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Abstrat

In a distributed ring signature sheme, a subset of users ooperate to om-

pute a distributed anonymous signature on a message, on behalf of a family of

possible signing subsets. The reeiver an verify that the signature omes from

a subset of the ring, but he annot know whih subset has atually signed.

In this work we use the onept of dual aess strutures to onstrut a

distributed ring signature sheme whih works with general families of possi-

ble signing subsets. The length of eah signature is linear on the number of

involved users, whih is desirable for some families with many possible signing

subsets. The sheme ahieves the desired properties of orretness, anonymity

and unforgeability. The redution in the proof of unforgeability is tighter than

the redution in the previous proposals whih work with general families.

We analyze the ase in whih our sheme runs in an identity-based senario,

where publi keys of the users an be derived from their identities. This fat

avoids the neessity of digital erti�ates, and therefore allows more eÆient

implementations of suh systems. But our sheme an be extended to work in

more general senarios, where users an have di�erent types of keys.

1 Introdution

In standard publi key ryptosystems, the publi keys of the users must be authen-

tiated via a Publi Key Infrastruture (PKI) based on digital erti�ates, whih

link the identities of the users with their publi keys. This fat makes the use of

ryptographi protools less eÆient in the real life.

Shamir introdued in 1984 the onept of identity-based (from now on, ID-based)

ryptography [19℄. The idea is that the publi key of a user an be publily omputed

from his identity (for example, from a omplete name, an e-mail or an IP address).

In this way, digital erti�ates are not neessary, beause anyone an easily verify

that some publi key PK

U

orresponds in fat to user U . Then, the seret key is

derived from the publi key in a proess exeuted by an external entity, known as

the master. Thus, the master knows the seret keys of all the users of the system. A
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way to relax this negative point ould be to onsider a set of master entities whih

share the seret information.

A lear example of ryptographi shemes where the use of digital erti�ates dra-

matially dereases the eÆieny of the implementation are ring signature shemes,

beause of the number of publi keys that an be involved in any basi operation

(signature and veri�ation). In a ring signature sheme, an entity signs a message

on behalf of a set of members that inludes himself. The veri�er of the signature is

onvined that it was produed by some member of the set, but he does not obtain

any information about whih spei� member atually signed.

The onept of ring signatures was formally introdued in [17℄. After that, many

proposals of ring signature shemes have been published [4, 1, 24, 11, 8, 13℄, for both

PKI and ID-based senarios.

We onsider in this work an extension of the onept of ring signature, that we

all distributed ring signature shemes. Suppose that a subset of users A want to

sign some message with a ertain anonymity. Members of A freely hoose the other

users to omplete the whole set of users P, and then they hoose (in an ad-ho way)

a family of subsets U � 2

P

, whih will ontain the possible signing subsets. Using

their seret keys and the publi keys of the rest of users, members of A produe

a distributed ring signature. The veri�er will be onvined that at least all the

members of some subset in U have ooperated to ompute the signature, but he

will not have any information about whih subset in U is the atual author of the

signature.

Distributed ring signature shemes were �rst onsidered in [4℄. Their spei�

RSA-based sheme runs only when the ad-ho families U are neessarily threshold

(that is, they ontain all the subsets with a spei� number of users). Other pro-

posals that only admit threshold an be found in [23℄, allowing the use of di�erent

types of PKI keys (RSA, based on Disrete Logarithm...) and in [7℄ for an ID-based

framework. With respet to shemes running with more general families U , the two

only proposals have appeared in [12℄, for senarios based on Disrete Logarithm

keys, and in [13℄, for ID-based senarios. However, these two proposals are not very

eÆient for some families U , for example if they ontain a lot of subsets.

In this work we propose a new sheme for omputing distributed ring signatures

on behalf of general families of possible signing subsets. With respet to the two

aforementioned shemes [12, 13℄, the length of a signature in the new sheme is linear

in the number of involved users, and not linear in the number of possible signing

subsets. This is desirable for some families, for example threshold families, multi-

partite families, et. The onstrution uses the ombinatorial onept of dual aess

struture, and generalizes the threshold proposals in [23, 7℄. We �rst explain, for

larity, the partiular ase where all users have ID-based keys with ommon param-

eters. We prove that the resulting sheme ahieves anonymity and unforgeability in

the random orale model, assuming that the Computational DiÆe-Hellman problem

is hard to solve. Finally, we detail how the sheme an be extended to work in more

general senarios, where users an have di�erent types of keys (either PKI-based or

ID-based) with di�erent lengths, using tehniques similar to those in [1, 23℄. The

obtained redution in the proof of the unforgeability of the sheme is tighter than
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the redutions obtained in [12, 13℄.

2 Preliminaries

In this setion we review some tools and onepts that will be neessary in the design

and analysis of our new distributed ring signature sheme.

2.1 Bilinear Pairings

Let G

1

be an additive group of prime order q, generated by some element P . Let

G

2

be a multipliative group with the same order q.

A bilinear pairing is a map e : G

1

�G

1

! G

2

with the following three properties:

1. It is bilinear, whih means that given elements A

1

; A

2

; A

3

2 G

1

, we have

that e(A

1

+ A

2

; A

3

) = e(A

1

; A

3

) � e(A

2

; A

3

) and e(A

1

; A

2

+ A

3

) = e(A

1

; A

2

) �

e(A

1

; A

3

).

2. The map e an be eÆiently omputed for any possible input pair.

3. The map e is non-degenerate: there exist elements A

1

; A

2

2 G

1

suh that

e(A

1

; A

2

) 6= 1

G

2

.

In partiular, property 1 implies that e(aP; bP ) = e(P; P )

ab

= e(P; abP ) =

e(abP; P ), for all a; b 2 Z

q

. This implies e(A

1

; A

2

) = e(A

2

; A

1

), for all A

1

; A

2

2 G

1

.

Combining properties 1 and 3, it is easy to see that e(P; P ) 6= 1

G

2

and that the

equality e(A

1

; P ) = e(A

2

; P ) implies that A

1

= A

2

.

