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Abstract

In [1], W. Aiello and R. Venkatesan have shown how to construct pseudo-random functions of 2n bits
→ 2n bits from pseudo-random functions of n bits → n bits. They claimed that their construction, called
“Benes”, reaches the optimal bound (m ≪ 2n) of security against adversaries with unlimited computing
power but limited by m queries in an adaptive chosen plaintext attack (CPA-2). However a complete
proof of this result is not given in [1] since one of the assertions of [1] is wrong. Due to this, the proof
given in [1] is valid for most attacks, but not for all the possible chosen plaintext attacks. In this paper
we will in a way fix this problem since for all ε > 0, we will prove CPA-2 security when m ≪ 2n(1−ε).
However we will also see that the probability to distinguish Benes functions from random functions is

sometime larger than the term in m2

22n
given in [1]. One of the key idea in our proof will be to notice

that, when m ≫ 22n/3 and m ≪ 2n, for large number of variables linked with some critical equalities,
the average number of solutions may be large (i.e. ≫ 1) while, at the same time, the probability to have
at least one such critical equalities is negligible (i.e. ≪ 1).
Key Words: Pseudo-random functions, unconditional security, information-theoretic primitive, design
of keyed hash functions.

1 Introduction

In [5], M. Luby and C. Rackoff have published their famous theorem: a 3-round Feistel scheme with
three independent random round functions f1, f2, f3 of n bits → n bits gives a pseudo-random function of
2n bits → 2n bits with security against all adaptive chosen plaintext attacks (CPA-2) when the number
m of cleartext/ciphertext pairs chosen by the adversary satisfies m ≪ 2n/2 (even if the adversary has
unbounded computing power). Since this paper [5], these constructions, or similar constructions, have
inspired a considerable amount of research. In [10] a summary of existing works on this topic is given.
The bound m ≪ 2n/2 is called the “birthday bound”, i.e. it is about the square root of the optimal bound
against an adversary with unbounded computing power. In [11] and [1] it was proved that for 3 or 4-round
Feistel schemes this bound m ≪ 2n/2 is the best we can get. One direction of research is to design or study
various schemes where we have a better proved security than the birthday bound. This is what W. Aiello
and R. Venkatesan have done in [1]: they have found a construction of locally random functions (called
“Benes”) where the optimal bound (m ≪ 2n) is obtained instead of the birthday bound. Here the functions
are not permutations. Similarly, in [6] U. Maurer has found some other constructions of locally random
functions (not permutations) where he can get as close as wanted to the optimal bound (i.e. m ≪ 2n(1−ε)

and for all ε > 0 he has a construction). In [10] the security of unbalanced Feistel schemes is studied and
a security proof in 2n(1−ε) is obtained, instead of 2n/2, but for much larger round functions (from 2n bits
to ε bits, instead of n bits to n bits). However here this bound is basically again the birthday bound for
this functions. In [14] J. Patarin obtained a security when m ≪ 2n for 5-round Feistel scheme against all
CPA-2 attacks.
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In this paper we will study again the “Benes” schemes of [1]. First, we will notice that the proof of security
given in [1] is valid for most chosen plaintext attacks, but is not valid for all chosen plaintext attacks. We
will then in a way fix this problem. For known plaintext attacks, we will see that one Butterfly is enough
to get security when m ≪ 2n (Benes schemes and Butterfly schemes are defined in section 2). Then, for
adaptive chosen plaintext attacks and for all ε > 0, we will prove CPA-2 security when m ≪ 2n(1−ε) for
sufficiently large n. However our proved security bound in this case will be larger than the term given
in [1]. We will also mention what appears for a variant of Benes called “modified Benes”, and we will give
some examples of applications.

2 Notations

• In = {0, 1}n is the set of the 2n binary strings of length n.
• Fn is the set of all functions f : In → In. Thus |Fn| = 2n·2n

.
• For a, b ∈ In, a ⊕ b stands for bit by bit exclusive or of a and b.
• For a, b ∈ In, a||b stands for the concatenation of a and b.
• For a, b ∈ In, we also denote by [a, b] the concatenation a||b of a and b.
• Given four functions from n bits to n bits, f1, . . . , f4, we use them to define the Butterfly transfor-
mation (see [1]) from 2n bits to 2n bits. On input [Li, Ri], the output is given by [Xi, Yi], with:

Xi = f1(Li) ⊕ f2(Ri) and Yi = f3(Li) ⊕ f4(Ri).
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Figure 1: Butterfly transformation

• Given eight functions from n bits to n bits, f1, . . . , f8, we use them to define the Benes transformation
(see [1]) (back-to-back Butterfly) as the composition of two Butterfly transformations. On input [Li, Ri],
the output is given by [Si, Ti], with:

Si = f5(f1(Li) ⊕ f2(Ri)) ⊕ f6(f3(Li) ⊕ f4(Ri)) = f5(Xi) ⊕ f6(Yi)

Ti = f7(f1(Li) ⊕ f2(Ri)) ⊕ f8(f3(Li) ⊕ f4(Ri)) = f7(Xi) ⊕ f8(Yi).
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Figure 2: Benes transformation (back-to-back Butterfly)
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3 A problem in the proof of [1]

Let [L1, R1], [L2, R2], [L3, R3] and [L4, R4] be four chosen inputs such that L1 = L2, R2 = R3, L3 = L4

and R4 = R1 (and R1 6= R2 and L1 6= L3). (Here we will say that we have “a circle in L, R” of length
4). Let p be the probability for these inputs to produce “a circle in X, Y ” (or, in the language of [1], an
“alternating cycle”) after a Butterfly. In [1], page 318, it is claimed that “the probability that the top
Butterfly produces an alternating cycle of length 2j is ≤ 2−2jn”. So here this means p ≤ 1

24n . However we
will see that p ≥ 1

22n . We have:
X1 = f1(L1) ⊕ f2(R1)

X2 = f1(L2) ⊕ f2(R2) = f1(L1) ⊕ f2(R2)

X3 = f1(L3) ⊕ f2(R3) = f1(L3) ⊕ f2(R2)

X4 = f1(L4) ⊕ f2(R4) = f1(L3) ⊕ f2(R1)

Y1 = f3(L1) ⊕ f4(R1)

Y2 = f3(L2) ⊕ f4(R2) = f3(L1) ⊕ f4(R2)

Y3 = f3(L3) ⊕ f4(R3) = f3(L3) ⊕ f4(R2)

Y4 = f3(L4) ⊕ f4(R4) = f3(L3) ⊕ f4(R1)

First possible circle in X, Y We will get the circle X1 = X2, Y2 = Y3, X3 = X4 and Y4 = Y1 if and
only if f2(R1) = f2(R2) and f3(L1) = f3(L3) and the probability for this is exactly 1

22n (since R1 6= R2 and
L1 6= L3).

Conclusion The probability p to have a circle in X, Y of length 4 (i.e. the probability that the top
Butterfly produces an alternating cycle of length 4 in the language of [1]) is ≥ 1

22n , so it is not ≤ 1
24n as

claimed in [1].

As we will see in this paper, this problem is not easily solved: a precise analysis will be needed in
order to prove the security result m ≪ 2n(1−ε) for all ε > 0.

Remark It is possible to show that 6 different circles in X, Y are possible here, with a probability 1
22n .

So the probability p to have a circle in X, Y of length 4 will be between 1
22n and 6

22n here. One part of the
work of this paper will be to see if 1

22n instead of 1
24n can create a problem or not, and another part of the

work will be to evaluate the effect of the number of cases, 6 here, and the analysis will have to be done for
circles of any length, not only length 4 as here.

4 One Butterfly: Proof of KPA security when m ≪ 2n

Here we will prove KPA security by using the “coefficient H technique” of [13] (more precisely theorem
3.1 p.516 of [13]). Let [Li, Ri], 1 ≤ i ≤ m, be the inputs. With one round of Butterfly, the outputs are
[Xi, Yi] with:

∀i, 1 ≤ i ≤ m,

{

Xi = f1(Li) ⊕ f2(Ri)
Yi = f3(Li) ⊕ f4(Ri)

(#)
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Now when the values Li, Ri, Xi, Yi are given, 1 ≤ i ≤ m, let H be the number of f1, f2, f3, f4 of Fn such
that we have (#). If we have no circle in L, R then each new equation (#) fixes f1 (or f2) and f3 (or

f4) in a new point. So if we have no circle in L, R we will have exactly: H = |Fn|4
22nm . Moreover, since we

are in KPA, with m random cleartext/ciphertext pairs, we will now see that we can indeed assume, when
m ≪ 2n, that there are no circle in L, R.

