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Abstract

In a distributed ring signature scheme, a subset of users cooperate to com-
pute a distributed anonymous signature on a message, on behalf of a family of
possible signing subsets. The receiver can verify that the signature comes from
a subset of the ring, but he cannot know which subset has actually signed.

In this work we use the concept of dual access structures to construct a
distributed ring signature scheme which works with general families of possi-
ble signing subsets. The length of each signature is linear on the number of
involved users, which is desirable for some families with many possible signing
subsets. The scheme achieves the desired properties of correctness, anonymity
and unforgeability. The reduction in the proof of unforgeability is tighter than
the reduction in the previous proposals which work with general families.

We analyze the case in which our scheme runs in an identity-based scenario,
where public keys of the users can be derived from their identities. This fact
avoids the necessity of digital certificates, and therefore allows more efficient
implementations of such systems. But our scheme can be extended to work in
more general scenarios, where users can have different types of keys.

1 Introduction

In standard public key cryptosystems, the public keys of the users must be authen-
ticated via a Public Key Infrastructure (PKI) based on digital certificates, which
link the identities of the users with their public keys. This fact makes the use of
cryptographic protocols less efficient in the real life.

Shamir introduced in 1984 the concept of identity-based (from now on, ID-based)
cryptography [19]. The idea is that the public key of a user can be publicly computed
from his identity (for example, from a complete name, an e-mail or an IP address).
In this way, digital certificates are not necessary, because anyone can easily verify
that some public key PKjr corresponds in fact to user U. Then, the secret key is
derived from the public key in a process executed by an external entity, known as
the master. Thus, the master knows the secret keys of all the users of the system. A



way to relax this negative point could be to consider a set of master entities which
share the secret information.

A clear example of cryptographic schemes where the use of digital certificates dra-
matically decreases the efficiency of the implementation are ring signature schemes,
because of the number of public keys that can be involved in any basic operation
(signature and verification). In a ring signature scheme, an entity signs a message
on behalf of a set of members that includes himself. The verifier of the signature is
convinced that it was produced by some member of the set, but he does not obtain
any information about which specific member actually signed.

The concept of ring signatures was formally introduced in [17]. After that, many
proposals of ring signature schemes have been published [4, 1, 24, 11, 8, 13], for both
PKI and ID-based scenarios.

We consider in this work an extension of the concept of ring signature, that we
call distributed ring signature schemes. Suppose that a subset of users A want to
sign some message with a certain anonymity. Members of A freely choose the other
users to complete the whole set of users P, and then they choose (in an ad-hoc way)
a family of subsets & C 27, which will contain the possible signing subsets. Using
their secret keys and the public keys of the rest of users, members of A produce
a distributed ring signature. The verifier will be convinced that at least all the
members of some subset in U/ have cooperated to compute the signature, but he
will not have any information about which subset in I/ is the actual author of the
signature.

Distributed ring signature schemes were first considered in [4]. Their specific
RSA-based scheme runs only when the ad-hoc families U are necessarily threshold
(that is, they contain all the subsets with a specific number of users). Other pro-
posals that only admit threshold can be found in [23], allowing the use of different
types of PKI keys (RSA, based on Discrete Logarithm...) and in [7] for an ID-based
framework. With respect to schemes running with more general families U, the two
only proposals have appeared in [12], for scenarios based on Discrete Logarithm
keys, and in [13], for ID-based scenarios. However, these two proposals are not very
efficient for some families U, for example if they contain a lot of subsets.

In this work we propose a new scheme for computing distributed ring signatures
on behalf of general families of possible signing subsets. With respect to the two
aforementioned schemes [12, 13], the length of a signature in the new scheme is linear
in the number of involved users, and not linear in the number of possible signing
subsets. This is desirable for some families, for example threshold families, multi-
partite families, etc. The construction uses the combinatorial concept of dual access
structure, and generalizes the threshold proposals in [23, 7]. We first explain, for
clarity, the particular case where all users have ID-based keys with common param-
eters. We prove that the resulting scheme achieves anonymity and unforgeability in
the random oracle model, assuming that the Computational Diffie-Hellman problem
is hard to solve. Finally, we detail how the scheme can be extended to work in more
general scenarios, where users can have different types of keys (either PKI-based or
ID-based) with different lengths, using techniques similar to those in [1, 23]. The
obtained reduction in the proof of the unforgeability of the scheme is tighter than



the reductions obtained in [12, 13].

2 Preliminaries

In this section we review some tools and concepts that will be necessary in the design
and analysis of our new distributed ring signature scheme.

2.1 Bilinear Pairings

Let Gy be an additive group of prime order ¢, generated by some element P. Let
Go be a multiplicative group with the same order q.
A bilinear pairing is a map e : G; X G; — Go with the following three properties:

1. Tt is bilinear, which means that given elements Ay, A3, A3 € Gy, we have
that 6(A1 + A2,A3) = 6(A1,A3) . 6(A2,A3) and 6(A1,A2 + A3) = 6(A1,A2) .
€(A1,A3)-

2. The map e can be efficiently computed for any possible input pair.

3. The map e is non-degenerate: there exist elements Aj, Ay € Gp such that
e(Al,AQ) 75 1@2.

In particular, property 1 implies that e(aP,bP) = e(P,P)*™ = e¢(P,abP) =
e(abP, P), for all a,b € Z,. This implies e(Ay, A2) = e(Az, A1), for all A;, Ay € Gy.

