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Abstra
t

In a distributed ring signature s
heme, a subset of users 
ooperate to 
om-

pute a distributed anonymous signature on a message, on behalf of a family of

possible signing subsets. The re
eiver 
an verify that the signature 
omes from

a subset of the ring, but he 
annot know whi
h subset has a
tually signed.

In this work we use the 
on
ept of dual a

ess stru
tures to 
onstru
t a

distributed ring signature s
heme whi
h works with general families of possi-

ble signing subsets. The length of ea
h signature is linear on the number of

involved users, whi
h is desirable for some families with many possible signing

subsets. The s
heme a
hieves the desired properties of 
orre
tness, anonymity

and unforgeability. The redu
tion in the proof of unforgeability is tighter than

the redu
tion in the previous proposals whi
h work with general families.

We analyze the 
ase in whi
h our s
heme runs in an identity-based s
enario,

where publi
 keys of the users 
an be derived from their identities. This fa
t

avoids the ne
essity of digital 
erti�
ates, and therefore allows more eÆ
ient

implementations of su
h systems. But our s
heme 
an be extended to work in

more general s
enarios, where users 
an have di�erent types of keys.

1 Introdu
tion

In standard publi
 key 
ryptosystems, the publi
 keys of the users must be authen-

ti
ated via a Publi
 Key Infrastru
ture (PKI) based on digital 
erti�
ates, whi
h

link the identities of the users with their publi
 keys. This fa
t makes the use of


ryptographi
 proto
ols less eÆ
ient in the real life.

Shamir introdu
ed in 1984 the 
on
ept of identity-based (from now on, ID-based)


ryptography [19℄. The idea is that the publi
 key of a user 
an be publi
ly 
omputed

from his identity (for example, from a 
omplete name, an e-mail or an IP address).

In this way, digital 
erti�
ates are not ne
essary, be
ause anyone 
an easily verify

that some publi
 key PK

U


orresponds in fa
t to user U . Then, the se
ret key is

derived from the publi
 key in a pro
ess exe
uted by an external entity, known as

the master. Thus, the master knows the se
ret keys of all the users of the system. A
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way to relax this negative point 
ould be to 
onsider a set of master entities whi
h

share the se
ret information.

A 
lear example of 
ryptographi
 s
hemes where the use of digital 
erti�
ates dra-

mati
ally de
reases the eÆ
ien
y of the implementation are ring signature s
hemes,

be
ause of the number of publi
 keys that 
an be involved in any basi
 operation

(signature and veri�
ation). In a ring signature s
heme, an entity signs a message

on behalf of a set of members that in
ludes himself. The veri�er of the signature is


onvin
ed that it was produ
ed by some member of the set, but he does not obtain

any information about whi
h spe
i�
 member a
tually signed.

The 
on
ept of ring signatures was formally introdu
ed in [17℄. After that, many

proposals of ring signature s
hemes have been published [4, 1, 24, 11, 8, 13℄, for both

PKI and ID-based s
enarios.

We 
onsider in this work an extension of the 
on
ept of ring signature, that we


all distributed ring signature s
hemes. Suppose that a subset of users A want to

sign some message with a 
ertain anonymity. Members of A freely 
hoose the other

users to 
omplete the whole set of users P, and then they 
hoose (in an ad-ho
 way)

a family of subsets U � 2

P

, whi
h will 
ontain the possible signing subsets. Using

their se
ret keys and the publi
 keys of the rest of users, members of A produ
e

a distributed ring signature. The veri�er will be 
onvin
ed that at least all the

members of some subset in U have 
ooperated to 
ompute the signature, but he

will not have any information about whi
h subset in U is the a
tual author of the

signature.

Distributed ring signature s
hemes were �rst 
onsidered in [4℄. Their spe
i�


RSA-based s
heme runs only when the ad-ho
 families U are ne
essarily threshold

(that is, they 
ontain all the subsets with a spe
i�
 number of users). Other pro-

posals that only admit threshold 
an be found in [23℄, allowing the use of di�erent

types of PKI keys (RSA, based on Dis
rete Logarithm...) and in [7℄ for an ID-based

framework. With respe
t to s
hemes running with more general families U , the two

only proposals have appeared in [12℄, for s
enarios based on Dis
rete Logarithm

keys, and in [13℄, for ID-based s
enarios. However, these two proposals are not very

eÆ
ient for some families U , for example if they 
ontain a lot of subsets.

In this work we propose a new s
heme for 
omputing distributed ring signatures

on behalf of general families of possible signing subsets. With respe
t to the two

aforementioned s
hemes [12, 13℄, the length of a signature in the new s
heme is linear

in the number of involved users, and not linear in the number of possible signing

subsets. This is desirable for some families, for example threshold families, multi-

partite families, et
. The 
onstru
tion uses the 
ombinatorial 
on
ept of dual a

ess

stru
ture, and generalizes the threshold proposals in [23, 7℄. We �rst explain, for


larity, the parti
ular 
ase where all users have ID-based keys with 
ommon param-

eters. We prove that the resulting s
heme a
hieves anonymity and unforgeability in

the random ora
le model, assuming that the Computational DiÆe-Hellman problem

is hard to solve. Finally, we detail how the s
heme 
an be extended to work in more

general s
enarios, where users 
an have di�erent types of keys (either PKI-based or

ID-based) with di�erent lengths, using te
hniques similar to those in [1, 23℄. The

obtained redu
tion in the proof of the unforgeability of the s
heme is tighter than
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the redu
tions obtained in [12, 13℄.

2 Preliminaries

In this se
tion we review some tools and 
on
epts that will be ne
essary in the design

and analysis of our new distributed ring signature s
heme.

2.1 Bilinear Pairings

Let G

1

be an additive group of prime order q, generated by some element P . Let

G

2

be a multipli
ative group with the same order q.

A bilinear pairing is a map e : G

1

�G

1

! G

2

with the following three properties:

1. It is bilinear, whi
h means that given elements A

1

; A

2

; A

3

2 G

1

, we have

that e(A

1

+ A

2

; A

3

) = e(A

1

; A

3

) � e(A

2

; A

3

) and e(A

1

; A

2

+ A

3

) = e(A

1

; A

2

) �

e(A

1

; A

3

).

2. The map e 
an be eÆ
iently 
omputed for any possible input pair.

3. The map e is non-degenerate: there exist elements A

1

; A

2

2 G

1

su
h that

e(A

1

; A

2

) 6= 1

G

2

.

In parti
ular, property 1 implies that e(aP; bP ) = e(P; P )

ab

= e(P; abP ) =

e(abP; P ), for all a; b 2 Z

q

. This implies e(A

1

; A

2

) = e(A

2

; A

1

), for all A

1

; A

2

2 G

1

.

