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1. Introduction. Let S = (K
t

)
t�0 be a (memoryless) source, i.e. a sequence

of identically distributed, independent random variables. Informally, a source is an

object that emits symbols (in general from a finite alphabet) according to some ran-

dom mechanism. This could be, for example, a physical random generator or - in

first-order approximation - a natural alphabet-based (plain) text. The objective of

this paper is to investigate the Markov behaviour of a class of feedback shift registers

when the input symbols are modified by the random source. To model the influence

of the random source we will assume that the underlying alphabet carries a group

structure. We will show that for non-degenerate sources and non-singular triangular

feedback shift registers, the associated Markov chains are rapidly mixing. We will

also give estimates for mixing (convergence) rate using the Dobrushin coe�cients of

the associated stochastic matrices.

2. Feedback shift registers and associated Markov chains. In this section

we introduce the class of triangular feedback shift registers and derive some of their

basic algebraic properties. Furthermore we will define Markov chains associated with

feedback shift registers.

Let ⌃ be a finite alphabet. A feeedback shift register (FSR) of length N over

⌃ is a finite automaton (X,�,�) with state space X = ⌃N , a transition function
� : X ! X which is of the form

� = s � �0, �0 : X ! X

(with the cyclic shift s : X ! X, (x1, ..., xN

) = (x0
, x

N

) 7! (x
N

, x1, ..., xN�1) =

⇤P.O. Box 1644, 53734 Sankt Augustin, Germany (bernd.schomburg@me.com).
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(x
N

, x

0)) and the output function

� = pr1 � � = pr

N

� �0 : X ! ⌃.

Definition 2.1. Let R = (X,�,�) be an FSR.

(i) R is called non-singular i↵ � (or equivalently �0) is bijective.

(ii) An FSR (X,�,�) is called triangular i↵ �0 has the form

�0(x1, ..., xN

) = (f1(x1), f2(x1, x2), ..., fN (x1, ..., xN

)).(2.1)

with mappings f
j

: ⌃j ! ⌃, j = 1, ..., N .

Remark 2.2. For a family (f
j

: ⌃j ! ⌃)1jN

define F

j

: ⌃j ! ⌃j , j 2
{1, ..., N}, by

F

j

(x1, ..., xj

) = (f1(x1), f2(x1, x2), ..., fj(x1, ..., xj

)).

If F
k

is bijective, then all F
j

, j < k, are bijective, too. To simplify notation, we will

write f for f
N

and F for F
N�1.

Remark 2.3. (i) Let (⌃, ⇤) be a group, h
j

: ⌃j�1 ! ⌃, j � 2 mappings and

h1 2 ⌃. The family (f
j

)1jN

, defined by

f

j

(x1, ..., xj

) = x

j

⇤ h
j

(x1, ..., xj�1) 8(x1, ..., xj

) 2 ⌃j

, 1  j  N,

induces a non-singular triangular FSR via (2.1).

(ii) For ⌃ = F2 the converse is also true: For a non-singular triangular shift register

the functions f
j

are necessarily of the form

f

j

(x1, ..., xj

) = x

j

+ h

j

(x1, ..., xj�1),

where + denotes the addition (modulo 2) in F2.

Let (X,�,�) be an FSR. We will investigate the state sequence ⇠ = (⇠
j

)
j�0 2 X

N0

⇠

j

= �

j

x, j � 0,(2.2)

(belonging to the initial state x 2 X) and the corresponding output sequence ↵ =

(↵
j

)
j�0 2 ⌃N0

↵

j

= �(⇠
j

) = (� � �j) x, j � 0.(2.3)

To this end we introduce the mappings

s

a

: X ! X, (x1, ..., xN

) 7! (a, x1, ..., xN�1), a 2 ⌃.(2.4)
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The following lemma will be our basic tool.

Lemma 2.4. Let (X,�,�) be triangular. For x 2 X let ⇠ and ↵ be defined as in

(2.2) and (2.3), respectively. If y 2 X an arbitrary state and if we define inductively

⌘0 = y, ⌘

j+1 = s

↵j � �0(⌘j), j � 0,(2.5)

then for each j 2 {1, ..., N} the first j components of ⇠

j

and ⌘

j

coincide

pr

k

(⇠
j

) = pr

k

(⌘
j

) 8k 2 {1, ..., j}.