Combining properties 1 and 3, it is easy to see that e(P, P) # 1g, and that the
equality e(Aq, P) = e(Asg, P) implies that A; = As.

The typical way of obtaining such pairings is by deriving them from the Weil
or the Tate pairing on an elliptic curve over a finite field. The interested reader is
referred to [25] for a complete bibliography of cryptographic works based on pairings.

2.2 The Computational Diffie-Hellman Problem

We consider the following well-known problem in the additive group Gy of prime
order ¢, generated by P:

Definition 1. Given the elements P, aP and bP, for some random values a,b € Zg,
the Computational Diffie-Hellman problem consists of computing the element abP.

The Computational Diffie-Hellman Assumption asserts that, if the order of Gy
is ¢ > 2*, then any polynomial time algorithm that solves the Computational Diffie-
Hellman problem has a success probability py which is negligible in the security
parameter k. In other words, for all polynomial f(), there exists an integer ko such
that pj, < ﬁ, for all k > k.

The security of the ID-based distributed ring signature scheme that we propose
in this work is based on the Computational Diffie-Hellman Assumption.



2.3 The Splitting Lemma

We first state a well-known lemma that we will use in a security proof of this paper.
A proof of this lemma can be found, for example, in [16].

Lemma 1. (The Splitting Lemma) Let A C X XY be a set verifying that Pr[(z,y) € A] >
€. For any a <€, let us define

B = {(z,y) € X x Y|y}:;ry [(z,y") € A] > e—a} and B = (X xY)\B.

Then the following statements hold:
1. Pr[B] > a.
2. for any (z,y) € B, Pryey [(z,y) € A] > e — a.

3. Pr[B|A] > a/e.

2.4 The Random Oracle Model

Bellare and Rogaway introduced in [3] a paradigm that makes easier the task of
proving the security of some cryptographic schemes. This paradigm is the random
oracle model. In this model, hash functions are seen as oracles that produce a truly
random value for each new input. Obviously, if the same input is asked twice, then
the outputs must be identical.

The random oracle model is unreal, because any instantiation of a hash function
is in fact a deterministic function. Although there are some theoretical works which
criticize the paradigm of the random oracle model [6, 15, 2], it is widely believed
that proofs in this model guarantee the security of the overall cryptographic scheme,
provided the employed hash function has no weakness.

All the security results that we prove in this work are valid in the random oracle
model.

2.5 Access Structures and their Duals

Some of the concepts that we are going to present arise from the theory of secret
sharing schemes. For a survey on this field see [22]. Let us suppose that the subset
of users is P. We are going to consider digital signatures where a subset of users sign
on behalf of a family of subset of users. An access structure T' C 27 is a monotone
increasing family of subsets of users verifying that, for any A; € I" and Ay C P such
that Ay C As, then Ay € T'. Therefore, an access structure can be determined by the
family I'g C T' of minimal subsets in I'; which is called the basis of I'. For an arbitrary
family of subsets U C 2% the closure of U is the minimum monotone access structure
that contains U, that is cl(Ud) = {A C P : there exists B € U such that B C A}.
Of course for a monotone access structure I" we have " = ¢l(T).

We will assume that the families of subsets i/ considered in this work are in some
way normalized: there do not exist two subsets A, B € U such that A C B. In this
case, it is easy to see that (cl(U))o = U; that is, U is the basis of its closure.



For an access structure I', the dual of T' is defined as T* = {P — A : A ¢ T}
and it is also a monotone access structure (see [14] for more details on dual access
structures). A basic property of the dual is that (I'*)* = T'; it is also easy to see, by
the definition of I'*, that A € T’y if and only if P — A is a maximal subset verifying
P—-Agr*.

A useful family of monotone access structures is the vector space access structure
due to Brickell [5]. Let I' be an access structure on a set of participants P and D ¢ P
a special participant called the dealer. T is said to be a vector space access structure
if, for some vector space GF(q)" over a finite field GF(q), there exists a function

p:PU{D} — GF(q)"

such that A € T' if and only if the vector (D) can be expressed as a linear com-
bination of the vectors in the set ¢(A4) = {¢(U) | U € A}. An example of vec-
tor space access structure are threshold access structure, introduced by Shamir in
his seminal paper on secret sharing [18]. These access structures are defined as
I'={ACP : |A| >t} where ¢ is the threshold. In effect, threshold access struc-
tures are vector space access structures considering 1 : PU{D} — GF(q)! defined
by ¢(D) = (1,0,...,0) and 4 (U;) = (1,4,42,...,i""!) where P = {U},Us,...,U}.

It is not difficult to prove [14] that, if I" is a vector space access structure, then
I'* is also a vector space access structure.

Not all the access structures can be expressed as vector space access structures.
Simmons, Jackson and Martin [21] proved that any access structure I' can be in
fact expressed in a similar way where every participant can be associated with more
than one vector. The construction that they presented is based on the use of the
dual access structure and it is as follows. Let us suppose that the structure I' is such
that (I'*)g = {A1,..., Ag}, then 1 assigns vectors in GF(¢)¢ in the following way:
Y(D) = (1,0,...,0) and 4(U) = {(1,4,i?,...,i% ') : U € A;} for any user U € P.
This assignment 1) realizes the access structure I'.