Combining properties 1 and 3, it is easy to see that e(P; P ) 6= 1

G

2

and that the

equality e(A

1

; P ) = e(A

2

; P ) implies that A

1

= A

2

.

The typi
al way of obtaining su
h pairings is by deriving them from the Weil

or the Tate pairing on an ellipti
 
urve over a �nite �eld. The interested reader is

referred to [25℄ for a 
omplete bibliography of 
ryptographi
 works based on pairings.

2.2 The Computational DiÆe-Hellman Problem

We 
onsider the following well-known problem in the additive group G

1

of prime

order q, generated by P :

De�nition 1. Given the elements P , aP and bP , for some random values a; b 2 Z

�

q

,

the Computational DiÆe-Hellman problem 
onsists of 
omputing the element abP .

The Computational DiÆe-Hellman Assumption asserts that, if the order of G

1

is q � 2

k

, then any polynomial time algorithm that solves the Computational DiÆe-

Hellman problem has a su

ess probability p

k

whi
h is negligible in the se
urity

parameter k. In other words, for all polynomial f(), there exists an integer k

0

su
h

that p

k

<

1

f(k)

, for all k � k

0

.

The se
urity of the ID-based distributed ring signature s
heme that we propose

in this work is based on the Computational DiÆe-Hellman Assumption.
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2.3 The Splitting Lemma

We �rst state a well-known lemma that we will use in a se
urity proof of this paper.

A proof of this lemma 
an be found, for example, in [16℄.

Lemma 1. (The Splitting Lemma) Let A � X�Y be a set verifying that Pr [(x; y) 2 A℄ �

�. For any � < �, let us de�ne

B = f(x; y) 2 X � Y j Pr

y

0

2Y

�

(x; y

0

) 2 A

�

� �� �g and

�

B = (X � Y )nB:

Then the following statements hold:

1. Pr [B℄ � �.

2. for any (x; y) 2 B, Pr

y

0

2Y

[(x; y

0

) 2 A℄ � �� �.

3. Pr [BjA℄ � �=�.

2.4 The Random Ora
le Model

Bellare and Rogaway introdu
ed in [3℄ a paradigm that makes easier the task of

proving the se
urity of some 
ryptographi
 s
hemes. This paradigm is the random

ora
le model. In this model, hash fun
tions are seen as ora
les that produ
e a truly

random value for ea
h new input. Obviously, if the same input is asked twi
e, then

the outputs must be identi
al.

The random ora
le model is unreal, be
ause any instantiation of a hash fun
tion

is in fa
t a deterministi
 fun
tion. Although there are some theoreti
al works whi
h


riti
ize the paradigm of the random ora
le model [6, 15, 2℄, it is widely believed

that proofs in this model guarantee the se
urity of the overall 
ryptographi
 s
heme,

provided the employed hash fun
tion has no weakness.

All the se
urity results that we prove in this work are valid in the random ora
le

model.

2.5 A

ess Stru
tures and their Duals

Some of the 
on
epts that we are going to present arise from the theory of se
ret

sharing s
hemes. For a survey on this �eld see [22℄. Let us suppose that the subset

of users is P. We are going to 
onsider digital signatures where a subset of users sign

on behalf of a family of subset of users. An a

ess stru
ture � � 2

P

is a monotone

in
reasing family of subsets of users verifying that, for any A

1

2 � and A

2

� P su
h

that A

1

� A

2

, then A

2

2 �. Therefore, an a

ess stru
ture 
an be determined by the

family �

0

� � of minimal subsets in �, whi
h is 
alled the basis of �. For an arbitrary

family of subsets U � 2

P

the 
losure of U is the minimum monotone a

ess stru
ture

that 
ontains U , that is 
l(U) = fA � P : there exists B 2 U su
h that B � Ag.

Of 
ourse for a monotone a

ess stru
ture � we have � = 
l(�

0

).

We will assume that the families of subsets U 
onsidered in this work are in some

way normalized: there do not exist two subsets A;B 2 U su
h that A � B. In this


ase, it is easy to see that (
l(U))

0

= U ; that is, U is the basis of its 
losure.
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For an a

ess stru
ture �, the dual of � is de�ned as �

�

= fP � A : A 62 �g

and it is also a monotone a

ess stru
ture (see [14℄ for more details on dual a

ess

stru
tures). A basi
 property of the dual is that (�

�

)

�

= �; it is also easy to see, by

the de�nition of �

�

, that A 2 �

0

if and only if P �A is a maximal subset verifying

P �A 62 �

�

.

A useful family of monotone a

ess stru
tures is the ve
tor spa
e a

ess stru
ture

due to Bri
kell [5℄. Let � be an a

ess stru
ture on a set of parti
ipants P and D =2 P

a spe
ial parti
ipant 
alled the dealer. � is said to be a ve
tor spa
e a

ess stru
ture

if, for some ve
tor spa
e GF (q)

r

over a �nite �eld GF (q), there exists a fun
tion

 : P [ fDg �! GF (q)

r

su
h that A 2 � if and only if the ve
tor  (D) 
an be expressed as a linear 
om-

bination of the ve
tors in the set  (A) = f (U) j U 2 Ag. An example of ve
-

tor spa
e a

ess stru
ture are threshold a

ess stru
ture, introdu
ed by Shamir in

his seminal paper on se
ret sharing [18℄. These a

ess stru
tures are de�ned as

� = fA � P : jAj � tg where t is the threshold. In e�e
t, threshold a

ess stru
-

tures are ve
tor spa
e a

ess stru
tures 
onsidering  : P[fDg �! GF (q)

t

de�ned

by  (D) = (1; 0; : : : ; 0) and  (U

i

) = (1; i; i

2

; : : : ; i

t�1

) where P = fU

1

; U

2

; : : : ; U

`

g.

It is not diÆ
ult to prove [14℄ that, if � is a ve
tor spa
e a

ess stru
ture, then

�

�

is also a ve
tor spa
e a

ess stru
ture.

Not all the a

ess stru
tures 
an be expressed as ve
tor spa
e a

ess stru
tures.

Simmons, Ja
kson and Martin [21℄ proved that any a

ess stru
ture � 
an be in

fa
t expressed in a similar way where every parti
ipant 
an be asso
iated with more

than one ve
tor. The 
onstru
tion that they presented is based on the use of the

dual a

ess stru
ture and it is as follows. Let us suppose that the stru
ture � is su
h

that (�

�

)

0

= fA

1

; : : : ; A

d

g, then  assigns ve
tors in GF (q)

d

in the following way:

 (D) = (1; 0; : : : ; 0) and  (U) = f(1; i; i

2

; : : : ; i

d�1

) : U 2 A

i

g for any user U 2 P.

