

This can be checked by multiplying M to F' from the left, i.e., we see that

4f1 5f2 6fs 2fs 3
H=MF=|0 0 4f; 5f 1],
O 0 0 0 3

where g; and gy are certainly removed. The g;’s play a role in randomizing F' and therefore the public
key E(x). Hence the g;’s are called randomizing polynomials. Thus we have

4f1v1 + 5fovy + 6f3v3 + 2fsvs + 3vs
Hov = 4f3vs + 5 favs + vs . (12)
37)5

On the other hand, by v = Qu, we have the relation between v and u as follows.

v u1 + 3uo + dug

V9 duo + 2ug

vy | = u2 + u3 . (13)
V4 6usg

Vs us

Thus, using the sequential solution method, Bob can efficiently solve the equations (7) and (8) to
obtain & from y, as seen below.

Note that, in order to make the elimination of g; and go in the matrix H possible, M has to have
rank less than n. On the other hand, in order to uniquely recover the plain text vector & from the
cipher text vector y, M has to have rank at least k. Thus £ < n has to hold. This is the reason
why the vector u = Ax needs to be made redundant in advance by ) and transformed to the vector
v = Qu.

We here choose f1, fo2, f3, f4,91 and g2 in the nonlinear matrix F' as

( f1= 209 +2v3  Hvg +5vs +3
fo= v +2vs4 +4vs +1

) fa = dvy +3vs +6
fa= vs +4
g1 = 2v1 +3ve +vs +4vy +dvs +2

L 2= v1 +4ve +3vs +2v4 +2v5 +5

in the concrete. Then the public key is the pair (7, E(x)) where E(x) is the system of trimmed
multivariate polynomials obtained by simplifying the products BFQAx. We see that F(x) is given

3z1z9 + 3T123 + 3.’13% + 4dxozs + 3z +  3z3
2r129 + T3 + 5:5% + 2xz9x3 + 3x§ +  x9 4+ 2z3
E(x) = 3z13 + 313 + 21973 + 4zy + 6z3
Sr1T9 + 5:1:% + 4dzoxs + 6x1 + x99 + 23
3r1z9 + 3x173 + 3:17% + 2x9x3 + 6:(:% + 321 4+ b5x9 + 2z3



Assume that Alice wants to send Bob the plain text vector # = (5 1 4)T. Then, using the

public key (7, E(z)), Alice calculates the cipher text vector y asy = E(z) = (2 2 1 1 O)T. Alice
then sends Bob this 4. On receiving the cipher text vector y, Bob first multiplies B! to it to obtain

w=DBly=y= (2 2 11 O)T. Note that, in this example, B is assumed to be the identity

matrix. Bob then multiplies the PH matrix M to w to get Mw = (6 3 5)T. Thus by (7) and (12)
Bob has

4fivr +5fovg +6fsvz +2fsvy +3vs =6
4f3’l)3 +5f4’04 +’U5 = 3 (14)
31)5 = 5.

Note that the randomizing polynomials g; and g2 which melt away into the public key E(x) have been
removed in the above system of equations. Using (13) and (14), Bob proceeds through the sequential
solving process as follows:

=>uv5=4 =>u3 =4 = v =3 =vz+1+4d = uy =1

3=4 5
5:31}5 }|_) u3 = Vs } U4:6U3}|_> f37)3+ f4U4+U5 '_>UQ+U3:U3}
=>v3=25

v9 = 4dug + 2ug

6 = 4f1v1 + 5fave + 6 f3v3 + 2f4v4 + 3vs
= vy =5H }

=201 +5+4+6+5

1 :u1+3u2+5u3}
=v1 =0

= u; =95

Thus Bob obtains u = (5 1 4)T. The sequential solving process is summarized as: vs — ug — v4 —

v3 — ug — vy —> v — uq. dSince £ = u in this example, Bob finally obtains the plain text vector
T

z=(5 1 4).

3 How to Design PH Matrix and Other Related Matrices

3.1 General Procedure for Designing (), F and M

In this section, we describe the detail of the design of the matrices @, F and M.

To begin with, the n x k redundantization matrix Q = (g; ;) is designed, where n > k. For each
Jj =1,...,k, let [; be the row number of the nonzero entry in the j-th column of @} such that all entries
at the lower positions are zero, i.e., [; = max{i | 1 <i <n & ¢;; # 0}. Then the redundantization
matrix @ is chosen to satisfy the following condition.

Condition 1. rank Q =k (i.e., Q has full column rank) and 1 <1y <lp < -+ <l 1 <lp=n. O

For example, k = 3 and (l1,l2,l3) = (1,3,5) for the matrix @ given by (9), and therefore this
matrix ( is certainly competent to be a redundantization matrix.
The nonlinear matrix F' is designed as the sum of two particular kind of matrices S(v) and N (v):

F = S(v) + N(v). (15)
Here S(v) is designed to have the following form:
S(v) = Tdiag(f1(ve,---,n)s-- - fr—1(vn),1), (16)

where T is an n X n matrix whose entries are in Fgy, fi(ve,...,vp),..., fn—1(vy) are in Fy[v], and
diag(ai,...,ay,) is the diagonal matrix whose (i,%)-entry is a;. On the other hand, N(v) is designed
to have the following form:

N(v) = R-G(v), (17)



where R is an n X n matrix whose entries are in Fy, and G(v) is an n x n matrix whose entries g; ;(v)’s
are in Fy[v]. Particularly, the entries of G(v) are randomizing polynomials which randomize F'. For
example, in the case where n = 5, we can choose N (v) by

0 0 00 O
0 291 0 0 0
Nw)=|0 0 0 0 3¢ |, (18)
0 6g1 0 0 5go
0O 0 00 O
where R and G(v) are chosen by
000O0GO
02000
R=]000 0 3], (19)
06 005
000O0GO
G(v) = diag(0,91,0,0, g2), (20)

and gi1,92 € Fy[v]. Thus F is specified by the constituents 7', f;(v)’s, R, and G(v). Reflecting the
performance of our cryptosystem such as security, encryption/decryption speed, and so forth, these
constituents should be carefully determined. Therefore, in order to obtain the nonlinear matrix F
with desirable properties, we design f;(v)’s and G(v) appropriately. On the other hand, we design R,
M, and T in sequence as follows.

First we choose R so as to satisfy the following condition.

Condition 2. n > k + rank R. O

This condition is necessary to guarantee the existence of the PH matrix M which satisfies Condition
3 and Condition 4 given below. Once R is designed, we can design the PH matrix M = (m; ;) as
follows. By (15) and (17), in order to eliminate the randomizing polynomials g; j(v)’s from the
nonlinear matrix F' by the multiplication of M, it is sufficient to impose the following condition on
M.