The typial way of obtaining suh pairings is by deriving them from the Weil

or the Tate pairing on an ellipti urve over a �nite �eld. The interested reader is

referred to [25℄ for a omplete bibliography of ryptographi works based on pairings.

2.2 The Computational DiÆe-Hellman Problem

We onsider the following well-known problem in the additive group G

1

of prime

order q, generated by P :

De�nition 1. Given the elements P , aP and bP , for some random values a; b 2 Z

�

q

,

the Computational DiÆe-Hellman problem onsists of omputing the element abP .

The Computational DiÆe-Hellman Assumption asserts that, if the order of G

1

is q � 2

k

, then any polynomial time algorithm that solves the Computational DiÆe-

Hellman problem has a suess probability p

k

whih is negligible in the seurity

parameter k. In other words, for all polynomial f(), there exists an integer k

0

suh

that p

k

<

1

f(k)

, for all k � k

0

.

The seurity of the ID-based distributed ring signature sheme that we propose

in this work is based on the Computational DiÆe-Hellman Assumption.
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2.3 The Splitting Lemma

We �rst state a well-known lemma that we will use in a seurity proof of this paper.

A proof of this lemma an be found, for example, in [16℄.

Lemma 1. (The Splitting Lemma) Let A � X�Y be a set verifying that Pr [(x; y) 2 A℄ �

�. For any � < �, let us de�ne

B = f(x; y) 2 X � Y j Pr

y

0

2Y

�

(x; y

0

) 2 A

�

� �� �g and

�

B = (X � Y )nB:

Then the following statements hold:

1. Pr [B℄ � �.

2. for any (x; y) 2 B, Pr

y

0

2Y

[(x; y

0

) 2 A℄ � �� �.

3. Pr [BjA℄ � �=�.

2.4 The Random Orale Model

Bellare and Rogaway introdued in [3℄ a paradigm that makes easier the task of

proving the seurity of some ryptographi shemes. This paradigm is the random

orale model. In this model, hash funtions are seen as orales that produe a truly

random value for eah new input. Obviously, if the same input is asked twie, then

the outputs must be idential.

The random orale model is unreal, beause any instantiation of a hash funtion

is in fat a deterministi funtion. Although there are some theoretial works whih

ritiize the paradigm of the random orale model [6, 15, 2℄, it is widely believed

that proofs in this model guarantee the seurity of the overall ryptographi sheme,

provided the employed hash funtion has no weakness.

All the seurity results that we prove in this work are valid in the random orale

model.

2.5 Aess Strutures and their Duals

Some of the onepts that we are going to present arise from the theory of seret

sharing shemes. For a survey on this �eld see [22℄. Let us suppose that the subset

of users is P. We are going to onsider digital signatures where a subset of users sign

on behalf of a family of subset of users. An aess struture � � 2

P

is a monotone

inreasing family of subsets of users verifying that, for any A

1

2 � and A

2

� P suh

that A

1

� A

2

, then A

2

2 �. Therefore, an aess struture an be determined by the

family �

0

� � of minimal subsets in �, whih is alled the basis of �. For an arbitrary

family of subsets U � 2

P

the losure of U is the minimum monotone aess struture

that ontains U , that is l(U) = fA � P : there exists B 2 U suh that B � Ag.

Of ourse for a monotone aess struture � we have � = l(�

0

).

We will assume that the families of subsets U onsidered in this work are in some

way normalized: there do not exist two subsets A;B 2 U suh that A � B. In this

ase, it is easy to see that (l(U))

0

= U ; that is, U is the basis of its losure.
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For an aess struture �, the dual of � is de�ned as �

�

= fP � A : A 62 �g

and it is also a monotone aess struture (see [14℄ for more details on dual aess

strutures). A basi property of the dual is that (�

�

)

�

= �; it is also easy to see, by

the de�nition of �

�

, that A 2 �

0

if and only if P �A is a maximal subset verifying

P �A 62 �

�

.

A useful family of monotone aess strutures is the vetor spae aess struture

due to Brikell [5℄. Let � be an aess struture on a set of partiipants P and D =2 P

a speial partiipant alled the dealer. � is said to be a vetor spae aess struture

if, for some vetor spae GF (q)

r

over a �nite �eld GF (q), there exists a funtion

 : P [ fDg �! GF (q)

r

suh that A 2 � if and only if the vetor  (D) an be expressed as a linear om-

bination of the vetors in the set  (A) = f (U) j U 2 Ag. An example of ve-

tor spae aess struture are threshold aess struture, introdued by Shamir in

his seminal paper on seret sharing [18℄. These aess strutures are de�ned as

� = fA � P : jAj � tg where t is the threshold. In e�et, threshold aess stru-

tures are vetor spae aess strutures onsidering  : P[fDg �! GF (q)

t

de�ned

by  (D) = (1; 0; : : : ; 0) and  (U

i

) = (1; i; i

2

; : : : ; i

t�1

) where P = fU

1

; U

2

; : : : ; U

`

g.

It is not diÆult to prove [14℄ that, if � is a vetor spae aess struture, then

�

�

is also a vetor spae aess struture.

Not all the aess strutures an be expressed as vetor spae aess strutures.

Simmons, Jakson and Martin [21℄ proved that any aess struture � an be in

fat expressed in a similar way where every partiipant an be assoiated with more

than one vetor. The onstrution that they presented is based on the use of the

dual aess struture and it is as follows. Let us suppose that the struture � is suh

that (�

�

)

0

= fA

1

; : : : ; A

d

g, then  assigns vetors in GF (q)

d

in the following way:

 (D) = (1; 0; : : : ; 0) and  (U) = f(1; i; i

2

; : : : ; i

d�1

) : U 2 A

i

g for any user U 2 P.

This assignment  realizes the aess struture �.

3 Distributed Ring Signatures

A distributed ring signature sheme onsists of three protools:

1. Key generation. This protool is exeuted individually by eah user U

i

of

the system. The input is a seurity parameter and (possibly) some publi

parameters, ommon to all the users of the system. The output onsists of a

publi key PK

i

, that the user U

i

makes publi, and a seret key SK

i

, that U

i

keeps seret. In ID-based senarios, this protool is exeuted with the help of

a master entity.