Especially we have

�

N

x = ⇠

N

= ⌘

N

= ((s
↵N�1 � �0) � ... � (s↵0 � �0))y.(2.6)

Proof. (by induction w.r.t. j).

(a) j = 1. By (2.2), (2.3) and (2.4) we have pr1(⇠1) = ↵0 = pr1(⌘1).

(b) j ! j + 1. Let j 2 {1, ..., N � 1} and

pr

k

(⇠
j

) = pr

k

(⌘
j

) 8k 2 {1, ..., j}.

By (2.1) we have

pr

k

(�0⇠j) = pr

k

(�0⌘j) 8k 2 {1, ..., j}

and thus

pr

k

(⇠
j+1) = pr

k

(⌘
j+1) 8k 2 {2, ..., j + 1}.

Finally, Definition (2.3) of ↵
j

implies

pr1(⇠j+1) = ↵

j

= pr1(⌘j+1)

and the assertion follows.

Remark 2.5. As a first application of Lemma 2.4 we show that for a non-singular

triangular FSR R = (X,�,�) and an initial state x 2 X the sequences ⇠ and ↵ have

the same period. Recall that for a sequence g = (g
i

)
i2N0 in a set D its period

per(g) 2 N [ {1} is defined by

per(g) = inf{l 2 N | 8i 2 N0 : g

i

= g

i+l

}.
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If the period per(g) is finite, it divides each l with g

i

= g

i+l

8i 2 N0.

Since R is non-singular per(⇠) is equal to the (finite) length of the orbit x<�> (thus

dividing the order of �). Furthermore, trivially

l := per(↵) | per(⇠).

(2.6) now implies

�

N+l

x = �

N

x

and therefore (using the bijectivity of �) �lx = x and ⇠

j+l

= ⇠

j

8j � 0, i.e.

per(⇠) | l = per(↵), which finally shows that per(⇠) = per(↵).

For the remaining part of the paper we assume that (⌃, ⇤) is a group.
Our plan is to define stochastic processes associated with FSRs. First fix some no-

tation. For a (non-empty) finite set D let M1(D) denote the set of all measures on

D with mass 1 (also referred to as (probability) distributions on D). The uniform
distribution on D will be denoted by �

D

, i.e. �
D

({!}) = 1
|D| for all ! 2 D.

Definition and Remark 2.6. We define stochastic processes associated with

an FSR R = (X,�,�) of length N over ⌃. Let S = (K
t

)
t�0 be a memoryless source,

i.e. a sequence of independent, identically distributed (i.i.d.) random variables over

⌃ with (common) distribution � 2 M1(⌃). Fix an arbitrary random variable Z0 on

X and let the stochastic process Z = (Z
t

)
t�0 be recursively defined by

Z

t

= (S
Kt�1 � �)Zt�1, t � 1,(2.7)

where S

a

: X ! X, a 2 ⌃ is given by

S

a

(x1, ..., xn

) = (a ⇤ x1, ..., xn

), 8(x1, ..., xn

) 2 X.(2.8)

By construction Z is a homogenous Markov chain over X with transition matrix

P = P (�,�) = (P
xy

)
x,y2X

:

P

xy

= Pr(Z
t

= y | Z
t�1 = x) =

⇢
�(a), if (S

a

� �)(x) = y,

0, else.

(2.9)

We will call Z theMarkov chain associated with R, S and Z0. Note that P 2
RX⇥X is stochastic (cf. Definition 3.1) and depends on R and �, only. Furthermore,

if R is non-singular, P is doubly-stochastic (cf. Definition 3.2 (i)); indeed, since � is

bijective, we have

X

x2X

P

xy

=
X

x̄2X

⇢
�(a), if S

a

x̄ = y,

0, else.

�
=

X

a2⌃

�(a) = 1
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for all y 2 X.

If µ is the distribution of Z0, µP
j is the distribution of Z

j

.

In view of (2.9), mappings of the form

�
a

= (S
aj�1 � �) � ... � (Sa0 � �), a = (a0, ...aj�1) 2 ⌃j

, j 2 N,

will play an important role in the investigation of the powers of P .

Theorem 2.7. Let (X,�,�) be a triangular FSR and F be defined as in Remark

2.2.

