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Abstract. T-functions were introduced by Klimov and Shamir in a series of
papers during the last few years. They are of great interest for cryptography
as they may provide some new building blocks which can be used to construct
efficient and secure schemes, for example block ciphers, stream ciphers or hash
functions.
In the present paper, we define the narrowness of a T-function and study how
this property affects the strength of a T-function as a cryptographic primitive.
We define a new data strucure, called a solution graph, that enables solving
systems of equations given by T-functions. The efficiency of the algorithms
which we propose for solution graphs depends significantly on the narrowness
of the involved T-functions. Thus the subclass of T-functions with small nar-
rowness appears to be weak and should be avoided in cryptographic schemes.
Furthermore, we present some extensions to the methods of using solution
graphs, which make it possible to apply these algorithms also to more general
systems of equations, which may appear, for example, in the cryptanalysis of
hash functions.
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1 Introduction

Many cryptanalytical problems can be described by a system of equations. A well-
known example are the algebraic attacks on block and stream ciphers which use
systems of multivariate quadratic equations for describing the ciphers.

However, many cryptographic algorithms use a mixture of different kinds of op-
erations (e.g. bitwise defined functions, modular additions or multiplications and bit
shifts or rotations) such that they cannot be described easily by some relatively small
or simple system of linear or quadratic equations. As these operations are algebraically
rather incompatible, it is hard to solve equations which include different ones alge-
braically.

In a series of papers [5–7] Klimov and Shamir introduced the notion of T-functions,
in order to be able to prove theoretical results at least for some of the constructions
mentioned above. Roughly spoken, a T-function is a function for which the k-th bit
of the output depends only on the first k input bits. Many basic operations available
on modern microprocessors are T-functions and this means that many T-functions
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can be implemented very efficiently. Furthermore many of the operations mentioned
above are T-functions or very similar to T-functions.

In this paper we concentrate on a certain subclass of T-functions, which we call
w-narrow T-functions. In a w-narrow T-function the dependance of the k-th output
bit on the first k input bits is even more restricted: The k-th output bit must be
computable from only the k-th input bits and some information of a length of w bits
computed from the first k − 1 input bits.

We present a data structure, called a solution graph, which allows to efficiently
represent the set of solutions of an equation, which can be described by a w-narrow
T-function. The smaller w is, the more efficient is this representation. Additionally
we present a couple of algorithms which can be used for analysing and solving such
systems of equations described by T-functions. These algorithms include enumerating
all solutions, computing the number of solutions, choosing random solutions and also
combining two or more solution graphs, e.g. to compute the intersection of two sets
of solutions or to compute the concatenation of two T-functions.

However, this paper is not only dedicated to the quite young subject of T-functions.
The solution graphs together with the presented algorithms, can be used for crypt-
analysis in a lot of contexts, for example also in the cryptanalysis of hash functions.
In his attacks on the hash functions MD4, MD5 and RIPEMD (see [2–4]), Dobbertin
used, as one key ingredient, an algorithm which can be described as some kind of
predecessor of the algorithms used for constructing solution graphs and enumerating
all the solutions (see Appendix A). In this paper we also describe some extensions
which allow to apply the algorithms also in contexts which are a little more general
than systems of equations describable by “pure” T-functions.

We start in Section 2 by defining the narrowness of a T-function and give some
basic examples and properties. Then in Section 3 we describe the new data struc-
ture, the solution graph, and give an algorithm for constructing solution graphs from
systems of equations of T-functions. Section 4 gives further algorithms for solution
graphs.
In Section 5 we present some possible extensions to the definition of a solution graph,
which allow to apply these algorithms also in more general situations, for example in
the cryptanalysis of hash functions

In Appendix A we describe the ideas and the original algorithm used by Dobbertin
in his attacks. Two actual examples of systems coming from the cryptanalysis of
hash functions, which have been solved successfully with solution graphs are given in
Appendix B.

2 Notation and Definitions

For the convenience of the reader, we mainly adopt the notation of [8]. Especially, let
n be the word size in bits, B be the set {0, 1} and let [x]i denote the i-th bit of the
word x ∈ B

n, where [x]0 is the least significant bit of x. Hence, x = ([x]n−1 , . . . , [x]0)

also stands for the integer
∑n−1

i=0 [x]i 2i.
If x = (x0, . . . , xm−1)

T ∈ B
m×n is a column vector of m words of n bits, then [x]i

stands for the column vector ([x0]i , . . . , [xm−1]i)
T of the i-th bits of those words.

By x ≪ s we will denote a left shift by s positions and by x ≪ r we denote a left
rotation (a cyclic shift) by r positions.

Let us first recall the definition of a T-function from [8]:
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Definition 1 (T-Function). A function f : B
m×n → B

l×n is called a T-function
if the k-th column of the output [f(x)]k−1 depends only on the first k columns of the
input [x]k−1 , . . . , [x]0:




[x]0
[x]1
[x]2
...

[x]n−1




T

7→




f0([x]0)
f1([x]0 , [x]1)
f2([x]0 , [x]1 , [x]2)
...
fn−1([x]0 , [x]1 , . . . , [x]n−1)




T

(1)

There are many examples for T-functions. All bitwise defined functions, e.g. a
Boolean operation like (x, y) 7→ x ∧ y or the majority function (x, y, z) 7→ (x ∧ y) ∨
(x∧z)∨(y∧z), are T-functions, because the k-th output bit depends only on the k-th
input bits. But also other common functions, like addition or multiplication of integers
(modulo 2n) are T-functions, as can be easily seen from the schoolbook methods. For
example, when executing an addition, to compute the k-th bit of the sum, the only
necessary information (besides the k-th bits of the addends) is the carrybit coming
from computing the (k − 1)-th bit.

