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Abstract: Hash chains are widely used in various cryptographic systems such as electronic 
micropayments and one-time passwords etc. However, hash chains suffer from the limitation that 
they have a finite number of links which when used up requires the system to re-initialize new 
hash chains. So system design has to reduce the overhead when hash chains are re-initialized. 
Recently, Vipul Goyal proposed an elegant one-time-signature-based method to re-initialize hash 
chains, in this efficient method an infinite number of finite length hash chains can be tied together 
so that hash chains can be securely re-initialized in a non-repudiable manner. Vipul Goyal’s 
method is improved in this paper to reach a little more efficient method, which, more importantly, 
is a natural extension of the concept of conventional hash chains. 
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1 Introduction 

Hash chains are first proposed by Lamport [1]. Although originally they are used to protect 
one-time password against eavesdrop and replay, hash chains quickly are employed extensively in 
various cryptographic systems because they have public key cryptography like properties while 
they are efficient computationally.  

For example, in electronic micropayment schemes which are dedicated to business 
transaction only involving tiny amount of money, the non-repudiability of payment information is 
required, which, however, can result in the computation overhead. Micropayments can’t use 
conventional public key signature as macropayment because signing and verifying cost too much 
on computing, otherwise, the cost will be higher or equal to the value of transaction itself. So 
efficiency is very important for the design of micropayment system, and hash chains can satisfy 
these requirements. The micropayment schemes using hash chains, such as PayWord [2], NetCard 
[3] and Pederson [4], typically look each link on the hash chains as a piece of non-repudiable 
payment information for one payment unit. Also multiple hash chains can be used together to 
implement multi-denomination payment, as in Netpay [5]. 

In addition to password based authentication and micropayments, server-supported signatures 
[6, 7], efficient multicasting [8, 9], certificate revocation [10] and so on are also based on the 
concept of hash chains. 

However, most of these systems suffer from a common limitation that the hash chains have a 
finite length. And the length of hash chain can’t be selected too long because the computational 
and storage capacity of sender and receiver is limited in many cases. When exhausted, hash chains 
should be re-initialized. At this time, the need for a good method for the efficient and secure 
re-initialization of hash chains was clear. Vipul Goyal [11] introduces the notion of ‘tying’ 
multiple finite length hash chains. This tying is achieved by using one time signature. This paper 
improves the idea of Goyal’s to lead to a little more efficient method. Furthermore, it is in a very 
natural way that our method extends the concept of hash chains.  

The rest of the paper is organized as follows: Section 2 briefly introduces the idea of hash 
chain and one time signature. Section 3 discusses the related works, especially the work of Vipul 
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Goyal. Section 4 gives a detailed description of our method to re-initailze the hash chains. Section 
5 compares our methods with Vipul Goyal’s. Section 6 concludes this paper.  
2 The concept of hash chain and one time signature
2.1 Conventional hash chain (CHC) 

A conventional hash chain is constructed by applying a public one-way hash function 
(OWHF) h() iteratively to an random seed value. Function h maps a bit string of an arbitrary 
length or a predetermined maximal length to a string of a fixed length. And function h satisfies 3 
properties: (1) Given x, it is easy to evaluate h(x); (2) Given h(x), it is infeasible to compute x; (3) 
It is infeasible to find two values x and y (x≠y) such that h(x)=h(y). 

When constructing a CHC of length N, one should first select a random seed value s, then he 
repeatedly applies the one-wary hash function h to s totally N times. The following sequence is 
resulted: 

2 ( 1), ( ), ( ), ... ( ), ... , ( ), ( )i Ns h s h s h s h s h s− N

s s

s

  

where s can be written as  and  is called the tip of the CHC. The tip resembles the 

public key in public key cryptography, because knowing  and not knowing s, one can’t 

generate , but given , one can easily verify its correctness by . The 

rest may be deduced by analogy, i.e., knowing  and not knowing s, one can’t generate 

, but one can easily verify the correctness of  by , where 
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The CHC is typically used as follows: first  is securely distributed and then the 

elements of the hash chain are released in turn starting from  and continuing until the 

seed value is used. At this time the hash chain is said to be exhausted and the whole process 
should be re-initialized again with a different seed value. 