3 Distributed Ring Signatures
A distributed ring signature scheme consists of three protocols:

1. Key generation. This protocol is executed individually by each user U; of
the system. The input is a security parameter and (possibly) some public
parameters, common to all the users of the system. The output consists of a
public key PK;, that the user U; makes public, and a secret key SK;, that U;
keeps secret. In ID-based scenarios, this protocol is executed with the help of
a master entity.

2. Distributed ring signature generation. Suppose users in a subset A want
to compute a ring signature on a message m on behalf of a family U of d
subsets, such that A € U. Then members of A jointly execute this protocol,
taking as input the message m, the public keys of all users included in the
family ¢/ and their own secret keys {SK;}i;e4. The output is a signature 6.



3. Verification of a distributed ring signature. The recipient of a dis-
tributed ring signature checks its validity by running this protocol. It takes as
input the message m, the signature # and the public keys of all the users in U.
The output is 1 if the signature is valid, and 0 if it is invalid.

Note that distributed ring signature schemes are related to standard distributed
(or threshold) signature schemes [10, 20]. In both cases, the recipient of the signature
is convinced that all the users in some subset of a specific family have jointly signed
the message, but he does not know which is the signing subset. The two main
differences between these two types of signatures are the following: (i) in standard
distributed signatures, the family of possible signing subsets is fixed a priori for all
the life of the system (it is called the access structure of the scheme), whereas in
ring signatures it is chosen ad-hoc by the signing users, just before signing; (ii) in
standard schemes, there is a unique public key for the whole set of users, and the
matching secret key is shared among them, whereas in distributed ring schemes,
each user has his own public and secret keys, that can be used as well for other
purposes.

With respect to the distributed ring signature schemes proposed until now, either
they work only for threshold families, which contain all the subsets with a specific
number of users [4, 23, 7], or they admit more general families [12, 13] but are not
very efficient when the number of subsets in the family is very large.

3.1 Security Requirements

A distributed ring signature scheme must satisfy three properties, that we informally
describe below.

1. Correctness: if a distributed ring signature is generated by properly following
the protocol, then the result of the verification is always 1.

2. Anonymity: any verifier should not have probability greater than 1/d to
guess the identity of the subset which has actually computed a distributed
ring signature on behalf of a signing family which contains d subsets.

3. Unforgeability: among all the proposed definitions of unforgeability, we con-
sider the strongest one, ezistential unforgeability against adaptive chosen mes-
sage attacks, adapted to the scenario of distributed ring signatures. Roughly
speaking, an attacker should not be able to obtain a valid distributed ring
signature for a message m and a family of possible signing users I/, unless he
has already asked for a valid signature for this pair (m,U) or he has corrupted
all the users of some of the subsets in .

4 The New Proposal

We next propose a new scheme for computing distributed ring signatures, which
works with general families of possible signing subsets. The proposal is based on



the concept of dual access structure, and extends the scheme designed in [23] for
the threshold case. We explain and analyze in this section, for clarity, the particular
version where all users have ID-based keys with common parameters. In Section 6,
we detail how the scheme can be extended to separable scenarios where users have
independent keys (either PKI-based or ID-based, with different sizes, ...).

The protocols of our proposed scheme are described below.

Key generation: let G; be an additive group of prime order ¢, generated by
some element P. Let Gy be a multiplicative group with the same order q. We need
q > 2%, where k is the security parameter of the scheme. Let e : G; x G; — Gy be a
bilinear pairing as defined in Section 2.1. Let H; : {0,1}* — G} and Hy : {0,1}* —
Z4 be two hash functions.

The master entity chooses at random his secret key z € Zj and publishes the
value Y = zP.

Secret key extraction: any user U; of the system, with identity ID; (which can
be an IP or e-mail address, for example), has public key PK; = Hy(ID;). When he
requests the master for his matching secret key, he obtains the value SK; = zPK;.

Distributed ring signature generation: assume that a subset of users A
want to compute an anonymous signature on behalf of a family ¢/ C 27 of possible
signing subsets, taken over a set P = {Uy,...,U;} of £ users. Users in A choose the
family U in an ad-hoc way, with the only condition that A € . We will consider
that any specific set of users can always have access to a private and authenticated
broadcast channel; this can be achieved, for example, by using broadcast encryption
schemes [9].

For simplicity, we will assume that cl(U) is a vector space access structure. In
this case, we consider I' = (cl(U))*, which is also a vector space access structure:
there exist a positive integer 7 and a mapping 1 : PU{D} — Zg such that B € T" if
and only if ¢(D) € ({¢(U;)}v,en). Our construction can be easily extended to the
case of more general access structures, where the mapping 1) assigns possibly more
than one vector to some users. For example, a generic solution would be to use the
construction of Simmons et al. [21]: if U = {A;,..., A4}, then 1 assigns vectors in
GF(q)? in the following way: (D) = (1,0,...,0) and ¥ (U) = {(1,4,i2,...,i%" 1) :
U € A;} for any user U € P. This assignment ¢ realizes the access structure
= (cl(Uh))*.

We assume that the family ¢/ is normalized, so U = (cl(U))o. Therefore, we have
that A € (cl(U))o. This means that P — A ¢ T', and is maximal with respect to the
inclusion, meaning that (P — A) U{U;} € T for any user U; € A.