This is also a good example for some other more special property that many T-
functions have: You need much less information than “allowed” by the definition of a
T-function: In order to compute the k-th output column [f(x)]k−1 you need only the
k-th input column [x]k−1 and very little information about the first k − 1 columns
[x]k−2 , . . . , [x]0, for example some value αk([x]k−2 , . . . , [x]0) ∈ B

w of w bits width.
This leads to our definition of a w-narrow T-function:

Definition 2 (w-narrow).
A T-function f is called w-narrow if there are mappings

α1 : B
m → B

w, αk : B
m+w → B

w, k = 2, . . . , n − 1 (2)

and auxiliary variables

a1 := α1([x]0), ak := αk([x]k−1 , ak−1), k = 2, . . . , n − 1 (3)

such that f can be written as




[x]0
[x]1
[x]2
[x]3
...

[x]n−1




T

7→




f0([x]0)
f1([x]1 , a1)
f2([x]2 , a2)
f3([x]3 , a3)
...
fn−1([x]n−1 , an−1)




T

(4)

The smallest w such that some f is w-narrow is called the narrowness of f .

Let us take a look at some examples of w-narrow T-functions.

Example 1.

1. The identity function and all bitwise defined functions are 0-narrow.
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2. As described above, addition of two integers modulo 2n is a 1-narrow T-function,
as you only need to remember the carrybit in each step.

3. A left shift by s bits is an s-narrow T-function.
4. Each T-function f : B

m×n → B
l×n is (m(n − 1))-narrow.

Directly from Definition 2 one can derive the following lemma about the compo-
sition of narrow functions:

Lemma 1. Let f, g1, . . . , gr be T-functions which are wf -, wg1
-,. . . ,wgr

-narrow re-
spectively. Then the function h defined by

h(x) := f(g1(x), . . . , gr(x))

is (wf + wg1
+ . . . + wgr

)-narrow.

Note that this lemma (as the notion of w-narrow itself) gives only an upper bound
on the narrowness of a function: For example, the addition of 4 integers can be com-
posed of three (1-narrow) 2-integer-additions. Thus by Lemma 1 it is 3-narrow. But
it is also 2-narrow, because the carry value to remember can never become greater
than 3 (which can be represented in B

2) when adding 4 bits and a maximum (earlier)
carry of 3.

3 Solution Graphs for Narrow T-functions

In this section we will describe a data structure which allows to represent the set of
solutions of a system of equations of T-functions.
Common approaches for finding solutions of such equations are doing an exhaustive
or randomized search or using some more sophisticated algorithms as the one used
by Dobbertin in his attacks on the hash functions MD4, MD5 and RIPEMD in [2–4].
This algorithm, which gave us the idea of introducing the data structure presented
here, is described in Appendix A.

In general, the trees build in Dobbertin’s algorithm and thus its complexity, needed
for building them, may become quite large, in the worst case up to the complexity of
an exhaustive search. But this can be improved a lot in many cases, or, to be more
precise, in the case of T-functions which are w-narrow for some small w, as we will
show in the sequel.

Let us first note, that it suffices to consider only the problem of solving one equa-
tion

f(x) = 0, (5)

where f : B
m×n → B

n is some T-function:
If we had an equation described by two T-functions g(x) = h(x) we could simply define
ĝ(x) := g(x) ⊕ h(x) and consider the equation ĝ(x) = 0 instead. If we had a system
of several such equations ĝ1(x) = 0, . . . , ĝr(x) = 0 (or a function ĝ : B

m×n → B
l×n

with component functions ĝ1, . . . , ĝr) we could simply define f(x) :=
∨r

i=1 ĝi(x) and
consider only the equation f(x) = 0.
As both operations, ⊕ and ∨, are 0-narrow, due to Lemma 1, the narrowness of f is
at most the sum of the narrownesses of the involved functions.

If f in (5) is a w-narrow T-function for some “small” w, a solution graph, as given
in the following definition, can be efficiently constructed and allows many algorithms
which are useful for cryptanalysing such functions.



Narrow T-functions 5

Definition 3 (Solution Graph). A directed graph G is called a solution graph for
an equation f(x) = 0 where f : B

m×n → B
n, if the following properties hold:

1. The vertices of G can be arranged in n + 1 layers such that each edge goes from
a vertex in layer l to some vertex in layer l + 1 for some l ∈ {0, . . . , n − 1}.

2. There is only one vertex in layer 0, called the root.
3. There is only one vertex in layer n, called the sink.
4. The edges are labelled with values from B

m such that the labels for all edges starting
in one vertex are pairwise distinct.

5. There is a 1-to-1 correspondence between paths from the root to the sink in G and
solutions of the equation f(x) = 0:
For each solution x there exists a path from the root to the sink such that the k-th
edge on this path is labelled with [x]k−1 and vice versa.

The maximum number of vertices in one layer of a solution graph G is called the
width of G.

In the following we will describe how to efficiently construct a solution graph which
represents the complete set of solutions of (5). Therefore let f be w-narrow with some
auxiliary functions α1, . . . , αn−1 as in Definition 2. To identify the vertices during
the construction we label them with two numbers (l, a) each, where l ∈ {0, . . . , n} is
the number of the layer and a ∈ B

w corresponds to a possible output of one of the
auxiliary functions αi. This labelling is only required for the construction and can be
deleted afterwards.

