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Abstrat

A new tehnique for Boolean random masking of the logi AND operation in terms

of NAND logi gates is presented and its potential for masking arbitrary ryptographi

funtions is pointed out. The new tehnique is muh more eÆient than a previously

known tehnique, reently applied to AES. It is also applied for masking the integer

addition. In addition, new tehniques for the onversions from Boolean to arithmeti

random masking and vie versa are developed. They are hardware oriented and do

not require additional random bits. Unlike the previous, software-oriented tehniques

showing a substantial di�erene in the omplexity of the two onversions, they have a

omparable omplexity being about the same as that of one integer addition only. All

the tehniques proposed are in theory seure against the �rst-order di�erential power

analysis on the logi gate level. They an be applied in hardware implementations of

various ryptographi funtions, inluding AES, (keyed) SHA-1, IDEA, and RC6.

Key words. Digital iruits, logi iruits, Boolean funtions, ryptography, arith-

meti iruits, random masking, side-hannel attaks, power analysis

1 Introdution

Cryptographi funtions dealing with seret keys suh as, for example, blok iphers or mes-

sage authentiation odes an be implemented in software or hardware on miroeletroni

data-proessing devies suh as integrated iruit hip (smart) ards. During the exeution

of a ryptographi algorithm, sensitive data depending on the seret key is being proessed,

being sent over the internal links, and being stored in the internal memories of the devie.

It is known that even for tamper-resistant hips, where the underlying integrated iruit is

proteted by speial physial measures, this sensitive information may leak out through vari-

ous side hannels, suh as measurements of timing, power onsumption, and eletromagneti
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radiation as well as monitoring of signals by miroprobing. The objetive of side-hannel at-

taks is to reover the seret key by using the leaked information. Power analysis attaks [13℄

are powerful as they do not require expensive resoures and as most implementations without

ountermeasures inorporated are vulnerable to suh attaks. The (�rst-order) di�erential

power analysis (DPA) attaks are partiularly interesting as they use a simple statistial

tehnique that is almost independent of the implementation of the ryptographi algorithm.

The basis of power analysis attaks are elementary omputations within the rypto-

graphi devie that depend on a part of the seret key and on the known input and/or

output information. If the power onsumption orresponding to these elementary ompu-

tations depends on the values being omputed, then the power onsumption urves ontain

information about the seret key whih may be feasible to extrat by statistial tehniques.

In partiular, in DPA attaks, one guesses the involved part of the seret key, omputes

the values of a hosen intermediate variable, lassi�es the power urves aording to these

values, and then omputes and ompares the average values of the lassi�ed urves. Both

software and hardware implementations are potentially vulnerable.

1.1 Previous Work on Random Masking

A general method for ounterating power analysis attaks on the algorithmi level is to

randomize the omputations depending on the seret key by masking the original data with

random masks and by modifying the omputations aordingly. This method in fat origi-

nated as data splitting [3℄, [11℄, where the intermediate data is split into a number of shares

and the omputation is then performed on the shares. Masking [16℄ is essentially similar

to data splitting into two shares [11℄, with a di�erene that one does not have to perform

dupliate omputations on the resulting shares. The masking operation ombining the data

with a random mask is typially adapted to the mathematial operations used in the ryp-

tographi algorithm [16℄, beause the required modi�ations in the omputations are then

minimized. More preisely, assume that in some elementary omputation in the algorithm,
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inputs x and y are ombined together into an output z by using a group operation Æ aord-

ing to xÆy = z. As using any group operation for masking is suÆient to perfetly randomize

the data, assume that x and y are randomized by using the purely random (uniformly dis-

tributed) and mutually statistially independent masks r

x

and r

y

through Æ, respetively.

Then the omputation does not have to be modi�ed, as (xÆ r

x

)Æ (y Æ r

y

) = z Æ (r

x

Æ r

y

). Note

that most random masking tehniques proposed for publi-key ryptosystems are essentially

of this type. Very frequently used group operations on n-bit words in ryptographi algo-

rithms are the bitwise XOR, denoted as �, and the integer addition and subtration modulo

2

n

, whih are denoted just as + and �, respetively, if the module is lear from the ontext.

The orresponding random masking tehniques are ommonly alled Boolean and arithmeti

masking, respetively.

If z = f(x; y), for an arbitrary funtion f , and if we want to obtain a masked output

z

0

= z Æ r

z

from masked inputs x

0

= x Æ r

x

and y

0

= y Æ r

y

, then the funtion f has to be

modi�ed into a new funtion f

0

determined by z

0

= f

0

(x

0

; y

0

; r

x

; r

y

; r

z

) = f(x

0

Ær

x

; y

0

Ær

y

)Ær

z

.