2. Distributed ring signature generation. Suppose users in a subset A want

to ompute a ring signature on a message m on behalf of a family U of d

subsets, suh that A 2 U . Then members of A jointly exeute this protool,

taking as input the message m, the publi keys of all users inluded in the

family U and their own seret keys fSK

j

g

U

j

2A

. The output is a signature �.
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3. Veri�ation of a distributed ring signature. The reipient of a dis-

tributed ring signature heks its validity by running this protool. It takes as

input the message m, the signature � and the publi keys of all the users in U .

The output is 1 if the signature is valid, and 0 if it is invalid.

Note that distributed ring signature shemes are related to standard distributed

(or threshold) signature shemes [10, 20℄. In both ases, the reipient of the signature

is onvined that all the users in some subset of a spei� family have jointly signed

the message, but he does not know whih is the signing subset. The two main

di�erenes between these two types of signatures are the following: (i) in standard

distributed signatures, the family of possible signing subsets is �xed a priori for all

the life of the system (it is alled the aess struture of the sheme), whereas in

ring signatures it is hosen ad-ho by the signing users, just before signing; (ii) in

standard shemes, there is a unique publi key for the whole set of users, and the

mathing seret key is shared among them, whereas in distributed ring shemes,

eah user has his own publi and seret keys, that an be used as well for other

purposes.

With respet to the distributed ring signature shemes proposed until now, either

they work only for threshold families, whih ontain all the subsets with a spei�

number of users [4, 23, 7℄, or they admit more general families [12, 13℄ but are not

very eÆient when the number of subsets in the family is very large.

3.1 Seurity Requirements

A distributed ring signature sheme must satisfy three properties, that we informally

desribe below.

1. Corretness: if a distributed ring signature is generated by properly following

the protool, then the result of the veri�ation is always 1.

2. Anonymity: any veri�er should not have probability greater than 1=d to

guess the identity of the subset whih has atually omputed a distributed

ring signature on behalf of a signing family whih ontains d subsets.

3. Unforgeability: among all the proposed de�nitions of unforgeability, we on-

sider the strongest one, existential unforgeability against adaptive hosen mes-

sage attaks, adapted to the senario of distributed ring signatures. Roughly

speaking, an attaker should not be able to obtain a valid distributed ring

signature for a message m and a family of possible signing users U , unless he

has already asked for a valid signature for this pair (m;U) or he has orrupted

all the users of some of the subsets in U .

4 The New Proposal

We next propose a new sheme for omputing distributed ring signatures, whih

works with general families of possible signing subsets. The proposal is based on
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the onept of dual aess struture, and extends the sheme designed in [23℄ for

the threshold ase. We explain and analyze in this setion, for larity, the partiular

version where all users have ID-based keys with ommon parameters. In Setion 6,

we detail how the sheme an be extended to separable senarios where users have

independent keys (either PKI-based or ID-based, with di�erent sizes, ...).

The protools of our proposed sheme are desribed below.

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipliative group with the same order q. We need

q � 2

k

, where k is the seurity parameter of the sheme. Let e : G

1

� G

1

! G

2

be a

bilinear pairing as de�ned in Setion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

!

Z

q

be two hash funtions.

The master entity hooses at random his seret key x 2 Z

�

q

and publishes the

value Y = xP .

Seret key extration: any user U

i

of the system, with identity ID

i

(whih an

be an IP or e-mail address, for example), has publi key PK

i

= H

1

(ID

i

). When he

requests the master for his mathing seret key, he obtains the value SK

i

= xPK

i

.

Distributed ring signature generation: assume that a subset of users A

want to ompute an anonymous signature on behalf of a family U � 2

P

of possible

signing subsets, taken over a set P = fU

1

; : : : ; U

`

g of ` users. Users in A hoose the

family U in an ad-ho way, with the only ondition that A 2 U . We will onsider

that any spei� set of users an always have aess to a private and authentiated

broadast hannel; this an be ahieved, for example, by using broadast enryption

shemes [9℄.

For simpliity, we will assume that l(U) is a vetor spae aess struture. In

this ase, we onsider � = (l(U))

�

, whih is also a vetor spae aess struture:

there exist a positive integer r and a mapping  : P [ fDg ! Z

r

q

suh that B 2 � if

and only if  (D) 2 hf (U

i

)g

U

i

2B

i. Our onstrution an be easily extended to the

ase of more general aess strutures, where the mapping  assigns possibly more

than one vetor to some users. For example, a generi solution would be to use the

onstrution of Simmons et al. [21℄: if U = fA

1

; : : : ; A

d

g, then  assigns vetors in

GF (q)

d

in the following way:  (D) = (1; 0; : : : ; 0) and  (U) = f(1; i; i

2

; : : : ; i

d�1

) :

U 2 A

i

g for any user U 2 P. This assignment  realizes the aess struture

� = (l(U))

�

.

We assume that the family U is normalized, so U = (l(U))

0

. Therefore, we have

that A 2 (l(U))

0

. This means that P �A =2 �, and is maximal with respet to the

inlusion, meaning that (P �A) [ fU

j

g 2 � for any user U

j

2 A.

The signing users in A exeute the following protool to ompute a valid dis-

tributed signature on a message m 2 f0; 1g

�

:

1. They onsider a basis of the subspae h (P � A)i. This basis orresponds

to some subset of users C � P � A; that is, vetors in  (C) are linearly

independent and h (C)i = h (P �A)i.