Then the solution graph can be constructed by the following algorithm:

Algorithm 1 (Construction of a Solution Graph).

1. Start with one vertex labelled with (0, ∗)
2. For each possible value for [x]0, for which it holds that f0([x]0) = 0:

Add an edge
(0, ∗) −→ (1, α1([x]0))

and label this edge with the value of [x]0.
3. For each layer l, l ∈ {1, . . . , n − 2}, and each vertex (l, al) in layer l:

For each possible value for [x]l for which fl([x]l , al) = 0:
Add some edge

(l, al) −→ (l + 1, αl+1([x]l , al))

and label this edge with the value of [x]l.
4. For each vertex (n− 1, a) in layer n− 1 and each possible value for [x]n−1 for which

fn−1([x]n−1 , a) = 0:
Add an edge

(n − 1, a) −→ (n, ∗)

and label it with the value of [x]n−1.

Toy examples of the results of this construction can be found in Figure 1. Com-
pared with the trees in Figure 5 and 6, resulting from Dobbertin’s algorithm, this
shows that these solution graphs are much more efficient.

From the description of Algorithm 1 the following properties can be easily deduced:
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Fig. 1. Solution graphs for the equations ((x ∨ 00102) + 01102) ⊕ 00012 = 0 (on the left)
and ((01002 ⊕ (x + 01012)) − (01002) ⊕ x) ⊕ 11012 = 0 (on the right) with n = 4.

Theorem 1. Let f : B
m×n → B

n be a w-narrow T-function and G the graph for
f(x) = 0 constructed by Algorithm 1. Then G

– is a solution graph for f(x) = 0,
– has width at most 2w, i.e. G has v ≤ (n − 1)2w + 2 vertices and e ≤ (v − 1)2m

edges.

Proof. From the description of Algorithm 1 it is obvious that properties 1-3 from
Definition 3 are fulfilled for G. Furthermore for some fixed vertex al in layer l the al-
gorithm adds an edge labelled with [x]l starting in this vertex only if fl([x]l , al) = 0.
As each vertex-label pair is only considered once in the algorithm, it follows that in
G all edges starting in one vertex are pairwise distinct (Property 4).
To see the 1-to-1 correspondence between paths in G and solutions of the equation
(Property 5), first consider a solution x, i.e. f(x) = 0. Then with the auxiliary func-
tions α1, . . . , αn−1 from Definition 2 we can compute a1, . . . , an−1 from (3) such that

f0([x]0) = 0, fi([x]i , ai) = 0, i = 1, . . . , n − 1.

Hence, Algorithm 1 produces a path

(0, ∗)
[x]

0

−−−→ (1, a1)
[x]

1

−−−→ . . . . . . . . .
[x]

n−2

−−−→ (n − 1, an−1)
[x]

n−1

−−−→ (n, ∗).

Vice versa, let us now start with a path

(0, ∗)
[y]

0

−−−→ (1, b1)
[y]

1

−−−→ . . . . . . . . .
[y]

n−2

−−−→ (n − 1, bn−1)
[y]

n−1

−−−→ (n, ∗)

in G. Then, from the existence of an edge (l, bl)
[y]

l

−−−→ (l +1, bl+1) and the description
of Algorithm 1 we can deduce that

fl([y]l , bl) = 0, αl+1([y]l , bl) = bl+1

Together with similar properties for the first and the last edges of the path this means,
that f(y) = 0. The upper bound 2w on the width of G and thus the bounds on the
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number of vertices and edges follow directly from the unique labelling of the vertices
by (l, a) with a ∈ B

w. ⊓⊔

This theorem gives an upper bound on the size of the constructed solution graph,
which depends significantly on the narrowness of the examined function f . This shows
that, as long as f is w-narrow for some small w, such a solution graph can be con-
structed quite efficiently.

4 Algorithms for Solution Graphs

The design of a solution graph, as presented in Section 3 is very similar to that
of binary decision diagrams (BDDs). Thus it is not surprising, that many ideas of
algorithms for BDDs can be adopted to construct efficient algorithms for solution
graphs. For an introduction to the subject of BDDs, see for example [9].

The complexity of these algorithms naturally depends mainly on the size of the
involved solution graphs. Thus, we will first describe how to reduce this size.

4.1 Reducing the Size

We describe this using the example of the solution graph on the right hand side of
Figure 1: There are no edges starting in (3, 11) and thus there is no path from the
root to the sink which crosses this vertex. This means, due to Definition 3, this vertex
is of no use for representing any solution, and therefore it can be deleted. After this
deletion the same applies for (2, 11) and thus this vertex can also be deleted.

For further reduction of the size let us define what we mean by equivalent vertices:

Definition 4. Two vertices a and b in a solution graph are called equivalent, if for
each edge a → c (with some arbitrary vertex c) labelled with x there is an edge b → c

labelled with x and vice versa.

For the reduction of the size, it is important to notice the following lemma:

Lemma 2. If a and b are equivalent, then there are the same paths (according to the
labelling of their edges) from a to the sink as from from b to the sink.

For example let us now consider the vertices (3, 01) and (3, 10). From each of these
two vertices there are two edges, labelled with 0 and 1 respectively, which point to
(4, ∗) and thus these two vertices are equivalent. According to Lemma 2 this means
that a path from the root to one of those two vertices can be extended to a path to the
sink by the same subpaths, independently of whether it goes through (3, 01) or (3, 10).
Due to the defining property of a solution graph, this means, that we can merge these
two equivalent vertices into one, reducing the size once more. The resulting solution
graph is presented in Figure 2. In this figure the labels of the vertices are omitted as
they are only required for the construction algorithm.