The problem is how to ompute f

0

seurely, that is, in a way resistant to DPA. To this end,

f

0

an also depend on additional (dummy) random masking variables. The resistane to

DPA of a masked algorithm omputing f

0

an be ontrolled by a theoretial ondition that

eah variable in this algorithm should be statistially independent of the (unmasked) input

information. This ondition is impliitly rather than expliitly respeted in previous works on

random masking in software, on the word level. In addition, for software implementations,

f

0

should be expressed in terms of word operations available on ommon proessors suh

as logi and arithmeti operations. Consequently, in a masked ryptographi algorithm,

only the elementary omputations di�erent from the underlying group operation Æ have

to be modi�ed. The only known general tehnique for doing this in software is based on

preomputed lookup tables stored in RAM. It onsists in preomputing a lookup table for

f

0

, given the values of r

x

; r

y

, and r

z

, and then in reading the values from this table aording

to the masked inputs x

0

and y

0

. If the bit size of the inputs is too large, then it may be
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possible to apply the tehnique to smaller input bloks.

For many ryptographi funtions, suh as AES [6℄, the RAM spae required for masking

the nonlinear parts, that is, the S-boxes, may be impratial for onstrained miroeletroni

devies suh as smart ards. As for the solutions not based on preomputed and stored

lookup tables, the multipliative masking tehnique [1℄ for the AES S-boxes is shown to be

vulnerable to the zero-value based DPA in [8℄, whereas the embedded multipliative masking

tehnique [8℄, whih avoids this problem, does not provide ideal seurity.

In many algorithms, the bitwise XOR and the modular integer addition or subtration,

along with other Boolean and integer operations, are ombined together for ryptographi

seurity. The best-known examples are the widely used ryptographi hash funtion SHA-1

[18℄ and the blok iphers IDEA [14℄ and RC6 [22℄. Note that SHA-1 inorporates a seret

key if it is used for message authentiation. In suh algorithms, it is onvenient to use both

group operations for random masking. Therefore, there is a need to onvert between the

two orresponding masks in a seure way. Namely, given an n-bit data word x and an n-bit

purely random masking word r, the problem is to ompute seurely x+r from x�r and vie

versa. Alternatively, another, related problem is treated in the literature as it is loser to

data splitting, namely, to ompute seurely x�r from x�r and vie versa. The two problems

are here referred to as the mask addition and mask subtration problems, respetively.

The �rst solution to the problem is proposed in [16℄, but in [4℄ both onversions are

shown to be potentially vulnerable to a more sophistiated power analysis attak, due to the

fat that the intermediate variables were not all fully randomized as binary words. Under a

ertain power onsumption ondition, this attak may be regarded as a sort of word-based

DPA attak. New solutions for both onversions are proposed in [12℄. They are essentially

word, that is, software oriented and aording to them it appears that the onversion from

arithmeti to Boolean masking is inherently muh more diÆult than the onversion in

the opposite diretion. More preisely, the solution for the onversion from Boolean to

arithmeti masking requires 7 n-bit word operations and an auxiliary n-bit random masking
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word, namely, 5 bitwise XOR operations and 2 subtrations modulo 2

n

. The solution for the

onversion from arithmeti to Boolean masking is muh less eÆient and requires 5(n + 1)

n-bit word operations and an auxiliary n-bit random masking word. For omparison, note

that the diret onversion of the masks ould be ahieved by only two n-bit word operations,

namely, one XOR and one addition or subtration modulo 2

n

, but is not omputationally

seure.

Another software-oriented solution for the onversion from arithmeti to Boolean mask-

ing, whih requires preomputation and RAM storage of ertain lookup tables and some

auxiliary random masking bits, is proposed in [5℄ and further improved in [19℄. It is gen-

erally more eÆient than the orresponding solution from [12℄, depending on the proessor

word size, but remains muh less eÆient than the solution from [12℄ for the onversion in the

opposite diretion. Consequently, the known software-oriented mask onversion tehniques

are ineÆient to be implemented in hardware.

Note that apart from using the mask onversion algorithms, it is also neessary to mask

the nonlinear Boolean and integer operations that exist in a given ryptographi algorithm.

For example, in (keyed) SHA-1 it is neessary to mask the logi AND operation for 32-bit

words with respet to the Boolean (XOR) mask. Due to the data splitting paradigm, it is

tempting, but inorret, to onlude [5℄ that two word operations suÆe for ahieving this.