The signing users in A execute the following protocol to compute a valid dis-
tributed signature on a message m € {0, 1}*:

1. They consider a basis of the subspace (¢(P — A)). This basis corresponds
to some subset of users C C P — A; that is, vectors in ¢(C) are linearly
independent and (¢(C)) = (¢ (P — A)).

2. For every user U; € C, the signing users choose uniformly at random ¢; € Z,



and R; € Gy; they compute and broadcast the value
z; = e(R;, P) - e(Y, c; PK;).

3. For users U € (P — A) — C, we have that (Ut) = > ..o Aip(Ui), for some
Ait € Zg4, because 9(C) is a basis of ()(P — A)). The signing users choose
uniformly at random R; € Gy and consider ¢; = ZUieC Aitc;i; they compute
and broadcast the value

Zt = B(Rt,P) . B(Y, CtPKt).

4. Bach signing user U; € A chooses uniformly at random 7} € G;; he computes
and broadcasts the value
zj = e(T}, P).

5. The signing users compute then the value ¢ = Hy(U, m, 21, ..., 2¢).

6. They choose uniformly at random one of the vectors v € Zj that verifies:

(i) vip(D) = ¢, and
(ii) vy(U;) = ¢;, for all U; € C.

Note that this vector v exists because C' ¢ I" and so the vectors {1(D), {¢(U;) }r7,ec'}

are linearly independent.

7. Every signing user U; € A individually computes ¢; = v)(U;); then he com-
putes and broadcasts the value

R]‘ = Tj — C]‘SK]‘.

Note that the rest of users in A can verify that this value R; is consistent with
the value z; broadcast in step 4, by checking if z; = e(R;, P) - e(Y,¢; PK;). In
this way, they detect dishonest users who try to boycott the process.

8. The resulting signature is (U, m,v, Ry,..., Ry, ).

Note that the length of the signature is linear with respect to the number ¢ of
users.

Verification of a distributed ring signature: the recipient of the message
first computes ¢; = vip(U;), for every user U; € P and then computes the values

zi = e(R;, P) -e(Y,c; PK;).
The signature is valid if vip(D) = Ho(U,m, 21, ..., 2p).

5 Analysis of the Scheme

In this section we prove that our new scheme satisfies the three required properties
for distributed ring signature schemes: correctness, anonymity and unforgeability.
The two last properties are proved to be achieved in the random oracle model.



5.1 Correctness of the Scheme

We show that a signature that has been generated following the above method is
always valid. The vector v in the signature satisfies

(i) vip(D) = ¢, and
(ii) vy(U;) = ¢;, for all U; € C.

Therefore, for users U; in the set C, we have that ¢; = v¢)(U;) and z; = e(R;, P)-
6(Y, ClPKZ)

For users U, € (P — A) — C, we have that ¢(U;) = > .. Aittp(U;), by definition
of the set C'. This implies that

Ct = Z )\itCi = Z )\ZtV’(/)(Ul) = V’lﬂ(Ut)

U;eC U;eC

And z; = e(Ry, P) - e(Y, . PK;) for these users, as well.

Finally let us consider users U; € A. By construction, the equality ¢; = vy (Uj)
is also satisfied. Note that these values are independent of the choice of the vector
v, as long as it satisfies the two required conditions. In effect, as far as ((C)) =
(¢(P — A)) and P — A is maximal verifying P — A ¢ T', then C U {U;} € T, for any
user U; € A. So there exist coefficients A; and {\j;}r,cc satisfying

$(D) =Y Nip(Ui) + A\p(Uj)
Uec

where \; # 0. From this equality we can derive

¢ =vp(Uy) = X7 [ v (D) = D Nvp(Us) | =27 [e= D7 Niea |

U;eC U;eC

which does not depend on the specific vector v.
Furthermore, for users U; € A we have that

zj = e(T}, P) = e(Rj+¢;SK;, P) = e(R;, P)-e(cjzPK;, P) = e(Rj, P)-e(c;PK;,Y),

as desired.

Therefore, for all users U; in P we have that ¢; = vip(U;) and z; = e(R;, P) -
e(Y,¢; PK;), and so the correctness of the signature is verified because vi)(D) = ¢ =
Hy(U,m,21,...,20).

5.2 Anonymity of the Scheme

Given a valid distributed ring signature Sig = (U, m,v, Ry,..., Ry,1) on behalf of
a family of subsets of users U/, the probability that a particular subset B € U is
the author of this signature can be exactly computed. If the full set of users is P,
we know that ) : P U {D} — Zj is a mapping which defines the access structure

9



I'= (cl(U))*. Since B € U = (cl(U))o, we have that P — B ¢ I'. Let C C P - B
be a subset of users such that ()(C)) = (¥(P — B)) and such that the vectors in
{¥(U;)}v,ec are linearly independent. Since C ¢ I', we have that the set of vectors
{¥(D),{#(U;)}v,ec} are linearly independent in Zj. Therefore, the number of users
inCisw=|C|<r—1.

Consider the values ¢ = v¢)(D) and ¢; = vi)(U;), for all users U; € C. The
probability that users in B choose these values {c¢;}r,cc in step 2 of the signing
protocol is exactly 1/¢*. Later, the value ¢ is the output of the hash function
H,. If we assume that this hash function behaves as a random oracle, then the
probability that users in B obtain this value ¢ in step 5 of the protocol is exactly
1/q, independently of the inputs taken by the hash function.