Of course, merging two equivalent vertices, and also the deletion of vertices as
described above, may again cause two vertices to become equivalent, which have not
been equivalent before. But this concerns only vertices in the layer below the layer in
which two vertices were merged. Thus for the reduction algorithm it is important to
work from top (layer n − 1) to bottom (layer 1):

Algorithm 2 (Reduction of the Size).
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0 1

0
0

1

1

0
[x]

3

[x]2

[x]1

[x]0

10

Fig. 2. Solution graph for the equation ((01002 ⊕ (x + 01012)) − (01002 ⊕ x)) ⊕ 11012 = 0
(compare Figure 1) after reducing its size.

1. Delete each vertex (together with corresponding edges) for which there is no path
from the root to this vertex or no path from this vertex to the sink.

2. For each layer l starting from n − 1 down to 1 merge all pairs of vertices in layer l

which are equivalent.

To avoid having to check all possible pairs of vertices in one layer for equivalence
separately to find the equivalent vertices (which would result in a quadratic complex-
ity), in Algorithm 2 one should first sort the vertices of the active layer according to
their set of outgoing edges. Then equivalent vertices can be found in linear time.

Similar to what can be proven for ordered BDDs, for solution graphs reduced by
Algorithm 2 it can be shown that they have minimal size:

Theorem 2. Let G be a solution graph for some function f and let G̃ be the output of
Algorithm 2 applied to G. Then there is no solution graph for f which has less vertices
than G̃.

Proof. For (xl−1, . . . , x0) ∈ B
l, let

Exl−1...x0
:=

{
(xn−1, . . . , xl) ∈ B

n−l | f(xn−1 . . . xlxl−1 . . . x0) = 0
}

be the set of all extensions of xl−1 . . . x0 which lead to a solution of f(x) = 0. If
Exl−1...x0

is not empty, then in any solution graph G′ for f(x) = 0, there is a path start-
ing in the root which is labelled with x0, . . . , xl−1 and ends in some vertex axl−1...x0

in layer l. Let G′
xl−1...x0

denote the subgraph of G′ consisting of the vertex axl−1...x0

(as root) and all paths from axl−1...x0
to the sink in G′. Then, as G′ represents the set

of solutions of f(x) = 0, G′
xl−1...x0

represents the set Exl−1...x0
.

Hence, if Exl−1...x0
6= Ex′

l−1
...x′

0
, then also axl−1...x0

and ax′

l−1
...x′

0
must be different (as

otherweise G′
xl−1...x0

= G′
x′

l−1
...x′

0

). Thus, the number of vertices vl(G
′) in layer l of the

arbitrary solution graph G′ for f(x) = 0 must be greater or equal to the number of
different sets Exl−1...x0

, i.e.

vl(G
′) ≥ ♯

{
Exl−1...x0

| (xl−1, . . . , x0) ∈ B
n
}

.
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In the following we will show that for G̃ these values are equal, i.e.

vl(G̃) = ♯
{
Exl−1...x0

| (xl−1, . . . , x0) ∈ B
n
}

and thus there is no solution graph for f(x) = 0 with less vertices than G̃:
In each solution graph there is only one vertex in layer n, the sink, and thus the
equation holds for layer n of G̃. Now suppose that it holds for layers n, . . . , l + 1 and
assume that it does not hold for layer l, i.e. there are more vertices in layer l of G̃

than sets Exl−1...x0
.

Then there must be two distinct vertices axl−1...x0
and ax′

l−1
...x′

0
in layer l such that

Exl−1...x0
= Ex′

l−1
...x′

0
. Consider an arbitrary edge starting in axl−1...x0

labelled with xl.
This edge leads to a vertex axl...x0

corresponding to Exl...x0
and by definition it holds

that this set is equal to Exlx
′

l−1
...x′

0
. As the claim is fulfilled for layer l + 1 this means

that also axl...x0
= axlx

′

l−1
...x′

0
and thus there must exist an edge from ax′

l−1
...x′

0
to

axlx
′

l−1
...x′

0
labelled with xl. Hence, axl−1...x0

and ax′

l−1
...x′

0
are equivalent and would

have been merged by Step 2 of Algorithm 2. ⊓⊔

With the help of the following theorem it is possible to compute the narrowness of
f , i.e. the smallest value w such that f is w-narrow. Like Theorem 1 gives a bound on
the width of a solution graph based on a bound for the narrowness of the considered
function, the following theorem provides the other direction:

Theorem 3. Let f : B
m×n → B

n be a T-function and define f̃ : B
(m+1)×n → B

n by
f̃(x, y) := f(x) ⊕ y.
If G is a minimal solution graph of width W for the equation f̃(x, y) = 0, then f is a
⌈log2 W ⌉-narrow T-function.

Proof. As G has width W it is possible to label the vertices of each layer l of G with
unique values al ∈ B

⌈log
2

W⌉. Then we can define the following auxiliary functions
corresponding to G:

αi(x, ai−1) :=

{
ai, if an edge ai−1

(x,.)
−−−→ ai exists in G

0, else
(6)

gi−1(x, ai−1) :=

{
y, if an edge ai−1

(x,y)
−−−→ . exists in G

0, else
(7)

Two things remain to be shown:

1. (6) and (7) are well-defined, i.e. if two edges ai−1

(x,y)
−−−→ ai and ai−1

(x,y′)
−−−→ a′

i exist,
then ai = a′

i and y = y′.
2. The ⌈log2 W ⌉-narrow T-function g : B

m×n → B
n defined by

[g(x)]i := gi([x]i , bi) where b1 := α1([x]0 , rootG), bi := αi([x]i−1 , bi−1)

if equal to f .

ad 1): As G is minimal, there exist paths in G

– from the root to ai−1 (labelled (x0, y0), . . . , (xi−2, yi−2)),
– from ai to the sink (labelled (xi, yi), . . . , (xn−1, yn−1)),
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– from a′
i to the sink (labelled (x′

i, y
′
i), . . . , (x

′
n−1, y

′
n−1)).