To avoid using a number of preomputed and stored lookup tables, one has to mask the

bitwise logi AND operation diretly.

If a ryptographi algorithm is implemented in hardware, by a digital integrated iruit,

then to prevent the (�rst-order) DPA attak, in theory it is neessary and suÆient to

ensure that every elementary omputation involving the seret information and performed

by a logi gate is randomized. More preisely, the seure omputation ondition to be satis�ed

is that the output (binary) value of eah logi gate in the proteted hardware design should

have the same probability distribution for eah �xed value of the seret key and input

information. In other words, the output value of eah logi gate should be statistially
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independent of the seret key and input information. The randomness is provided by purely

random masks, whih should ideally be refreshed for every new input data to be proessed

by the ryptographi funtion onsidered. As far as resistane to DPA is onerned, random

masking bits an be used repeatedly, but their number should be large enough in order to

prevent more sophistiated power analysis attaks targeting the outputs of several logi gates

jointly.

With an objetive to mask lookup table hardware implementations of Boolean funtions,

a tehnique based on masking the MUX logi gate is proposed in [17℄, without de�ning the

seure omputation ondition expliitly. It essentially onsists in replaing eah MUX gate

in the original lookup table by a masked MUX gate whih onsists of three MUX gates. The

gate ount is thus tripled, while the delay is doubled. This tehnique an diretly be used for

masking the blok iphers by masking the lookup tables of S-boxes implemented in ROM,

but generally requires a large gate ount.

A general onept of random masking on the logi gate level and several tehniques for

masking the AND and OR logi gates are proposed in [15℄ and [10℄, inluding the seure

omputation ondition, whih is also expliitly formulated in [9℄. Some other tehniques for

random masking of logi gates are introdued in [7℄, but are awed as the seure omputation

ondition is not respeted. The tehniques for masking the S-box of AES reently desribed

in [23℄, [20℄, and [2℄ are all essentially based on the tehnique [15℄, presented in [10℄, for

random masking of the logi AND operation.

1.2 Main Objetives and Results

The objetive of this paper is to introdue new tehniques for random masking of rypto-

graphi algorithms in hardware, on the logi gate level, where the tehniques should satisfy

the seure omputation ondition desribed above. A seure omputation on the word level

in software generally does not imply a seure omputation on the bit level in hardware. In

pratie, the seure omputation ondition on the bit level is neessary for providing re-
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sistane to DPA attaks and is also likely to be suÆient, although individual logi gates

do not ahieve their �nal (random) values simultaneously and in the transition stage their

output values may vary (randomly) and may depend on their previous inputs. This e�et is

also present in software implementations and, in fat, generally makes the power analysis of

non-masked implementations more diÆult, espeially so for logi iruit implementations

in hardware.

The tehniques proposed an be lassi�ed into Boolean masking tehniques, whih apply

to arbitrary algorithms, and tehniques for the onversion between Boolean and arithmeti

masking, whih apply to algorithms ontaining both Boolean and integer arithmeti oper-

ations. They are all bit based and hene suitable for diret hardware implementation by

logi iruits. Boolean masking tehniques an also be implemented on the word level, in

software.

Aording to [10℄, two tehniques for Boolean (XOR) masking of the logi AND and OR

operations, namely, the XOR-based and MUX-based tehnique are pointed out. It is shown

that both of them an be seurely implemented by using NAND gates only and that the

latter is muh more eÆient than the former. An arbitrary logi iruit, omposed of XOR,

NOT, AND, and OR gates, an thus be masked by using the tehniques for masking the

AND and OR gates, where the masked iruit an be obtained by replaing the AND and

OR gates by masked AND and OR gates, respetively, by keeping the XOR and NOT gates

intat, and by distributing or adapting the masking bits appropriately. The distribution of

masking bits an be automatized, but this is a separate topi, not treated in this paper.

An important example is a logi iruit [24℄ for the S-box of AES [6℄, whih onsists

of AND, XOR, and NOT gates, and the MUX-based tehnique thus yields a muh more

eÆient solution than the XOR-based tehnique [23℄. Another important example is the

bitwise logi AND operation in (keyed) SHA-1. The XOR-based tehnique is also appliable

for masking the multipliation operation in any ring struture suh as a �nite �eld or a ring

of integeres modulo a positive integer. For example, this an be used in IDEA and RC6.
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If a round of an iterative ryptographi algorithm ontains both Boolean and integer

arithmeti operations, like in (keyed) SHA-1, IDEA, and RC6, then mask onversion teh-

niques are useful for providing the protetion of hardware implementations against power

analysis and other side-hannel attaks. The tehniques proposed for the seure onversions

from arithmeti to Boolean random masking and vie versa, for both mask addition and

mask subtration, do not require additional random masking bits and are both equally eÆ-

ient in terms of the gate ount of the orresponding logi iruits. The gate ount is roughly

the same as that for one addition modulo 2

n

of two n-bit words, while the depth (i.e., the

delay) of the logi iruit for the onversion from arithmeti to Boolean masking is about one

half of the depth of the logi iruit for the onversion from Boolean to arithmeti masking

and is roughly the same as that for one addition modulo 2

n

of two n-bit words.