1. Circle on 2 indices i, j, i 6= j, are impossible because Li = Lj and Ri = Rj implies that i = j.

2. Without loosing generality, we can study only circles on r indices, with r even (L1 = L2, L2 = L3

and R3 = R1 for example gives the circle L1 = L3, R3 = R1). We will first study the case of circle on
4 indices. Here, we have some pairwise distinct indices i, j, k, l such that: Li = Lj , Lk = Ll, Ri = Rk

and Rj = Rl. The probability to have such a circle, when the Lα, Rα are randomly chosen, is ≤ m4

4·24n

(Proof: we have here m4

4 possible choices for i, j, k, l since we can start the circle in i, j, k or l and
each of the 4 equations have a probability 1

2n to be satisfied if the Lα, Rα are randomly chosen).

3. More generally the probability to have a circle on r indices, when the Li, Ri are randomly chosen,
is ≤ mr

r·2nr . So the probability p to have at least one circle in L, R, when the values Lα and Rα are

randomly chosen satisfies: p ≤ 1
4

∑∞
i=2

m2i

22in = 1
4 · m4

24n · 1

1− m2

22n

.

Conclusion By using theorem 3.1 p.516 of [13], we obtain (with α = 0 and β = 1
4 · m4

24n · 1

1− m2

22n

): for all

algorithm A taking m values [Li, Ri] on input, |E(P1 − P ∗
1 )| ≤ 1

4 · m4

24n · 1

1− m2

22n

(where E is the expectancy

on the [Li, Ri] randomly chosen).

So one Butterfly resist all KPA attacks when m ≪ 2n.

Remark 1 For Benes (i.e. two independent rounds of Butterfly), a similar KPA analysis would give

security in O
(

m2

22n

)

instead of O
(

m4

24n

)

here for only one round of Butterfly. As we will see in appendix C

for Benes, and more generally for λ rounds of Benes, λ ≥ 1, the KPA security in O
(

m2

22n

)

is tight: there

is an explicit ciphertext only attack in O
(

m2

22n

)

. So for KPA security and for ciphertext only security one

round of Butterfly is slightly better than two rounds (or λ rounds) when m ≪ 2n. This is due to the fact
that for two rounds of Butterfly we can have Xi = Xj and Yi = Yj with i < j, and for one round we cannot
have Li = Lj and Ri = Rj with i < j (two rounds of independent pseudo-random permutations cannot be
less secure than one, but with pseudo-random functions, as here, it can be).

Remark 2 For CPA-1 security however, unlike KPA security or ciphertext only attacks, Benes (i.e. two
independent rounds of Butterfly) is clearly much better than one. We will see that when m ≪ 2n(1−ε),
ε > 0, Benes is secure against all CPA-2 (so also CPA-1) attacks. For one round of Butterfly there is
a CPA-1 attack with m = 4: just choose two values Li and Lj , Li 6= Lj and two values Ri and Rj ,
Ri 6= Rj , and ask for the outputs of [Li, Ri], [Lj , Rj ], [Li, Rj ] and [Lj , Ri]. With Benes we will have
X1 ⊕X2 ⊕X3 ⊕X4 = 0 and Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 = 0 with probability 1, and for random function this occurs
with probability only 1

22n .
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5 Benes: First results on circles in X, Y

5.1 Circles in X,Y and CPA-2 security

With Benes, we have:

∀i, 1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti] ⇔
{

Si = f5(Xi) ⊕ f6(Yi)
Ti = f7(Xi) ⊕ f8(Yi)

(1)

with

{

Xi = f1(Li) ⊕ f2(Ri)
Yi = f3(Li) ⊕ f4(Ri)

When some Li, Ri, Si, Ti values are given, 1 ≤ i ≤ m, let H be the number of f1, . . . , f8 such that: ∀i,
1 ≤ i ≤ m, Benes(f1, . . . , f8)[Li, Ri] = [Si, Ti].

Definition 5.1 • We will say that we have “a circle in X, Y of length k” if we have k pairwise distinct
indices such that Xi1 = Xi2 , Yi2 = Yi3, Xi3 = Xi4,. . ., Xik−1

= Xik , Yik = Yi1.

• We will say that we have “a circle in X, Y ” if there is an even integer k, k ≥ 2, such that we have a
circle in X, Y of length k.

Theorem 5.1 If the Xi and Yi values are such that there are no “circles in X, Y ” then the number of

f5, f6, f7, f8 solution of (1) is exactly |Fn|4
22nm .

Proof Let A be a set of equations Si = f5(Xi) ⊕ f6(Yi). These equations are all independent, except
if we have a subset of λ equations in A where all the Xi values and all the Yi values are identical two
by two (Proof: if this property does not occur we can associate a new variable f5(Xα) or f6(Yβ) to each
new equation Si = f5(Xi) ⊕ f6(Yi), where α and β are found by looking the equations where we have
f5(Xi) or f6(Yi)). So, if the equations of A are not all independent, we will have some indices i1, . . . , ik, k
even, where all the Xi values and all the Yi values are identical two by two, i ∈ {i1, . . . , ik}. There is at
least one index j2 ∈ {i1, . . . , ik}, j2 6= i1, such that Xi1 = Xj2 . There is at least one index j3, j3 6= j2,
such that Yj2 = Yj3 . If j3 = i1 we have a circle in X, Y . If not, we can continue: there is at least one
index j4, j4 6= j3, such that Xj4 = Xj3 . If j4 ∈ {i1, j2} we have a circle in X, Y . If not, we can continue.
Like this we will obtain a circle in X, Y of length < k, or at the end we have an index jk, jk 6= jk−1,
such that Yjk

= Yi1 and this gives a circle in X, Y of length k. So, if we have no circle in X, Y , then

all the equations Si = f5(Xi) ⊕ f6(Yi) of (1) are independent, so we have exactly |Fn|2
2nm functions f5, f6

solution. Similarly, we have exactly |Fn|2
2nm functions f7, f8 solution of the equation Ti = f7(Xi) ⊕ f8(Yi)

of (1). So if we have no circle in X, Y we have exactly |Fn|4
22nm functions f5, f6, f7, f8 solution of (1), as claimed.

Let p be the probability to get at least one circle in X, Y in a CPA-2 attack (when f1, f2, f3, f4

are randomly chosen). From theorem 5.1, we have H ≥ (1 − p) |Fn|8
22nm . So with theorem 3.2 p.517 of [13]

(with α = 0 and β = p) we get:

Theorem 5.2 The probability to distinguish Benes functions from random functions of 2n bits → 2n bits
in a CPA-2 attack is always ≤ p, when f1, . . . , f8 are randomly and independently chosen in Fn, and where
p is the probability to have a circle in X, Y .
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Remark 1 This result was already in [1], written in the language of “alternating cycles”. In fact, this
result can be obtained directly, without using theorem 3.2 of [13]: when there are no circles in X, Y in each
equation (1), we have a new variable f5(Xi) or f6(Yi), and a new variable f7(Xi) or f8(Yi), so if f5, f6, f7, f8

are random functions, the outputs Si and Ti are perfectly random and independent from the previous Sj ,
Tj , i < j.

Remark 2 In this paper we will evaluate p. One difficulty is the fact that in a CPA-2 attack we cannot
assume that the variables Xi and Yi are random, so we cannot use the same proof as we did in section 4
for KPA security. For example if we choose L1 = L2, L3 = L4, R1 = R3 and R2 = R4, then we will have:
X4 = X1 ⊕ X2 ⊕ X3 and Y4 = Y1 ⊕ Y2 ⊕ Y3, so the Xi (and Yi) variables are not independent random
variables.

Remark 3 In this paper we will analyze when p is small, since p small is a sufficient condition for CPA-2
security. We can notice, however, that this is not a necessary condition. Let us assume that we can, with
a non negligible probability p generate A circles in X, Y with k variables. For each such circles we will
have: Si1 ⊕ . . . Sik = 0 and Ti1 ⊕ . . . Tik = 0. (2)

For random functions, we will have about mk

k!22n indices i1, . . . , ik such (2), with a standard deviation of

about
√

mk

k!22n for this number. So even if p is not negligible, we may not be able to distinguish Benes

functions from random functions if the probability to have A ≥
√

mk

k!22n is negligible (instead of A 6= 0).

5.2 Circles in X,Y with k = 2

Theorem 5.3 The probability p2 to have a circle in X, Y of length 2, when f1, f2, f3, f4 are randomly
chosen in Fn satisfies: p2 ≤ m(m−1)

2·22n . So p2 is negligible when m ≪ 2n.

Proof Here we want i < j such that:
{

f1(Li) ⊕ f2(Ri) = f1(Lj) ⊕ f2(Rj) (3)
f3(Li) ⊕ f4(Ri) = f3(Lj) ⊕ f4(Rj) (4)

First case: Ri 6= Rj. Then when f1 is fixed, we have exactly |Fn|
2n functions f2 such that (3) is satisfied,

and when f3 is fixed, we have exactly |Fn|
2n functions f4 such that (4) is satisfied.

Second case: Ri = Rj. Then we have Li 6= Lj (since i < j so i 6= j), so we have exactly |Fn|
2n functions

f1 such that (3) is satisfied and exactly |Fn|
2n functions f3 such that (4) is satisfied.