Then, by the definition of f̃ and G and the existence of the two edges it follows that

f(xn−1 . . . xixxi−2 . . . x0) = yn−1 . . . yiyyi−2 . . . y0

⇒ [f(xn−1 . . . xixxi−2 . . . x0)]i−1 = y

f(x′
n−1 . . . x′

ixxi−2 . . . x0) = y′
n−1 . . . y′

iy
′yi−2i . . . y0

⇒
[
f(x′

n−1 . . . x′
ixxi−2 . . . x0)

]
i−1

= y′

As f is a T-function this means that y = y′ and as different edges starting in the
same vertex have different labels this also means ai = a′

i.

ad 2): Let x ∈ Bm+n and y = f(x), i.e. f̃(x, y) = 0. Then we can find the following
path in G:

rootG
([x]

0
,[y]

0
)

−−−→ a1

([x]
1
,[y]

1
)

−−−→ . . . . . . . . .
([x]

n−2
,[y]

n−2
)

−−−→ an−1

([x]
n−1

,[y]
n−1

)

−−−→ sinkG .

From the definition of the bi and the definition of the αi it follows that

a1 = b1 =⇒ a2 = b2 =⇒ . . . =⇒ an−1 = bn−1

and thus
[g(x)]i = gi([x]i , bi) = [y]i = [f(x)]i =⇒ f = g.

⊓⊔

In the following we always suppose that we have solution graphs of minimal size
(from Algorithm 2 and Lemma 2) as inputs.

4.2 Computing Solutions

Similar to what can be done by Dobbertin’s algorithm (see Algorithm 7 in Appendix
A), a solution graph can also be used to enumerate all the solutions:

Algorithm 3 (Enumerate Solutions).
Compute all possible paths from the root to the sink by a depth-first search and output
the corresponding labelling of the edges.

Of course, the complexity of this algorithm is directly related to the number of
solutions. If there are many solutions, it is similar to the complexity of an exhaustive
search (as for Algorithm 7), simply because all of them need to be written. But if
there are only a few, it is very fast, usually much faster than Algorithm 7.

However, often we are only interested in the number of solutions of an equation
which can be computed much more efficiently, namely, with a complexity linear in
the size of the solution graph. The following algorithm achieves this by labeling every
vertex with the number of possible paths from that vertex to the sink. Then the
number computed for the root gives the number of solutions:

Algorithm 4 (Number of Solutions).

1. Label the sink with 1.
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Fig. 3. A solution graph after application of Algorithm 4.

2. For each layer l from n − 1 down to 0:
Label each vertex A in l with the sum of the labels of all vertices B (in layer l + 1)
for which an edge A → B exists.

3. Output the label of the root.

An application of this algorithm is illustrated in Figure 3.
After having labelled all vertices by Algorithm 4 it is even possible to choose

solutions from the represented set uniformly at random:

Algorithm 5 (Random Solution).
Prerequisite: The vertices have to be labelled as in Algorithm 4.

1. Start at the root.
2. Repeat

– From the active vertex A (labelled with nA) randomly choose one outgoing edge
such that the probability that you choose A → B is nB

nA
where nB is the label of B.

– Remember the label of A → B

– Make B the active vertex.
until you reach the sink.

3. Output the solutions corresponding to the remembered labels of the edges on the
chosen path.

4.3 Combining Solution Graphs

So far, we only considered the situation in which the whole system of equations is
reduced to one equation f(x) = 0, as described at the beginning of Section 3, and then
a solution graph is constructed from this equation. Sometimes it is more convenient
to consider several (systems of) equations separately and then combine their sets of
solutions in some way. Therefore let us now consider two equations

g(x1, . . . , xr, y1, . . . , ys) = 0 (8)

h(x1, . . . , xr, z1, . . . , zt) = 0 (9)
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which include some common variables x1, . . . , xr as well as some distinct variables
y1, . . . , ys and z1, . . . , zt respectively. Let Gg and Gh be the solution graphs for (8) and
(9) respectively.
Then the set of solutions of the form (x1, . . . , xr, y1, . . . , ys, z1, . . . , zt) which fulfill
both equations simultaneously can be computed by the following algorithm.

Algorithm 6 (Intersection). Let the vertices in Gg be labelled with (l, ag)g where l is
the layer and ag is some identifier which is unique per layer, and those of Gh analogously
with some (l, ah)h. Then construct a graph whose vertices will be labelled with (l, ag, ah)
by the following rules:

1. Start with the root (0, ∗g, ∗h).
2. For each layer l ∈ {0, . . . , n − 1} and each vertex (l, ag, ah) in layer l:

– Consider each pair of edges

((l, ag)g → (l + 1, bg)g, (l, ah)h → (l + 1, bh)h)

labelled with

(Xg, Yg) = ([x1]l , . . . , [xr]l , [y1]l , . . . , [ys]l)

and (Xh, Zh) = ([x1]l , . . . , [xr]l , [z1]l , . . . , [zt]l) respectively.