After that, users in B would choose at random one vector among the solutions
of the system of equations Mx = b, where

Y(D) c
V- ¢(:Ui ) - ' - Cfl |
Y(Ui,) - Ci,,

if we denote C = {U,,,...,U;,}.

The number of different vectors in Zj which are solution of this system is ¢7,
where v = dim(ker M) = r — dim(ImM) = r — (w + 1). Therefore, the probability
that users in B choose in step 6 of the protocol the vector v that appears in Sig is
exactly 1/¢7.

The probability that members of B choose, in steps 2 and 3 of the signing
protocol, the values { R; }1,¢ g that appear in Sig and, in step 4, the values {7} }v,cB
that lead to the values {R;}y;ep in Sig is exactly equal to 1/q".

Summing up, the probability that users in B obtain the signature Sig when they
execute the signing protocol is exactly

1 1 1 1 1 1

e ;q_'y ) ? R = P

which does not depend on B and so is the same for all the subsets in the family
U. This proves that the scheme is unconditionally anonymous, in the random oracle
model for the hash function Hs.

5.3 Unforgeability of the Scheme

We will analyze the exact unforgeability of our scheme, that measures all the re-
sources and performances of an adversary against it. The analysis is done in the
random oracle model.

Such an adversary is allowed to adaptively corrupt up to (). users, obtaining
their secret keys. The adversary can also make ()1 queries to the random oracle
Hy and Q) queries to the random oracle Ho. Finally, the adversary can require the
execution of the signing algorithm for Q)5 pairs of messages and families of subsets
that it adaptively chooses, obtaining a valid distributed ring signature for each query.

10



We say that this adversary is (T, ¢, Q1, Q2, Q., Qs)-successful if it obtains in time
T and with probability € a valid ring signature for some message m and some family
of subsets U, such that:

(i) the pair formed by the message m and the family ¢/ has not been asked to the
signing oracle during the attack; and

(ii) all the subsets in the family I/ contain at least one user who has not been
corrupted by the adversary.

Finally, we say that a distributed ring signature scheme is (T, ¢, Q1, Q2, Q¢, Qs)-
unforgeable if there does not exist any (T, e,Q1,Q2,Q, Qs)-successful adversary
against it.

In the following theorem, we relate the unforgeability of our scheme to the diffi-
culty of solving the Computational Diffie-Hellman problem.

Theorem 1. Let A be a (T,¢,Q1, Q2, Qe, Qs)-successful adversary against the pro-
posed ID-based ring signature scheme, such that the success probability € of A is non-
negligible in the security parameter k > 9, and such that Qs < # and Qo < %

Then the Computational Diffie-Hellman problem in Gy can be solved with prob-
ability €' > % and in time T' < 2T + 2Q1 + 2Q2 + 2T, Q,, where Ty is the
expected time to perform some computations related to the access structure defined
by the assignment of vectors 1.

Proof. We are going to construct a probabilistic polynomial time Turing machine F
which will use the attacker A as a sub-routine in order to solve the given instance of
the Computational Diffie-Hellman problem. Therefore, F must perfectly simulate
the environment of the attacker A.

The machine F receives the public data (P,aP,bP), and its goal is to compute
the value abP. The public key of the master entity is defined to be Y = aP. Then F
runs the attacker A against the threshold ID-based ring signature scheme, answering
to all the queries that A makes. The public key Y = aP is also sent to the attacker
A.

Without loss of generality, we can assume that A asks the random oracle H; for
the value Hy(ID) before asking for the secret key of ID.

Let us define p = (5/6)1/Qe (we assume Q. > 1; otherwise, we would take ;1 = 0).

The machine F constructs a table TABp, to simulate the random oracle H;.
Every time an identity ID; is asked by A to the oracle Hy, the machine F acts as
follows: first F checks if this input is already in the table; if this is the case, then F
sends to A the corresponding relation Hy(ID;) = PK,;. Otherwise, with probability
t, the machine F chooses the bit d; = 0 and a different z; € Zj at random, and
defines PK; = z; P and SK; = z;Y’; the new entry (ID;, PK;, x;, SK;,d;) is stored in
the table TABp,. On the other hand, with probability 1 — i, the machine F chooses
the bit d; = 1 and a different ; € Zj at random, and defines PK; = (a;)bP (in this
case F does not know the secret key for this identity). The values (ID;, PK;, o, d;)
are stored in a new entry of TABp,, and the relation H(ID;) = PK; is sent to A.

11



The condition PK; # PK; must be satisfied for all the different entries ¢ # j of the
table; if this is not the case, the process is repeated for one of these users.

Since we are assuming that H; behaves as a random function, and the values
PK; are all randomly chosen, this simulation of the hash function H; is consistent.

Later, every time A asks for the secret key corresponding to an identity ID;, the
machine F looks for ID; in the table TABpy,. If d; = 0, then F sends SK; = z;Y
to A. If d; = 1, the machine F cannot answer and halts. The probability that F
halts in this process is less than 1 — u%¢ = 1/6.

As well, F constructs a table TABp, to simulate the random oracle H,. Every
time A makes a query to this oracle, F looks for this value in the table. If it is
already there, then F sends the corresponding relation to A; if not, F chooses at
random an output of the random oracle for the queried input, different from the
outputs which are already in the table, sends the relation to A and stores it in the
table TAByp,.