(i) For bijective F , the semi-group hS
a

� � | a 2 ⌃i, generated by all compositions

S

a

� �, acts transitively on X; more precisely, for each pair x, y 2 X there exists a

uniquely determined a = (a0, ..., aN�1) 2 ⌃N = X with

x = �
a

y = ((S
aN�1 � �) � ... � (Sa0 � �))y.(2.10)

(ii) If y 2 X and 1  j  N , then

⌃j 3 a 7! �
a

y 2 X

is one-to-one.

(iii) If F is not bijective, then for all x 2 ⌃⇥ (⌃N�1 \F (⌃N�1)), y 2 X and a 2 ⌃j

,

j 2 N :

x 6= �
a

y.

Proof. (i) Let  , 0 : X ! X denote the bijections which are defined by

(x0
, x

N

) 7! (x
N

, Fx

0) and (x0
, x

N

) 7! (Fx

0
, x

N

), respectively, and consider the cor-

responding register (X, , pr

N

). Let x, y 2 X and (↵
j

)
j�0 be the output sequence,

which corresponds to the initial state  �N

x:

↵

j

= pr

N

( j�N

x).(2.11)

Define (⌘
j

) recursively by ⌘0 = y and

⌘

j+1 = (S
aj � �)(⌘j), a

j

= ↵

j

⇤ f(⌘
j

)�1
, j � 0.(2.12)

Then

⌘

j+1 = (a
j

⇤ f(⌘
j

), F⌘0
j

) = (↵
j

, F⌘

0
j

) = (s
↵j �  0)⌘j .

Lemma 2.4, applied to (X, , pr

N

), shows

x =  

N ( �N

x) = ⌘

N

= ((S
aN�1 � �) � ... � (Sa0 � �))y.
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In particular, we have shown that the mapping

X = ⌃N 3 a 7! �
a

y 2 X

is onto. Since X is finite, the mapping is also one-to-one, which proves that represen-

tation in (2.10) is unique.

(ii) Set A
j

= {�
a

y | a 2 ⌃j} and note that the assertion is equivalent to

|A
j

| = |⌃|j .(2.13)

For the proof of (2.13) we use induction w.r.t j:

For j = N , (2.13) is a consequence of (2.10). Now assume that (2.13) is true for a

j > 1. Then |A
j�1|  |⌃|j�1. Furthermore,

⌃⇥A

j�1 3 (a, x) 7! (a ⇤ f(x), Fx

0) 2 A

j

is onto, thus

|⌃| · |A
j�1| � |A

j

| = |⌃|j ,

i.e.|A
j�1| � |⌃|j�1.

(iii) Clear from the definition of �
a

.

Remark 2.8. (i) The group structure ⇤ on ⌃ induces a natural group structure

⇤̂ on X = ⌃N . If � : X ! X is a group homomorphism w.r.t. ⇤̂, then there is a group

homomorphism  : X ! X s.t.

�
a

x =  (a)⇤̂�Nx 8a, x 2 X.

For bijective F the homomorphism  is bijective by Theorem 2.7(i).

(ii) Let F be bijective. Theorem 2.7 (ii) shows that for all j  N

(P j)
xy

=

( Q
i<j

�(a
i

), if �
a

(x) = y, (a0, ..., aj�1) 2 ⌃j

0, else.

Especially, if we define the product distribution �̂ 2 M1(X) by

�̂(a) =

N�1Y

i=0

�(a
i

) 8a = (a0, ..., aN�1) 2 X,(2.14)

then

(PN )
xy

= �̂(a) if �
a

(x) = y, a 2 X.(2.15)

If � = �⌃, P has the limiting distribution (cf. Definition 3.2 (ii)) �
X

with µP

j = �

X

for all µ 2 M1(X) and j � N .
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(iii) For traditional FSRs we have f

i

= pr

i

for 1  i < N , i.e. F = id⌃N�1 , so the

prerequisites of Theorem 2.7 (i) are automatically fulfilled. As an application of the

proof of 2.7 consider the case that

�(x0
, x

N

) = (c, x0) 8(x0
, x

N

) 2 X

for a constant c 2 ⌃. The constuction (2.11)-(2.12) shows that for given x, y the

uniquely determined a with �
a

(x) = y is given by

a

j

= y

N�j

⇤ c�1
.

Thus P has the limiting distribution ⇡

⇡ = �̂(·⇤̂(c, ..., c)�1)(2.16)

with µP

j = ⇡ for all µ 2 M1(X), j � N . Furthermore ⇡ 6= �

X

if � 6= �⌃.