– If Xg = Xh, add an edge

(l, ag, ah) → (l + 1, bg, bh)

and label it with (Xg, Yg, Zh).

The idea of this algorithm is to traverse the two input graphs Gg and Gh in parallel
and to simulate computing both functions in parallel in the output graph by storing
all necessary information in the labels of the output graph. For an illustration of this
algorithm, see Figure 4. Also notice that this algorithm can be easily generalized to
having more than two input graphs.

0 1

010 1

1
1

0 10

0 1

0 1 0 1

0 1 0 1

1 1

(1;a) (1; b)

(2;a) (2; b)

Gg G h
(3;¤g) (3;¤h)

(0;¤g) (0;¤h)

(1; c) (1; d)

(2; c) (2; d)

(0;¤g;¤h)

(3;¤g;¤h)

(1;a;c) (1;b;d)

(2;a;c) (2;a;d) (2;b;d)

10

Fig. 4. Intersection of two solution graphs by Algorithm 6.
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Apart from just computing mere intersections of sets of solutions, Algorithm 6 can
also be used to solve equations given by the concatenation of two T-functions:

f(g(x)) = y (10)

To solve this problem, just introduce some auxiliary variable z and apply Algorithm
6 to the two solution graphs which can be constructed for the equations f(z) = y and
g(x) = z respectively.

Combining this idea (applied to the situation f = g) with some square-and-
multiply technique, allows for some quite efficient construction of a solution graph
for an equation of the form f i(x) = y with some (small) fixed value i. This may be
of interest for example for cryptanalysing stream ciphers which are constructed as
suggested for example by Klimov in [8], but use T-functions with some small narrow-
ness instead of one of the functions proposed by Klimov which seem to have a large
narrowness.

5 Extensions of this Method

In many cryptographical systems the operations used are usually not restricted to
T-functions. Often such systems also include other basic operations, as, for example,
right bit shifts or bit rotations, which are quite similar, but not T-functions according
to Definition 1. Hence, systems of equations used in the cryptanalysis of such ciphers
usually cannot be solved directly by applying solution graphs as presented in Sections
3 and 4. In this section we give some examples of how such situations can be han-
dled, for example by extending the definition of a solution graph such that it is still
applicable.

5.1 Including Right Shifts

Let us first consider a system of equations which includes only T-functions and some
right shift expressions x ≫ r. This can be transformed by substituting every appear-
ance of x ≫ r by an auxiliary variable zr and adding an extra equation

zr ≪ r = x ∧ (11 . . .1︸ ︷︷ ︸
n−r

0 . . . 0︸ ︷︷ ︸
r

) (11)

which defines the relationship between x and zr. Then the resulting system is com-
pletely described by T-functions and can be solved with a solution graph.

Here, similarly as when solving (10) some problem occurs: We have to add an extra
(auxiliary) variable z, which potentially increases the size of the needed solution graph.
This is even worse as the solution graph stores all possible values of z corresponding
to solutions for the other variables, even if we are not interested in them at all. This
can be dealt with by softening Definition 3 to generalized solutions graphs:

5.2 Generalized Solution Graphs

For a generalized solution graph we require every property from Definition 3 with
the exception that the labels of edges starting in one vertex are not required to be
pairwise distinct.
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Then we can use similar algorithms as those described above, e.g. for reducing
the size or combining two graphs. But usually these algorithms are a little bit more
sophisticated: For example, for minimizing the size, it does not suffice to consider
equivalent vertices as defined in Definition 4. In a generalized solution graph it is also
possible that the sets of incoming edges are equal and, clearly, two such vertices with
equal sets of incoming edges (which we will also call equivalent in the case of general
solution graphs) can also be merged. But this also means that merging two equivalent
vertices in layer l may not only cause vertices in layer l− 1 to become equivalent, but
also vertices in layer l + 1. Thus, in the generalized version of Algorithm 2 we have
to go back and forth in the layers to ensure that in the end there are no equivalent
vertices left.

This definition of a generalized solution graph allows to “remove” variables without
losing the information about their existence. This means, instead of representing the
set {(x, y) | f(x, y) = 0} with a solution graph G, we can represent the set {x | ∃y :
f(x, y) = 0} with a solution graph G′ which is constructed from G by simply deleting
the parts of the labels which correspond to y. Of course, this does not decrease the size
of the generalized solution graph directly but (hopefully) it allows further reductions
of the size.

5.3 Including Bit Rotations

Let us now take a look at another commonly used function which is not a T-function,
a bit rotation by r bits:

f(x) := x ≪ r (12)

If we would fix the r most significant bits of x, for example to some value c, then this
function can be described by a bit shift of r positions and a bitwise defined function

f(x) := (x ≪ r) ∨ c (13)

which is an r-narrow T-function. Thus, by looping over all 2r possible values for c an
equation involving (12) can also be solved by solution graphs.

If we use generalized solution graphs, it is actually possible to combine all 2r

such solution graphs to one graph, in which again the complete set of solutions is
represented: This can be done by simply merging all the roots and all the sinks of the
2r solution graphs as they are clearly equivalent in the generalized sense.

Two examples of actual systems of equations which were solved by applying solu-
tion graphs and the extensions from this section are given in Appendix B.

6 Conclusion

In this paper we defined a subclass of weak T-functions, the w-narrow T-functions.
We showed that systems of equations involving only w-narrow T-functions (with small
w) can be solved efficiently by using solution graphs and thus such functions should
be avoided in cryptographical schemes.