Finally, the attacker A can ask Qs times for valid distributed ring signatures for
messages m' and families of subsets U’, where the full set of ¢’ users is P’. To answer
such queries, the machine F proceeds as follows:

1. Define T' = (cI(U))*; then find a mapping ¢’ : P'U{D} — ZI' such that B € T
if and only if /(D) € (¢'(B)). Then choose a subset A € U; consider a basis

of the subspace (¢'(P' — A)). This basis corresponds to some subset of users
CcP —A

2. For every user U; € C, choose uniformly at random ¢, € Z,. Choose uniformly
at random a value ¢’ € Z,.

3. Choose at random a vector v’ among the set of vectors v satisfying vy’ (D) = ¢

and v’ (U;) = ¢, for all users U; € C.
4. For users U; € P' — C, compute the values c; = v/’ (Uj).
5. Choose at random ¢’ values R}, ..., R; € Gi, one for each user in P’.
6. Compute, for i = 1,...,¢, the values z; = e(R}, P) - e(Y, ¢, PK;).

7. Impose and store in the table TABp, the new relation Ho(U',m/, 21,...,2)) =

c.

8. Define the signature to be (U',m',v',R},..., Ry, ¢").

In each simulation, the machine F must find a suitable assignment 1, choose at
random some values, then choose a vector v, perform ¢ evaluations of the bilinear
pairing, etc. We denote as Ty, a bound for the expected time necessary for performing
all these tasks.

The process results in a valid distributed ring signature, because we are assuming
that Hy behaves as a random function, and ¢ is taken uniformly at random in Z,,.
However, the assignment Hy(U',m', 2],...,2),) = ¢’ can produce some collisions in
the management of the table TABy, that simulates the random oracle Hs.
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A first possible collision occurs if a tuple (U',m/,2{,...,2)) produced in the
simulation of a signature has been already queried to the random oracle Hs. The
probability of this event is less than % <1/12.

A second possible collision occurs when the same tuple (U',m’,2],...,2,) is
produced in two different signature simulations. The probability of this event is less
than % < 1/12.

We denote by w the whole set of random tapes that take part in an attack by
A, with the environment simulated by F, but excluding the randomness related to
the oracle Hy. The success probability of A in forging a valid ring signature scheme
is then taken over the space (w, Hs).

In an execution of the attacker A, we use the notation Q;, Qa,...,Qg, for the
different queries that A makes to the random oracle Hy. If A produces a valid
forged signature (U, m,v, Ry,..., Ry, 1), by the ideal randomness of the oracle Hy,
the probability that A has not asked to this oracle for the corresponding tuple
(U,m,z1,...,2¢), and so A must have guessed the corresponding output, is less
than %. We define 8 = oo in this case; otherwise, 8 denotes the index of the query
where the tuple above was asked. That is, Qg = (U, m, 21, ..., 2¢).

We denote by S the set of successful executions of A, with F simulating its
environment, and such that 5 # oco. We also define the following subsets of S: for
every 1 = 1,2,..., @2, the set §; contains the successful executions such that g = 1.

This gives us a partition {S;}i=1,.. @, of S in exactly ()2 classes.

The probability that an execution (w, Hs) of A with the environment simulated
by F results in a valid forgery with 3 # oo is

~ 1 QSQ2 Q2
£=Pr[(w, Hy) €S ze<1——> <1— 1= Q) - 592 %5 )

(. 15) € 8] N R
3 1 €
>e o (1-2) =2,
=y ( 3) 2

Now we define the set of indexes which are more likely to appear as

1
I={ist. Pr[(w,H2) €S| (w,H) €S >-—}
2Q2
And the corresponding subset of successful executions as Sy = {(w, H2) € S; s.t.

iel}.
For a specific index ¢ € I, we have that

Pr[(w, H2) € S;] = Pr[(w, H2) € S] - Pr[(w, H2) € S; | (w,Hy) € S| >

>

™My

2Q2
Lemma 2. It holds that Pr[(w, Hs) € St | (w,Hs2) € §] > 1/2.

Proof. Since the sets S; are disjoint, we have

Prl(w, H) € Sy | (w,Ha) € S] = Prl(w, Ha) € S | (w,Ha) € §] =
i€l
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1= Pr{(w, Hy) € S; | (w, Hy) €8]
il
Since the complement of I contains at most (05 indexes, we have that this probability
is greater than 1 — Qg - ﬁ =1/2. O

We come back to the execution of A with the environment simulated by F.
With probability at least &, such an execution (w, Hs) results in a valid forgery with
B # oo. In this case, applying Lemma 2, we know that this successful execution
belongs to Sy with probability at least 1/2.

Now we split Hy as (H),c), where H) corresponds to the answers of all the
queries to Ha except the query Qg, whose answer is denoted as c.

We apply the Splitting Lemma (Lemma 1), taking X = (w, H}), Y =¢, A = S,
0= ﬁ and o = ﬁ. The lemma says that there exists a subset of executions {1z
such that

Pr{(w, Hy) € Qp | (w, Hy) € Sg] > = = =

and such that, for any (w, Hs) € Qg:

€
Pr[(w, H}, &) € S5 > 6 —a = —.
l(w, Hi, @) € 83] 2 6~ o= 15

With probability at least 8 , the first execution (w, H), ¢) of A simulated by F is
successful and the index S belongs to the set I. Furthermore, in this case we have

that (w, Hj, ¢) € Qg with probability at least 1/2. If we now repeat this simulated
execution of A with fixed (w,H)) and randomly chosen é € Zq, we know that

(w, Hj,¢) € Sg and furthermore ¢ # ¢ with probability at least 4Q (1 %) > ﬁ

(because, in particular, we know that g > 5).