Conclusion Whatever Li, Lj , Ri, Rj are, when i and j are fixed, we have exactly |Fn|4
22n functions

f1, f2, f3, f4 such that (3) and (4) are satisfied. So since we have m(m−1)
2 indices i, j, i < j, we have

p2 ≤ m(m−1)
2·22n , as claimed.

5.3 Circles in X,Y with k = 4

(As already said in section 4, without loosing generality we can study only circles with k even. X1 = X2,
X2 = X3 and Y3 = Y1 for example gives the circle X1 = X3, Y3 = Y1 with k = 2).

Theorem 5.4 The probability p4 to have a circle in X, Y of length 4, when f1, f2, f3, f4 are randomly
chosen in Fn satisfies: p4 ≤ m4

4·24n + 6m2

22n . So p4 is negligible when m ≪ 2n.
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Proof Here we want 4 pairwise distinct i, j, k, l such that: Xi = Xj , Yj = Yk, Xk = Xl and Yl = Yi, i.e.
such that:

(5)















f1(Li) ⊕ f2(Ri) = f1(Lj) ⊕ f2(Rj)
f1(Lk) ⊕ f2(Rk) = f1(Ll) ⊕ f2(Rl)
f3(Lj) ⊕ f4(Rj) = f3(Ll) ⊕ f4(Rl)
f3(Li) ⊕ f4(Ri) = f3(Lk) ⊕ f4(Rk)

For i, j, k, l, we have ≤ m(m−1)(m−2)(m−3)
4 possibilities (since when i, j, k, l is a solution we can start the

circle in X, Y with i, j, k or l).

• If in (5) the four equations are independent, the probability to obtain (5) will be ≤ m4

4·24n .

• Now in (5), as we will see, there are 3 × 2 = 6 cases where the four equations are not independent
(they come from only two independent equations). For example (case 1), if Li = Lj , Lk = Ll,
Ri = Rk and Rj = Rl, then

(5) ⇔
{

f2(Ri) = f2(Rj)
f3(Li) = f3(Lk)

The equations number 1 and 3 of (5) are always independent , since f3 and f4 are randomly chosen
independently from f1 and f2. However the equation number 2 can be equivalent with the equation
number 1 if

Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl

or Li = Lj , Lk = Ll, Ri = Rl, Rj = Rk

or Li = Lk, Lj = Ll, Ri = Rj , Rk = Rl

or Li = Lk, Lj = Ll, Ri = Rl, Rj = Rk

or Li = Ll, Lj = Lk, Ri = Rj , Rk = Rl

or Li = Ll, Lj = Lk, Ri = Rk, Rj = Rl

These 6 cases are also the conditions for the equations number 5 and 6 to be equivalent. However,
in all of these 6 cases, 2 indices are fixed when two other indices are given. For example with case 1,
if i and l are given, then j and k are fixed, since Lj = Li and Rj = Rl (this fixes at most one j), and
since Lk = Ll and Rk = Ri (this fixes at most one k).

Conclusion p4 ≤ m(m−1)(m−2)(m−3)
4·24n + 6m(m−1)

22n , so p4 ≤ m4

4·24n + 6m2

22n , as claimed.

5.4 Circles in X,Y , the general case

We will now consider the general case (Remark: in appendix F we study specifically k = 6 and we will
get a more precise evaluation than the general evaluation. k = 6 is interesting since a large number, 128,
appears and since a term in mα

2nβ appears with α < β).

Theorem 5.5 Let k be an even integer. The probability pk to have a circle in X, Y of length k, when
f1, f2, f3, f4 are randomly chosen in Fn satisfies: pk ≤ k2k m2

22n .
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Proof We have a circle of length k in X, Y if and only if there are some pairwise distinct indices i1, . . . , ik
such that Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Yik = Yi1 , i.e. such that:

(8)



















f1(Li1) ⊕ f2(Ri1) = f1(Li2) ⊕ f2(Ri2)
f1(Li3) ⊕ f2(Ri3) = f1(Li4) ⊕ f2(Ri4)
...
f1(Lik−1

) ⊕ f2(Rik−1
) = f1(Lik) ⊕ f2(Rik)

and (9)



















f3(Li2) ⊕ f4(Ri2) = f3(Li3) ⊕ f4(Ri3)
f3(Li4) ⊕ f4(Ri4) = f3(Li5) ⊕ f4(Ri5)
...
f3(Lik) ⊕ f4(Rik) = f3(Li1) ⊕ f4(Ri1)

For {i1, . . . , ik} we have ≤ mk

k possibilities (since we can start the circle with i1, or i2 ,. . ., or ik). If in (8)

and (9) the k
2 + k

2 = k equations are independent, the probability to obtain (8) and (9) will be ≤ mk

k·2kn .
To study the general case, where the equations may be dependent, we will introduce the equations of the
circle in X, Y one by one.

• The first equation is: Xi1 = Xi2 . Here we have m(m− 1) possible choices for i1 and i2, and when i1
and i2 are given, the probability to have Xi1 = Xi2 is exactly 1

2n .

• The second equation is: Yi2 = Yi3 . Here, when i1 and i2 are given, we have ≤ m− 2 possible choices
for i3, and this equation Yi2 = Yi3 is independent from the equation Xi1 = Xi2 (since with Y we use
f3 and f4 and with X we use f1 and f2), so the probability to have Yi2 = Yi3 when Xi1 = Xi2 and
when i1, i2 and i3 are given is exactly 1

2n .

• The equation number 3 is: Xi3 = Xi4 . Here, there are two cases.

Case 1 Xi3 = Xi4 is independent from Xi1 = Xi2 . Then for i4 we have m−3 possible choices (when
i1, i2 and i3 are given), and the probability to have Xi3 = Xi4 when Xi1 = Xi2 and Yi2 = Yi3 is
1
2n .

Case 2 Xi3 = Xi4 is dependent from Xi1 = Xi2 . Then the indices i1, i2, i3 and i4 can be associated
two by two with equalities in R, and two by two with equalities in L (for example Li4 = Li3 ,
Li1 = Li2 , Ri3 = Ri2 , and Ri4 = Ri1). So we have Li4 = Liα , α = 1, 2 or 3, and Ri4 = Riβ ,
β = 1, 2 or 3, and α 6= β (since α < 4, and since Li4 = Liα and Ri4 = Riβ would imply i4 = iα
and α = 4). So in this case 2, i4 is fixed when i1, i2 and i3 are fixed, and when the equalities
in L and R are given. For these equalities in L and R we have here ≤ 3 × 2 = 6 possibilities (3
for α and 2 for β when α is fixed). We can continue like this for all the equations in X or Y ,
except the last one, that we will consider specifically.

• For equation number µ, 3 ≤ µ < k, we have two cases.

Case 1 This equation number µ is independent from the other equations. Then for iµ+1 we have
m− µ possible choices (when i1, i2, . . ., iµ are given), and the probability to have this equation
number µ when the other equations are satisfied is 1

2n .

Case 2 This equation number µ is dependent from the other equations. Then ∃α, β, α 6= β, α ≤ µ,
β ≤ µ, such that Liµ+1 = Liα and Riµ+1 = Riβ . So (since the [Li, Ri], 1 ≤ i ≤ m are pairwise
distinct), iµ+1 is fixed when i1, i2, . . ., iµ are fixed, and when the equalities in L and R are
given. For α and β we have ≤ µ(µ − 1) possibilities.

If equation number µ is the first in this case 2 If µ is the first integer such that equation
number µ is in this case 2 (i.e. such that equation number µ is dependent from the other equations)
then we will see now that not only one but at least two indices can be fixed from the other indices.
Proof: since equation number µ is dependent from the previous equations, there is a subset S of the
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equations such that all the equations in S have a number ≤ µ, such that all the Li variables in the
equations of S can be associated two by two with equalities, and such that all the Ri variables in the
equations of S can be associated two by two with equalities, and such that equation number µ is in
S. So we have an index α, α ≤ µ such that Liµ+1 = Liα and an index β, β ≤ µ, α 6= β, such that
Riµ+1 = Riβ , as said above, but we also have an index γ, γ ≤ µ, γ 6= α and an index δ, δ ≤ µ, δ 6= γ
such that Riα = Riγ and Liγ = Liδ . Here we see that iµ+1 and iγ can be fixed from the other indices
≤ µ (since Liγ = Liδ and Riγ = Riα , and Liµ+1 = Liα and Riµ+1 = Riβ ) and here for α, β, γ, δ, we
have ≤ µ(µ − 1)(µ − 1)2 possibilities.