2. For every user U

i

2 C, the signing users hoose uniformly at random 

i

2 Z

q
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and R

i

2 G

1

; they ompute and broadast the value

z

i

= e(R

i

; P ) � e(Y; 

i

PK

i

):

3. For users U

t

2 (P � A) � C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), for some

�

it

2 Z

q

, beause  (C) is a basis of h (P � A)i. The signing users hoose

uniformly at random R

t

2 G

1

and onsider 

t

=

P

U

i

2C

�

it



i

; they ompute

and broadast the value

z

t

= e(R

t

; P ) � e(Y; 

t

PK

t

):

4. Eah signing user U

j

2 A hooses uniformly at random T

j

2 G

1

; he omputes

and broadasts the value

z

j

= e(T

j

; P ):

5. The signing users ompute then the value  = H

2

(U ;m; z

1

; : : : ; z

`

).

6. They hoose uniformly at random one of the vetors v 2 Z

r

q

that veri�es:

(i) v (D) = , and

(ii) v (U

i

) = 

i

, for all U

i

2 C.

Note that this vetor v exists beause C =2 � and so the vetors f (D); f (U

i

)g

U

i

2C

g

are linearly independent.

7. Every signing user U

j

2 A individually omputes 

j

= v (U

j

); then he om-

putes and broadasts the value

R

j

= T

j

� 

j

SK

j

:

Note that the rest of users in A an verify that this value R

j

is onsistent with

the value z

j

broadast in step 4, by heking if z

j

= e(R

j

; P ) � e(Y; 

j

PK

j

). In

this way, they detet dishonest users who try to boyott the proess.

8. The resulting signature is (U ;m;v; R

1

; : : : ; R

`

;  ).

Note that the length of the signature is linear with respet to the number ` of

users.

Veri�ation of a distributed ring signature: the reipient of the message

�rst omputes 

i

= v (U

i

), for every user U

i

2 P and then omputes the values

z

i

= e(R

i

; P ) � e(Y; 

i

PK

i

):

The signature is valid if v (D) = H

2

(U ;m; z

1

; : : : ; z

`

).

5 Analysis of the Sheme

In this setion we prove that our new sheme satis�es the three required properties

for distributed ring signature shemes: orretness, anonymity and unforgeability.

The two last properties are proved to be ahieved in the random orale model.
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5.1 Corretness of the Sheme

We show that a signature that has been generated following the above method is

always valid. The vetor v in the signature satis�es

(i) v (D) = , and

(ii) v (U

i

) = 

i

, for all U

i

2 C.

Therefore, for users U

i

in the set C, we have that 

i

= v (U

i

) and z

i

= e(R

i

; P ) �

e(Y; 

i

PK

i

).

For users U

t

2 (P �A)�C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), by de�nition

of the set C. This implies that



t

=

X

U

i

2C

�

it



i

=

X

U

i

2C

�

it

v (U

i

) = v (U

t

):

And z

t

= e(R

t

; P ) � e(Y; 

t

PK

t

) for these users, as well.

Finally let us onsider users U

j

2 A. By onstrution, the equality 

j

= v (U

j

)

is also satis�ed. Note that these values are independent of the hoie of the vetor

v, as long as it satis�es the two required onditions. In e�et, as far as h (C)i =

h (P �A)i and P �A is maximal verifying P �A 62 �, then C [ fU

j

g 2 �, for any

user U

j

2 A. So there exist oeÆients �

j

and f�

ji

g

U

i

2C

satisfying

 (D) =

X

U

i

2C

�

ji

 (U

i

) + �

j

 (U

j

)

where �

j

6= 0. From this equality we an derive



j

= v (U

j

) = �

�1

j

0

�

v (D) �

X

U

i

2C

�

ji

v (U

i

)

1

A

= �

�1

j

0

�

�

X

U

i

2C

�

ji



i

1

A

;

whih does not depend on the spei� vetor v.

Furthermore, for users U

j

2 A we have that

z

j

= e(T

j

; P ) = e(R

j

+

j

SK

j

; P ) = e(R

j

; P )�e(

j

xPK

j

; P ) = e(R

j

; P )�e(

j

PK

j

; Y );

as desired.

Therefore, for all users U

i

in P we have that 

i

= v (U

i

) and z

i

= e(R

i

; P ) �

e(Y; 

i

PK

i

), and so the orretness of the signature is veri�ed beause v (D) =  =

H

2

(U ;m; z

1

; : : : ; z

`

).

5.2 Anonymity of the Sheme

Given a valid distributed ring signature Sig = (U ;m;v; R

1

; : : : ; R

`

;  ) on behalf of

a family of subsets of users U , the probability that a partiular subset B 2 U is

the author of this signature an be exatly omputed. If the full set of users is P,

we know that  : P [ fDg ! Z

r

q

is a mapping whih de�nes the aess struture

9



� = (l(U))

�

. Sine B 2 U = (l(U))

0

, we have that P � B =2 �. Let C � P � B

be a subset of users suh that h (C)i = h (P � B)i and suh that the vetors in

f (U

i

)g

U

i

2C

are linearly independent. Sine C =2 �, we have that the set of vetors

f (D); f (U

i

)g

U

i

2C

g are linearly independent in Z

r

q

. Therefore, the number of users

in C is ! = jCj � r � 1.

Consider the values  = v (D) and 

i

= v (U

i

), for all users U

i

2 C. The

probability that users in B hoose these values f

i

g

U

i

2C

in step 2 of the signing

protool is exatly 1=q

!

. Later, the value  is the output of the hash funtion

H

2

. If we assume that this hash funtion behaves as a random orale, then the

probability that users in B obtain this value  in step 5 of the protool is exatly

1=q, independently of the inputs taken by the hash funtion.

After that, users in B would hoose at random one vetor among the solutions

of the system of equations Mx = b, where

M =

0

B

B

B

�

� � �  (D) � � �

� � �  (U

i

1

) � � �

.

.

.

.

.

.

.

.

.

� � �  (U

i

!

) � � �

1

C

C

C

A

b =

0

B

B

B

�





i

1

.

.

.



i

!

1

C

C

C

A

;

if we denote C = fU

i

1

; : : : ; U

i

!

g.

The number of di�erent vetors in Z

r

q

whih are solution of this system is q



,

where  = dim(kerM) = r � dim(ImM) = r � (! + 1). Therefore, the probability

that users in B hoose in step 6 of the protool the vetor v that appears in Sig is

exatly 1=q



.