Proposition 2.9. Let F

k

be bijective for a k < N and let y, ȳ 2 X s.t. y1 6= ȳ1.

Then �
a

y 6= �
ā

ȳ for all j 2 {1, ..., k} and a, ā 2 ⌃j

.

This follows immediately from Remark 2.2 and the following

Lemma 2.10. Let k 2 {2, ..., N} s.t F

k�1 is bijective. If y, ȳ 2 X, j 2 N, and
(a0, ..., aj�1), (ā1, ..., āj�1) 2 ⌃j

with

pr

i

(�(a0,...,aj�1)y) = pr

i

(�(ā0,...,āj�1)ȳ) 8i 2 {1, ..., k},

then

pr

i

(�(a0,...,aj�2)y) = pr

i

(�(ā0,...,āj�2)ȳ) 8i 2 {1, ..., k � 1}.

Proof. Let x = �(a0,...,aj�2)y and x̄ = �(ā0,...,āj�2)ȳ. Then

�(a0,...,aj�1)y = (S
aj�1 � �)x = (a

j�1 ⇤ fN (x), f1(x1), ...., fN�1(x1, ..., xN�1)),

�(ā0,...,āj�1)ȳ = (S
āj�1 � �)x̄ = (ā

j�1 ⇤ fN (x̄), f1(x̄1), ...., fN�1(x̄1, ..., x̄N�1)).

By assumption,

f

i

(x1, ..., xi

) = f

i

(x̄1, ..., x̄i

) 8i 2 {1, ..., k � 1}.

and F

k�1 is one-to-one, so the assertion follows.

3. Stochastic matrices. The purpose of this section is to recall some notions

and results from the theory of Markov chains. For the convenience of the reader we
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include a proof of Theorem 3.5 which is the main result of this section and which will

be used in Section 4. For further details and proofs we refer to [1] and [2].

Let n 2 N. In the real linear space Rn (e
i

)1in

denotes the canonical basis

and (✏
i

)1in

the corresponding dual basis. We set e =
P

n

i=1 ei. We identify Mn

1 =

M1({1, ..., n}) with the set of all ` 2 (Rn)⇤ with ` � 01 and `(e) = 1 by µ $P
n

i=1 µ({i})✏i. Then � := 1
n

P
n

i=1 ✏i is the uniform distribution on {1, ..., n}. We

endow Mn

1 with the metric

d1(µ, ⌫) = kµ� ⌫k1 =
X

i

|µ
i

� ⌫

i

|.

Since Mn

1 is closed in (Rn)⇤, (Mn

1 , d1) is a complete metric space.

Definition and Remark 3.1. A matrix P 2 Rn⇥n is stochastic, i↵ P � 0

and Pe = e, or equivalently, i↵ µP 2 Mn

1 for all µ 2 Mn

1 . Thus, for a stochastic

P 2 Rn⇥n, the operator

T

P

: Mn

1 3 µ 7! µP 2 Mn

1

is well-defined and continuous. It is convenient to define certain properties of stochas-

tic matrices using the language of dynamical systems in metric spaces. Let (X, d) be

a metric space and T : X ! X a continuous operator. A point x 2 X is called

global attractor of T i↵ x = lim
j!1 T

j

y for each y 2 X; in this case x is the only

fixed-point of T .

Definition 3.2. Let P 2 Rn⇥n be stochastic.

(i) P is called doubly-stochastic, i↵ � is a fixed-point of T
P

, i.e. i↵ its transposed

matrix t

P is stochastic, too. (ii) A distribution ⇡ 2 Mn

1 is called stationary w.r.t.

P i↵ ⇡ is a fixed-point of T
P

. (iii) A distribution ⇡ 2 Mn

1 is called limiting distri-
bution of P , i↵ ⇡ is the global attractor of T

P

. (iv) P is called ergodic, i↵ it has a

limiting distribution > 0.

Remark 3.3. If a stochastic P has a limiting distribution ⇡, then by 3.1 ⇡ is the

only stationary distribution of P . If, in addition, P is doubly-stochastic, then ⇡ = �

and P is ergodic.

Definition 3.4. Let P be a stochastic n ⇥ n-matrix. The Dobrushin (or

ergodicity) coe�cient is defined to be

�(P ) =
1

2
max
i<j

nX

k=1

|P
ik

� P

jk

| = max
i<j

k✏
i

P � ✏

j

Pk1
k✏

i

� ✏

j

k1
.