This assignment  realizes the a

ess stru
ture �.

3 Distributed Ring Signatures

A distributed ring signature s
heme 
onsists of three proto
ols:

1. Key generation. This proto
ol is exe
uted individually by ea
h user U

i

of

the system. The input is a se
urity parameter and (possibly) some publi


parameters, 
ommon to all the users of the system. The output 
onsists of a

publi
 key PK

i

, that the user U

i

makes publi
, and a se
ret key SK

i

, that U

i

keeps se
ret. In ID-based s
enarios, this proto
ol is exe
uted with the help of

a master entity.

2. Distributed ring signature generation. Suppose users in a subset A want

to 
ompute a ring signature on a message m on behalf of a family U of d

subsets, su
h that A 2 U . Then members of A jointly exe
ute this proto
ol,

taking as input the message m, the publi
 keys of all users in
luded in the

family U and their own se
ret keys fSK

j

g

U

j

2A

. The output is a signature �.
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3. Veri�
ation of a distributed ring signature. The re
ipient of a dis-

tributed ring signature 
he
ks its validity by running this proto
ol. It takes as

input the message m, the signature � and the publi
 keys of all the users in U .

The output is 1 if the signature is valid, and 0 if it is invalid.

Note that distributed ring signature s
hemes are related to standard distributed

(or threshold) signature s
hemes [10, 20℄. In both 
ases, the re
ipient of the signature

is 
onvin
ed that all the users in some subset of a spe
i�
 family have jointly signed

the message, but he does not know whi
h is the signing subset. The two main

di�eren
es between these two types of signatures are the following: (i) in standard

distributed signatures, the family of possible signing subsets is �xed a priori for all

the life of the system (it is 
alled the a

ess stru
ture of the s
heme), whereas in

ring signatures it is 
hosen ad-ho
 by the signing users, just before signing; (ii) in

standard s
hemes, there is a unique publi
 key for the whole set of users, and the

mat
hing se
ret key is shared among them, whereas in distributed ring s
hemes,

ea
h user has his own publi
 and se
ret keys, that 
an be used as well for other

purposes.

With respe
t to the distributed ring signature s
hemes proposed until now, either

they work only for threshold families, whi
h 
ontain all the subsets with a spe
i�


number of users [4, 23, 7℄, or they admit more general families [12, 13℄ but are not

very eÆ
ient when the number of subsets in the family is very large.

3.1 Se
urity Requirements

A distributed ring signature s
heme must satisfy three properties, that we informally

des
ribe below.

1. Corre
tness: if a distributed ring signature is generated by properly following

the proto
ol, then the result of the veri�
ation is always 1.

2. Anonymity: any veri�er should not have probability greater than 1=d to

guess the identity of the subset whi
h has a
tually 
omputed a distributed

ring signature on behalf of a signing family whi
h 
ontains d subsets.

3. Unforgeability: among all the proposed de�nitions of unforgeability, we 
on-

sider the strongest one, existential unforgeability against adaptive 
hosen mes-

sage atta
ks, adapted to the s
enario of distributed ring signatures. Roughly

speaking, an atta
ker should not be able to obtain a valid distributed ring

signature for a message m and a family of possible signing users U , unless he

has already asked for a valid signature for this pair (m;U) or he has 
orrupted

all the users of some of the subsets in U .

4 The New Proposal

We next propose a new s
heme for 
omputing distributed ring signatures, whi
h

works with general families of possible signing subsets. The proposal is based on
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the 
on
ept of dual a

ess stru
ture, and extends the s
heme designed in [23℄ for

the threshold 
ase. We explain and analyze in this se
tion, for 
larity, the parti
ular

version where all users have ID-based keys with 
ommon parameters. In Se
tion 6,

we detail how the s
heme 
an be extended to separable s
enarios where users have

independent keys (either PKI-based or ID-based, with di�erent sizes, ...).

The proto
ols of our proposed s
heme are des
ribed below.

Key generation: let G

1

be an additive group of prime order q, generated by

some element P . Let G

2

be a multipli
ative group with the same order q. We need

q � 2

k

, where k is the se
urity parameter of the s
heme. Let e : G

1

� G

1

! G

2

be a

bilinear pairing as de�ned in Se
tion 2.1. Let H

1

: f0; 1g

�

! G

�

1

and H

2

: f0; 1g

�

!

Z

q

be two hash fun
tions.

The master entity 
hooses at random his se
ret key x 2 Z

�

q

and publishes the

value Y = xP .

Se
ret key extra
tion: any user U

i

of the system, with identity ID

i

(whi
h 
an

be an IP or e-mail address, for example), has publi
 key PK

i

= H

1

(ID

i

). When he

requests the master for his mat
hing se
ret key, he obtains the value SK

i

= xPK

i

.

Distributed ring signature generation: assume that a subset of users A

want to 
ompute an anonymous signature on behalf of a family U � 2

P

of possible

signing subsets, taken over a set P = fU

1

; : : : ; U

`

g of ` users. Users in A 
hoose the

family U in an ad-ho
 way, with the only 
ondition that A 2 U . We will 
onsider

that any spe
i�
 set of users 
an always have a

ess to a private and authenti
ated

broad
ast 
hannel; this 
an be a
hieved, for example, by using broad
ast en
ryption

s
hemes [9℄.

For simpli
ity, we will assume that 
l(U) is a ve
tor spa
e a

ess stru
ture. In

this 
ase, we 
onsider � = (
l(U))

�

, whi
h is also a ve
tor spa
e a

ess stru
ture:

there exist a positive integer r and a mapping  : P [ fDg ! Z

r

q

su
h that B 2 � if

and only if  (D) 2 hf (U

i

)g

U

i

2B

i. Our 
onstru
tion 
an be easily extended to the


ase of more general a

ess stru
tures, where the mapping  assigns possibly more

than one ve
tor to some users. For example, a generi
 solution would be to use the


onstru
tion of Simmons et al. [21℄: if U = fA

1

; : : : ; A

d

g, then  assigns ve
tors in

GF (q)

d

in the following way:  (D) = (1; 0; : : : ; 0) and  (U) = f(1; i; i

2

; : : : ; i

d�1

) :

U 2 A

i

g for any user U 2 P. This assignment  realizes the a

ess stru
ture

� = (
l(U))

�

.

We assume that the family U is normalized, so U = (
l(U))

0

. Therefore, we have

that A 2 (
l(U))

0

. This means that P �A =2 �, and is maximal with respe
t to the

in
lusion, meaning that (P �A) [ fU

j

g 2 � for any user U

j

2 A.

The signing users in A exe
ute the following proto
ol to 
ompute a valid dis-

tributed signature on a message m 2 f0; 1g

�

:

1. They 
onsider a basis of the subspa
e h (P � A)i. This basis 
orresponds

to some subset of users C � P � A; that is, ve
tors in  (C) are linearly

independent and h (C)i = h (P �A)i.