Remark Alternatively it is also possible to show that since equation number µ is dependent from
the previous equations, we will have one, or more than one circles in L, R (there is an index α1 such
that Liµ+1 = Liα1

, and an index α2 6= α1 such that Riα1
= Riα2

, and an index α3 6= α2 such that
Liα2

= Liα3
, etc. and since the number of indices is finite, we get like this a circle in L, R. If not all

the indices of the dependencies are covered, we can continue to get some other circles in L, R). Since
in a circle in L, R, 50% of the indices can be fixed from the other indices, and since a circle in L, R
has a length ≥ 4 (since Li = Lj and Ri = Rj imply i = j), we see again that at least 2 indices will
be fixed with the first dependency. For the second dependency it may occur, however, that only one
new index is fixed. For example if L1 = L2 = L3, L4 = L5 = L6, R1 = R4, R2 = R5 and R3 = R6,
then X1 = X4 implies X2 = X5 (this fixes 2 indices) and X3 = X6 (this fixes only one more index).

• For equation number k, the last equation, it can be dependent or not from the previous equations,
but here, unlike before, we do not introduce a new index (since we have a circle in the indices).

Conclusion for pk If we have no dependencies in the equations, the probability to have all the
equations is ≤ mk

k·2nk . If we have a dependency, for equations number 1 and 2 and for indices i1, i2, i3

we have a probability ≤ m3

22n . Then each new equation different from the last one, say equation number
µ, µ < k, either introduces a new index iµ+1 with a condition in 1

2n (it gives a term ≤ m
2n ) or we have

less than µ(µ−1) possibilities for this index iµ+1. Moreover, the first time that we have a dependency,
say with equation number µ, µ < k, then we can fix two indices, iµ+1 and iα for α ≤ µ, from the other
indices iβ, β ≤ µ, and after less than µ(µ− 1)(µ− 1)2 possibilities for the equalities in L and R these

two indices will be fixed. So we get: pk ≤ mk

k·2nk + m3

22n
(k−1)2

m ·(2·3+ m
2n )·(4·5+ m

2n ) . . . ((k−2)(k−1)+ m
2n ).

(Note: the term (k−1)2

m comes from the second fixed index when we get the first dependency). So if

m ≤ 2n, pk ≤ mk

k·2nk +m2(k−1)2

22n ·(2·3+1)·(4·5+1) . . . ((k−2)(k−1)+1), so pk ≤ mk

k·2nk + m2

22n ·(k−1)2(k2)k−2,

so since mk

k·2nk ≤ m2

k·22n if m ≤ 2n and k ≥ 2, we get pk ≤ k2k · m2

22n as claimed.

Remark In appendix G we will show a slightly different way to prove this theorem 5.5 (by looking
differently at all the possible equalities in L and R). In appendix G we will see that instead of the
coefficient k2k, we can get a coefficient near kk. We can notice however that this coefficient can really be
very large. For example, if we start from a fixed circle of length k in L, R:

• For equalities in X, Y such that we have a circle of length k in X, Y , we have potentially (k − 1)!
possibilities.

• For equalities in X, Y such that all the indices can be associated two by two with equalities in X,
and associated two by two with equalities in Y , we have potentially (3 · 5 · 7 . . . (k − 1))2 possibilities
(this is ≤ (kk/2)2).

9



6 Benes: Proof of CPA-2 security when m ≪ 2n(1−ε)

6.1 Security when m ≪ 2n/2

When f1, f2 are randomly and independently chosen in Fn, the probability q1 to have i, j, 1 ≤ i < j ≤ m,
such that Xi = Xj satisfies q1 ≤ m(m−1)

2·2n . So the probability p to have a circle in X, Y (of any length)

satisfies p ≤ q1 ≤ m(m−1)
2·2n (since in any circle in X, Y we will have i < j such that Xi = Xj). So from

theorem 5.2 we get:

Theorem 6.1 The probability to distinguish Benes functions from random functions of 2n bits → 2n bits
in any CPA-2 attack with m chosen messages is always ≤ m(m−1)

2·2n (when f1, . . . , f8 are randomly and

independently chosen in Fn). This gives security when m2 ≪ 2n, i.e. when m ≪ 2n/2.

6.2 Security when m ≪ 22n/3

When f1, f2, f3, f4 are randomly and independently chosen in Fn, the probability q2 to have 3 pairwise
distinct indices i, j, k, such that Xi = Xj and Yj = Yk satisfies q2 ≤ m(m−1)(m−2)

22n (Proof: when i, j, k are
fixed Xi = Xj is a condition with probability 1

2n on f1 and f2 and Yj = Yk is a condition with probability
1
2n on f3 and f4, and f1, f2, f3, f4 are independently chosen). So the probability p to have a circle in X, Y

(of any length) satisfies p ≤ q2 ≤ m3

22n . So from theorem 5.2 we get:

Theorem 6.2 The probability to distinguish Benes functions from random functions of 2n bits → 2n
bits in any CPA-2 attack with m chosen messages is always ≤ m3

22n (when f1, . . . , f8 are randomly and
independently chosen in Fn).

6.3 Security when m ≪ 23n/4

Theorem 6.3 When f1, f2, f3, f4 are randomly and independently chosen in Fn, the probability q3 to have
4 pairwise distinct indices i, j, k, l, such that Xi = Xj, Yj = Yk, Xk = Xl satisfies q3 ≤ m4

23n + 6m2

22n .

Proof If the two equations in X are independent, the probability to obtain these 3 independent equations
on 4 indices is ≤ m4

23n . If f1(Li) ⊕ f2(Ri) = f1(Lj) ⊕ f2(Rj) and f1(Lk) ⊕ f2(Rk) = f1(Ll) ⊕ f2(Rl)
are dependent, then the values Li, Lj , Lk, Ll can be linked two by two with equalities, and the values
Ri, Rj , Rk, Rl can be linked two by two with equalities (for example: Li = Lj , Lk = Ll, Ri = Rk and
Rj = Rl). These equations in L, R can be written as some circles of equalities in L, R (in the example
above we have the circle: Li = Lj , Rj = Rl, Ll = Lk, Rk = Ri). (Remark: here, with 2 equations inX,
we can have only one circle, of length 4, since circles in L, R of length 2 cannot exist since Li = Lj and
Ri = Rj implies i = j). So two indices will be fixed from the two other indices from these equations in
L, R of the circle (in the example above, j and k are fixed when i and l are given, since Lj = Li, Rj = Rl,
Lk = Ll and Rk = Ri). Moreover, for the equalities in L and R we have here ≤ 6 possibilities (for α such
that Rk = Rα we can take α = i, j or l, then for β such that Lk = Lβ we can take β = i, j or l and we
need α 6= β).

Conclusion q3 ≤ m4

23n + 6m2

22n , as claimed.

Now from theorem 6.3 we get: the probability p to have a circle in X, Y (of any length) satisfies

p ≤ m2

2·22n + m4

23n + 6m2

22n .

10



Proof We have seen in section 5.2 that the probability to have a circle in X, Y of length 2 is ≤ m2

2·22n , and
circles in X, Y of length > 2 always have 4 pairwise distinct indices i, j, k, l such that Xi = Xj , Yj = Yk

and Xk = Xl.

Now from theorem 5.2 we get immediately the CPA-2 security of Benes schemes when m ≪ 23n/4.

6.4 Security when m ≪ 2n(1−ε)

Let k be an integer, k ≥ 1.

Definition 6.1 If k is odd, we will say that we have “a line in X, Y of length k” if we have k +1 pairwise
distinct indices such that Xi1 = Xi2 , Yi2 = Yi3, Xi3 = Xi4 , . . ., Yik−1

= Yik , Xik = Xik+1
. Similarly, if k is

even, we will say that we have “a line in X, Y of length k” if we have k + 1 pairwise distinct indices such
that Xi1 = Xi2, Yi2 = Yi3, Xi3 = Xi4 , . . ., Xik−1

= Xik , Yik = Yik+1
. So in a line in X, Y we have k + 1

indices, and k equations, in X or in Y , and these equations can be written “in a line” from the indices.

Theorem 6.4 When f1, f2, f3, f4 are randomly and independently chosen in Fn, the probability qk to have
a line in X, Y of length k satisfies qk ≤ mk+1

2nk + k2km2

22n , when k ≥ 4 and mk+1

2nk + k2km4

24n .

Remark This minoration can be improved in different ways, for example if k ≥ 6 we can get k2km4

24n

instead of k2km2

22n , and the value k2k can be improved (see appendix G). However, this result will be enough

to get security in 2n(1−ε) for all fixed ε > 0.

Proof of theorem 6.4 The proof is exactly the same as the proof of theorem 5.5 of section 5.4. The
proof is even slightly simpler here, since the last equation does not have to be treated differently from the
other equations (each equation in X or Y introduces a new index and a new equation).

Theorem 6.5 For all fixed integer k, k ≥ 1, when f1, . . . , f8 are randomly and independently chosen in Fn,

the probability p to have a circle in X, Y (of any length) satisfies p ≤ m2

2·22n +
(

m4

4·24n + 6m2

22n

)

+
∑k

λ=6
λ2λm2

22n +
(

mk+1

2nk + k2km2

22n

)

.