Condition 3. MR =0. Ol

On the other hand, for the unique recovery of the plain text vector & from the cipher text vector
y, we have to impose an additional condition on M, as shown in the following consideration. In the
decryption, Bob solves the equation on «:

Mw = HQAx. (21)

The number of the vectors Mw at the left-hand side of (21) is at most ¢***™. On the other hand, the
number of plain text vectors @ is exactly ¢*. For the unique recovery of &, the transformation HQ Az
on x at the right-hand side of (21) has to be injective. This implies that the inequality ¢"2**™ > ¢k
has to hold. Thus, it is necessary for M to have rank at least k. We here impose on M the minimal
condition which meets this requirement, as follows.

Condition 4. M is a k X n matriz, and rank M =k (i.e., M has full row rank). O

Since R is chosen to satisfy Condition 2, by the following proposition, we can certainly choose M
so as to satisfy Condition 3 and Condition 4.



Proposition 3.1. Let Ay be an s X s matriz. If rank Ay < s—1t with 1 <t < s then there exists an
s X t matriz Ay such that A1As = 0 and rank Ay = ¢.

The above proposition is an elementary result of linear algebra.
Next we design T as follows. Let ¢; ; be the (i, j)-entry of T. Then

Ao magtin oo Xh magtin
flzn:1m2jt'1 Z’?:lmg Y
M) = | 1Y =1 el
fudioimagtin e YR M itin

The design of the form of the above M S(v) depends on the trapdoor employed in a multivariate type
public key cryptosystem. We assume that the sequential solution algorithm is employed. In this case,
since each f; contains only variables v;;1,...,v, and Condition 1 holds for @), it is necessary and
sufficient to impose the following condition on 7" in order to make the sequential solution algorithm
work properly, as seen in the proof of Theorem 3.3.

Condition 5. For everyi € {1,...,k}, the (i,1;)-entry in MT is the left-most nonzero entry in the
i-th row of MT, i.e.,

Z?:l m]-vjtja]- = 07 st Z?:l m]-vjtjall_l = 0
E?:l maojtj1 =0, ..., Z?:l ma,jtji,—1 =0
D mugtin =0, ... 3T mugti 1 =0
and 375 my ity #0 for alli € {1,... k}. O

Since M is chosen to satisfy Condition 4, by the following proposition, we can certainly choose T
so as to satisfy Condition 5. This proposition is an elementary result of linear algebra.

Proposition 3.2. Let By be a t X s matriz and Bo a t X s matriz, where t < s. If rank By =t then
there exists an s X s matriz B3 such that B1B3 = Bs.

Thus we have all of the secret key and the public key. Then the following theorem holds. The proof
of the theorem describes the general decryption procedure in our illustrative public key cryptosystem.

Theorem 3.3. Suppose that Condition 1, Condition 3, and Condition 5 hold. If none of f1(va,...,vy),
-y fn—1(vn) is zero, then Bob can uniquely and efficiently recover & from y = E(x) using the secret
key (A, B’ Q, F’ M)'

Proof. Let z = (21, 22,...,2;)" be MB~'y. Then we have

z = MFwv, (22)
v = Qu. (23)

Given y, the value of z can be easily calculated by z = M B~ 'y. On the other hand, once the value
of u is obtained, the value of « is also easily calculated by & = A~ u. Thus, in order to get the plain
text vector & from the cipher text vector y, it is sufficient for Bob to have the method which solves
the equations (22) and (23) on u, given the value of z. Let d; ; be the (7, j)-entry of MT. It follows
from Condition 3 that, for all i € {1,...,k} and all j € {1,...,n}, the (i,j)-entry of MF is equal
to fj(vj+1,...,vn)d;j. Therefore Bob knows the values of d; ;’s. We show that Bob can calculate
the value of u by the following procedure. Initially Bob can get the value of u; using the equations



2k = dgpvn and v, = gy pug. Note here that dy, # 0 and ¢, 1 # 0 by Condition 5 and Condition 1,
respectively.

For any 7 € {1,...,k—1}, assume that Bob has so far had the values of 4,11, ..., u;. Then, by the
form of @, Bob knows all of the values of v;_,1,...,v,. Here, by (22) and Condition 5, the following
equation holds:

n
Zr = Z fj(vj-f-la . 7'Un)d'r,j'Uj
j=l
n
= fl,,_ (’Ul_,__|_1, - a'Un)dT,l.,-'Ul.,- + Z fj(Uj_H, - ,vn)dm-vj.
j=lr+1
Note that, at the most right-hand side of the above equation, only v;_, ..., v, are contained as variable
and especially v;, is contained only in the first term. On the other hand, it follows from Condition
5 and the assumption on f;’s that f; (v, 41,-..,vn)dr;. # 0. Thus, Bob can calculate the value of
vy, from the values of v 41,...,v, and z;. Moreover, by (23), v, = Z‘I;:T qi,,ju;. Hence, Bob can
calculate the value of u, from the values of u;41,...,u; and v;_.

Thus, according to the above procedure, Bob can finally get all values of uq,...,u;. Hence the
proof is completed. O
Note that, for sufficiently large ¢, none of fi(va,...,vpn),..., fan—1(vy) is zero for almost all of
(va,...,v0)T € Fq"_l. Thus, in such a choice of ¢, Bob can uniquely decipher any cipher text y in all

likelihood, provided that Condition 1, Condition 3, and Condition 5 hold.

3.2 TIllustration of the Design of (), F and M

In order to clarify our PH matrix method described in the previous subsection, we consider an example
with small values of parameters in this subsection. We derive the nonlinear matrix F and the PH
matrix M considered in Subsection 2.2. Thus, we consider the case where n = 5 and k = 3, and we
work on the finite field F.

First, the redundantization matrix @ is chosen by (9). For this @, (I1,l2,1l3) = (1,3,5). We then
choose R and G(v) by (19) and (20), respectively. Thus N(v) is given by (18). Note that R has rank
2, and therefore Condition 2 holds. In order to determine the PH matrix M, we note that Condition
3 on M is equivalent to the following equations.

2myo +6m14 =0, 3mi3+5mis=0
27’)7,272 + 6m2,4 =0, 3m2,3 + 5m2,4 =0
2m3,2 + 6777,374 =0, 3m373 + 57713’4 = 0.

By solving the above equations and choosing M so as to satisfy Condition 4, we have the PH matrix
M given by (11). Next we determine the matrix 7. By (11) we see that Condition 5 on T is equivalent
to the following equations.

(t11 + 6ta1 + t31 + Stax + O #0
ot11 + 0 + 0 + 0 + 2t517 =0
5t1,2 + 0 + 0 + 0 + 2t5,2 =0
ot13 + 0 + 0 + 0 + 253 #0

<0 + 4.t2’1 + 3t3’1 + 41 + 5t5,1 =0
0 + 4tgo + 3tz + ta2 + Stso =0
0 + 4ta3 + 33z + taz + Stzz =0
0 + 4tos + 3tza + a4+ Btsg =0
L 0 + 4dtas + 335 + tas  + Stsp # 0.