2. For every user U

i

2 C, the signing users 
hoose uniformly at random 


i

2 Z

q

7



and R

i

2 G

1

; they 
ompute and broad
ast the value

z

i

= e(R

i

; P ) � e(Y; 


i

PK

i

):

3. For users U

t

2 (P � A) � C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), for some

�

it

2 Z

q

, be
ause  (C) is a basis of h (P � A)i. The signing users 
hoose

uniformly at random R

t

2 G

1

and 
onsider 


t

=

P

U

i

2C

�

it




i

; they 
ompute

and broad
ast the value

z

t

= e(R

t

; P ) � e(Y; 


t

PK

t

):

4. Ea
h signing user U

j

2 A 
hooses uniformly at random T

j

2 G

1

; he 
omputes

and broad
asts the value

z

j

= e(T

j

; P ):

5. The signing users 
ompute then the value 
 = H

2

(U ;m; z

1

; : : : ; z

`

).

6. They 
hoose uniformly at random one of the ve
tors v 2 Z

r

q

that veri�es:

(i) v (D) = 
, and

(ii) v (U

i

) = 


i

, for all U

i

2 C.

Note that this ve
tor v exists be
ause C =2 � and so the ve
tors f (D); f (U

i

)g

U

i

2C

g

are linearly independent.

7. Every signing user U

j

2 A individually 
omputes 


j

= v (U

j

); then he 
om-

putes and broad
asts the value

R

j

= T

j

� 


j

SK

j

:

Note that the rest of users in A 
an verify that this value R

j

is 
onsistent with

the value z

j

broad
ast in step 4, by 
he
king if z

j

= e(R

j

; P ) � e(Y; 


j

PK

j

). In

this way, they dete
t dishonest users who try to boy
ott the pro
ess.

8. The resulting signature is (U ;m;v; R

1

; : : : ; R

`

;  ).

Note that the length of the signature is linear with respe
t to the number ` of

users.

Veri�
ation of a distributed ring signature: the re
ipient of the message

�rst 
omputes 


i

= v (U

i

), for every user U

i

2 P and then 
omputes the values

z

i

= e(R

i

; P ) � e(Y; 


i

PK

i

):

The signature is valid if v (D) = H

2

(U ;m; z

1

; : : : ; z

`

).

5 Analysis of the S
heme

In this se
tion we prove that our new s
heme satis�es the three required properties

for distributed ring signature s
hemes: 
orre
tness, anonymity and unforgeability.

The two last properties are proved to be a
hieved in the random ora
le model.
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5.1 Corre
tness of the S
heme

We show that a signature that has been generated following the above method is

always valid. The ve
tor v in the signature satis�es

(i) v (D) = 
, and

(ii) v (U

i

) = 


i

, for all U

i

2 C.

Therefore, for users U

i

in the set C, we have that 


i

= v (U

i

) and z

i

= e(R

i

; P ) �

e(Y; 


i

PK

i

).

For users U

t

2 (P �A)�C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), by de�nition

of the set C. This implies that




t

=

X

U

i

2C

�

it




i

=

X

U

i

2C

�

it

v (U

i

) = v (U

t

):

And z

t

= e(R

t

; P ) � e(Y; 


t

PK

t

) for these users, as well.

Finally let us 
onsider users U

j

2 A. By 
onstru
tion, the equality 


j

= v (U

j

)

is also satis�ed. Note that these values are independent of the 
hoi
e of the ve
tor

v, as long as it satis�es the two required 
onditions. In e�e
t, as far as h (C)i =

h (P �A)i and P �A is maximal verifying P �A 62 �, then C [ fU

j

g 2 �, for any

user U

j

2 A. So there exist 
oeÆ
ients �

j

and f�

ji

g

U

i

2C

satisfying

 (D) =

X

U

i

2C

�

ji

 (U

i

) + �

j

 (U

j

)

where �

j

6= 0. From this equality we 
an derive




j

= v (U

j

) = �

�1

j

0

�

v (D) �

X

U

i

2C

�

ji

v (U

i

)

1

A

= �

�1

j

0

�


�

X

U

i

2C

�

ji




i

1

A

;

whi
h does not depend on the spe
i�
 ve
tor v.

Furthermore, for users U

j

2 A we have that

z

j

= e(T

j

; P ) = e(R

j

+


j

SK

j

; P ) = e(R

j

; P )�e(


j

xPK

j

; P ) = e(R

j

; P )�e(


j

PK

j

; Y );

as desired.

Therefore, for all users U

i

in P we have that 


i

= v (U

i

) and z

i

= e(R

i

; P ) �

e(Y; 


i

PK

i

), and so the 
orre
tness of the signature is veri�ed be
ause v (D) = 
 =

H

2

(U ;m; z

1

; : : : ; z

`

).

5.2 Anonymity of the S
heme

Given a valid distributed ring signature Sig = (U ;m;v; R

1

; : : : ; R

`

;  ) on behalf of

a family of subsets of users U , the probability that a parti
ular subset B 2 U is

the author of this signature 
an be exa
tly 
omputed. If the full set of users is P,

we know that  : P [ fDg ! Z

r

q

is a mapping whi
h de�nes the a

ess stru
ture

9



� = (
l(U))

�

. Sin
e B 2 U = (
l(U))

0

, we have that P � B =2 �. Let C � P � B

be a subset of users su
h that h (C)i = h (P � B)i and su
h that the ve
tors in

f (U

i

)g

U

i

2C

are linearly independent. Sin
e C =2 �, we have that the set of ve
tors

f (D); f (U

i

)g

U

i

2C

g are linearly independent in Z

r

q

. Therefore, the number of users

in C is ! = jCj � r � 1.

Consider the values 
 = v (D) and 


i

= v (U

i

), for all users U

i

2 C. The

probability that users in B 
hoose these values f


i

g

U

i

2C

in step 2 of the signing

proto
ol is exa
tly 1=q

!

. Later, the value 
 is the output of the hash fun
tion

H

2

. If we assume that this hash fun
tion behaves as a random ora
le, then the

probability that users in B obtain this value 
 in step 5 of the proto
ol is exa
tly

1=q, independently of the inputs taken by the hash fun
tion.

After that, users in B would 
hoose at random one ve
tor among the solutions

of the system of equations Mx = b, where

M =

0

B

B

B

�

� � �  (D) � � �

� � �  (U

i

1

) � � �

.

.

.

.

.

.

.

.

.

� � �  (U

i

!

) � � �

1

C

C

C

A

b =

0

B

B

B

�







i

1

.