Now consider the two successful executions of the attack, (w, H}, ¢) and (w, Ha, é),
that the algorithm F has obtained by executing the attack A. We denote by
U, m,v,Ry,..., Ry, ) and (U, m, v, Ry,.. Rg,’(/)) respectively, the two forged dis-
tributed ring signatures Since the random tapes and H; are identical, and the an-
swers of the random oracle Hj are the same until the query Qg = (U, m, 21, ..., 2¢),
we have in particular that U = U, ¢ P, m=mand z; = 2, fori = 1,...,¢ (the
whole set of ¢ users is denoted by P).

Let us define the subset B = {U; € P : vip(U;) = vp(U;)}. Since vip(D) =
¢ # ¢ = vip(D) then B cannot be in I. Otherwise, if B € T" then there would exist
coefficients \; € Z for users U; € B satisfying 1(D) = > ;. . p Aitp(U;). This would

imply

= Y Avp(U) = D AVe(U) =¥ Y Ap(Ui) = ¥(D) = ¢,

U,eB U;eB U;eB

a contradiction. Therefore we must have B ¢ T', and so P — B € I'* = cl(U); in
other words, A =P — B ={U; € P : vip(U;) # vyp(U;)} € cl(U).
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By definition of successful forgery, there must exist some user U; € A, satisfying
¢; = vip(Uj) # vip(U;) = ¢;, whose secret key has not been asked by the attacker
A. In this case, with probability 1 — u we have d; =1 and so PK; = a;bP.

The equality z; = Z; becomes e(R;, P) - e(Y,¢;PK;) = e(Rj, P) - e(Y, & PK;).
This is equivalent to

e(R; — Rj,P) =e(Y, (¢ — ¢j) PK;) = e(aP, (¢ — ¢j)oibP) = e(a(¢j — ¢j)a;bP, P).

This implies that R; — Rj = a(&; — ¢j)a;bP. Therefore, the machine F obtains
the solution of the given instance of the Computational Diffie-Hellman problem as

abP = —(R; — R;).
(@ —cjoy Y
The inverse can be taken modulo g, since a; € Zj and ¢; # ¢;.

The total success probability ¢’ of the attack performed by F is
g—1 e q-1

BN el S >
4Q> q¢ M16Q2 q

N ™
DN | =

e'>(1—p)
e q-1 S € q—1 S €
64Q2 g T 384Qc.Q2 ¢  385QeQ2

We have used the fact that 1 —p =1 — (5/6)1/Q‘" > 1/6Q. (applying Taylor’s
series methodology to the function f(z) = 1 — (1 — z)"/% and then fixing = = 1/6).
We have also assumed that ¢ > 385, which happens if the security parameter & is
k > 9. Note that in the case where Q. = 0, the obtained result would be &' > 39‘)’%2.

The total execution time T’ of the machine F consists of running two times the
machine A, simulating its environment. We have that 7" < 2(T + Q1 + Q2 + Ty Qs).

O

2 2

> (1—p)

The reduction shown in the proof above is tighter than the reduction in the
security theorems of the two previous proposals of distributed ring signature schemes
for general access structures [12, 13].

6 Different Types of Keys

The distributed ring signature scheme proposed in Section 4 for ID-based scenarios
can be extended to the case where users have different types of keys, of different
lengths, etc. This fits in with a more real situation where each user generates his
keys in an independent way. We consider three possibilities: RSA keys, Disc-Log
keys and ID-based keys. The construction follows some ideas of the works [1, 23].

If a user U; has RSA keys, then there exist a public key (n;, e;) such that user
U; knows the matching public key: the primes p; and ¢; such that n; = p;q;, and
the value d; such that d;je; = 1mod¢(n;). There exists a public hash function
H;:{0,1} — 77 .

If a user U; has a Disc-Log pair of keys, then there exists a pair of prime numbers
pi; and ¢;, and an element g; € Z,, such that ¢;|p; — 1 and g; has order g; in Z,,.
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The secret key of user U; is a value z; € Zg,

y; = g;' mod p;.

Finally, if a user has ID-based keys, this means that there exist an additive group
G1 i, generated by some element P;, and a multiplicative group Gy ;, both with the
same prime order g;. There exist a bilinear pairing e; : Gi; x G1; — Gy, and a
public hash function H; : {0,1}* — G;; — {0}. User U; is under the control of a
master entity whose secret key is x; € Z4, and whose public key is YV; = =, P € Gy ;.
The public key of a user U;, with identity ID; is PK; = H;(ID;), whereas his secret
key is SKZ = xZPKZ

whereas the matching public key is

Distributed ring signature generation. Assume that a subset of users A
want to compute an anonymous signature on behalf of a family U of possible signing
subsets, taken over a set P = {Uy,...,U, of n users.

Let k£ be twice the length of the largest ¢; or n;, among the n users in P. Let
H :{0,1}* = {0,1}* be a public hash function.

For simplicity, we will assume that both cl(U/) and I" = (cl(U/))* are vector space
access structures, and that there exist an integer r and a mapping ¢ : P U {D} —
GF (2F)" such that B € T' & (D) € ({¢(U;) }v.eB)-

Since U = (cl(U))o, we have that A € (cl(U))g. This means that P — A ¢ T', and
is maximal in the sense that (P — A) U{U;} €I for any user U; € A.

