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Abstract
Elliptic Curves over finite field have found application in many areas
including cryptography. In the current article we define a metric on the
set of elliptic curves defined over a prime field Fp, p > 3.

Keywords: Elliptic Curves, Elliptic Curve Cryptosystems, Metric, Isomor-
phism Classes of Elliptic Curves.

1 Introduction

Elliptic curves are beautiful geometric entities which have fascinated mathe-
maticians for more than a century. The curves have been studied at length and
many of their interesting properties have been unearthed. In last two decades,
the study of the curves received a new impetus when many of their applications
were discovered. Particularly elliptic curve cryptosystems (ECC) (proposed
jointly by Koblitz [2] and Miller [3] in 1985) built on the strength of elliptic
curve discrete logarithm problem (ECDLP) integrated the study of the curves
to the mainstream of cryptographic research. In the current article we propose
a simple metric on the set of elliptic curves over a prime field F,,p > 3. For
details about elliptic curve or elliptic curve cryptography the readers can refer
to [1].

2 The Metric

The metric we propose is based on the concept of isomorphic classes of elliptic
curves. Two curves on the same isomorphic class will have a finite distance
between them. The distance of a curve from all the curves in an isomorphism
class different than its own will be defined to be infinity.



Elliptic Curves Over Prime Fields F,,p > 3:, an elliptic curve is repre-
sented by an equation of the form

C:y*=z34ax+b

where a,b € F, and 4a® + 27b% # 0. The set of rational points over F,, are the
set of all points over F, x F, which satisfy this equation together with a special
point, called the point at infinity.

Isomorphism on the set of elliptic curves over F, is an equivalence relation
defined as follows.
Isomorphic Curves: Let

Ciy’ =2 +ae+b,i=1,2

be two curves over Fp,p > 3. (1 is said to be isomorphic to C if there exists
at € F, such that a; = t*ay and by = 5.

Let g be a generator of the field Fj,. Then, given any non-zero element z € F,,
there exists an integer k € {0,1,---,p — 2} such that z = ¢g¥. We will refer to
the set {0,1,---,p— 2} as an index set of g. Note that the index set of g is not
unique. Any residue class of p—1 can act as an index set. For defining the metric
we will always use the index set {—p%l—l— , —’%1—1—2, ceey—=1,0,1, - -, p%l} We
will refer to this index set of a generator g as the standard index set of g.

Let Cy and C3 be any two curves over the F,. If C; and C'; are not isomor-
phic we define the distance between them to be infinite. Otherwise let ¢t € F,
be the field element which transforms the parameter of Cy to those of C (or
parameters of Cy to those of Cy) (see the definition of isomorphic curve). Let
t = ¢", where r is in the standard index set of g. Then we define the distance
between C; and Cy to be |r|l. That is

dy(C1,Cs) = |r| if C1 and C; are isomorphic and ¢t = ¢",
dy(C1,C3) = oo otherwise.

Now we claim that d; as defined above is a metric.

Clearly, d;, > 0. Also, if C; and Cy are the same curve, then they are
isomorphic and for them ¢ = 1 and » = 0. Hence it follows that d,(Cy,C2) =0
if Cy = C5. To prove the converse is equally simple.

Next we will show that d,(C1,C2) = dy(Cs, C1). If these curves are not
isomorphic then there is nothing to prove as both of these distances are co. So
let us assume that they are isomorphic. Let t = g” be the element in F, which
transforms parameters of C; to those of C5 (i.e. ag = ttag, by = t6b1). Then
t~1 = ¢7" transforms parameters of Cy to those of C} (i.e. a1 = t_14a1, by =
t_16b1). Hence d,(C1,Cy) = |r| and dy(Cy, C2) = | — r|, which are the same.

Finally, we have to prove the triangle inequality, i.e. we have to show that
for any three curves Cj,7 = 1,2, 3,

dy(Cy, Cs) + dg(C2, Cs) > dg(C, Cs).

Lthere may be several t’s which define the same isomorphism. Let t1,...,¢; 'define’ the
same isomorphism. Write t; = g®¢;1 < ¢ < [. Choose that : for which «a; is minimum.




Clearly, this is obvious if C is not isomorphic to C; or (5 is not isomorphic to
Cj5. In that case both sides of the inequality are oco.

So let us assume that C is isomorphic to Cs and (5 is isomorphic to Cfs.
As isomorphism is an equivalence relation C is also isomorphic to C5. Let

Ci:y* =22+ ajx+b;

t =1,2,3. Then there exist ¢1,?2 € F, and indices r1, ry in the standard index
set of ¢ such that
ay = tiay, by = 5by,ty = g™

and

as = tyaz, by = t5by, 1o = g
Now

as = (tita) a1, b3 = (t112)%h

Let t1t3 = t3 = ¢"*. Then r3 = r1 + ra(mod (p — 1)). Hence r3 < rq + ry. We
have now,

dg(Ch 02) =T,
dg(027 03) = T2,
dy(C1,C3) = rs,
Hence
dy(C1,Ca) +dg(Co, C3) > dg(Ch, C3).
This etablishes the triangle inequality.

3 Conclusion

In this article, we have defined a metric on the set of elliptic curves over F,.
The metric is dependent on the choice of the generator of the underlying field.
A better metric will be the one which is independent over all generators. A
candidate for such a metric can be d(C1,C3) = X,d,(C1,Cy) or we can take
the average over all the generator dependent distances. One interesting open
question is: does there exist one generator whose metric agrees with the average
metric? Or is there a special class of fields for which there exist a generator
whose corresponding metric agrees with the average metric?
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