.

.




i

!

1

C

C

C

A

;

if we denote C = fU

i

1

; : : : ; U

i

!

g.

The number of di�erent ve
tors in Z

r

q

whi
h are solution of this system is q




,

where 
 = dim(kerM) = r � dim(ImM) = r � (! + 1). Therefore, the probability

that users in B 
hoose in step 6 of the proto
ol the ve
tor v that appears in Sig is

exa
tly 1=q




.

The probability that members of B 
hoose, in steps 2 and 3 of the signing

proto
ol, the values fR

i

g

U

i

=2B

that appear in Sig and, in step 4, the values fT

j

g

U

j

2B

that lead to the values fR

j

g

U

j

2B

in Sig is exa
tly equal to 1=q

`

.

Summing up, the probability that users in B obtain the signature Sig when they

exe
ute the signing proto
ol is exa
tly

1

q

!

�

1

q

�

1

q




�

1

q

`

=

1

q

!+1+
+`

=

1

q

r+`

;

whi
h does not depend on B and so is the same for all the subsets in the family

U . This proves that the s
heme is un
onditionally anonymous, in the random ora
le

model for the hash fun
tion H

2

.

5.3 Unforgeability of the S
heme

We will analyze the exa
t unforgeability of our s
heme, that measures all the re-

sour
es and performan
es of an adversary against it. The analysis is done in the

random ora
le model.

Su
h an adversary is allowed to adaptively 
orrupt up to Q

e

users, obtaining

their se
ret keys. The adversary 
an also make Q

1

queries to the random ora
le

H

1

and Q

2

queries to the random ora
le H

2

. Finally, the adversary 
an require the

exe
ution of the signing algorithm for Q

s

pairs of messages and families of subsets

that it adaptively 
hooses, obtaining a valid distributed ring signature for ea
h query.

10



We say that this adversary is (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful if it obtains in time

T and with probability " a valid ring signature for some message m and some family

of subsets U , su
h that:

(i) the pair formed by the message m and the family U has not been asked to the

signing ora
le during the atta
k; and

(ii) all the subsets in the family U 
ontain at least one user who has not been


orrupted by the adversary.

Finally, we say that a distributed ring signature s
heme is (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-

unforgeable if there does not exist any (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful adversary

against it.

In the following theorem, we relate the unforgeability of our s
heme to the diÆ-


ulty of solving the Computational DiÆe-Hellman problem.

Theorem 1. Let A be a (T; ";Q

1

; Q

2

; Q

e

; Q

s

)-su

essful adversary against the pro-

posed ID-based ring signature s
heme, su
h that the su

ess probability " of A is non-

negligible in the se
urity parameter k � 9, and su
h that Q

s

�

2

k=2

4

and Q

2

�

2

k=2

3

.

Then the Computational DiÆe-Hellman problem in G

1


an be solved with prob-

ability "

0

�

"

2

385Q

e

Q

2

and in time T

0

� 2T + 2Q

1

+ 2Q

2

+ 2T

 

Q

s

, where T

 

is the

expe
ted time to perform some 
omputations related to the a

ess stru
ture de�ned

by the assignment of ve
tors  .

Proof. We are going to 
onstru
t a probabilisti
 polynomial time Turing ma
hine F

whi
h will use the atta
ker A as a sub-routine in order to solve the given instan
e of

the Computational DiÆe-Hellman problem. Therefore, F must perfe
tly simulate

the environment of the atta
ker A.

The ma
hine F re
eives the publi
 data (P; aP; bP ), and its goal is to 
ompute

the value abP . The publi
 key of the master entity is de�ned to be Y = aP . Then F

runs the atta
ker A against the threshold ID-based ring signature s
heme, answering

to all the queries that A makes. The publi
 key Y = aP is also sent to the atta
ker

A.

Without loss of generality, we 
an assume that A asks the random ora
le H

1

for

the value H

1

(ID) before asking for the se
ret key of ID.

Let us de�ne � = (5=6)

1=Q

e

(we assume Q

e

� 1; otherwise, we would take � = 0).

The ma
hine F 
onstru
ts a table TAB

H

1

to simulate the random ora
le H

1

.

Every time an identity ID

i

is asked by A to the ora
le H

1

, the ma
hine F a
ts as

follows: �rst F 
he
ks if this input is already in the table; if this is the 
ase, then F

sends to A the 
orresponding relation H

1

(ID

i

) = PK

i

. Otherwise, with probability

�, the ma
hine F 
hooses the bit d

i

= 0 and a di�erent x

i

2 Z

�

q

at random, and

de�nes PK

i

= x

i

P and SK

i

= x

i

Y ; the new entry (ID

i

; PK

i

; x

i

; SK

i

; d

i

) is stored in

the table TAB

H

1

. On the other hand, with probability 1��, the ma
hine F 
hooses

the bit d

i

= 1 and a di�erent �

i

2 Z

�

q

at random, and de�nes PK

i

= (�

i

)bP (in this


ase F does not know the se
ret key for this identity). The values (ID

i

; PK

i

; �

i

; d

i

)

are stored in a new entry of TAB

H

1

, and the relation H

1

(ID

i

) = PK

i

is sent to A.
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The 
ondition PK

i

6= PK

j

must be satis�ed for all the di�erent entries i 6= j of the

table; if this is not the 
ase, the pro
ess is repeated for one of these users.

Sin
e we are assuming that H

1

behaves as a random fun
tion, and the values

PK

i

are all randomly 
hosen, this simulation of the hash fun
tion H

1

is 
onsistent.

Later, every time A asks for the se
ret key 
orresponding to an identity ID

i

, the

ma
hine F looks for ID

i

in the table TAB

H

1

. If d

i

= 0, then F sends SK

i

= x

i

Y

to A. If d

i

= 1, the ma
hine F 
annot answer and halts. The probability that F

halts in this pro
ess is less than 1� �

Q

e

= 1=6.

As well, F 
onstru
ts a table TAB

H

2

to simulate the random ora
le H

2

. Every

time A makes a query to this ora
le, F looks for this value in the table. If it is

already there, then F sends the 
orresponding relation to A; if not, F 
hooses at

random an output of the random ora
le for the queried input, di�erent from the

outputs whi
h are already in the table, sends the relation to A and stores it in the

table TAB

H

2

.

Finally, the atta
ker A 
an ask Q

s

times for valid distributed ring signatures for

messages m

0

and families of subsets U

0

, where the full set of `

0

users is P

0

. To answer

su
h queries, the ma
hine F pro
eeds as follows:

1. De�ne � = (
l(U))

�

; then �nd a mapping  

0

: P

0

[fDg ! Z

r

0

q

su
h that B 2 �

if and only if  

0

(D) 2 h 

0

(B)i. Then 
hoose a subset A 2 U ; 
onsider a basis

of the subspa
e h 

0

(P

0

� A)i. This basis 
orresponds to some subset of users

C � P

0

�A.