Proof If we have a circle in X, Y , then we have a circle of length 2 (probability ≤ m2

2·22n from theorem 5.2),

or a circle of length 4 (probability ≤ m4

4·24n + 6m2

22n from theorem 5.3), or we have a circle of length between

6 an k (probability ≤ ∑k
λ=6

λ2λm2

22n from theorem 5.5), or we have a line in X, Y of length k (probability

≤ mk+1

2nk + k2km2

22n from theorem 6.4).

Theorem 6.6 For all fixed integer k, k ≥ 1, the probability p to distinguish Benes functions from random
functions of 2n bits → 2n bits in any CPA-2 attack with m chosen messages always satisfies p ≤ (6 +
1
2 +

∑k
λ=6 λ2λ + k2k) m2

2·22n + 1
4

m4

24n + mk+1

2nk (when f1, . . . , f8 are randomly and independently chosen in Fn).

So if k is fixed, n → ∞ and mk+1 ≪ 2nk, then p will be ≪ 1. So, for any k, for sufficiently large n,
m ≪ 2nk/(k+1) gives CPA-2 security for Benes. So, for any ε > 0, for sufficiently large n, m ≪ 2n(1−ε)

gives CPA-2 security for Benes.

Proof Theorem 6.6 follows immediately from theorem 6.5 and theorem 5.2.
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7 Modified Benes, i.e. Benes with f2 = f3 = Id

7.1 First comments on modified Benes

If we take f2 = f3 = Id in the Benes schemes, we obtain a scheme called “Modified Benes” (see [1]). Then
we have: Xi = f1(Li) ⊕ Ri, Yi = Li ⊕ f4(Ri) and the output [Si, Ti] is such that: Si = f5(Xi) ⊕ f6(Yi)
and Ti = f7(Xi) ⊕ f8(Yi). In [1] it is said that the probability p to distinguish this modified Benes from a

random function of 2n bits → 2n bits satisfies p ≤ m2

22n since we can proceed as for Benes. This evaluation

is too optimistic. First, we have at least the same attack with p ≃ 7m2

4·22n as done for Benes in appendix D.
Second, modified Benes require a specific analysis since it behaves not exactly as Benes. For example, let
us evaluate p4, the probability to have a circle in X, Y of length 4 for modified Benes. We have: Xi = Xj

and Xk = Xl if and only if f1(Li) ⊕ Ri = f1(Lj) ⊕ Rj and f1(Lk) ⊕ Rk = f1(Ll) ⊕ Rl. This can occur for
example for Li = Lk, Lj = Ll and Ri ⊕ Rj ⊕ Rk ⊕ Rl = 0. Here only one index is fixed (for example l)
unlike for Benes where we have seen that at least two indices were fixed for the first dependency. So in p4

we will get a term in m3

23n that did not exist in the original Benes. Similarly, if we consider the probability

q3 to have a line Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , we will get q3 ≤ m4

23n + 2m3

22n (unlike q3 ≤ m4

23n + 6m2

22n for the

original Benes). So here we have a term in m3

22n , and therefore we will have to consider longer lines in X, Y

to get a security in m ≪ 23n/4 for modified Benes compared with the original Benes. As we will see below,
it is however possible to prove that for modified Benes, when ε is fixed and n → ∞, there are no CPA-2
attacks if m ≪ 2n(1−ε). However the evaluation of the security parameter in k that we have obtained is
larger for modified Benes compared with the original Benes schemes.

7.2 Ideas of the proof of security when m ≪ 2n(1−ε) for modified Benes

We give here only the main ideas.

Theorem 7.1 Let us consider a line of λ + α equations in X, Y such that the λ first equations may be
dependent or independent, and the other α equations are all dependent from the λ first equations. Then
we always have:

α ≤ (λ + 1)2.

Proof We have: Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . ., Yiλ = Yiλ+1
(and these λ equations (A) are

dependent or independent), and we have: Xiλ+1
= Xiλ+2

, Yiλ+2
= Yiλ+3

, . . ., Yiλ+α
= Yiλ+α+1

(and these
α equations (B) are dependent from the λ equations of (A)). If an equation Xi = Xj is dependent from
previous equations, then Li and Lj are values that have appeared before, since Xi = Xj ⇔ f1(Li) ⊕ Ri =
f1(Lj)⊕Rj , and here we see that i 6= j implies Li 6= Lj . Similarly, if an equation Yk = Yl is dependent from
previous equations, then Rk and Rl are values that have appeared before, since Yk = Yl ⇔ Lk ⊕ f4(Rk) =
Ll ⊕f4(Rl), and here we see that k 6= l implies Rk 6= Rl. Now from the λ equations of (A) we have at most
λ + 1 values Li and λ + 1 values Rj , so at most (λ + 1)2 values (Li, Rj) are possible in (B).

Circles in X, Y In a circle (C) in X, Y , we can analyze the equations in X and in Y as we did with
theorem 7.1 in a line, if we can put at the end an equation in X or Y which is independent from the others.
If not, then this means that all the equations in X and Y are dependent from the other equations in X
or Y . However in this case all index i of the circle (C) is such that there is an index j in (C), j 6= i such
that Li = Lj and similarly there is an index k in (C) such that k 6= i and Ri = Rk. In this case we will
have at least one circle in L, R (with indices from the circle (C) in X, Y ) so at least 2 indices can be fixed
from the other indices (as we have seen for the original Benes). So for the modified Benes, we will get a
security in m ≪ 2n(1−ε) as for the original Benes (but with slightly different security coefficients).
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8 Examples of applications

Keyed hash functions In [1] it is explained how Benes schemes can be used for the design of keyed
hash function. From an input [Li, Ri] of 2n bits, the Benes transformation gives a keyed hash function of
n bits (the key is the functions f1, f2, f3, f4). By combining this construction with the scheme of [2] it is
also possible to obtain a keyed hash function where the inputs can have any length and the outputs will
have n bits.

Information-theoretic application Let us first describe a problem. Alice wants to send many en-
crypted messages to Bob (for example 1 million messages) with a stream cipher. Charlie is an adversary of
Alice and Bob. He has “dynamic” access to m messages. “Dynamic” means that he can choose a message,
get the corresponding ciphertext and then adaptively choose the next message and get the corresponding
ciphertext, etc., m times. Moreover, Charlie has unlimited computing power: he has access to only m
messages but he can perform an infinite number of computations. Alice and Bob know a secret K. We
want to design an encryption function that will “resist” Charlie’s attacks. “Resist” means that, even if
Charlie uses the m cleartext/ciphertext pairs he has access to, he has no practical information on the other
cleartexts. Benes functions offer a solution for these problems with a length of the key (i.e. the functions
f1, f2, f3, f4) not far from the optimal. The idea is to use the Benes functions to create a stream cipher
like this: the message number i, says mi, will be encrypted as ci = Benes(i) ⊕ mi (since this is a stream
cipher, we do not need here Benes to be invertible). Here i can be any value between 0 and 22n − 1, so we
can encrypt N = 22n messages. So here Charlie can choose m values i between 0 and 22n − 1 and he will
get Benes(i). The length of the key is here K = 4 · n · 2n bits and the scheme will be secure as long as
m ≪ 2n(1−ε) for any fixed ε and sufficiently large n.

9 Conclusion

William Aiello and Ramarathnam Venkatesan did a wonderful work by pointing out the great potentialities
of the Benes schemes and by giving some very important parts of a possible proof. Unfortunately, the
complete proof of security when m ≪ 2n for CPA-2 is more complex than what they published in [1]
due to some possible attacks with circles in L, R. However, a careful analysis of these attacks shows that
∀ε > 0, for large values n the probability p to distinguish Benes schemes from truly random functions
satisfies for all CPA-2 attacks: p ≪ 1 when m ≪ 2n(1−ε) (but we do not have always p ≤ m2

22n as claimed
in [1]), so the final security is in a way similar, at least for large n. One of the key point in our proof was
to notice the fact that the expectancy of the number of circles in X, Y may be large (when m ≫ 22n/3)
while the probability to have at least one such circle is generally negligible (when m ≪ 2n). The security
bound in m ≪ 2n is also the security bound for the complexity, since we have shown in this paper how to
distinguish Benes (and more generally λ rounds of independent Benes schemes for all integer λ ≥ 1) from
random functions with a cyphertext only attack of about 2n messages with about 2n computations (for
Feistel schemes we do not have a similar result).
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Appendices

A Summary of the security results for Benes and Butterfly schemes

We summarize the security results on Benes and Butterfly schemes on figure 3 and figure 4 below. We also
compare them with Feistel schemes. For large values of n the minimum number of computations is always
≥ m, where m is the number of messages used in the attack.

Random Ciphertext only attack KPA CPA-2

One round of Butterfly 2n 2n 4

Benes 2n 2n ≥ 2n(1−ε)

λ rounds of Benes λ ≥ 1 2n 2n ≥ 2n(1−ε)

3 rounds of Feistel Does not exist * 2n/2 ** 2n/2 **
λ rounds of Feistel λ ≥ 6 Does not exist * 2n ** 2n **

Figure 3: Minimum number m of queries needed to distinguish the schemes from random functions of 2n
bits → 2n bits (or from random permutations for Feistel schemes), even if we have access to unbounded
computing power. For simplicity we denote 2α for O(2α), i.e. we have security if m ≪ 2α.