The signing users in A execute the following protocol to compute a valid dis-
tributed signature on a message m € {0, 1}*:

1. They consider a basis of the subspace (¢(P — A)). This basis corresponds
to some subset of users C C P — A; that is, vectors in ¢ (C) are linearly
independent and (¢(C)) = (¢ (P — A)).

2. For every user U; € C, the signing users choose uniformly at random ¢; €
{0,1}*, and then proceed as follows:

(a) If U; has RSA keys, they choose uniformly at random s; € Zy,; then they

compute and broadcast the value z; = H;(¢;) + s;* mod n;.

(b) If U; has Disc-Log keys, they choose uniformly at random s; € Zg,; then
they compute and broadcast the value z; = ¢;'y;* mod p;.

(c) If U; has ID-based keys, they choose uniformly at random s; € Gy ;; they
compute and broadcast the value z; = e;(s;, P;) - e(Y;, ¢; PK;).

3. For users U € (P — A) — C, we have that (Ut) = > p7.cc Aittp(Ui), for some
A\it € GF(2%), because 9(C) is a basis of ()(P — A)). The signing users
consider ¢; = ZUi cc AitCi, then they proceed as follows:

(a) If U; has RSA keys, they choose uniformly at random s; € Z,,; then they
compute and broadcast the value z; = Hy(c;) + s;* mod ny.

(b) If Uy has Disc-Log keys, they choose uniformly at random s; € Zg,; then
they compute and broadcast the value z; = g/*y;* mod p;.
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(c) If U; has ID-based keys, they choose uniformly at random s; € Gy 4; they
compute and broadcast the value z; = e;(s¢, P;) - e(Yy, ¢t PKy).

4. Each signing user U; € A acts as follows:

(a) If U; has RSA keys, he chooses uniformly at random z; € Z,; and com-
putes this value.

(b) If U; has Disc-Log keys, he chooses uniformly at random a; € Z;; then
he computes and broadcasts the value z; = g;-lj mod p;.

(c) If U; has ID-based keys, he chooses uniformly at random T; € Gy j; he
computes and broadcasts the value z; = e(Tj}, P)).

5. The signing users compute then the value ¢ = H(U,m, z1,...,2y).
6. They choose uniformly at random one of the vectors v € GF (2k)r that verifies:

(i) vip(D) = ¢, and
(i1) vo(U;) = ¢, for all U; € C.
Note that this vector v exists because C' ¢ I" and so the vectors {1(D), {¢(U;) }r7,ec'}

are linearly independent.

7. Every signing user U; € A individually computes ¢; = vi(U;); then he pro-
ceeds as follows:

d.
(a) IfU; has RSA keys, he computes and broadcasts the value s; = (zj — Hj(cj)> " mod nj.

(b) If U; has Disc-Log keys, he computes and broadcasts the value s; =
a; — cjrj modg;.

(c) If U; has ID-based keys, he computes and broadcasts the value s; =
T; — cjSK;.

Note that the rest of users in A can verify if the broadcast value s; is consistent
with the value z; broadcast in step 4, by using the public key of user U;. In
this way, they detect dishonest users who try to boycott the process.

8. The resulting signature is (U, m, v, 81, ..., 8n, ).
Verification of a distributed ring signature. The recipient of the message

first computes ¢; = vi)(U;), for every user U; € P and then computes the following
values:

(a) If U; has RSA keys, compute z; = H;(¢;) + st mod n;.
(b) If U; has Disc-Log keys, compute z; = ¢;'y;* mod p;.

(c) If U; has ID-based keys, compute z; = e;(s;, P;) - e(Y;, ; PK;).
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The signature is valid if vyp(D) = H(U, m, z1,. .., 2p).

The correctness of the scheme is easy to verify. With respect to anonymity and
unforgeability, it can be proved using a combination of the techniques that appear
in the proof of Theorem 1 and in the security proofs of the papers [1, 23]. To show
that the scheme is unforgeable, one proves that if there would exist a successful
adversary against it, then one could solve either the RSA problem, or the Discrete
Logarithm problem, or the Computational Diffie-Hellman problem.

7 Conclusion

In this work we have dealt with distributed ring signature schemes in identity-based
scenarios. Such schemes provide anonymity to a subset of users who want to sign a
message on behalf of a family of possible signing subset. In identity-based scenarios,
public keys of the users are derived from publicly verifiable data (for example, an
e-mail address), and so digital certificates are not necessary to authenticate the
validity of public keys.

We have proposed a distributed ring signature scheme which works with general
families of possible signing subsets. In the design, we use as a primitive the concept
of dual access structures. We have formally proved the unconditional anonymity
and the existential unforgeability of our scheme, in the random oracle model, as-
suming that the Computational Diffie-Hellman problem is intractable. With respect
to previous proposals working with general families, the new scheme provides two
improvements: the reduction in the proof of unforgeability is tighter, and the length
of each signature is linear in the number of involved users.

Although we have analyzed, for clarity, the version for ID-based scenarios with
common parameters, the scheme can be extended (using the techniques in [1, 23])
to work in a framework where users have independent keys: either PKI-based or
ID-based, and with different public parameters, lengths, etc.
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