2. For every user U

i

2 C, 
hoose uniformly at random 


0

i

2 Z

q

. Choose uniformly

at random a value 


0

2 Z

q

.

3. Choose at random a ve
tor v

0

among the set of ve
tors v satisfying v 

0

(D) = 


0

and v 

0

(U

i

) = 


0

i

for all users U

i

2 C.

4. For users U

j

2 P

0

� C, 
ompute the values 


0

j

= v

0

 

0

(U

j

).

5. Choose at random `

0

values R

0

1

; : : : ; R

0

`

0

2 G

1

, one for ea
h user in P

0

.

6. Compute, for i = 1; : : : ; `

0

, the values z

0

i

= e(R

0

i

; P ) � e(Y; 


0

i

PK

i

).

7. Impose and store in the table TAB

H

2

the new relation H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) =




0

.

8. De�ne the signature to be (U

0

;m

0

;v

0

; R

0

1

; : : : ; R

0

`

0

;  

0

).

In ea
h simulation, the ma
hine F must �nd a suitable assignment  , 
hoose at

random some values, then 
hoose a ve
tor v, perform `

0

evaluations of the bilinear

pairing, et
. We denote as T

 

a bound for the expe
ted time ne
essary for performing

all these tasks.

The pro
ess results in a valid distributed ring signature, be
ause we are assuming

that H

2

behaves as a random fun
tion, and 


0

is taken uniformly at random in Z

q

.

However, the assignment H

2

(U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) = 


0


an produ
e some 
ollisions in

the management of the table TAB

H

2

that simulates the random ora
le H

2

.
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A �rst possible 
ollision o

urs if a tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) produ
ed in the

simulation of a signature has been already queried to the random ora
le H

2

. The

probability of this event is less than

Q

s

Q

2

q

� 1=12.

A se
ond possible 
ollision o

urs when the same tuple (U

0

;m

0

; z

0

1

; : : : ; z

0

`

0

) is

produ
ed in two di�erent signature simulations. The probability of this event is less

than

Q

2

s

2q

� 1=12.

We denote by ! the whole set of random tapes that take part in an atta
k by

A, with the environment simulated by F , but ex
luding the randomness related to

the ora
le H

2

. The su

ess probability of A in forging a valid ring signature s
heme

is then taken over the spa
e (!;H

2

).

In an exe
ution of the atta
ker A, we use the notation Q

1

;Q

2

; : : : ;Q

Q

2

for the

di�erent queries that A makes to the random ora
le H

2

. If A produ
es a valid

forged signature (U ;m;v; R

1

; : : : ; R

`

;  ), by the ideal randomness of the ora
le H

2

,

the probability that A has not asked to this ora
le for the 
orresponding tuple

(U ;m; z

1

; : : : ; z

`

), and so A must have guessed the 
orresponding output, is less

than

1

q

. We de�ne � =1 in this 
ase; otherwise, � denotes the index of the query

where the tuple above was asked. That is, Q

�

= (U ;m; z

1

; : : : ; z

`

).

We denote by S the set of su

essful exe
utions of A, with F simulating its

environment, and su
h that � 6= 1. We also de�ne the following subsets of S: for

every i = 1; 2; : : : ; Q

2

, the set S

i


ontains the su

essful exe
utions su
h that � = i.

This gives us a partition fS

i

g

i=1;:::;Q

2

of S in exa
tly Q

2


lasses.

The probability that an exe
ution (!;H

2

) of A with the environment simulated

by F results in a valid forgery with � 6=1 is

~" = Pr[(!;H

2

) 2 S℄ � "

�

1�

1

q

��

1� (1� �

Q

e

)�

Q

s

Q

2

q

�

Q

2

s

2q

�

�

� " �

3

4

�

�

1�

1

3

�

=

"

2

:

Now we de�ne the set of indexes whi
h are more likely to appear as

I = fi s.t. Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

1

2Q

2

g:

And the 
orresponding subset of su

essful exe
utions as S

I

= f(!;H

2

) 2 S

i

s.t.

i 2 Ig.

For a spe
i�
 index i 2 I, we have that

Pr[(!;H

2

) 2 S

i

℄ = Pr[(!;H

2

) 2 S℄ � Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ �

� ~" �

1

2Q

2

:

Lemma 2. It holds that Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ � 1=2.

Proof. Sin
e the sets S

i

are disjoint, we have

Pr[(!;H

2

) 2 S

I

j (!;H

2

) 2 S℄ =

X

i2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄ =
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1�

X

i=2I

Pr[(!;H

2

) 2 S

i

j (!;H

2

) 2 S℄:

Sin
e the 
omplement of I 
ontains at most Q

2

indexes, we have that this probability

is greater than 1�Q

2

�

1

2Q

2

= 1=2.

We 
ome ba
k to the exe
ution of A with the environment simulated by F .

With probability at least ~", su
h an exe
ution (!;H

2

) results in a valid forgery with

� 6= 1. In this 
ase, applying Lemma 2, we know that this su

essful exe
ution

belongs to S

I

with probability at least 1=2.

Now we split H

2

as (H

0

2

; 
), where H

0

2


orresponds to the answers of all the

queries to H

2

ex
ept the query Q

�

, whose answer is denoted as 
.

We apply the Splitting Lemma (Lemma 1), taking X = (!;H

0

2

), Y = 
, A = S

�

,

Æ =

~"

2Q

2

and � =

~"

4Q

2

. The lemma says that there exists a subset of exe
utions 


�

su
h that

Pr[(!;H

2

) 2 


�

j (!;H

2

) 2 S

�

℄ �

�

Æ

=

1

2

and su
h that, for any (!;H

2

) 2 


�

:

Pr

~


[(!;H

0

2

; ~
) 2 S

�

℄ � Æ � � =

~"

4Q

2

:

With probability at least

~"

2

, the �rst exe
ution (!;H

0

2

; 
) of A simulated by F is

su

essful and the index � belongs to the set I. Furthermore, in this 
ase we have

that (!;H

0

2

; 
) 2 


�

with probability at least 1=2. If we now repeat this simulated

exe
ution of A with �xed (!;H

0

2

) and randomly 
hosen ~
 2 Z

q

, we know that

(!;H

0

2

; ~
) 2 S

�

and furthermore ~
 6= 
 with probability at least

~"

4Q

2

�

1�

1

q

�

�

~"

5Q

2

(be
ause, in parti
ular, we know that q � 5).