( )Nh s

( 1) ( )Nh −

2.2 One time signature (OTS) 
First of all, it is import to note that OTS employs nothing more than OWHFs same as in hash 

chain, so OTS adapt to the applications requiring high efficiency. 
OTS is also first proposed by Lamport, whose idea is retailed in [12]: signing a single 1 bit 

message. The signer selects as the secret key components two random value x1and x2, 
respectively representing ‘0’ and ‘1’; Then he evaluate y0=h(x0) and y1=h(x1) using OWHF h and 
publishes y0 and y1 as the public key components; To sign a one bit message, he exposes x0 if the 
message is ‘0’, otherwise, he exposes x1; The verifier of the message evaluate the hash value 
using the exposed value as input and compare the output to the corresponding public key 
component. To sign a message of n bit length, 2n x’s and 2n y’s are needed. 

Among the various improvements to this original OTS scheme, for our purpose, we exploit 
the scheme proposed by Merkle [13]: the signer generates only one random value 
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( 1,2,..., )ix i = n  for each bit of the message of n bit length, computes ( )( 1,2,..., )i iy h x i n= =  

and publishes all ’s; When the ith bit of the message is ‘1’, the signer releases iy ix , otherwise, 

he releases nothing. Because this gives the chances to receiver to pretend that he did not receive 

some of the ix ’s and therefore to pretend that some the ‘1’s in the signed message were ‘0’s, the 

signer must also sign the count of ‘0’s in the message, and the signing method for the count field is 
the same as that for the message body. Now, if the receiver wants to deny that he received a ‘1’, he 

must also increase the value of the count field, therefore, he must give some ix ’s that he doesn’t 

know for the count field, which, however, is infeasible for him. So, in Merkle’s scheme, to sign a 

n bit message, one should prepare ( )2log ( )n n+ ⎡ ⎤⎢ ⎥  ix ’s and the corresponding 

 ’s. ( )2log ( )n n+ ⎡ ⎤⎥⎢ iy

3 Related works countering finite length limitation of CHC 
Bicaki and Baykal [14] propose signature chains of infinite length based on conventional 

public key cryptography. But this method can’t replace CHC because of its compromising on 
efficiency. 

Recently, Vipul Goyal [11] presents a new idea of Re-initializable Hash Chain (RHC). When 
a RHC is exhausted, it can be efficiently and securely re-initialized in a non-repudiable manner to 
result in another RHC. His construction can be briefly illustrated in Figure 1(a) where arrows 
show the non-repudiation relations, i.e., the side from which an arrow comes provides 
non-repudiable evidence for the side to which the arrow goes. This process can be continued 
indefinitely to give rise to an infinite number of finite length hash chains tied together using OTS. 

In Figure 1(a),  and  are a pair of OTS key instances, also are UP US UP ′  and  ⋯. For 

detailed description of Goyal’s construction, see [11]. 

US ′
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(a) RHC construction in [11]
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(b) A variation of RHC
construction in [11]

Figure 1 RHC construction in [11] and a vatiation of it

 
4 The proposed construction 

Similar to [11], our construction also can be called RHC. Assume that the output length of 
OWHF h() is Lbits. For instance, the output of MD5 [15] algorithm is L=128bits long.  