1For a (non-empty) finite set I and x, y 2 RI we write x  y i↵ xi  yi 8i 2 I, and x < y i↵
xi < yi 8i 2 I.



Mixing properties of triangular feedback shift registers 9

Obviously, 0  �(P )  1, and

�(P ) = 0 , 9⇡ 2 Mn

1 : P = e⌦ ⇡,(3.1)

�(P ) = 1 , 9i, j : i < j ^ min(✏
i

P, ✏

j

P ) = 0.(3.2)

Furthermore, it can be shown that

kµP � ⌫Pk1  �(P )kµ� ⌫k1 8µ, ⌫ 2 Mn

1 .(3.3)

For permutation matrices A,B 2 Rn⇥n the product BPA is stochastic with

�(BPA) = �(P ).(3.4)

Theorem 3.5. Let P 2 Rn⇥n

be a stochastic matrix.

(i) P has a limiting distribution i↵ �(PN ) < 1 for an N 2 N.
(ii) If �(PN ) < 1 for an N 2 N and if ⇡ 2 Mn

1 is the limiting distribution of P (which

exists by (i) and is unique by definition), then

kµP j � ⇡k1  �(PN )b
j
N ckµ� ⇡k1 8µ 2 Mn

1

for all j � 0.

Proof. (i) ”)”: Assume that �(PN ) = 1 for all N 2 N. Then, by (3.2), for

each N there exist indices i
N

< j

N

with min(✏
iNP

N

, ✏

jNP

N ) = 0. By the pigeon hole

principle there are indices i < j and a sequence (N
k

)
k�1 ⇢ N s.t. lim

k!1 N

k

= 1
and

min(✏
i

P

Nk
, ✏

j

P

Nk) = 0.(3.5)

Now assume that P has a limiting distribution ⇡ 2 Mn

1 . Then ⇡ = lim
k!1 ✏

i

P

Nk =

lim
k!1 ✏

j

P

Nk , so by (3.5) ⇡ = 0, which is a contradiction.

(i) ”(” and (ii): Set T = T

P

and let N 2 N s.t. L = �(PN ) < 1. Then T

N is

contractive with Lipschitz constant L. By Banach’s fixed-point theorem, TN has a

global attractor ⇡ 2 Mn

1 . Now ⇡ is the only fixed-point of TN and T⇡ = T (TN

⇡) =

T

N (T⇡), so T⇡ = ⇡. Finally, let µ 2 Mn

1 , j � 0 and write j in the form j = kN + r

with k = b j

N

c, 0  r < N . Then, using (3.3) and �(P )  1,

d1(T
j

µ,⇡) = d1(T
j

µ, T

j

⇡) = d1(T
Nk

T

r

µ, T

Nk

T

r

⇡)

 L

k

d1(T
r

µ, T

r

⇡)  L

k

d1(µ,⇡).

Definition and Remark 3.6. A stochastic matrix P is called primitive, i↵
there there is an N with P

N

> 0. By definition, every ergodic stochastic matrix is
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primitive. Conversely, if P is primitive with P

N

> 0, then �(PN ) < 1, so P has a

limiting distribution ⇡, i.e. lim
j!1 P

j

e

k

= ⇡(e
k

) for all k. It is now easy to see that

min
i

(P j

x)
i

 min
i

(P j+1
x)

i

8x 2 Rn

, j � 0,

so 0 < min
i

(PN

e

k

)
i

 ⇡(e
k

) 8k 2 {1, ..., n}, i.e. ⇡ > 0 and P is ergodic.

Note that a stochastic matrix is primitive i↵ a corresponding Markov chain is irre-

ducible and aperiodic.

4. Mixing properties of FSRs. We are now ready to combine the results of

Sections 2 and 3. As in Section 2, let R = (X,�,�) be an FSR of length N over a

finite group (⌃, ⇤), S = (K
t

)
t�0 a sequence of i.i.d. random variables over ⌃ with

(common) distribution � 2 M1(⌃) and Z0 be an arbitrary random variable on X

with distribution µ 2 M1(X). Consider the Markov chain Z = (Z
t

)
t�0 associated

with R, S and Z0 and the corresponding stochastic matrix P = P (�,�). We assume

that R is triangular and let F
k

, F be defined as in 2.2.