Let us stress again that this does not mean that the concept of using T-functions
for constructing cryptosystems is bad. One just has to assure that the used T-functions
are not too narrow. For example, it is a good idea to always include multiplications and
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bit shifts of some medium size in the functions, as those are examples of T-functions
which are not very narrow.

Additionally we presented some extensions to our proposal of a solution graph.
These extensions allow to use the solution graphs also in other contexts than pure
T-functions, for example as a tool in the cryptanalysis of hash functions.
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A Dobbertin’s Original Algorithm from the Attacks on MD4,

MD5 and RIPEMD

In this section we describe the algorithm used by Dobbertin in his attacks from [2–4].
However, we do this using the same terminology as in the other sections of the present
paper to maximize the comparability.

Let S be a system of equations which can be completely described by T-functions
and let Sk denote the system of equations in which only the k least significant bits of
each equation are considered. As those k bits only depend on the k least significant
bits of all the inputs, we will consider the solutions of Sk to have only k bits per
variable as well.

Then, from the defining property of a T-function, the following theorem easily
follows:

Theorem 4. Every solution of Sk is an extension of a solution of Sk−1.

This theorem directly leads to the following algorithm for enumerating all the
solutions of S.
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Algorithm 7.

1. Find all solutions (having only 1 bit per variable) of S1.
2. For every found solution of some Sk, k ∈ {1, . . . , n − 1}, recursively check which

extensions of this solution by 1 bit per variable are solutions of Sk+1.
3. Output the found solutions of Sn(= S).

An actual toy example application of this algorithm – finding the solutions x of
the equation S given by (x ∨ 00102) + 01102 = 00012 with n = 4 – is illustrated
in Figure 5: We start at the root of the tree and check whether 0 or 1 are possible
values for [x]0, i.e. if they are solutions of S1 which is given by ([x]0 ∨ 0) + 0 = 1.
Obviously 0 is not a solution of this equation and thus we need not consider any more
values for x starting with 0. But 1 is a solution of S1, thus we have to check whether
extensions (i.e. 012 or 112) are solutions of S2: (x ∨ 102) + 102 = 012. Doing this
recursively finally leads to the “tree of solutions”, illustrated on the left hand side of
Figure 5.

0 1

0 1

0 10 1

0 1 0 1

0 1

0 1

0 10 1

0 1 0 10

0

0

0 0
[x]

3

[x]2

[x]1

[x]0

Fig. 5. “Solution tree” for the equation (x ∨ 00102) + 01102 = 00012 with n = 4.

If this method is implemented directly as described in Algorithm 7, it has a worst
case complexity which is about twice as large as that of an exhaustive search, because
the full solution tree of depth n has 2n+1−1 vertices. An example of such a “worst case
solution tree” is given in Figure 6. To actually achieve a worst case complexity similar
to that of an exhaustive search a little modification is necessary to the algorithm: The
checking should be done for complete paths (as indicated by the grey arrows in the tree
on the right hand side in Figure 5), which can also be done in one machine operation,
and not bit by bit. This means, we would start by checking 00002 and recognize that
this fails already in the least significant bit. In the next step we would check 00012

and see that the three least significant bits are okay. This means in the following step
we would only change the fourth bit and test 10012 which would give us the first
solution. All in all we would need only 7 checks for this example as indicated by the
grey arrows.

The worst case complexity of this modified algorithm (which is what was actually
implemented in Dobbertin’s attacks) is clearly 2n as this is the number of leaves of a
full solution tree. However, it is also quite clear, that in the average case, or rather in
the case of fewer solutions, this algorithm is much more efficient.
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0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Fig. 6. “Solution tree” for the equation (01002 ⊕ (x + 01012) ) − (01002 ⊕ x ) = 11012

with n = 4.

B Examples of Applications

In this section we present two examples of systems of equations which were actually
solved by using the techniques presented in this paper. They have both appeared as
one small part in an attempt to apply Dobbertin’s methods from [2–4] to SHA-1. In
this paper we concentrate on describing how these systems were solved and omit a
detailed description of their meanings.

The first system comes from looking for so-called “inner collisions” and includes
14 equations and essentially 22 variables R1, . . . , R13, ε3, . . . , ε11:

0 = ε3 + 1

0 = ε4 − (R̃3 ≪ 5 − R3 ≪ 5) + 1

Ch(R̃3, R2 ≪ 30, R1 ≪ 30) − Ch(R3, R2 ≪ 30, R1 ≪ 30) = ε5 − (R̃4 ≪ 5 − R4 ≪ 5) + 1

Ch(R̃4, R̃3 ≪ 30, R2 ≪ 30) − Ch(R4, R3 ≪ 30, R2 ≪ 30) = ε6 − (R̃5 ≪ 5 − R5 ≪ 5)

Ch(R̃5, R̃4 ≪ 30, R̃3 ≪ 30) − Ch(R5, R4 ≪ 30, R3 ≪ 30) = ε7 − (R̃6 ≪ 5 − R6 ≪ 5) + 1

Ch(R̃6, R̃5 ≪ 30, R̃4 ≪ 30) − Ch(R6, R5 ≪ 30, R4 ≪ 30) = ε8 − (R̃7 ≪ 5 − R7 ≪ 5)

−(R̃3 ≪ 30 − R3 ≪ 30) + 1

Ch(R̃7, R̃6 ≪ 30, R̃5 ≪ 30) − Ch(R7, R6 ≪ 30, R5 ≪ 30) = ε9 − (R̃8 ≪ 5 − R8 ≪ 5)