Random Ciphertext only attack KPA CPA-2

One round of Butterfly 2n 2n 4

Benes 2n 2n ≥ 2n(1−ε) ≤ 2n

λ rounds of Benes λ ≥ 1 2n 2n ≥ 2n(1−ε) ≤ 2n

3 rounds of Feistel Does not exist * 2n/2 ** 2n/2 **

λ rounds of Feistel λ ≥ 6 Does not exist * ≥ 2n ≤ 2(λ−4)n ** ≥ 2n ≤ 2(λ−4)n **

Figure 4: Minimum number of computations needed to distinguish the schemes from random functions of
2n bits → 2n bits (or from random permutations for Feistel schemes)

≥: best proved security.
≤: best known attack.
* Feistel schemes are permutations, so the ciphertext of m random messages gives m random values. So
there are no ciphertext only attacks from random cleartexts.
**cf [14].

B Benes: Example of CPA-1 attack with k = 2 where p ≃ m2

4·22n

Here we will see a simple ciphertext only attack and simple CPA-1 attack with m ≃ 2 · 2n messages, and
about 2 · 2n computations. The CPA-1 attack is not better than the ciphertext only attack that we will
see in appendix C, but we will improve this CPA-1 attack in appendix D with k = 2 and k = 4. These
attacks illustrate the fact that for Benes the security with the number of computations is not larger than
the security with the number of messages: these attacks are with 2 · 2n computations. These attacks will
also illustrates a difference (by a factor only 2 here) between the expectancy of the number of critical
“circles” and the probability that at least such circles exist.
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• We choose m such that
√

m is an integer.

• We choose a set L of
√

m possible values for the Li values.

• We choose a set R of
√

m possible values for the Ri values.

• So our messages are all the
√

m ×√
m = m values [Li, Ri], where Li ∈ L and Ri ∈ R.

(This is a non adaptive chosen plaintext attack, i.e. CPA-1, with m messages). Now we count the number
N of (i, j), i < j, such that: Si = Sj and Ti = Tj .

First case: random functions For random functions, the average value of N is m(m−1)
2·22n , since we have

m(m−1)
2 values (i, j), i < j, and when i and j are fixed, we have a probability 1

22n to have Si = Sj

and Ti = Tj .

Remark: It can also be shown that the standard deviation from the average value is about
√

m(m−1)
2·22n ,

i.e. about m√
2·2n .

Second case: Benes functions For Benes functions,
{

Si = Sj

Ti = Tj
⇔

{

f5(Xi) ⊕ f6(Yi) = f5(Xj) ⊕ f6(Yj)
f7(Xi) ⊕ f8(Yi) = f7(Xj) ⊕ f8(Yj)

(1)

This can occur either if (Xi 6= Xj or Yi 6= Yj) and (1) is satisfied with probability 1
22n , or if (Xi = Xj)

and (Yi = Yj), i.e. if
{

f1(Li) ⊕ f2(Ri) = f1(Lj) ⊕ f2(Rj)
f3(Li) ⊕ f4(Ri) = f3(Lj) ⊕ f4(Rj)

(2)

since i < j, we have Li 6= Lj or Ri 6= Rj , so (2) occurs with probability 1
22n .

So for Benes functions, the average value of N is about 2 · m(m−1)
2·22n , instead of about m(m−1)

2·22n for
random functions.

Probability to get at least one such value Now let i, j, i < j, be two indices such that Xi = Xj and
Yi = Yj .

Case a: Li 6= Lj and Ri 6= Rj. Then let i′ be the index such that: [Li′ , Ri′ ] = [Li, Rj ], and let j′ be the
index such that: [Lj′ , Rj′ ] = [Lj , Ri]. Then {i′, j′} 6= {i, j} (because Li 6= Lj and Ri 6= Rj) and
Xi′ = Xj′ , Yi′ = Yj′ (this comes immediately from (2)), so we will have: Si′ = Sj′ and Ti′ = Tj′ . So,
if (i, j), i < j, are such that Si = Sj and Ti = Tj and Li 6= Lj and Ri 6= Rj , we will have Si′ = Sj′

and Ti′ = Tj′ with probability about 1
2 if we have a Benes function, and with probability 1

22n if we
have a random function.

Case b: Li = Lj (we can analyze similarly Ri = Rj). Then (2) becomes:
{

f2(Ri) = f2(Rj)
f4(Ri) = f4(Rj)

(3)

Now, let i′, j′ be two indices such that Ri′ = Ri and Rj′ = Rj . For i′, j′, we have m possibilities
(since for Li′ we have

√
m choices and for Lj′ we have

√
m choices).

From (3), we get Xi′ = Xj′ and Yi′ = Yj′ , so Si′ = Sj′ and Ti′ = Tj′ . So if (i, j), i < j, is such that
Si = Sj and Ti = Tj and Li = Lj , we will have Si′ = Sj′ and Ti′ = Tj′ for all these (i′, j′) values with
probability about 1

2 if we have a Benes function, and with probability 1
22n for each (i′, j′) if we have

a random function.
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Conclusion While analyzing a Benes function, if we get two indices i, j, i < j such that Xi = Xj and
Yi = Yj , we will easily be able to certify with a very high probability that we have a Benes function by

testing the i′ and j′ inputs/outputs. We can notice that the probability to obtain such indices is ≤ m(m−1)
4·2n

since each time we get one such index we have in fact immediately 2 or m such indices, and since the
average number of such indices is exactly m(m−1)

2·2n for Benes functions.

Remark For large values of m such that m(m − 1) < 4 · 2n, the probability to obtain such indices can

be as near as wanted to m(m−1)
4·2n , since for large values of m, the number of (i, j), i < j, such that Li = Lj

or Ri = Rj becomes negligible compared with the number of (i, j), i < j, such that Li 6= Lj and Ri 6= Rj

(i.e. m
√

m becomes negligible compared with m(m−1)
2 − m

√
m).

Conclusion With k = 2, we have obtained here an attack with a probability to distinguish Benes
functions from random functions of about m(m−1)

4·22n , and an average number of critical values i, j, i < j,

with Xi = Xj and Yi = Yj (i.e. an average number of circles in X, Y of length 2) of about m(m−1)
2·22n .

C Benes and λ rounds of Benes: Example of Ciphertext only attack

with about 2 · 2n computations

Let [Li, Ri] be m random messages. Let N be the number of i, j, i < j, such that: Si = Sj and Ti = Tj .
With a similar analysis as done in appendix B for the CPA-1 attack, we can easily show that for random
functions N ≃ m(m−1)

2·22n , and for Benes functions the average value of N is about N ≃ 2 · m(m−1)
2·22n (since

Si = Sj and Ti = Tj can occur if Xi = Xj and Yi = Yj with probability ≃ 1
22n , or if Xi 6= Xj or Yi 6= Yj with

probability ≃ 1
2n , when i and j are fixed). The probability to distinguish Benes functions from random

functions with this ciphertext only attack is about m(m−1)
2·22n (when this value is < 1). (So this ciphertext

only attack is slightly better than the CPA-1 attack of appendix B. We have introduced the CPA-1 attack
because it illustrates what we will do in appendix D).

Remark More generally, for all integer λ ≥ 1, this ciphertext only attack (i.e. counting the number N of
i, j such that Si = Sj and Ti = Tj) distinguishes λ independent rounds of Butterfly from random functions
with about m random messages and about 2n complexity. So, unlike what appears with Feistel schemes
(see [14] or appendix A), the number of computations to be done to distinguish λ Butterfly from random
functions with our best known attacks do not increase with λ. For some applications Benes schemes may
therefore be less useful than Feistel schemes, even if the permutations are not required.

Complexity The number of computations needed in these attacks (KPA or CPA-1) is about 2 · 2n (with
the same memory) since we can store the [Si, Ti] values and look for collisions.

Remark It is also possible to need only 2·2n

λ memory with λ(2 · 2n) computations with the usual
time/memory tradeoff algorithm (storing 2·2n

λ values [Si, Ti] at each time).

D Benes: Example of CPA-1 attack with k = 2 and k = 4 where p ≃ 7m2

4·22n

Here we will see an attack where the probability p to distinguish a random function from a Benes function
can be as near as wanted to 7m(m−1)

4·22n (for large values m and when 7m(m−1)
4·22n is < 1). This shows that the

result claimed in [1] (page 318 it is written: p ≤ m2

22n ) is not always true (since 7
4 > 1). Moreover this
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example illustrates with k = 4 many things that we consider in this paper for general values of k.
The beginning of the attack is similar with the attack given in appendix B:

• We choose m such that
√

m is an integer.

• We choose a set L of
√

m possible values for the Li values.

• We choose a set R of
√

m possible values for the Ri values.