10



Solving the above equations and generating the remaining entries at random, we get

1 3 0 3 1
0 01 51
T=02 4 1 2 (24)
20 2 2 3
1 3 2 2 5
Substituting (24) to (16), we have
fi 3f2 0 3fs 1
0 0 fz3 5fy 1
Sw)=1 0 2f 4fs f1 2 (25)
2fr 0 2f3 2fy 3

Ut

fi 3f2 2fs 2fs
Thus, substituting (18) and (25) to (15), we finally get the nonlinear matrix F' given by (10).

4 General Prescription for Enhancement by the PH Method

In the previous sections, we demonstrate how to apply our PH matrix method to the illustrative
sequential solution type public key cryptosystem, through the installation of the method in the non-
linear function Fy. In this section, we describe the general prescription for the enhancement of the
security of any given multivariate type public key cryptosystem by our PH method. Let K be any
multivariate type public key cryptosystem whose encryption process is described by (1). We construct
new multivariate type public key cryptosystem K through an application of our PH method directly
to the public key E(x) of K in a sequential manner, unlike in the case of the previous cryptosystem
where the PH method is installed in an integrated manner with the nonlinear function. A public key
E(z) of K is constructed from the original public key E(z) of K by the following transformation:

E(@)=S-E(x)+R-H(z).

Here S is an [ x n matrix whose entries are in F;. In order to make our PH method work prop-
erly, we assume that [ > n. Thus S plays a role as the redundantization matrix in the previous
illustrative cryptosystem. On the other hand, R is an [ x | matrix whose entries are in F,, and
H(z) = (hi(z),...,h(z))" is a vector whose components h;(z)’s are in Fy[z]. The term R - H(x)
plays a role in randomizing E(z). Hence the h;(z)’s have to be chosen so that in E(z) the hi(x)’s
cannot be indistinguishable from the polynomials which come from E(x). A plain text of K i is rep-
resented by a vector in F, k in the same way as in K. For any plain text vector « € F, kof IC the
corresponding cipher text of K is represented by a vector z € Fy ! and is caluculated by z = E (x).
We choose the R, PH matrix M, and S in sequence so as to satlsfy the following three conditions.
Using the same argument used in Subsection 3.1, we can show that this choice is efficiently possible.

Condition 6. [ > n + rank R. O
Condition 7. M is an n x [ matriz such that MR =0 and rank M = n. [l
Condition 8. MS = I, where I is the n X n identity matriz. O

Then, ¢ and E(:c) form the public key of K. On the other hand, the PH matrix M together with
the secret key of K for the public key g and E () of K form the secret key of K. The decryption of
K proceeds as follows. Since M E(x) = E(x) by the above conditions, on receiving the cipher text
z = E(x) for a plain text &, Bob can efficiently obtain y = E(x) from the multiplication of z by M.

Then, according to the decryption procedure of X, Bob can recover the plain text @ using the secret
key of K.

11



5 Attack by Computing Grobner Bases

In the previous sections, we have just shown how to use the new concept, piece in hand, in order to
enhance the security of a general multivariate type public key cryptosystem.

Recently, [2] showed in an experimental manner that computing a Grébner basis of the public key
is likely to be an efficient attack to HFE [10], which is one of the major variants of multivariate type
public key cryptosystem. The attack is simply to compute a Grobner basis for the ideal generated by
polynomial components in E(x) — ¢, where ¢ is a cipher text vector. Thus, because of the simplicity
of this attack, it may be a threat to any type of proposed multivariate type public key cryptosystem.

Especially, from the point of view of Griobner bases, the secret linear transformation B in the
general scheme (1) of the encryption process may be useless. This is because any ideal I generated by
polynomials remains unchanged under the replacement of the generators of I by their linear combina-
tions. Thus the PH concept might be also useless to the Grobner attack in its primitive implementation
considered in the previous sections by the following reason. We here consider the illustrative cryp-
tosystem given in Section 2 and 3 for a while. The application of M B! to the public key E(x)
exposes a system of polynomial equations to which the sequential solution algorithm can be applied.
Thus, if E(x) — ¢ and MB (E(x) — ¢) are regard as the same system of polynomials from the point
of view of Grobner bases, then the PH method might be useless to the Grobner attack. However, this
issue need to be studied in more detail, since M is a k X n matrix with k < n and therefore the ideal
generated by MB~!(E(x) — ¢) might be different from the ideal generated by E(z) — c.

Even if the Grobner attack is effective to break the cryptosystem whose security is enhanced by
the PH matrix method, we have the following countermeasures against the attack.

5.1 Hiding the PH Matrix Method by Nonlinear Matrix

One of the countermeasures is to apply any secret nonlinear matrix F to the public key E(x) and use
the result as a public key anew. By this countermeasure, the enhancement of the nonlinear matrix
F by the PH matrix method is likely to be hidden from the Grobner attack. The countermeasure is
schematically represented in Figure 3, where C' is an n X n matrix whose entries are in Fy. In the mul-

i ><><><

Figure 3: Countermeasure against the Grobner attack

Il
Sy
X
!

I
Q
X
!
X
Sy
X
!

tivariate type public key cryptosystem proposed in [12], two nonlinear matrices are applied in sequence
to generate the public key. Thus the above countermeasure is already taken for this cryptosystem, and
we only have to apply the PH matrix method to the first nonlinear matrix for enhancing the security.
Note that, in this cryptosystem, each of the two nonlinear matrices is made difficult to invert for the
eavesdropper, using a certain birational transformation, called core transformation. The use of the
core transformation seems to be the reason why no attack to the cryptosystem has been succeeded so
far. Thus we can expect the further enhancement of the security of the cryptosystem by the use of
the PH matrix method.
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5.2 Nonlinearization of the PH Matrix

Another countermeasure against the Grobner attack is to nonlinearize the PH matrix. The PH matrix
was assumed to be a linear matrix so far. In the next stage of the PH method, we can consider a
nonlinear PH matrix M (x), where some entries in M (x) are polynomial functions of . Since an
ideal I generated by polynomials may change under the replacement of the generators of I by the
multiplication of them by M (x), unlike in the case of linear M, the nonlinear PH matrix may provide
substantial robustness against the Grobner attack. Thus, in this countermeasure, we may be allowed
to use only a single nonlinear function Fj as in the cryptosystems considered in the previous sections,
unlike in the case of the above countermeasure. In the nonlinear PH matrix scheme, however, some
additional r-tuple a(x) = (ai(x), ..., ar(x)) of multivariate polynomials in F4[x] has to be published
together with E(x) by Bob, and a(p) has to be transmitted from Alice to Bob in addition to E(p)
when Alice wants to send Bob a plain text p.