−(R̃4 ≪ 30 − R4 ≪ 30) + 1

Ch(R̃8, R̃7 ≪ 30, R̃6 ≪ 30) − Ch(R8, R7 ≪ 30, R6 ≪ 30) = ε10 − (R̃9 ≪ 5 − R9 ≪ 5)

−(R̃5 ≪ 30 − R5 ≪ 30)

Ch(R̃9, R̃8 ≪ 30, R̃7 ≪ 30) − Ch(R9, R8 ≪ 30, R7 ≪ 30) = ε11 − (R̃10 ≪ 5 − R10 ≪ 5)

−(R̃6 ≪ 30 − R6 ≪ 30)

Ch(R̃10, R̃9 ≪ 30, R̃8 ≪ 30) − Ch(R10, R19 ≪ 30, R8 ≪ 30) = −(R̃11 ≪ 5 − R11 ≪ 5)

−(R̃7 ≪ 30 − R7 ≪ 30) + 1

Ch(R̃11, R̃10 ≪ 30, R̃9 ≪ 30) − Ch(R11, R10 ≪ 30, R9 ≪ 30) = −(R̃8 ≪ 30 − R8 ≪ 30)

Ch(R12, R̃11 ≪ 30, R̃10 ≪ 30) − Ch(R12, R11 ≪ 30, R10 ≪ 30) = −(R̃9 ≪ 30 − R9 ≪ 30)

Ch(R13, R12 ≪ 30, R̃11 ≪ 30) − Ch(R13, R12 ≪ 30, R11 ≪ 30) = −(R̃10 ≪ 30 − R10 ≪ 30) + 1

0 = −(R̃11 ≪ 30 − R11 ≪ 30) + 1
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Here we use R̃i := Ri + εi for a compact notation, the word size is n = 32, and the
Ch in these equations stands for the bitwise defined choose-function

Ch(x, y, z) = (x ∧ y) ∨ (x ∧ z).

It was not possible to solve this system in full generality, but for the application
it sufficed to find some fixed values for ε3, . . . , ε11 such that there are many solutions
for the Ri and then to construct a generalized solution graph for the solutions for
R1, . . . , R13.

The choice for good values for some of the εi could be done by either theoretical
means or by constructing solution graphs for single equations of the system and
counting solutions with fixed values for some εi.
For example, from the solution graph for the last equation it is possible (as described
in Section 5.2) to remove the R11 such that we get a solution graph which represents
all values for ε11 for which an R11 exists such that

0 = −(R̃11 ≪ 30 − R11 ≪ 30) + 1.

This solution graph shows that only ε11 ∈ {1, 4, 5} is possible. Then by inserting
each of these values in the original solution graph (by Algorithm 6) and counting
the possible solutions for R11 (by Algorithm 4) it can be seen that ε11 = 4 is the
best choice. Having fixed ε11 = 4 also the last but one equation includes only one of
the εi, namely ε10 (implicitly in R̃10). Then possible solutions for ε10 can be derived
similarly as before for ε11 and doing this repeatedly gave us some good choices for
ε11, ε10, ε9, ε8, ε7 and (using the first two equations) for ε3 and ε4.
Finding values ε5 and ε6 such that the whole system still remains solvable was quite
hard and could be done by repeatedly applying some of the techniques described in
this paper, e.g. by combining generalized solution graphs for different of the equations
and removing those variables Ri from the graphs which were no longer of any explicit
use. This way we found four possible values for ε5 and ε6.

After fixing all the εi variables in a second step we were then able to construct the
generalized solution graph for the complete system of equations with the remaining
variables R1, . . . , R13. It contains about 700 vertices, more than 80000 edges and
represents about 2205 solutions.

The second examplary system of equations appeared when looking for a so-called
“connection” and after some reduction steps it can be written as follows:

C1 = R9 + Ch(R12 ≪ 2, R11, R10)

C2 = (C3 − R10 − R11) ⊕ (C4 + R9 ≪ 2)

C5 = (C6 − R11) ⊕ (C7 + R10 ≪ 2 − (R9 ≪ 7))

C8 = (C9 − R12) ⊕ (C10 + R9 ≪ 2)

⊕(C11 + R11 ≪ 2 − (R10 ≪ 7) − Ch(R9 ≪ 2, C12, C13))

In these equations the Ci are constants which come from some transformations of the
original (quite large) system of equations together with some random choices of values.
For this system we are interested in finding at least one solution for R9, R10, R11, R12.

As the first three equations are quite simple and (after eliminating the rotations)
also quite narrow, the idea for solving this system was the following: First compute a
generalized solution graph for the first three equations which represents all possible
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solutions for R9, R10, R11 for which at least one corresponding value for R12 exists.
For this set of solutions we observed numbers of about 211 to 215 solutions. Then we
could enumerate all these solutions from this graph and for each such solution we just
had to compute the value for R12 corresponding to the last equation

R12 = C9 − (C8 ⊕ (C10 + R9 ≪ 2)

⊕(C11 + R11 ≪ 2 − (R10 ≪ 7) − Ch(R9 ≪ 2, C12, C13)))

and check whether it also fulfilled the first equation. If we consider the first equation
with random but fixed values for R9, R10, R11 we see that either there is no solution
or there are many solutions for R12, as only every second bit of R12 (on average)
has an effect on the result of Ch(R12 ≪ 2, R11, R10). However, since the values for
R9, R10, R11 were chosen from the solution graph of the first three equations there
is at least one solution and thus the probabiliy that the value for R12 from the last
equation also fulfills the first, is quite good.

This way we succeded in solving this system of equations quite efficiently.