The probability that members of B hoose, in steps 2 and 3 of the signing

protool, the values fR

i

g

U

i

=2B

that appear in Sig and, in step 4, the values fT

j

g

U

j

2B

that lead to the values fR

j

g

U

j

2B

in Sig is exatly equal to 1=q

`

.

Summing up, the probability that users in B obtain the signature Sig when they

exeute the signing protool is exatly

1

q

!

�

1

q

�

1

q



�

1

q

`

=

1

q

!+1++`

=

1

q

r+`

;

whih does not depend on B and so is the same for all the subsets in the family

U . This proves that the sheme is unonditionally anonymous, in the random orale

model for the hash funtion H

2

.

5.3 Unforgeability of the Sheme

We will analyze the exat unforgeability of our sheme, that measures all the re-

soures and performanes of an adversary against it. The analysis is done in the

random orale model.

Suh an adversary is allowed to adaptively orrupt up to Q

e

users, obtaining

their seret keys. The adversary an also make Q

1

queries to the random orale

H

1

and Q

2

queries to the random orale H

2

. Finally, the adversary an require the

exeution of the signing algorithm for Q

s

pairs of messages and families of subsets

that it adaptively hooses, obtaining a valid distributed ring signature for eah query.

10



We say that this adversary is (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful if it obtains in time

T and with probability " a valid ring signature for some message m and some family

of subsets U , suh that:

(i) the pair formed by the message m and the family U has not been asked to the

signing orale during the attak; and

(ii) all the subsets in the family U ontain at least one user who has not been

orrupted by the adversary.

Finally, we say that a distributed ring signature sheme is (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-

unforgeable if there does not exist any (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful adversary

against it.

In the following theorem, we relate the unforgeability of our sheme to the diÆ-

ulty of solving the Computational DiÆe-Hellman problem.

Theorem 1. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-suessful adversary against the pro-

posed ID-based ring signature sheme, suh that the suess probability " of A is non-

negligible in the seurity parameter k � 9, and suh that Q

s

�

2

k=2

4

and Q

2

�

2

k=2

3

.

Then the Computational DiÆe-Hellman problem in G

1

an be solved with prob-

ability "

0

�

"

2

385Q

e

Q

2

and in time T

0

� 2T + 2Q

1

+ 2Q

2

+ 2T

 

Q

s

, where T

 

is the

expeted time to perform some omputations related to the aess struture de�ned

by the assignment of vetors  .

Proof. We are going to onstrut a probabilisti polynomial time Turing mahine F

whih will use the attaker A as a sub-routine in order to solve the given instane of

the Computational DiÆe-Hellman problem. Therefore, F must perfetly simulate

the environment of the attaker A.

The mahine F reeives the publi data (P; aP; bP ), and its goal is to ompute

the value abP . The publi key of the master entity is de�ned to be Y = aP . Then F

runs the attaker A against the threshold ID-based ring signature sheme, answering

to all the queries that A makes. The publi key Y = aP is also sent to the attaker

A.

Without loss of generality, we an assume that A asks the random orale H

1

for

the value H

1

(ID) before asking for the seret key of ID.

Let us de�ne � = (5=6)

1=Q

e

(we assume Q

e

� 1; otherwise, we would take � = 0).

The mahine F onstruts a table TAB

H

1

to simulate the random orale H

1

.

Every time an identity ID

i

is asked by A to the orale H

1

, the mahine F ats as

follows: �rst F heks if this input is already in the table; if this is the ase, then F

sends to A the orresponding relation H

1

(ID

i

) = PK

i

. Otherwise, with probability

�, the mahine F hooses the bit d

i

= 0 and a di�erent x

i

2 Z

�

q

at random, and

de�nes PK

i

= x

i

P and SK

i

= x

i

Y ; the new entry (ID

i

; PK

i

; x

i

; SK

i

; d

i

) is stored in

the table TAB

H

1

. On the other hand, with probability 1��, the mahine F hooses

the bit d

i

= 1 and a di�erent �

i

2 Z

�

q

at random, and de�nes PK

i

= (�

i

)bP (in this

ase F does not know the seret key for this identity). The values (ID

i

; PK

i

; �

i

; d

i

)

are stored in a new entry of TAB

H

1

, and the relation H

1

(ID

i

) = PK

i

is sent to A.

11



The ondition PK

i

6= PK

j

must be satis�ed for all the di�erent entries i 6= j of the

table; if this is not the ase, the proess is repeated for one of these users.

Sine we are assuming that H

1

behaves as a random funtion, and the values

PK

i

are all randomly hosen, this simulation of the hash funtion H

1

is onsistent.

Later, every time A asks for the seret key orresponding to an identity ID

i

, the

mahine F looks for ID

i

in the table TAB

H

1

. If d

i

= 0, then F sends SK

i

= x

i

Y

to A. If d

i

= 1, the mahine F annot answer and halts. The probability that F

halts in this proess is less than 1� �

Q

e

= 1=6.

As well, F onstruts a table TAB

H

2

to simulate the random orale H

2

. Every

time A makes a query to this orale, F looks for this value in the table. If it is

already there, then F sends the orresponding relation to A; if not, F hooses at

random an output of the random orale for the queried input, di�erent from the

outputs whih are already in the table, sends the relation to A and stores it in the

table TAB

H

2

.

Finally, the attaker A an ask Q

s

times for valid distributed ring signatures for

messages m

0

and families of subsets U

0

, where the full set of `

0

users is P

0

. To answer

suh queries, the mahine F proeeds as follows:

1. De�ne � = (l(U))

�

; then �nd a mapping  

0

: P

0

[fDg ! Z

r

0

q

suh that B 2 �

if and only if  

0

(D) 2 h 

0

(B)i. Then hoose a subset A 2 U ; onsider a basis

of the subspae h 

0

(P

0

� A)i. This basis orresponds to some subset of users

C � P

0

�A.

2. For every user U

i

2 C, hoose uniformly at random 

0

i

2 Z

q

. Choose uniformly

at random a value 

0

2 Z

q

.

