A Metric on the Set of Elliptic Curves over \mathbf{F}_p

Pradeep Kumar Mishra¹ and Kishan Chand Gupta²

¹ Centre for Information Security and Cryptography,

University of Calgary, CANADA

² Cryptographic Research Group, Indian Statistical Institute, Kolkata.

INDIA.

Abstract

Elliptic Curves over finite field have found application in many areas including cryptography. In the current article we define a metric on the set of elliptic curves defined over a prime field $\mathbf{F}_{p}, p > 3$.

Keywords: Elliptic Curves, Elliptic Curve Cryptosystems, Metric, Isomorphism Classes of Elliptic Curves.

1 Introduction

Elliptic curves are beautiful geometric entities which have fascinated mathematicians for more than a century. The curves have been studied at length and many of their interesting properties have been unearthed. In last two decades, the study of the curves received a new impetus when many of their applications were discovered. Particularly elliptic curve cryptosystems (ECC) (proposed jointly by Koblitz [2] and Miller [3] in 1985) built on the strength of elliptic curve discrete logarithm problem (ECDLP) integrated the study of the curves to the mainstream of cryptographic research. In the current article we propose a simple metric on the set of elliptic curve sover a prime field \mathbf{F}_p , p > 3. For details about elliptic curve or elliptic curve cryptography the readers can refer to [1].

2 The Metric

The metric we propose is based on the concept of isomorphic classes of elliptic curves. Two curves on the same isomorphic class will have a finite distance between them. The distance of a curve from all the curves in an isomorphism class different than its own will be defined to be infinity. Elliptic Curves Over Prime Fields $\mathbf{F}_p, p > 3$:, an elliptic curve is represented by an equation of the form

$$C: y^2 = x^3 + ax + b$$

where $a, b \in \mathbf{F}_p$ and $4a^3 + 27b^2 \neq 0$. The set of rational points over \mathbf{F}_p are the set of all points over $\mathbf{F}_p \times \mathbf{F}_p$ which satisfy this equation together with a special point, called the point at infinity.

Isomorphism on the set of elliptic curves over \mathbf{F}_p is an equivalence relation defined as follows.

Isomorphic Curves: Let

$$C_i: y^2 = x^3 + a_i x + b_i, i = 1, 2$$

be two curves over \mathbf{F}_p , p > 3. C_1 is said to be isomorphic to C_2 if there exists a $t \in \mathbf{F}_p$ such that $a_2 = t^4 a_1$ and $b_2 = t^6 b_1$.

Let g be a generator of the field \mathbf{F}_p . Then, given any non-zero element $z \in \mathbf{F}_p$ there exists an integer $k \in \{0, 1, \dots, p-2\}$ such that $z = g^k$. We will refer to the set $\{0, 1, \dots, p-2\}$ as an index set of g. Note that the index set of g is not unique. Any residue class of p-1 can act as an index set. For defining the metric we will always use the index set $\{-\frac{p-1}{2}+1, -\frac{p-1}{2}+2, \dots, -1, 0, 1, \dots, \frac{p-1}{2}\}$. We will refer to this index set of a generator g as the *standard* index set of g.

Let C_1 and C_2 be any two curves over the \mathbf{F}_p . If C_1 and C_2 are not isomorphic we define the distance between them to be infinite. Otherwise let $t \in \mathbf{F}_p$ be the field element which transforms the parameter of C_1 to those of C_2 (or parameters of C_2 to those of C_1) (see the definition of isomorphic curve). Let $t = g^r$, where r is in the standard index set of g. Then we define the distance between C_1 and C_2 to be $|r|^1$. That is

 $d_g(C_1, C_2) = |r|$ if C_1 and C_2 are isomorphic and $t = g^r$, $d_g(C_1, C_2) = \infty$ otherwise.

Now we claim that d_g as defined above is a metric.

Clearly, $d_g \ge 0$. Also, if C_1 and C_2 are the same curve, then they are isomorphic and for them t = 1 and r = 0. Hence it follows that $d_g(C_1, C_2) = 0$ if $C_1 = C_2$. To prove the converse is equally simple.

Next we will show that $d_g(C_1, C_2) = d_g(C_2, C_1)$. If these curves are not isomorphic then there is nothing to prove as both of these distances are ∞ . So let us assume that they are isomorphic. Let $t = g^r$ be the element in \mathbf{F}_p which transforms parameters of C_1 to those of C_2 (i.e. $a_2 = t^4 a_1, b_2 = t^6 b_1$). Then $t^{-1} = g^{-r}$ transforms parameters of C_2 to those of C_1 (i.e. $a_1 = t^{-14}a_1, b_2 =$ $t^{-16}b_1$). Hence $d_g(C_1, C_2) = |r|$ and $d_g(C_1, C_2) = |-r|$, which are the same.

Finally, we have to prove the *triangle inequality*, i.e. we have to show that for any three curves C_i , i = 1, 2, 3,

$$d_g(C_1, C_2) + d_g(C_2, C_3) \ge d_g(C_1, C_3).$$

¹ there may be several t's which define the same isomorphism. Let t_1, \ldots, t_l 'define' the same isomorphism. Write $t_i = g^{\alpha_i}$; $1 \le i \le l$. Choose that i for which α_i is minimum.

Clearly, this is obvious if C_1 is not isomorphic to C_2 or C_2 is not isomorphic to C_3 . In that case both sides of the inequality are ∞ .

So let us assume that C_1 is isomorphic to C_2 and C_2 is isomorphic to C_3 . As isomorphism is an equivalence relation C_1 is also isomorphic to C_3 . Let

$$C_i: y^2 = x^3 + a_i x + b_i$$

i = 1, 2, 3. Then there exist $t_1, t_2 \in F_p$ and indices r_1, r_2 in the standard index set of g such that

$$a_2 = t_1^4 a_1, b_2 = t_1^6 b_1, t_1 = g^{r_1}$$

and

$$a_3 = t_2^4 a_2, b_3 = t_2^6 b_2, t_2 = g^{r_2}$$

Now

$$a_3 = (t_1 t_2)^4 a_1, b_3 = (t_1 t_2)^6 b_1$$

Let $t_1t_2 = t_3 = g^{r_3}$. Then $r_3 = r_1 + r_2 \pmod{(p-1)}$. Hence $r_3 \leq r_1 + r_2$. We have now,

$$d_g(C_1, C_2) = r_1,$$

 $d_g(C_2, C_3) = r_2,$
 $d_g(C_1, C_3) = r_3,$

Hence

$$d_g(C_1, C_2) + d_g(C_2, C_3) \ge d_g(C_1, C_3).$$

This etablishes the triangle inequality.

3 Conclusion

In this article, we have defined a metric on the set of elliptic curves over \mathbf{F}_p . The metric is dependent on the choice of the generator of the underlying field. A better metric will be the one which is independent over all generators. A candidate for such a metric can be $d(C_1, C_2) = \sum_g d_g(C_1, C_2)$ or we can take the average over all the generator dependent distances. One interesting open question is: does there exist one generator whose metric agrees with the average metric? Or is there a special class of fields for which there exist a generator whose corresponding metric agrees with the average metric?

References

 D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography, Springer-Verlag, 2004.

- [2] N. Koblitz. *Elliptic Curve Cryptosystems*, Mathematics of Computations, 48:203-209, 1987.
- [3] V. S. Miller. Use of Elliptic Curves in Cryptography. In CRYPTO'85, LNCS 218, pp. 417-426, Springer-Verlag, 1985.