In order to illustrate our idea of the nonlinear PH matrix method, we return to the general form
of encryption process (1). For simplicity, we here set n = 4 and k = 3, and A, B to be the identity
matrices. Note then that u = . We also assume that r = 2 and ¢ = 7. As an example, we choose
the nonlinear function Fy(x) as

{3ai(z) + 6az(z)} fiz1 +2a1(x) foze +{3ai(x) + 2a2(x)}xz +{4ai(x) — 6az(x)}yg
{4(11 (zv) + 3(12({13)}f11'1 -|-3a1(a: fQLEQ -|-2a2(:c)x3 +{2a1 (CE) — 3(12(20)}9
{a1 (:1:; +ag(x)} fizr  +dai(x) foxs +{4ai(x) + 2a9(x)}rs  +{3a1(x) —az(x)}g |’
T

{3&1( + 202(113)}f11‘1 +3(11(.€U foxo —I—{a1 (iB) + 3(12(.78)}:173 -}-{60,1 (CE) — 2&2(33)}9

where fi(z2,z3), f2(z3), and g(x1,x2,z3) are in Fr[z1,x9,z3]. The g(z1,x2,z3) plays a role in ran-
domizing the public key E(x) = Fy(x). We also choose the nonlinear PH matrix M (x) as

(26)

— — N N

ay(z)7 2 0 0 4ay(x)? 2
5a1(x)972 + 6az(x)?2 day(x)T? 6ai(x)?2 + 5az(x)17? 4dai(x)T 2 +4dax(z)T2|. (27)
az(x)i2 0 2a9(x)172 3as(x)172

Then, obviously, entries in M (x) are polynomial functions of « as desired. Now, in this scheme, Bob
publishes (a1 (x), a2(x)) in addition to E(x), and then Alice transmits (a1 (p), a2(p)) and E(p) to Bob,
where p is a plain text which Alice wants to send to Bob. Note that, on receiving them, Bob can
efficiently compute the value of M (p) using the values of a1 (p) and as(p). It follows from the Fermat’s
little theorem that

a1(p)7! f1(p2, p3)p1 f1(p2,p3)p1
M(p)Fo(p) = | a1(p)?~" fa(ps)p2 + {a1(p)?™" + 6a2(p)?'}ps | = | f2(ps)pe
a2(p)? ' ps P3

in the case where each of a;(p)’s is not zero. We see here that the randomizing polynomial g is removed
at the most right-hand side of the above equation. Thus, in such a case, Bob obtains the system of
multivariate equations on @: M (p)E(p) = (fi(z2, z3)z1  fo(z3)z2 acg)T to which Bob can apply the
sequential solution method to recover the original plain text * = p.

In the following we describe the general prescription of the nonlinear PH matrix method illustrated
above. In this prescription, ¢ is assumed to be a prime number. Let yi,...,yx and z1,...,2; be
variables. We first choose a k x n matrix M'(y) with entries in Fy[y], n x k matrices S’(z) and
N'(z) with entries in Fy[z] so as to satisfy that (i) M'(y)S'(z) = diag(yi, zi;,---,Yi,%i, ), where
i1,....0x € {1,...,k}, and (ii) M'(y)N'(z) = 0. In the above example, these matrices are chosen by

0 0 0 0 0
v 000 Zol 2 0 0 0 0

M@ =0 y. 0 0], S'2) = ! , and N'(z) =
0 o 0 0 0 2z 0 0 0
Y2 2z 0 —z 3z1 0 29
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We also choose an invertible & x & matrix C and an invertible n X n» matrix D, where the entries of
both C and D are in F,. We then set the nonlinear PH matrix M (z) and the nonlinear function
Fy(u) by the following, respectively:

M(z) = CT'M'(y)D7, (28)
Fy(u) = DS'(2)Cdiag(fi(ug,---,ug),---, fr_1(uk),1)u + DN'(2)g(z), (29)
where y and z are set to be y; = a;(z)? 2 and 2; = a;(z), fi(uz,...,uk),---, fr—1(ug) are in F,lul,

and g(x) is a column vector which has k components in Fy[x]. Note that w is defined to be Ax
according to the notation in the general form of encryption process (1). In the above example, the
matrices C and D are chosen by

cC=10 11 and D=
00 2 1 511
3 3 5 2

Since A and B are chosen as the identity matrices in the above example, we obtain (26) and (27).

Let e;(x) be the i-th component of E(x) = (B o Fy o A)(x). The public key is the pair (¢, G(x)),
where G(x) is a system of polynomials obtained by shuffling the sequence e (x), ..., e (x),a1(x),...,
a,(x) of polynomials with respect to their order. The secret key is (4, B, f1,..., fx—1, M(x)) together
with the information on the shuffling of e;(x)’s and a;(x)’s. Using the public key, Alice encrypts a plain
text vector p to generate the corresponding cipher text vector ¢ = G(p), and then sends ¢ to Bob. On
receiving ¢, Bob first isolates individual e;(p)’s and a;(p)’s based on the information on the shuffling.
Bob then calculates M (p) using the values of a;(p)’s, and multiplies M (p)B~! to ¢. As a result, in
the case where each of a;(p)’s is not zero, Bob knows the values of fi(so,...,8k)s1,. ., fk—1(Sk)Sk—1
and sy, as in the above example. Here the column vector s = (s1,...,s;)7 is defined to be Ap. This
is because, by (28), (29), and the Fermat’s little theorem,

M(p)B~'ec = M(p)Fy(s)
= 071 diag(ail (p)qila -ee5 Qg (p)qil) Cdia‘g(fl(SQa .. 7Sk)7 RN fk—l(sk)’ 1)3
= (f1(525---s k)81, s Fr1(Sk)Sk—1,5%)"

in such a case. Thus, Bob obtains the value of s using the sequential solution method and therefore
the plain text vector p by multiplying A~! to s.

6 Concluding Remarks

In this paper, we have introduced a new concept, piece in hand (PH), for public key cryptosystems
in general, and have proposed the framework of the PH concept where the security of a wide class
of multivariate type public key cryptosystems can be enhanced by the concept. In contrast to most
traditional public key cryptosystems such as the RSA and ElGamal schemes, in our scheme based
on the PH concept a certain part of the secret key, PH matrix, is not contained in the public key
but is taken from outside of the public key to plug in during the decryption. The applications of the
PH concept to multivariate type public key cryptosystems have been illustrated in both integrated
(Section 2, 3) and sequential (Section 4) manners. From the practical point of view, it is important to
evaluate the key length and the efficiency of encryption and decryption in the enhanced cryptosystem.
However, since the aim of the present paper is mainly to illustrate the use of the PH concept, this
issue is discussed in another paper. Because of the same reason, we have not considered the stronger
security such as IND-CCA type security but considered just the encryption primitive E(x) for a
multivariate type public key cryptosystem whose security is enhanced by the PH concept. We leave
the consideration of the stronger security to a future study.
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Generalization of the Public-Key Cryptosystem Based on
the Difficulty of Solving a System of Non-linear Equations*

Shigeo Tsujiit Atsushi Fujiokaf Yuusuke Hirayama'

t Faculty of Engineering, Tokyo Institute of Technology, Tokyo, 152 Japan

Abstract. In the previous work we proposed a public-key cryptosystem based on the se-
quential solution method for a system of non-linear equations. In this paper we present a
new public-key cryptosystem where the sequential solution method is generalized and mul-
tivariate rational expressions are used. This cryptosystem has high reliability against not
only attacks made on the previous proposal but also others thinkable currently. Moreover,
it makes the lengths of public and secret keys relatively short and features fast encryption
and decryption.