3. Choose at random a vetor v

0

among the set of vetors v satisfying v 

0

(D) = 

0

and v 

0

(U

i

) = 

0

i

for all users U

i

2 C.

4. For users U

j

2 P

0

� C, ompute the values 

0

j

= v

0

 

0

(U

j

).

5. Choose at random `

0

values R

0

1

; : : : ; R

0

`

0

2 G

1

, one for eah user in P

0

.

6. Compute, for i = 1; : : : ; `

0

, the values z

0

i

= e(R

0

i

; P ) � e(Y; 

0

i

PK

i

).

7. Impose and store in the table TAB

H

2

the new relation H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) =



0

.

8. De�ne the signature to be (U

0

;m

0

;v

0

; R

0

1

; : : : ; R

0

`

0

;  

0

).

In eah simulation, the mahine F must �nd a suitable assignment  , hoose at

random some values, then hoose a vetor v, perform `

0

evaluations of the bilinear

pairing, et. We denote as T

 

a bound for the expeted time neessary for performing

all these tasks.

The proess results in a valid distributed ring signature, beause we are assuming

that H

2

behaves as a random funtion, and 

0

is taken uniformly at random in Z

q

.

However, the assignment H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) = 

0

an produe some ollisions in

the management of the table TAB

H

2

that simulates the random orale H

2

.
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A �rst possible ollision ours if a tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) produed in the

simulation of a signature has been already queried to the random orale H

2

. The

probability of this event is less than

Q

s

Q

2

q

� 1=12.

A seond possible ollision ours when the same tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) is

produed in two di�erent signature simulations. The probability of this event is less

than

Q

2

s

2q

� 1=12.

We denote by ! the whole set of random tapes that take part in an attak by

A, with the environment simulated by F , but exluding the randomness related to

the orale H

2

. The suess probability of A in forging a valid ring signature sheme

is then taken over the spae (!;H

2

).

In an exeution of the attaker A, we use the notation Q

1

;Q

2

; : : : ;Q

Q

2

for the

di�erent queries that A makes to the random orale H

2

. If A produes a valid

forged signature (U ;m;v; R

1

; : : : ; R

`

;  ), by the ideal randomness of the orale H

2

,

the probability that A has not asked to this orale for the orresponding tuple

(U ;m; z

1

; : : : ; z

`

), and so A must have guessed the orresponding output, is less

than

1

q

. We de�ne � =1 in this ase; otherwise, � denotes the index of the query

where the tuple above was asked. That is, Q

�

= (U ;m; z

1

; : : : ; z

`

).

We denote by S the set of suessful exeutions of A, with F simulating its

environment, and suh that � 6= 1. We also de�ne the following subsets of S: for

every i = 1; 2; : : : ; Q

2

, the set S

i

ontains the suessful exeutions suh that � = i.

This gives us a partition fS

i

g

i=1;:::;Q

2

of S in exatly Q

2

lasses.

The probability that an exeution (!;H

2

) of A with the environment simulated

by F results in a valid forgery with � 6=1 is

~" = Pr[(!;H

2

) 2 S℄ � "

�

1�

1

q

��

1� (1� �

Q

e

)�

Q

s

Q

2

q

�

Q

2

s

2q

�

�

� " �

3

4

�

�

1�

1

3

�

=

"

2

:

Now we de�ne the set of indexes whih are more likely to appear as

I = fi s.t. Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

1

2Q

2

g:

And the orresponding subset of suessful exeutions as S

I

= f(!;H

2

) 2 S

i

s.t.

i 2 Ig.

For a spei� index i 2 I, we have that

Pr[(!;H

2

) 2 S

i

℄ = Pr[(!;H

2

) 2 S℄ � Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

� ~" �

1

2Q

2

:

Lemma 2. It holds that Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ � 1=2.

Proof. Sine the sets S

i

are disjoint, we have

Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ =

X

i2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ =

13



1�

X

i=2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄:

Sine the omplement of I ontains at most Q

2

indexes, we have that this probability

is greater than 1�Q

2

�

1

2Q

2

= 1=2.

We ome bak to the exeution of A with the environment simulated by F .

With probability at least ~", suh an exeution (!;H

2

) results in a valid forgery with

� 6= 1. In this ase, applying Lemma 2, we know that this suessful exeution

belongs to S

I

with probability at least 1=2.

Now we split H

2

as (H

0

2

; ), where H

0

2

orresponds to the answers of all the

queries to H

2

exept the query Q

�

, whose answer is denoted as .

We apply the Splitting Lemma (Lemma 1), taking X = (!;H

0

2

), Y = , A = S

�

,

Æ =

~"

2Q

2

and � =

~"

4Q

2

. The lemma says that there exists a subset of exeutions 


�

suh that

Pr[(!;H

2

) 2 


�

j (!;H

2

) 2 S

�

℄ �

�

Æ

=

1

2

and suh that, for any (!;H

2

) 2 


�

:

Pr

~

[(!;H

0

2

; ~) 2 S

�

℄ � Æ � � =

~"

4Q

2

:

With probability at least

~"

2

, the �rst exeution (!;H

0

2

; ) of A simulated by F is

suessful and the index � belongs to the set I. Furthermore, in this ase we have

that (!;H

0

2

; ) 2 


�

with probability at least 1=2. If we now repeat this simulated

exeution of A with �xed (!;H

0

2

) and randomly hosen ~ 2 Z

q

, we know that

(!;H

0

2

; ~) 2 S

�

and furthermore ~ 6=  with probability at least

~"

4Q

2

�

1�

1

q

�

�

~"

5Q

2

(beause, in partiular, we know that q � 5).

Now onsider the two suessful exeutions of the attak, (!;H

0

2

; ) and (!;H

2

; ~),

that the algorithm F has obtained by exeuting the attak A. We denote by

(U ;m;v; R

1

; : : : ; R

`

;  ) and (

~

U ; ~m;
~
v;

~

R

1

; : : : ;

~

R

`

;

~

 ), respetively, the two forged dis-

tributed ring signatures. Sine the random tapes and H

1

are idential, and the an-

swers of the random orale H

2

are the same until the query Q

�

= (U ;m; z

1

; : : : ; z

`

),

we have in partiular that

~

U = U ,

~

 =  , ~m = m and ~z

i

= z

i

, for i = 1; : : : ; ` (the

whole set of ` users is denoted by P).