• Our messages are all the
√

m ×√
m = m values [Li, Ri], where Li ∈ L and Ri ∈ R.

(this is a CPA-1 attack with m messages).Now we count the number N of {i, j, k, l}, i, j, k, l pairwise
distinct, such that: Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl, Si ⊕ Sj ⊕ Sk ⊕ Sl = 0, Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0 and
such that we do not have two indices α and β, α 6= β, such that α, β ∈ {i, j, k, l} and:

{

Sα = Sβ

Tα = Tβ
(∗)

This extra condition (∗) is here to guarantee that this attack of appendix D is really different from the
attack of appendix B. At the end we will be able, if we want, to combine the two attacks.

First case: random functions For random functions, the average value of N is about A
22n , where A is

the number of circles in L, R of length 4, i.e. the number of {i, j, k, l}, i, j, k, l pairwise distinct,
such that Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl. We can find the exact value of A: we have
A = m

4 (
√

m − 1)2 (Proof: For i we have m possibilities.Then for j such that Li = Lj and i 6= j we
have

√
m − 1 possibilities. Then for k such that Rk = Ri and k 6= i (i.e. Lk 6= Li) we have

√
m − 1

possibilities. Then for l such that Ll = Lk and Rl = Rj we have exactly one possibility when i, j, k
are fixed. Like this we have counted all the circles exactly 4 times (we can start the circle with i, j, k
or l), so A = m

4 (
√

m − 1)2as claimed).

Second case: Benes functions For Benes functions,

{

Si ⊕ Sj ⊕ Sk ⊕ Sl = 0
Ti ⊕ Tj ⊕ Tk ⊕ Tl = 0

⇔
{

f5(Xi) ⊕ f5(Xj) ⊕ f5(Xk) ⊕ f5(Xl) = f6(Yi) ⊕ f6(Yj) ⊕ f6(Yk) ⊕ f6(Yl)
f7(Xi) ⊕ f7(Xj) ⊕ f7(Xk) ⊕ f7(Xl) = f8(Yi) ⊕ f8(Yj) ⊕ f8(Yk) ⊕ f8(Yl)

(1)

This can occur either if the Xi values and the Yi values can be eliminated two by two (for example
if Xi = Xj , Xk = Xl, Yi = Yk and Yj = Yl), or with probability 1

22n when i, j, k, l are fixed if the
Xi values and the Yi values cannot be eliminated two by two. However we do not want to have two
indices α and β, α 6= β, such that α, β ∈ {i, j, k, l} and Xα = Xβ and Yα = Yβ because this would
imply Sα = Sβ and Tα = Tβ in contradiction with the condition (∗) above. So the Xi values and
the Yi values can be eliminated two by two if and only if we have a circle in X, Y of length 4 (i.e.
if we can chose i1, i2, i3, i4 pairwise distinct in {i, j, k, l} with Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 and
Yi4 = Yi1). We have here 6 possible circles:

1. Xi = Xj , Yj = Yk, Xk = Xl and Yl = Yi

2. Xi = Xj , Yj = Yl, Xl = Xk and Yk = Yi

3. Xi = Xk, Yk = Yj , Xj = Xl and Yl = Yi

4. Xi = Xk, Yk = Yl, Xl = Xj and Yj = Yi
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5. Xi = Xl, Yl = Yj , Xj = Xk and Yk = Yi

6. Xi = Xl, Yl = Yk, Xk = Xj and Yj = Yi

Moreover, since we have Li = Lj , Lk = Ll, Ri = Rk, Rj = Rl, we always have Xi⊕Xj ⊕Xk ⊕Xl = 0
and Yi ⊕Yj ⊕Yk ⊕Yl = 0 (because Xi ⊕Xj ⊕Xk ⊕Xl = f1(Li)⊕ f2(Ri)⊕ f1(Lj)⊕ f2(Rj)⊕ f1(Lk)⊕
f2(Rk) ⊕ f1(Ll) ⊕ f2(Rl) and similarly for Y ).
So each of the 6 possible circles have a probability 1

22n to be true when f1, f2, f3, f4 are randomly
chosen (since 2 of the 4 equalities are implied by the 2 other equalities). For example, we have
Xi = Xj , Yj = Yk, Xk = Xl, Yl = Yi if and only if f1(Li) ⊕ f2(Ri) = f1(Lj) ⊕ f2(Rj) and
f3(Lj) ⊕ f4(Rj) = f3(Lk) ⊕ f4(Rk) i.e. if and only if f2(Ri) = f2(Rj) and f3(Li) ⊕ f4(Rj) =
f3(Lk)⊕ f4(Ri). So for Benes functions, the average value of N is about 7A

22n , where A is the number
of “4-circles in L, R” (7=6+1 since we have 6 possible circles and a probability 1

22n to have (1) if we
have no such circles).

Remark Moreover unlike what appeared with Xα = Xβ and Yα = Yβ in appendix B, none of these
6 conditions is equivalent to another of these 6 conditions, so the probability that at least one of
these conditions is satisfied is really near 6A

22n (for large values of m and when 6A
22n < 1).

Conclusion With k = 4, we have obtained here an attack with a probability to distinguish Benes
functions from random functions of about 6m2

4·22n and an average number of about also 6m2

4·22n critical values
{i, j, k, l}. This attack can also be combined with the attack with k = 2 given in appendix B. Then we

obtain an attack with a probability of success of about 7m2

4·22n (with an average number of 8m2

4·22n critical
values).

E Why fixing the proof of [1] was not easy when m ≫ 22n/3

It may seem difficult to use the results of section 5 to get a security in 2n(1−ε) for all ε > 0, since k can be
(a priori) as large as m, and then k2km3

24n is not at all negligible when m ≪ 2n(1−ε). Moreover, we can choose
m as a square of an integer, and choose all the [Li, Ri], 1 ≤ i ≤ m, such that Li ∈ L and Ri ∈ R where L
and R are sets of only

√
m values. Then let A be the set of all the circles in L, R of length k that we can

generate such that two different circles of A have at least one different index. If we consider one such circle
C, the probability p that we will get a circle in X, Y between the indices of C can be evaluated as p ≥ about
(k−1)!

2n(k−2) , since we have potentially (k − 1)! possible circles in X, Y on the m indices, and since at least two
equations (one in X and one in Y ) are implied by the other equations in X and Y due to the circle in L, R.
So the expectancy for the number of circles in X, Y of A that we will find can be evaluated as ≥ about
|A|(k−1)!

2n(k−2) . Moreover, with our very specific chosen values Li and Ri, we can show that |A| will be ≃ mk/2

k

(for k = 4 the exact value is |A| = m
4 · (√m − 1)2 ≃ m2

4 ). Here, we can have mk/2

k (k − 1)! ≫ 2n(k−2), with

m ≪ 2n. For example, with k = m
2 , it is possible to show that this may indeed happen when m ≫ 22n/3.

So the expectancy of the number N of circles in X, Y may be large. Nevertheless the probability to obtain
at least one such circle will be always negligible when m ≪ 2n, as we have seen in section 6. One reason
for this is that in a line of equations in X, Y (i.e. Xi1 = Xi2 , Yi2 = Yi3 , . . ., Yik−1

= Yik) the value k is not

bounded by a fixed integer when m ≪ 2n, but the probability to have k ≥ 2n

2 for example is negligible.

We can also notice that all the circles of A are not independent, since we have about mk/2

k circles in A and
they are all built from k points chosen in the same set of m points. The expectancy of N is the sum of the
expectancies on all the elements of A (the expectancy of a sum is the sum of the expectancies, even if the
variables are not independent). However the probability for N to be 6= 0 is not the sum on all the elements
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of A of the probability to be 6= 0 (they are not independent). So we cannot hope to fix the proof of [1]
just by computing the expectancy of the number of circles of length k and by summing them. We need to
introduce the probability to obtain a line of length k in X, Y . This is what we have done in section 6.

F Benes: Circles in X, Y with k = 6

(We give here another example, k = 6 since with k ≥ 6 a term in γ · mα

2βm will appear, with α < β, but with
a “large” γ, so k = 6 is a better example of the general case than k = 2 or k = 4).

Theorem F.1 The probability p6 to have a circle in X, Y of length 6, when f1, f2, f3, f4 are randomly
chosen in Fn satisfies: p6 ≤ m6

6·26n + 36m4

25n + 128m3

24n .

Proof Here we want 6 pairwise distinct i1, i2, i3, i4, i5, i6 such that:

(6)







f1(Li1) ⊕ f2(Ri1) = f1(Li2) ⊕ f2(Ri2)
f1(Li3) ⊕ f2(Ri3) = f1(Li4) ⊕ f2(Ri4)
f1(Li5) ⊕ f2(Ri5) = f1(Li6) ⊕ f2(Ri6)

and (7)







f3(Li2) ⊕ f4(Ri2) = f3(Li3) ⊕ f4(Ri3)
f3(Li4) ⊕ f4(Ri4) = f3(Li5) ⊕ f4(Ri5)
f3(Li6) ⊕ f4(Ri6) = f3(Li1) ⊕ f4(Ri1)

Case 1 In (6) and (7) the 6 equations are independent. Here the probability to obtain (6) and (7) will be

≤ m6

6·26n .