1 Introduction

Public-key cryptosystems are useful for secret communications and also are fundamental technologies
indispensable to authentication. In the last ten years, more than ten such cryptosystems have been
proposed. Many of them are based on the difficulty of prime factorization or discrete logarithm
problems and require exponentiation for encryption and decryption. The well-known RSA scheme is
being incorporated into LSI circuits but it is said that the processing speed is now limited to hundreds
of kilobytes per second (Kb/s) in the case where a CMOS is used.

In the future, increased demand for cryptographic communications via faster transmission lines
is expected. Therefore, it is very important to find a public-key cryptosystem having high-speed
encryption and decryption.

Moreover, it seems necessary to pursue a public-key cryptosystem that is not based on the difficulty
of prime factorization or discrete logarithm problems because there is no guarantee that these problems
can never be solved.

We continue to study new public-key cryptosystems with this in mind. Hasegawa and Kaneko [2]
presented a way to break our previous proposal, a public-key cryptosystem [1] based on the sequential
solution method for a system of non-linear equations.

In this paper, we propose a new public-key cryptosystem [4] where the sequential solution method
is generalized and the core transformations are used. This cryptosystem has high reliability against
not only attacks made on the previous proposal but also others thinkable currently. Moreover, it makes
the lengths of public and secret keys relatively short and features fast encryption and decryption.

The organization of the paper is as follows. In Section 2 we define the core transformation and
sequential solution method. In Section 3 we present our cryptosystem and consider its reliability in
Section 4. In Section 5 we describe the resulting properties and finally, in Section 6, we summarize
this work.

2 Core Transformation and Sequential Solution Method

This section describes the core transformation and sequential solution method which are used as
trapdoor in decryption.

*This is an English version of the Japanese paper which appeared in IFICE Transactions (A), J72-A, No.2 (1989),
390-397. The English translation is by Shigeo Tsujii, Kohtaro Tadaki, and Ryou Fuyjita.



2.1 Core Transformation [3]

In this subsection, as an example, we present a transformation based on multivariate rational expres-
sions.
Let v and w be as follows:

v = (0157)2"" 7vk)Ta (1)

w = (wl,wZa"' awk)T (2)

where T' denotes transposition.
The relations between w; and w1 as well as between vy and vg_1 are defined by the following
two equations:

W+ QoW1 + Q3

Vg = ) (3)
QLWE + a5Wg—1 + g

_ Prwg + Bowg 1+ B3

- Bawg + Bswg_1 + Bs

Vg—1

Using the following equations:

a4V — A5V — Q2
Aqg(vg_1,v = 5
10( k—1, /C) ﬂéﬂ)k—l /31 ﬁf)vk—l _ /82 ’ ( )

a3 — gl a5V — (9
Aq1(vg_1,v = 6

1.(0-1, ) B3 — Bevk—1 Bsvk—1 — B2 |’ ()
QU — a3 — Qplg

Ara(ve-1,08) = Bavg—1 — B B3 — PBevk—1 |’ @

we can reverse the equations (3) and (4) as

Av1(vg—1,vk

_ ( )

k= Avo(vk—1, k)’ ®)
_ Ara(vg—1,vk)

Wkt = Avo(vg—1,vk) ®)

From the equations above, the following expressions, for example, are derived:

(50) = s ()

mir M2
Meoso) = (T ) )

my = (a1 86 — a3Ba)vk—1 + a6Bavk—1vk + a3B (12)
Vg—1 - A10(Vk—1, V%)
S (0433 — g B1)vg — ufevk—1Vk — 133 (13)
Vg - A1o(ve—1, Vk)
S (35 — o B)vp—1 — s PBsvk—1vk + 203 (14)
Vg—1 - A1o(vk—1, k)
(a2 — a583) v + a5 Bevk—1Vk — 332

v+ Ao (ve—1, Vk)

may =

Note that these expressions are not unique. We call M (vg_1,vx) a core transformation.
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2.2 Combination of the Core Transformation and Sequential Solution Method

In this subsection we describe the sequential solution method [1] based on the core transformation
presented in the previous subsection.
Based on the equations (11) to (15) we define the matrix F(v) by

fii 0 ... ... ... 0 0
0 foo 0 ... ... 0 0
. 0 . .
F(v) = (16)
: 0 0
0 0 0
M (vg-1,vk)
0o 0 ... ... 0
Here, fyv; (1 = 1,--- ,k — 2) is a linear function with respect to v; and a non-linear function with
respect to v;4+1,*+* , vk, and is constructed so that the equation
w=F(v) v (17)
on v can be solved variable by variable in the order of vg_o,v_3,--- ,v2, and v;.

Concretely, it is defined as follows:

ai(v) - v; + bi(v)
v; - A1o(Vk—1,Vk)

where a;(v) is a linear function with respect to v;11,--- ,v, and b;(v) is a quadratic function with
respect to viq1, -+, Vg.

Thus, in the system (17) of non-linear equations, vy and vg_; are first derived from wy, and wg_1,
and then the remainder vy_o,v_3,-*+ , v, v; are obtained sequentially. Hence we have all components
of v. We call this method a sequential solution method.

3 The Construction of Our Cryptosystem

[Notation]
®x = (x1,x2,---,7)" : Plaintext vector (19)
y = (y1,y2,--- k)T : Ciphertext vector (20)
v = (vi,vo, -+ ,v;)" : Intermediate variable vector (21)
w = (wy,wy, -+, w)T : Intermediate variable vector (22)
u = (ug,ug,--- ,u;)’ : Intermediate variable vector (23)
z = (21,22, ,2)" : Intermediate variable vector (24)

(Here T denotes transposition.)
A, B, and C: k x k invertible matrices.

F(v) and G(u): Matrices that enable the sequential solution method with the core transformation.