Theorem 4.1. (i) If F

k

(k < N) is bijective, then

�(P j) = 1 8j 2 {0, ..., k}.(4.1)

(ii) For bijective F every row of P

N

is a permutation of the tuple

�
�̂(a) | a 2 ⌃N = X

�
.

(iii) For bijective F and non-degenerate � (i.e. min
a

�(a) > 0) the matrix P is

primitive. In fact P

N

> 0 (and thus �(PN ) < 1).

(iv) If F is not bijective, P is not primitive.

Proof. (i) Proposition 2.9 shows that for j < k P

j has (at least) two rows with

disjoint supports. (4.1) now follows from (3.2).(ii) and (iii) follow from (2.15). (iv) is

a consequence of Theorem 2.7 (iii).

We now come to the announced theorem concerning the rapid mixing of non-

singular tringular FSRs under the influence of non-degenerate sources. The theorem

actually holds under the slightly milder hypothesis that F is bijective and is a direct

consequence of Theorems 3.5 and 4.1 (iii) and Remark 3.6.

Theorem 4.2. Let F be bijective and � non-degenerate. Then P is ergodic with

a limiting distribution ⇡ > 0. If R is non-singular, ⇡ = �

X

. For the distribution µP

j

of Z

j

we have the estimate

kµP j � ⇡k1  kµ� ⇡k1�(PN )b
j
N c  C �(PN )b

j
N c 8j � 0,

where

C =

(
2 |X|�1

|X| , if ⇡ = �

X

,

2, else,
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and �(PN ) < 1.

Obviously, the determination of �(PN ) plays a vital role in the analysis of con-

crete FSRs. In order to shed some light on this practical problem, we conclude this

note with some remarks on ”linear” and binary FSRs.

Theorem 4.3. Let R be non-singular and linear in the sense that � is a group

isomorphism. Then P = P (�,�) fulfills

�(PN ) =
1

2
max
x2X

X

y

|�̂(y)� �̂(y⇤̂x�1)| =: h
N

(⌃,�).(4.2)

Proof. By Remark 2.8 (i) there is a bijection  s.t.

�
a

x =  (a)⇤̂�Nx 8a, x 2 X.

Thus

y = �
a

x , a =  �1(y⇤̂(�Nx)�1)

and (cf. (2.15))

(PN )
xy

= �̂( �1(y⇤̂(�Nx)�1)).

By (3.4)

�(PN ) = �(Q)

where

Q

xy

= �̂(y⇤̂x�1).

The Dobrushin coe�cient of Q is now easily calculated as

�(Q) =
1

2
max
x2X

X

y

|�̂(y)� �̂(y⇤̂x�1)|.

Remark 4.4. An important special case are binary FSRs. Let (⌃, ⇤) = (F2,+)

and let � be a non-degenerate distribution on F2, p = max(�(0),�(1)) < 1 and

q = min(�(0),�(1)) > 0. Recall that "(�) := �(0)��(1) is called the bias of �. Then

the maximum in (4.3) is attained for x = (1, 1, ..., 1) with

h

N

(F2,�) =

bN
2 cX

k=0

✓
N

k

◆
(pN�k

q

k � p

k

q

N�k).
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Note that

h

N+1(F2,�)� h

N

(F2,�) =

( �
N

N
2

�
(pq)

N
2 (p� q), if N is even,

0, if N is odd.

Therefore lim
N!1 h

N

(F2,�) = 1 (use the Taylor expansion of (1 � 4x)�
1
2 around

x = 0). By Theorem 4.1(ii)

�(P (�,�)N )  h

N

(F2,�)

for all � with bijective F . Computer experiments suggest the following

Conjecture. For all non-constant Boolean functions f : FN

2 ! F2 we have

�(P (�
f

,�)N ) � |"(�)|

where

�

f

(x) = (f(x), x0), x = (x0
, x

N

) 2 FN�1
2 ⇥ F2,

the lower bound being attained e.g. for f = �{0}, the characteristic function of the

singleton {0}.

Note that we have �(P (�
f

,�)N ) = 0 for constant f (cf. (2.16) and (3.1)).

Remark 4.5. The source S can be interpreted as a random source or (a first-

order approximation of) a plain text source. The process Z is then a model of the

sequence of states of the FSR (X,�,�) when operated in cipher-feedback (CFB) mode.

The results of this section may therefore be applied to the post-processing of random

generators and to stream ciphers in CFB mode.
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