Let us de�ne the subset B = fU

i

2 P : v (U

i

) =
~
v (U

i

)g. Sine v (D) =

 6= ~ =
~
v (D) then B annot be in �. Otherwise, if B 2 � then there would exist

oeÆients �

i

2 Z

q

for users U

i

2 B satisfying  (D) =

P

U

i

2B

�

i

 (U

i

). This would

imply

 = v (D) =

X

U

i

2B

�

i

v (U

i

) =

X

U

i

2B

�

i

~
v (U

i

) =
~
v

X

U

i

2B

�

i

 (U

i

) =
~
v (D) = ~;

a ontradition. Therefore we must have B =2 �, and so P � B 2 �

�

= l(U); in

other words, A = P �B = fU

j

2 P : v (U

j

) 6=
~
v (U

j

)g 2 l(U).
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By de�nition of suessful forgery, there must exist some user U

j

2 A, satisfying



j

= v (U

j

) 6=
~
v (U

j

) = ~

j

, whose seret key has not been asked by the attaker

A. In this ase, with probability 1� � we have d

j

= 1 and so PK

j

= �

j

bP .

The equality z

j

= ~z

j

beomes e(R

j

; P ) � e(Y; 

j

PK

j

) = e(

~

R

j

; P ) � e(Y; ~

j

PK

j

).

This is equivalent to

e(R

j

�

~

R

j

; P ) = e(Y; (~

j

� 

j

)PK

j

) = e(aP; (~

j

� 

j

)�

j

bP ) = e(a(~

j

� 

j

)�

j

bP; P ):

This implies that R

j

�

~

R

j

= a(~

j

� 

j

)�

j

bP . Therefore, the mahine F obtains

the solution of the given instane of the Computational DiÆe-Hellman problem as

abP =

1

(~

j

� 

j

)�

j

(R

j

�

~

R

j

):

The inverse an be taken modulo q, sine �

j

2 Z

�

q

and 

j

6= ~

j

.

The total suess probability "

0

of the attak performed by F is

"

0

� (1� �)

~"

2

�

1

2

�

~"

4Q

2

�

q � 1

q

� (1� �)

~"

2

16Q

2

�

q � 1

q

�

� (1� �)

"

2

64Q

2

�

q � 1

q

�

"

2

384Q

e

Q

2

�

q � 1

q

�

"

2

385Q

e

Q

2

:

We have used the fat that 1 � � = 1 � (5=6)

1=Q

e

� 1=6Q

e

(applying Taylor's

series methodology to the funtion f(x) = 1� (1� x)

1=q

e

and then �xing x = 1=6).

We have also assumed that q � 385, whih happens if the seurity parameter k is

k � 9. Note that in the ase where Q

e

= 0, the obtained result would be "

0

�

"

2

33Q

2

.

The total exeution time T

0

of the mahine F onsists of running two times the

mahine A, simulating its environment. We have that T

0

� 2(T +Q

1

+Q

2

+T

 

Q

s

).

The redution shown in the proof above is tighter than the redution in the

seurity theorems of the two previous proposals of distributed ring signature shemes

for general aess strutures [12, 13℄.

6 Di�erent Types of Keys

The distributed ring signature sheme proposed in Setion 4 for ID-based senarios

an be extended to the ase where users have di�erent types of keys, of di�erent

lengths, et. This �ts in with a more real situation where eah user generates his

keys in an independent way. We onsider three possibilities: RSA keys, Dis-Log

keys and ID-based keys. The onstrution follows some ideas of the works [1, 23℄.

If a user U

i

has RSA keys, then there exist a publi key (n

i

; e

i

) suh that user

U

i

knows the mathing publi key: the primes p

i

and q

i

suh that n

i

= p

i

q

i

, and

the value d

i

suh that d

i

e

i

= 1mod�(n

i

). There exists a publi hash funtion

^

H

i

: f0; 1g

�

! Z

�

n

i

.

If a user U

i

has a Dis-Log pair of keys, then there exists a pair of prime numbers

p

i

and q

i

, and an element g

i

2 Z

p

i

suh that q

i

jp

i

� 1 and g

i

has order q

i

in Z

p

i

.
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The seret key of user U

i

is a value x

i

2 Z

�

q

i

, whereas the mathing publi key is

y

i

= g

x

i

i

mod p

i

.

Finally, if a user has ID-based keys, this means that there exist an additive group

G

1;i

, generated by some element P

i

, and a multipliative group G

2;i

, both with the

same prime order q

i

. There exist a bilinear pairing e

i

: G

1;i

� G

1;i

! G

2;i

and a

publi hash funtion H

i

: f0; 1g

�

! G

1;i

� f0g. User U

i

is under the ontrol of a

master entity whose seret key is x

i

2 Z

q

i

and whose publi key is Y

i

= x

i

P 2 G

1;i

.

The publi key of a user U

i

, with identity ID

i

is PK

i

= H

i

(ID

i

), whereas his seret

key is SK

i

= x

i

PK

i

.

Distributed ring signature generation. Assume that a subset of users A

want to ompute an anonymous signature on behalf of a family U of possible signing

subsets, taken over a set P = fU

1

; : : : ; U

n

of n users.

Let k be twie the length of the largest q

i

or n

i

, among the n users in P. Let

H : f0; 1g

�

! f0; 1g

k

be a publi hash funtion.

For simpliity, we will assume that both l(U) and � = (l(U))

�

are vetor spae

aess strutures, and that there exist an integer r and a mapping  : P [ fDg !

GF

�

2

k

�

r

suh that B 2 �,  (D) 2 hf (U

i

)g

U

i

2B

i.