First of all, the core transformation M (vg_1,vg) is defined by the equations (11) to (15) and in
the same manner, N (ug_1,uy) is defined by the following equations:
Y12k + V2zk—1 + 3

up = , (25)
Y42k + V52k—1 + V6

012K + 02251 + 03

= 2
U1 542’k + 55Zk_1 + 66’ ( 6)
_ YaUg — Y1 V5UE — Y2
AQO(ukflauk) - 64Uk_1 _ 51 (55Uk-_1 o 62 ) (27)
Y3 — YelUk VsUg — Y2
A _ =
21(“1(: lauk) 53 _ 66“/]{:—1 65'11/]9_1 . 52 ’ (28)
_ YaUg — Y1 Y3 — YeUk-1
Aap(h-1,u) - = 0qugp_1 — 01 03 — dgug—_1 (29)
Aot (ug—1,uk)
2 = , 30
k Ago(uk—1,uk) (30)
Ago(ug—1,u)
Zp—1 = , 31
kot Ago(ug—1,ug) (31)
Zk—1 _ o k-1
( " ) = N(ug—1,uk) ( s ) (32)

Using the core transformations M (vg_1,v;) and N (ug_1,ux), we define F'(v) by the equations (16)
and (18) and define G(u) by the following;:

(fon 0 ... . .0 0
0 g2 O 0 0
: 0
G(u) = ; (33)
0 0
0 0 0
N(ug—1,ur)
0 0 0

gii = ci(u) - u; + di(u)

- =1, k-2 34
u; - Ago(ug—1, uk) ( ) (34)

where ¢;(u) is a linear function with respect to u;11,--- ,ux and d;(u) is a quadratic function with
respect to u;y1, -+, Uk.

We here assume that the components of each vector are in an extension field of degree ¢ of GF(2),
and the components of each matrix and the coefficients of each rational expression are in an extension
field of degree s of GF(2) where s|t, i.e., a subfield of the former field.



We assume that the following relations hold:

v = Az, (35)
w = F(v)-v, (36)
u = B-w, (37)
z = G(u) u, (38)
y = C-z, (39)
Rx) = C-G(u)-B-F(v)-A-x. (40)

By the transformation in the first stage, the plaintext & is transformed to uw. Accordingly,
u1,- -+ , U are the quadratic rational expressions of x1,--- ,x; and are represented as

_ pni=x)
uy = ’
pa()
p2()
Uz = (41)
pi(x)’
_ k()
U = ’
pa(x)
where p;(x) (1 =1,--- ,k) and py(x) are quadratic functions with respect to 1, -+ , k.

Next, u generated in the first stage is transformed to the ciphertext y in the same manner as
the transformation in the first stage. Accordingly, y1,- -,y are the quadratic rational expressions of
u1,- -+ , U, and are represented as

Y1 = ai(w)
qa(u)’
g2(w)
Yz = (42)
qa(u)’
k()
Ye = ’
q4(uw)
where ¢;(u) (i = 1,--- ,k) and g4(u) are quadratic functions with respect to uy,--- ,ux. By taking
the form of u in the equations (41) into consideration, substituting ui,--- ,ux of the equations (41)
into the equations (42), and then multiplying the numerators and denominators by p2(x), we see that
the ciphertext y is quartic rational expressions of z1,--- ,z) as follows:
_ nfz)
Y1 Td($) ’
ra(z)
= 43
Y2 Td($) ) ( )
ye = rk(T)
* ra(z)’
where 7i(x) (i =1,--- ,k) and rq4(x) are quartic functions with respect to z1,--- , k.

The above shows the construction of the ciphertext y based on the two-stage construction.
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(Secret Key)

A,B,C,F(v), and G(u)

(Public Key)

y = R(x) (44)
(y is a non-linear function of x.)
Encryption
Substitute a plaintext  into the public key.
Decryption

1) z is derived from z = C ! - y.

2) w is derived from z = G(u) - u.

(1)
(2)
(3) w is derived from w = B! - u.
(4) v is derived from w = F(v) - v.
(5)

5) x is derived from z = A~ - v.

4 Consideration of Reliability

Attacks made to date on public-key cryptosystems based on the sequential solution method for a
system of non-linear equations are listed below.

1) Okamoto and Nakamura’s attack [5]
2) Kurosawa’s attack [1]
3) Hasegawa and Kaneko’s attack [2]

Attack 1) is used for cryptosystems in which a public key is represented as a polynomial or rational
equation, like our cryptosystem, and is made by solving a system of multivariate linear equations to
find the inverse function of the cryptosystem. We call this the inversion method.

The other attacks can be categorized under one method. They assume that the coefficients of a
secret key are unknown variables and create a public key. This public key is then compared with
the coefficients of the public key actually published to obtain simultaneous equations with respect
to the coefficients of the secret key. We call this the coefficient equivalence method. The reason
the cryptosystem proposed in the previous work could be broken is that the resulting simultaneous
equations are linear ones from which the secret key can be found easily.

In this section we describe the reliability of our cryptosystem against both the attacks.

Our cryptosystem assumes the following parameter values:

kE = 5, (45)
t = 32 (46)
s = 8. (47)



4.1 Attack by the Coefficient Equivalence Method

In this subsection we describe the reliability of our cryptosystem against the coefficient equivalence
method. The reliability against this attack depends on the core transformation.

4.1.1 Determination of py_i(x), px(x), and py(x)

In the equation (41), p;(x) and py(x) are quadratic polynomials of z1,--- ,z,. Thus, regarding the
coefficients of these polynomials as unknown variables, we first represent the polynomials as

pi(a) DIl e e e Din
pQ(w) p21 “ e “ea P pln
: = : T (48)
pr(x) Pkr - -t Pkn
pa() Par -+ =+ ' Pdn
T= (27 mwe - mp_mp T T - T 1)T (49)

where n is the number of terms contained in a quadratic polynomial having k£ variables, and we define
Termgo = f12Ck. (50)

On the other hand, the denominator g4(u) of y in the equations (42) is equal to Agg(ug_1,uk)
defined by the equation (27). Thus we have

gi(u) = Agp(ug—1,uk)
= (7405 — 504)up—1ur — (7202 — Y501)uy
— (7105 — y204)ug—1 + (7102 — 7261). (51)

Substituting the equations (41) into ug_1 and uy in this equation gives

qa(u) = qq(@)

= (7405 — %54)]%

by
— (a6 — %él)izgg
—(m6s5 — Vﬂh)pkil(m)
pa(T)
+(7102 — 7261). (52)

Moreover, since r4(x) in the equations (43) is given by multiplying ¢/,(x) in the equation (52) by
pc?i(:c), it can be represented as

ra(@) = gj(x)py(z)
= (71405 — 7504)pr—1(x)pK ()

— (7402 — v501)pr(x)pa(x)
— (7105 — 7204)pr—1(x)pa(x)
+(1102 — 1281 p3 (). (53)
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Thus, substituting px_1(x), px(x), and pg(x) in the equation (48) into the equation above, we see
that r4(x) can be represented as a quartic polynomial of z1,--- ,z; whose coefficients are quartic
polynomials of ¥i, 2, V4,755 01,02, 04,055 Pk—11,* s Pk—1n} Pk1:" " " > Pkn} Pd1s"** »Pdn-

Assuming that the coefficients above are equal to the coefficients of the polynomial of the de-
nominator of the public key, we have a system of non-linear equations. In this system of non-linear
equations, the number of unknown variables is given by

3(k+2)(k+1)

44443xn = 8+ : : (54)

Since r4(x) is a quartic polynomial having k variables, the number of terms Termy, 4 is given by

(k+4)(k +3)(k +2)(k +1)

Termy, = 4Cp = 1.3.2.1 (55)
Subtracting the equation (54) from the equation (55) gives
1
(55) — (54) = ﬂ(k‘1 + 10k® — k% — 58k — 240) > 0 (56)

for k > 4.