Now 
onsider the two su

essful exe
utions of the atta
k, (!;H

0

2

; 
) and (!;H

2

; ~
),

that the algorithm F has obtained by exe
uting the atta
k A. We denote by

(U ;m;v; R

1

; : : : ; R

`

;  ) and (

~

U ; ~m;
~
v;

~

R

1

; : : : ;

~

R

`

;

~

 ), respe
tively, the two forged dis-

tributed ring signatures. Sin
e the random tapes and H

1

are identi
al, and the an-

swers of the random ora
le H

2

are the same until the query Q

�

= (U ;m; z

1

; : : : ; z

`

),

we have in parti
ular that

~

U = U ,

~

 =  , ~m = m and ~z

i

= z

i

, for i = 1; : : : ; ` (the

whole set of ` users is denoted by P).

Let us de�ne the subset B = fU

i

2 P : v (U

i

) =
~
v (U

i

)g. Sin
e v (D) =


 6= ~
 =
~
v (D) then B 
annot be in �. Otherwise, if B 2 � then there would exist


oeÆ
ients �

i

2 Z

q

for users U

i

2 B satisfying  (D) =

P

U

i

2B

�

i

 (U

i

). This would

imply


 = v (D) =

X

U

i

2B

�

i

v (U

i

) =

X

U

i

2B

�

i

~
v (U

i

) =
~
v

X

U

i

2B

�

i

 (U

i

) =
~
v (D) = ~
;

a 
ontradi
tion. Therefore we must have B =2 �, and so P � B 2 �

�

= 
l(U); in

other words, A = P �B = fU

j

2 P : v (U

j

) 6=
~
v (U

j

)g 2 
l(U).
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By de�nition of su

essful forgery, there must exist some user U

j

2 A, satisfying




j

= v (U

j

) 6=
~
v (U

j

) = ~


j

, whose se
ret key has not been asked by the atta
ker

A. In this 
ase, with probability 1� � we have d

j

= 1 and so PK

j

= �

j

bP .

The equality z

j

= ~z

j

be
omes e(R

j

; P ) � e(Y; 


j

PK

j

) = e(

~

R

j

; P ) � e(Y; ~


j

PK

j

).

This is equivalent to

e(R

j

�

~

R

j

; P ) = e(Y; (~


j

� 


j

)PK

j

) = e(aP; (~


j

� 


j

)�

j

bP ) = e(a(~


j

� 


j

)�

j

bP; P ):

This implies that R

j

�

~

R

j

= a(~


j

� 


j

)�

j

bP . Therefore, the ma
hine F obtains

the solution of the given instan
e of the Computational DiÆe-Hellman problem as

abP =

1

(~


j

� 


j

)�

j

(R

j

�

~

R

j

):

The inverse 
an be taken modulo q, sin
e �

j

2 Z

�

q

and 


j

6= ~


j

.

The total su

ess probability "

0

of the atta
k performed by F is

"

0

� (1� �)

~"

2

�

1

2

�

~"

4Q

2

�

q � 1

q

� (1� �)

~"

2

16Q

2

�

q � 1

q

�

� (1� �)

"

2

64Q

2

�

q � 1

q

�

"

2

384Q

e

Q

2

�

q � 1

q

�

"

2

385Q

e

Q

2

:

We have used the fa
t that 1 � � = 1 � (5=6)

1=Q

e

� 1=6Q

e

(applying Taylor's

series methodology to the fun
tion f(x) = 1� (1� x)

1=q

e

and then �xing x = 1=6).

We have also assumed that q � 385, whi
h happens if the se
urity parameter k is

k � 9. Note that in the 
ase where Q

e

= 0, the obtained result would be "

0

�

"

2

33Q

2

.

The total exe
ution time T

0

of the ma
hine F 
onsists of running two times the

ma
hine A, simulating its environment. We have that T

0

� 2(T +Q

1

+Q

2

+T

 

Q

s

).

The redu
tion shown in the proof above is tighter than the redu
tion in the

se
urity theorems of the two previous proposals of distributed ring signature s
hemes

for general a

ess stru
tures [12, 13℄.

6 Di�erent Types of Keys

The distributed ring signature s
heme proposed in Se
tion 4 for ID-based s
enarios


an be extended to the 
ase where users have di�erent types of keys, of di�erent

lengths, et
. This �ts in with a more real situation where ea
h user generates his

keys in an independent way. We 
onsider three possibilities: RSA keys, Dis
-Log

keys and ID-based keys. The 
onstru
tion follows some ideas of the works [1, 23℄.

If a user U

i

has RSA keys, then there exist a publi
 key (n

i

; e

i

) su
h that user

U

i

knows the mat
hing publi
 key: the primes p

i

and q

i

su
h that n

i

= p

i

q

i

, and

the value d

i

su
h that d

i

e

i

= 1mod�(n

i

). There exists a publi
 hash fun
tion

^

H

i

: f0; 1g

�

! Z

�

n

i

.

If a user U

i

has a Dis
-Log pair of keys, then there exists a pair of prime numbers

p

i

and q

i

, and an element g

i

2 Z

p

i

su
h that q

i

jp

i

� 1 and g

i

has order q

i

in Z

p

i

.
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The se
ret key of user U

i

is a value x

i

2 Z

�

q

i

, whereas the mat
hing publi
 key is

y

i

= g

x

i

i

mod p

i

.

Finally, if a user has ID-based keys, this means that there exist an additive group

G

1;i

, generated by some element P

i

, and a multipli
ative group G

2;i

, both with the

same prime order q

i

. There exist a bilinear pairing e

i

: G

1;i

� G

1;i

! G

2;i

and a

publi
 hash fun
tion H

i

: f0; 1g

�

! G

1;i

� f0g. User U

i

is under the 
ontrol of a

master entity whose se
ret key is x

i

2 Z

q

i

and whose publi
 key is Y

i

= x

i

P 2 G

1;i

.

The publi
 key of a user U

i

, with identity ID

i

is PK

i

= H

i

(ID

i

), whereas his se
ret

key is SK

i

= x

i

PK

i

.

Distributed ring signature generation. Assume that a subset of users A

want to 
ompute an anonymous signature on behalf of a family U of possible signing

subsets, taken over a set P = fU

1

; : : : ; U

n

of n users.

Let k be twi
e the length of the largest q

i

or n

i

, among the n users in P. Let

H : f0; 1g

�

! f0; 1g

k

be a publi
 hash fun
tion.

For simpli
ity, we will assume that both 
l(U) and � = (
l(U))

�

are ve
tor spa
e

a

ess stru
tures, and that there exist an integer r and a mapping  : P [ fDg !

GF

�

2

k

�

r

su
h that B 2 �,  (D) 2 hf (U

i

)g

U

i

2B

i.