Sine U = (l(U))

0

, we have that A 2 (l(U))

0

. This means that P �A =2 �, and

is maximal in the sense that (P �A) [ fU

j

g 2 � for any user U

j

2 A.

The signing users in A exeute the following protool to ompute a valid dis-

tributed signature on a message m 2 f0; 1g

�

:

1. They onsider a basis of the subspae h (P � A)i. This basis orresponds

to some subset of users C � P � A; that is, vetors in  (C) are linearly

independent and h (C)i = h (P �A)i.

2. For every user U

i

2 C, the signing users hoose uniformly at random 

i

2

f0; 1g

k

, and then proeed as follows:

(a) If U

i

has RSA keys, they hoose uniformly at random s

i

2 Z

n

i

; then they

ompute and broadast the value z

i

=

^

H

i

(

i

) + s

e

i

i

modn

i

.

(b) If U

i

has Dis-Log keys, they hoose uniformly at random s

i

2 Z

q

i

; then

they ompute and broadast the value z

i

= g

s

i

i

y



i

i

mod p

i

.

() If U

i

has ID-based keys, they hoose uniformly at random s

i

2 G

1;i

; they

ompute and broadast the value z

i

= e

i

(s

i

; P

i

) � e(Y

i

; 

i

PK

i

).

3. For users U

t

2 (P � A) � C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), for some

�

it

2 GF (2

k

), beause  (C) is a basis of h (P � A)i. The signing users

onsider 

t

=

P

U

i

2C

�

it



i

, then they proeed as follows:

(a) If U

t

has RSA keys, they hoose uniformly at random s

t

2 Z

n

t

; then they

ompute and broadast the value z

t

=

^

H

t

(

t

) + s

e

t

t

modn

t

.

(b) If U

t

has Dis-Log keys, they hoose uniformly at random s

t

2 Z

q

t

; then

they ompute and broadast the value z

t

= g

s

t

t

y



t

t

mod p

t

.
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() If U

t

has ID-based keys, they hoose uniformly at random s

t

2 G

1;t

; they

ompute and broadast the value z

t

= e

t

(s

t

; P

t

) � e(Y

t

; 

t

PK

t

).

4. Eah signing user U

j

2 A ats as follows:

(a) If U

j

has RSA keys, he hooses uniformly at random z

j

2 Z

n

j

and om-

putes this value.

(b) If U

j

has Dis-Log keys, he hooses uniformly at random a

j

2 Z

q

j

; then

he omputes and broadasts the value z

j

= g

a

j

j

mod p

j

.

() If U

j

has ID-based keys, he hooses uniformly at random T

j

2 G

1;j

; he

omputes and broadasts the value z

j

= e(T

j

; P

j

).

5. The signing users ompute then the value  = H(U ;m; z

1

; : : : ; z

n

).

6. They hoose uniformly at random one of the vetors v 2 GF

�

2

k

�

r

that veri�es:

(i) v (D) = , and

(ii) v (U

i

) = 

i

, for all U

i

2 C.

Note that this vetor v exists beause C =2 � and so the vetors f (D); f (U

i

)g

U

i

2C

g

are linearly independent.

7. Every signing user U

j

2 A individually omputes 

j

= v (U

j

); then he pro-

eeds as follows:

(a) If U

j

has RSA keys, he omputes and broadasts the value s

j

=

�

z

j

�

^

H

j

(

j

)

�

d

j

modn

j

.

(b) If U

j

has Dis-Log keys, he omputes and broadasts the value s

j

=

a

j

� 

j

x

j

mod q

j

.

() If U

j

has ID-based keys, he omputes and broadasts the value s

j

=

T

j

� 

j

SK

j

.

Note that the rest of users in A an verify if the broadast value s

j

is onsistent

with the value z

j

broadast in step 4, by using the publi key of user U

j

. In

this way, they detet dishonest users who try to boyott the proess.

8. The resulting signature is (U ;m;v; s

1

; : : : ; s

n

;  ).

Veri�ation of a distributed ring signature. The reipient of the message

�rst omputes 

i

= v (U

i

), for every user U

i

2 P and then omputes the following

values:

(a) If U

i

has RSA keys, ompute z

i

=

^

H

i

(

i

) + s

e

i

i

modn

i

.

(b) If U

i

has Dis-Log keys, ompute z

i

= g

s

i

i

y



i

i

mod p

i

.

() If U

i

has ID-based keys, ompute z

i

= e

i

(s

i

; P

i

) � e(Y

i

; 

i

PK

i

).
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The signature is valid if v (D) = H(U ;m; z

1

; : : : ; z

n

).

The orretness of the sheme is easy to verify. With respet to anonymity and

unforgeability, it an be proved using a ombination of the tehniques that appear

in the proof of Theorem 1 and in the seurity proofs of the papers [1, 23℄. To show

that the sheme is unforgeable, one proves that if there would exist a suessful

adversary against it, then one ould solve either the RSA problem, or the Disrete

Logarithm problem, or the Computational DiÆe-Hellman problem.

7 Conlusion

In this work we have dealt with distributed ring signature shemes in identity-based

senarios. Suh shemes provide anonymity to a subset of users who want to sign a

message on behalf of a family of possible signing subset. In identity-based senarios,

publi keys of the users are derived from publily veri�able data (for example, an

e-mail address), and so digital erti�ates are not neessary to authentiate the

validity of publi keys.

We have proposed a distributed ring signature sheme whih works with general

families of possible signing subsets. In the design, we use as a primitive the onept

of dual aess strutures. We have formally proved the unonditional anonymity

and the existential unforgeability of our sheme, in the random orale model, as-

suming that the Computational DiÆe-Hellman problem is intratable. With respet

to previous proposals working with general families, the new sheme provides two

improvements: the redution in the proof of unforgeability is tighter, and the length

of eah signature is linear in the number of involved users.

Although we have analyzed, for larity, the version for ID-based senarios with

ommon parameters, the sheme an be extended (using the tehniques in [1, 23℄)

to work in a framework where users have independent keys: either PKI-based or

ID-based, and with di�erent publi parameters, lengths, et.
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