In r4(x), comparing the coefficients of the public key with ones represented by the unknown
variables +v;,d;,p;j, and pg; presents Termy 4 quartic equations with respect to +;,d;,pij, and pg;.
Thus, there is some possibility of determining ~;, §;, p;ij, and pg; by which r4() is represented.

However, if we set e.g. K =5 in the concrete, then

(Number of unknown variables) = 71, (57)
(Number of equations) = 126. (58)

Thus, in the case of £ = 5, we have to solve 126 quartic polynomial equations of 71 variables in order
to determine py—1 (), pi(x), pa(@), and Ago(ug—1,uk).

4.1.2 Determining the Core Transformation N(uj_1,u;) and the Bottom Two Rows of
the Matrix C~!

We assume that v;, 6;, pij, and pg; composing r4(x) are already found. Then py(x), pr—1(x), and pg(x)
are determined, and therefore u; and uy_1 are represented by expressions with respect to x.
First of all, multiplying the equation (39) by the inverse matrix C~! gives

Cly = =z (59)
Let the elements of C~! be denoted as follows:

/ /
Gr o O
e B (60)
/ /
k1 T Gk

We focus on the kth and (k — 1)th components of the equation (59). Then, by the equations (30) and
(31), we have

Agl(U]c—l uk)
! ! :

LR — 61
CriY1 + -+ CrpYk Aoy (up—1,ur)’ o
Ao (ug—1,ug)

/ ! :
... - : 62
Cp—11Y1 + -+ Cp_1Yk Aogo(ug—1,ug) ()
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Here, unknowns in Agj(ug_1,ug) and Agg(ug_1,ui) are ys,vs, 03, and dg.

Since uy and ug_1 is represented by expressions with respect to x, by substituting the public key
into y; in the equations (61) and (62) to obtain simultaneous equations with respect to x, we have
simultaneous equations with respect to 73,76, 03,063 Cj1r- 5 Chgs Ch_11>°** »C_1> Which are linear
with respect to €jq,-+ ,Chps Ch_110° " »Ch_1) and quadratic with respect to 73, v, d3, and dg. Thus,
we can determine the values of these coefficients.

Accordingly, there is some possibility of determining the bottom two rows of C~!, which is the
inverse matrix of the secret key C, the core transformation N (ug_1,ux), and the bottom two com-
ponents of u represented by the equations (41), based on the procedures shown in sections 4.1.1 and
4.1.2.

4.1.3 Determining ¢;; and C~!

Hereafter we assume that the above have been determined. Starting from the (k — 2)th row of N(u),
every row are determined sequentially as follows.

We first note that, from the equation (59), zx_o can be represented as a linear function of
Ch_9.15" " sCh_gx» Which are the elements in the (k — 2)th row of C~".

On the other hand, using the equation (34), zx_o is rewritten as

Rk—2 — YGk—2,k-—2Uk—2

g 2(u) - up o+ dio(u)
B Ago(ug—1,uk) ' (63)

Since it is assumed that Agg(ug—1,ux) has been found through the procedures shown in Section 4.1.1,
the unknowns in the equation (63) consist of three in c¢x_o(u), Termgo = 242 Cq in di_2(u), and
Termy 9 = 492 Co in zz_o. In the same manner as the above, by rewriting both z;_, represented by
6;9—2,17 e ,02_2,,6 and zj_o represented by the equation (63) as an expression with respect to & and
then comparing the respective coefficients, we have Termy 4 = ;44 C4 simultaneous equations, which
have degree two with respect to unknown variables.

(Number of unknown variables) = k+3+ 2:2Co+ f12Co

k% + 5k + 20

- EAoRan (64)

(Number of equations) = ,,4Cy

_ (k+4)(E+3)(k+2)(k+1) (65)

N 4-3-2-1 ’
1

(65) = (64) = (k' +10k" + 23k — 10k — 216) > 0 (66)

if k> 3.

Thus, since the number of equations is greater than the number of unknown variables, there is
some possibility of determining the values of the unknown variables.

If we set e.g. k = 5 in the concrete, then the values of (64) and (65) are 35 and 126, respectively, and
therefore 126 quadratic polynomial equations of 35 variables have to be solved in order to determine
gk—2k—2 and the (k — 2)th row of C 1.

If the (k — 2)th row of the second stage has been determined, then each row of G(u) can be
determined in the order of the (k — 3)th row, the (k — 4)th row, ---, the 1st row in the same manner.
The 1st row, which is determined at the last, has the largest number of unknown variables, and the



following hold for it:

(Number of unknown variables) = k+ (4_1)41 Cx—1+ (k—1)42 Ck—1+ k42 Ck
= K244k +1, (67)
1
(65) — (67) = ﬂ(k‘l + 10k% + 11k% — 46k) > 0 (68)

if £ > 2. Thus, the number of equations is greater than the number of unknown variables again, and
therefore there is some possibility of determining every row.

However, if we set e.g. k = 5 in the concrete, then the values of (67) is 46, and therefore 126
quadratic polynomial equations of 46 variables have to be solved in order to determine g;; and the
first row of C~1.

4.1.4 Reliability against the Coefficient Equivalence Method

Thus, there is some possibility of finding C, g;;, and N (ug_1,uy) of the second stage represented by
the equations (38) and (39), using the procedures shown in the above. However, in the case of k = 5,
126 quartic polynomial equations of 71 variables have to be solved in order to break our cryptosystem,
as shown in Section 4.1.1. On the other hand, since the public key of our cryptosystem is represented
by quartic rational expressions with respect to the plaintext x, five quartic equations of five variables
have only to be solved in order to obtain the plaintext & directly from the ciphertext y using the public
key. Therefore, by comparison, its computational complexity is thought to be smaller than that of the
cryptanalysis considered above. Thus our cryptosystem is thought to have sufficient reliability against
conventional attacks based on coefficient comparison.