Case 2 One equation is equivalent to another one and the 5 other equations are independent. Here we have
3 possibilities for the choice of these equalities (since we have 3 possibilities for the other equations of
(6)), and when these equations are chosen, we have 6 cases for the Li, Ri values with in each of these
6 cases, ≤ m2 possibilities for the indices in the two equations (as we have seen in section 5.3 with
k = 4). We have the same property with the equations of (7) instead of (6). So we have 3×6×2 = 36

possibilities for one equation equivalent to the other one. So the probability here is ≤ 36m4

25n (m4 since
two indices are fixed from the others, and 25n since 5 equations are independent).

Case 3 We have a circle C in L, R on the 6 indices i1, . . . , i6, and no other circle independent from C can
generate a dependency between some equations of (6) and (7). Here we can associate two by two
all the indices with equalities in R, and we can associate two by two all the indices with equalities
in L. So the ⊕ of all the equations of (6) is 0, and similarly the ⊕ of all the equations of (7) is 0.
Since (by hypothesis here) we have no other circle than (C) that can generate dependencies between
the equations of (6) and (7), we have exactly 6 − 2 = 4 independent equations her in (6) and (7). 3
of the 6 indices are fixed from the other 3 since we have a circle in L, R on the 6 indices. We have
5! possibilities for the circle in L, R (Li1 = Lα with 5 possibilities for α 6= i1, then Rα = Rβ with 4

possibilities for β 6= α and β 6= i1 etc.). So the probability here is ≤ 120m3

24n .

Case 4 We have Ri1 = Ri2 = Ri3 , Ri4 = Ri5 = Ri6 , Li1 = Li6 , Li2 = Li5 , Li3 = Li4 , or similarly the same
conditions by changing R with L and L with R, or by changing i1 by i2, i3 by i4 . . . i6 by i1 (so we
have here 2 × 2 = 4 possibilities). Here i2, i4, i6 are fixed when i1, i3, i5 are given (for example i2 is
fixed since Li2 = Li5 and Ri2 = Ri1). So we have ≤ m3 possibilities for the indices. Here 4 of the
6 equations of circle are independent (no more equalities in L, R are possible since it would create

Li = Lj and Ri = Rj with i 6= j). So the probability here is ≤ 4m3

24n .
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Remarks

1. Here we will have Xi2 = Xi5 and Yi2 = Yi5 in addition to the 6 relations in X, Y of the circle
given by the equations of (6) and (7). So we have here a circle in X, Y of length 6, and at least
one circle of length 2. So this condition 4 is useful for p6 but not for p′6.

2. Here all the Li and Ri cannot be associated two by two (Ri1 can be associated with Ri2 but
then Ri3 is alone) so the ⊕ of all the equations of (6) or (7) is not necessary 0.

Case 5 We have Ri1 = Ri3 = Ri5 , Ri2 = Ri4 = Ri6 , Li1 = Li2 , Li3 = Li4 ,Li5 = Li6 , or similarly the same
conditions by changing R with L and L with R, or by changing i1 by i2, i3 by i4 . . . i6 by i1. Here
i2, i3, i6 are fixed when i1, i4, i5 are given. So we have ≤ m3 possibilities for the indices. Here 4 of
the 6 equations of circle are independent. So the probability here is ≤ 4m3

24n .

Remark Here we will have Yi1 = Yi4 in addition to the 6 relations in X, Y of the circle given by
the equations of (6) and (7). So we have here a circle in X, Y of length 6, and at least one circle of
length 4: Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , Yi4 = Yi1 . So this condition 5 is useful for p6 but not for
p′6.

Conclusion it is possible to check that for k = 6 we are always in one of these 5 cases. So p6 ≤
m6

6·26n + 36m4

25n + 128m3

24n , as claimed.

G Improvements of theorem 5.5

The value |Ck| Let Ck be the set of all possible non equivalent equalities in L and R between the indices
{i1, . . . , ik}. We have |Ck| ≤ k2k. Proof: We can find all the equalities in L and R if we know all the
(l(i), r(i)), i ∈ {i1, . . . , ik}, where l(i) is the smallest j ≤ i such that Lj = Li and r(i) is the smallest j ≤ i
such that Rj = Ri. Since we have ≤ k2 possibilities for (l(i), r(i)) we have immediately |Ck| ≤ k2k. However

more precise evaluations of |Ck| are possible. For example we can prove that |Ck| ≤
(

∑k/2
λ=1

(λ+1)k

λ!

)2
and

we can show that this value is near kk instead of k2k (the evaluation k2k was enough for our theorems but
the coefficient k2k can be improved). Proof: we look first for the possibilities for the equations in L. Let
R be the relation such that for i, j ∈ {i1, . . . , ik}, iRj ⇔ Li = Lj . This is a relation of equivalence. Let
λ be the number of equivalence classes with at least 2 different elements in the classes. We have λ ≤ k/2.
Now let B be a set of λ + 1 boxes, B = {B0, . . . , Bλ+1}. From an application f of {i1, . . . , ik} → B we can
associate equalities in L like this:
• if f(i) ∈ B0 then there is no j 6= i such that Li = Lj .
• if f(i) ∈ Bk, k 6= 0 then the indices j such that Lj = Li will be exactly all the indices j such that
f(j) ∈ Bk. We have ≤ (λ + 1)k possibilities for f such that ∀α, 1 ≤ α ≤ λ + 1, ∃j ∈ {i1, . . . , ik} /
f(j) ∈ Bα, and each set of possible equations in L can be associate with λ! such functions f since we can
permute B1, . . . , Bλ (but not B0). So the number of non equivalent possibilities for the equations in L is

≤ ∑k/2
λ=1

(λ+1)k

λ! (the only case with λ = 0 can be included with λ = 1), and similarly for the equations in

R. So for the equations in L and R we get |Ck| ≤
(

∑k/2
λ=1

(λ+1)k

λ!

)2
as claimed.

Conclusion for pk Let A ∈ Ck. Let α(A) be the number of dependent equations of (8) and (9) when the
equalities in L and R are those of A. Let β(A) be the number of indices of {i1, . . . , ik} that we can fix from
the other indices of {i1, . . . , ik} due to the equalities in L and R of A. Our analysis done in section 5.4 of
the equalities of (8) and (9) taken one by one shows that we always have α(A) ≤ β(A) + 1 (the +1 comes
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from the last equation). Moreover, if α(A) 6= 0, then when we will consider the first equation of (8) or
(9) that gives a dependency, this dependency comes from one or more than one circle in L, R between the
indices (these circles are not necessary disjoints). Now a circle in L, R has always a length ≥ 4. Moreover
in a circle in L, R we can fix at least 50% of the indices from the other indices (we just need to know one
over two indices and recover the other with the equalities in L and R of the circle). So the first time where
we will get a dependency in X or Y we will have at least 2 indices fixed from the others to get this first
dependency. So we always have α(A) ≤ β(A).

We have pk ≤ mk

k·2nk +
∑

A∈Ck

mk−β(A)

2n(k−α(A)) since we have k − α(A) independent equations and ≤ mk−β(A)

possibilities for the indices. Since α(A) ≤ β(A), we get pk ≤ mk

k·2nk + |Ck|m2

22n . Moreover if k ≥ 6 it is possible
to show that we will have at least 4 independent equations in a circle of length k in X, Y . Then we get :

pk ≤ mk

k·2nk + |Ck|m4

24n , with |Ck| ≤ (
∑k/2

λ=1
(λ+1)k

λ! )2 for example, when k ≥ 6.

H An example for theorem 5.5

In the proof of theorem 5.5, terms in O
(

mα

2nα

)

, for some values α, appear for independent equations of (8)

and (9) (we then have a term in O
(

mk

2nk

)

) or with dependent equations. For dependent equations, all the

terms are ≤ O
(

m2

22n

)

when k is fixed, as proved in theorem 5.5. Is it really possible to have a term in

O
(

mα

2nα

)

or is it possible to prove that all the terms are in O
(

mα−1

2nα

)

for some values α when we have at

least one dependent equation? In fact, as we will see now, it is really possible to have a term in O
(

mα

2nα

)

with some dependent equations. We give such an example in figure 5, with k = 8 indices, 4 equations in

X and 4 equations in Y . In this example the term is in O
(

m4

24n

)

.

L, X L, Y L, X

L, X L, Y L, X

R R R R

Y

Y

1

5 8

42

6

3

7

Figure 5: A line shows an equality between two indices. Here 4 indices can be fixed from the other 4 indices
and 4 equations are dependent (2 in X and 2 in Y since the ⊕ of all the Y is 0, since the Li variables are
identical two by two and the Ri variables are identical two by two).
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