The sender first generates an pair of instances of OTS for a message of Lbits length, 

including generating ( )2log ( )L L+ ⎡⎢ ⎤⎥

)⎤⎥

U

 random values, the concatenation of which is written as 

, and evaluating the corresponding image of h() with these random values as inputs to result in 

 hash values, the concatenation of which is written as .  and  are 

respectively the secret key components and the public key components of OTS. In fact the OTS 

key instances will be used to sign for the next RHC. Then sender uses the  as seed value to 

compute a CHC of length N, which tip is  (N  times). Note that 

US

( 2log ( )L L+ ⎡⎢ UP US UP

UP

( ) ( ( (... ( )...)))N
Uh P h h h h P=
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this seed  is somewhat different with usual seed of CHC, i.e., the length of former is 

bits and the length of latter usually can be Lbits.  is  securely 

distributed to the appropriate receivers depending on the application settings. Now the links in the 

chain can be spent as in the usual manner till  or  is spent. At this point, the RHC is 

exhausted and a new RHC should be generated and tied to the foregoing RHC. In order to do this, 

we use  and . 
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Figure 2 Our RHC construction

Exposed parts of

 

The sender generates another pair of instances of OTS, UP ′  and US ′ , in the same way as 

before and computing  as the tip of the new RHC. Now, the sender sends ( )N
Uh P ′ ( )N

Uh P ′  

and the appropriate parts of  required to sign US ( )N
Uh P ′ to the receiver. The receiver checks 

the signature on  using  and the exposed parts of . Once the checking is passed, ( )N
Uh P ′

UP US
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the receiver accepts the tip  of the new RHC, which is ready to be spent as CHC. This 

process can continue indefinitely in the similar way so that an infinite number of finite length hash 
chains tied together. Obviously, the non-repudiability is maintained during the process. Figure 2 
illustrates our construction. 

(N
Uh P ′)

5 Comparison between our construction and Goyal’s 
Our construction also has the advantage of improving efficiency further similar to Goyal’s if 

the to-be-exposed parts of OTS secret key are also spent in the same manner as the normal links of 
the RHC. The operation is as following: 

a) The N links of RHC are released in the usual manner till  is reached. UP

b) Then, the sender computes ( )N
Uh P ′  and sends it to the receiver who stores it without 

verification. Now the sender sends the to-be-exposed parts of  one by one (in different 

messages) as links.  

US

c) After the receiver gets all the required parts of , he can verify . Now the RHC 

can be used as in a) and b).  

US ( )N
Uh P ′

On average, the number of the to-be-exposed parts of  is US ( )2log ( ) 2L L+ ⎡ ⎤⎢ ⎥ , so a RHC of 

length N can be used ( )2log ( ) 2N L L+ + ⎡ ⎤⎢ ⎥  times. 

In addition, our construction has the following advantages over Goyal’s: 

a) We note that in [11] the usage of  is somewhat special. In our construction,  

is a link on chain naturally so that the generation of tip need not any special operation and the 

receiver need not to pre-store . Of course, [11] can also directly use  instead of 

, correspondingly the tip should be computed as  to result in a 

variation of its construction, referring to Figure 1(b), which can be thought out of Figure 1(a) 
intuitively. However, when current RHC is used, no one can determine whether a new RHC 

should be re-initialized. Under this condition, transferring  is of no significance. 

Especially, the size of  is not small, if unnecessary,  should not exist in traffic. 

Although not illuminated in [11], it is reasonable to use  to avoid unnecessary traffic. 

In our construction, it is natural to transfer  only when the current RHC is exhausted, so 

that there can’t be any unnecessary traffic. 

( )Uh P ( )Uh P

( )Uh P UP

( )Uh P 1( ( ),N
Uh h s P− )

UP

UP UP

( )Uh P

UP

b) In our construction, there is no need to generate extra random seed values for hash chain. 

Because  are random, the images under h(), , are also random. It is natural and US UP
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reasonable to make use of  as seed value. UP

From above analysis, our construction is a little more efficient than Goyal’s. More 
importantly, our construction is a very natural extension to the concept of CHC.  
6 Conclusions 

We present an improved method to re-initialize hash chains. It can efficiently and securely 
re-initialize hash chains in a non-repudiable manner and extends the concept of conventional hash 
chains in a very natural way. Our method is pragmatic for most systems using hash chains.  
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