If we set each parameter by the equations (45) to (47), then solving 126 quartic polynomial
equations of 71 variables in round-robin fashion requires

(28)71 ~ 10189 (69)

trials.

4.2 Attack by the Inversion Method

In this subsection we examine the reliability of the one-stage cryptosystem against the inversion
method rather than our original two-stage cryptosystem for simplicity. If the reliability of the one-
stage cryptosystem can be proven, then the reliability of the two-stage cryptosystem is also guaranteed
due to the nature of the inversion method.

The difference between our cryptosystem and the previous proposal is the use of the core trans-
formation. However, it is obvious from the construction that a cryptosystem consisting of only the
core transformation is vulnerable to attack by the inversion method. Thus the reliability of our cryp-
tosystem against the inversion method depends on the use of the sequential solution method, and
the combination of the sequential solution method and core transformation presents high reliability
against both the coefficient equivalence and inversion methods.

From the definition of decryption, vx_1 and vy have the following forms:

Linear function with respect to w (70)
Vpe1 = — . -
k=l Linear function with respect to w’

Linear function with respect to w (71)
v = . - . .
k Linear function with respect to w
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Let dDv; and dNwv; be the degrees of the polynomials of the denominator and numerator of v;,
respectively. Then we have

dDvi, = dNv, =1, (72)
dDUk_l = dNU]c_l =1. (73)

Next, from the definition of encryption, wy_o is given by

ap—2(v) - vp—2 + bp_2(v)
Wg_o9 = 74
ko2 A1o(Vk—1,Vk) (74)

where a;_o(v) is a linear function with respect to vg_1 and v, bg_o(v) is a quadratic function with
respect to vg_1 and vg, and Aqg(vg_1,v) is a quadratic function with respect to vx_; and vg. We
here solve the above equation with respect to vi_s to obtain

_ Ago(vg—1,vk) - wg—2 — bp—2(v)
Vg—2 = aki?(v) . (75)

Next, we rewrite the three rational expressions aj_o(v),br_2(v), and Ajg(vk_1,vx) as rational
expressions with respect to w and obtain

ap—2(v) = %, (76)
br—2(v) = ngz:zEZ§ , (77)
Aro(vk—1,v) = %- (78)

Let dDay_9,dDby_o, and dDA1y be the degrees of the polynomials of the denominators of the above
three expressions, respectively, and let dNag_o,dNby_o, and dNA1g be those of the numerators,
respectively. Then we have

dDap_» = 2, (79)
dNaj_y = 2, (80)
dDby_5 = 8, (81)
dNby_y = 8, (82)
dDAyy = 8, (83)
dANAy = 8. (84)

Thus, when vi_o is represented as a rational expression with respect to w, the degrees dDuvy_o
and dNwvy_9 of the polynomials of its denominator and numerator are given respectively by

dDv,_o = 18, (85)
dN'Uk-_Q = 19. (86)

In the same manner, we solve the following equation with respect to v;

_ai(v) - v; + bi(v)
Aqo(ve—1,vk)
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where a;(v) is a linear function with respect to v;y1,- - , vk, bj(v) is a quadratic function with respect
t0 Vit1, -+, Uk, and Agg(vg—1,vx) is a quadratic function with respect to vx_; and vg. Then we have
_ Agg(vg_1,v) - wi — bi(v)

V; = a; (’U) - (88)

Next, we rewrite the two rational expressions a;(v) and b;(v) as rational expressions with respect to
w and obtain

wl) = ot (59)
ho) = pri- (90)

Let dDa; and dDb; be the degrees of the polynomials of the denominators of the above two expressions,
respectively, and let dNa; and dINb; be those of the numerators, respectively. Then we have

k

dDa; = Y dDuvj, (91)
j=i+1

dNa; = dDav; + 1, (92)
k k-1 k-1

dDb; = Y 3dDvj+ » > (dDv;+dDuvy,), (93)
j=i+1 j=i+ln=j+1

dNb; = dDAqgv; + 1. (94)

Thus, when v; is represented as a rational expression with respect to w, the degrees dDv; and
dNwv; of the polynomials of its denominator and numerator are given respectively by

k k—1 k
dDv; = 9+ Y 4dDvj+ > Y (dDvj+ dDuvy), (95)
j=i+1 j=i+1ln=j+1
k k—1 k
dNv; = 10+ Y 4dDvj+ » > (dDvj+dDuvy). (96)
Jj=i+1 j=i+1n=j+1

Since the transformation between the vectors w and y is linear, when the intermediate vector v is
represented as a rational expression with respect to the ciphertext y instead of w, the degrees of the
polynomials of the denominator and numerator do not change.

Finally, by taking the linear combinations of these v; (1 < ¢ < k), we see that the degrees of
rational expressions representing the plaintext x; in terms of the ciphertext y are given by

k

dDz; = Y _dDuvj, (97)
7j=1

dNz; = dDx;+ 1. (98)

Table 1 shows the results given by calculating the above values and counting the total number,
Term, of terms in polynomials of the denominator and numerator.

In the above, we have examined the reliability of the one-stage construction. Although our cryp-
tosystem is really proposed based on the two-stage construction at the present time, the degree of
its inverse transformation is higher than the values shown in Table 1. Thus, the reliability of our
cryptosystem against the inverse method is guaranteed.
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k dDzx Term

4 149 4.448 x 107
5 1201 4.225 x 1013
6 10818 4.462 x 102!

Table 1: The number of variables in our cryptosystem and the number of unknown variables in the
inverse expression.

5 Properties

Table 2 shows the lengths of the public and secret keys of our cryptosystem when each parameter is
set by the equations (45) to (47).

k s Public Key (kbit) Secret Key (kbit)
5 8 6.05 1.48
6 8 11.76 2.18

Table 2: The lengths of the public and secret keys.

6 Conclusions

In this paper, we have proposed the cryptosystem obtained by incorporating the core transformation
into a cryptosystem which is based on the sequential solution method for a system of non-linear equa-
tions, and have described its properties. Since the encryption and decryption of our cryptosystem are
carried out on GF(2?), their computational complexities are O(¢2). Compared with the previous pro-
posal, the computational complexities in our cryptosystem are a little complex regarding the number
k of variables. It is not obvious that the computational complexity for the plaintext of length m is
simply O(m?). However, if we use a parallel processing, a relatively high-speed transformation can be
achieved. For example, if a CMOS is used, the transmission of Mbits/s orders seems to be achieved.

A public-key cryptosystem may make little sense unless it is equivalent to a problem, such as
prime factorization, which is thought to be difficult from mathematical point of view. However, it
seems meaningful to pursue a safer cryptosystem based on our cryptosystem if demand for high-speed
processing is taken into consideration. In order to put our cryptosystem to practical use in the future,
we will make its reliability higher. We would greatly appreciate any criticisms and suggestions from
cryptographic researchers.
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