Sin
e U = (
l(U))

0

, we have that A 2 (
l(U))

0

. This means that P �A =2 �, and

is maximal in the sense that (P �A) [ fU

j

g 2 � for any user U

j

2 A.

The signing users in A exe
ute the following proto
ol to 
ompute a valid dis-

tributed signature on a message m 2 f0; 1g

�

:

1. They 
onsider a basis of the subspa
e h (P � A)i. This basis 
orresponds

to some subset of users C � P � A; that is, ve
tors in  (C) are linearly

independent and h (C)i = h (P �A)i.

2. For every user U

i

2 C, the signing users 
hoose uniformly at random 


i

2

f0; 1g

k

, and then pro
eed as follows:

(a) If U

i

has RSA keys, they 
hoose uniformly at random s

i

2 Z

n

i

; then they


ompute and broad
ast the value z

i

=

^

H

i

(


i

) + s

e

i

i

modn

i

.

(b) If U

i

has Dis
-Log keys, they 
hoose uniformly at random s

i

2 Z

q

i

; then

they 
ompute and broad
ast the value z

i

= g

s

i

i

y




i

i

mod p

i

.

(
) If U

i

has ID-based keys, they 
hoose uniformly at random s

i

2 G

1;i

; they


ompute and broad
ast the value z

i

= e

i

(s

i

; P

i

) � e(Y

i

; 


i

PK

i

).

3. For users U

t

2 (P � A) � C, we have that  (U

t

) =

P

U

i

2C

�

it

 (U

i

), for some

�

it

2 GF (2

k

), be
ause  (C) is a basis of h (P � A)i. The signing users


onsider 


t

=

P

U

i

2C

�

it




i

, then they pro
eed as follows:

(a) If U

t

has RSA keys, they 
hoose uniformly at random s

t

2 Z

n

t

; then they


ompute and broad
ast the value z

t

=

^

H

t

(


t

) + s

e

t

t

modn

t

.

(b) If U

t

has Dis
-Log keys, they 
hoose uniformly at random s

t

2 Z

q

t

; then

they 
ompute and broad
ast the value z

t

= g

s

t

t

y




t

t

mod p

t

.
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(
) If U

t

has ID-based keys, they 
hoose uniformly at random s

t

2 G

1;t

; they


ompute and broad
ast the value z

t

= e

t

(s

t

; P

t

) � e(Y

t

; 


t

PK

t

).

4. Ea
h signing user U

j

2 A a
ts as follows:

(a) If U

j

has RSA keys, he 
hooses uniformly at random z

j

2 Z

n

j

and 
om-

putes this value.

(b) If U

j

has Dis
-Log keys, he 
hooses uniformly at random a

j

2 Z

q

j

; then

he 
omputes and broad
asts the value z

j

= g

a

j

j

mod p

j

.

(
) If U

j

has ID-based keys, he 
hooses uniformly at random T

j

2 G

1;j

; he


omputes and broad
asts the value z

j

= e(T

j

; P

j

).

5. The signing users 
ompute then the value 
 = H(U ;m; z

1

; : : : ; z

n

).

6. They 
hoose uniformly at random one of the ve
tors v 2 GF

�

2

k

�

r

that veri�es:

(i) v (D) = 
, and

(ii) v (U

i

) = 


i

, for all U

i

2 C.

Note that this ve
tor v exists be
ause C =2 � and so the ve
tors f (D); f (U

i

)g

U

i

2C

g

are linearly independent.

7. Every signing user U

j

2 A individually 
omputes 


j

= v (U

j

); then he pro-


eeds as follows:

(a) If U

j

has RSA keys, he 
omputes and broad
asts the value s

j

=

�

z

j

�

^

H

j

(


j

)

�

d

j

modn

j

.

(b) If U

j

has Dis
-Log keys, he 
omputes and broad
asts the value s

j

=

a

j

� 


j

x

j

mod q

j

.

(
) If U

j

has ID-based keys, he 
omputes and broad
asts the value s

j

=

T

j

� 


j

SK

j

.

Note that the rest of users in A 
an verify if the broad
ast value s

j

is 
onsistent

with the value z

j

broad
ast in step 4, by using the publi
 key of user U

j

. In

this way, they dete
t dishonest users who try to boy
ott the pro
ess.

8. The resulting signature is (U ;m;v; s

1

; : : : ; s

n

;  ).

Veri�
ation of a distributed ring signature. The re
ipient of the message

�rst 
omputes 


i

= v (U

i

), for every user U

i

2 P and then 
omputes the following

values:

(a) If U

i

has RSA keys, 
ompute z

i

=

^

H

i

(


i

) + s

e

i

i

modn

i

.

(b) If U

i

has Dis
-Log keys, 
ompute z

i

= g

s

i

i

y




i

i

mod p

i

.

(
) If U

i

has ID-based keys, 
ompute z

i

= e

i

(s

i

; P

i

) � e(Y

i

; 


i

PK

i

).
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The signature is valid if v (D) = H(U ;m; z

1

; : : : ; z

n

).

The 
orre
tness of the s
heme is easy to verify. With respe
t to anonymity and

unforgeability, it 
an be proved using a 
ombination of the te
hniques that appear

in the proof of Theorem 1 and in the se
urity proofs of the papers [1, 23℄. To show

that the s
heme is unforgeable, one proves that if there would exist a su

essful

adversary against it, then one 
ould solve either the RSA problem, or the Dis
rete

Logarithm problem, or the Computational DiÆe-Hellman problem.

7 Con
lusion

In this work we have dealt with distributed ring signature s
hemes in identity-based

s
enarios. Su
h s
hemes provide anonymity to a subset of users who want to sign a

message on behalf of a family of possible signing subset. In identity-based s
enarios,

publi
 keys of the users are derived from publi
ly veri�able data (for example, an

e-mail address), and so digital 
erti�
ates are not ne
essary to authenti
ate the

validity of publi
 keys.

We have proposed a distributed ring signature s
heme whi
h works with general

families of possible signing subsets. In the design, we use as a primitive the 
on
ept

of dual a

ess stru
tures. We have formally proved the un
onditional anonymity

and the existential unforgeability of our s
heme, in the random ora
le model, as-

suming that the Computational DiÆe-Hellman problem is intra
table. With respe
t

to previous proposals working with general families, the new s
heme provides two

improvements: the redu
tion in the proof of unforgeability is tighter, and the length

of ea
h signature is linear in the number of involved users.

Although we have analyzed, for 
larity, the version for ID-based s
enarios with


ommon parameters, the s
heme 
an be extended (using the te
hniques in [1, 23℄)

to work in a framework where users have independent keys: either PKI-based or

ID-based, and with di�erent publi
 parameters, lengths, et
.
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