The tehnique for the onversion from Boolean to arithmeti masking an also be used

for the seure hardware omputation of the arithmeti masking operation x + r, where x is

a seret n-bit word and r is an n-bit purely random mask. Note that if the masked value

is omputed diretly in terms of the arry bits, then the omputation is not seure on the

logi gate level as the arry bits are dependent on x and are thus not fully randomized.

The mask onversion tehniques are espeially e�etive if a round of an iterative ryp-

tographi algorithm ontains a number of integer arithmeti operations in a row, whih is

the ase in (keyed) SHA-1, IDEA, and RC6. Alternatively, for hardware implementations,

instead of using the mask onversion tehniques, one an mask the integer arithmeti opera-

tions diretly by using the proposed tehniques for masking the AND logi gate. Therefore, a

logi iruit for masking the addition of two integers modulo 2

n

is also provided, and an be

of separate interest. It thus turns out that this approah is e�etive if a small number (e.g.,

1 to 3) of additions modulo 2

n

are used in a row. For (keyed) SHA-1, where this number is

equal to 4, the alternative approah is hene less e�etive.

The rest of the paper is organized as follows. Tehniques for Boolean masking of the logi

AND operation and their appliations are treated in Setion 2. Tehniques for the onversions
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from Boolean to arithmeti masking and vie versa, for mask addition, are introdued in

Setions 3 and 4, respetively. Mask onversion tehniques for mask subtration are presented

Setion 5. In Setion 6, a tehnique for Boolean masking of the addition of two integers is

desribed and usefulness of mask onversion tehniques is then demonstrated. Conlusions

are given in Setion 7.

2 Masking Logi AND Operation

For the Boolean operations, we adopted the usual notation: � for XOR or addition modulo

2, ^ for AND, _ for OR, and � for NOT, whereas for the MUX logi operation of two

data inputs x and y and a ontrol input  we use MUX(x; y; ) = � ^ x _  ^ y. Note that

x� y = �x^ y _ x^ �y = MUX(y; �y; x). As usual, ^ has the priority over � and _. The same

notation is used when the operations are applied bitwise, on the word level.

A masked AND logi gate, with respet to the Boolean (XOR) mask, operating on masked

inputs x

0

= x� r

x

and y

0

= y� r

y

and produing the masked output z

0

= x ^ y� r

z

, should

implement the masked AND operation

z

0

= x

0

^

0

y

0

= (x

0

� r

x

) ^ (y

0

� r

y

)� r

z

(1)

by a logi iruit in whih the outputs of all logi gates are omputed seurely. As explained in

Setion 1, the seure omputation ondition means that the output value of every elementary

bit-based omputation in the algorithm, that is, the output of every elementary logi gate in

the orresponding logi iruit, should have the same probability distribution for eah �xed

value of the data input, provided that the involved masking bits are uniformly distributed

and mutually statistially independent.

Aording to [10℄, two solutions to this problem are pointed out. One solution [15℄

onsists in applying the distributive property to (1) and in grouping the terms appropriately

to obtain

z

0

= z � r

z

= (((r

z

� (r

x

^ r

y

))� (r

x

^ y

0

))� (r

y

^ x

0

))� (x

0

^ y

0

) (2)
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in whih all the omputations are seure if r

x

, r

y

, and r

z

are uniformly distributed and

mutually statistially independent, see Fig. 1. The orresponding logi iruit onsists of 4

AND and 4 XOR gates. The omputations are seure as for eah �xed value of (x; y), the

two inputs to eah AND gate are uniformly distributed and mutually statistially indepen-

dent, whereas, due to r

z

, one of the inputs to eah XOR gate is uniformly distributed and

statistially independent of the other input. Other similar expressions an also be derived.

�

? ?

?

(x ^ y)� r

z

�

? ?

�

? ?

�

? ?

r

z

^

? ?

r

x

r

y

^

? ?

y

0

r

x

^

? ?

r

y
x

0

^

? ?

x

0

y

0

Figure 1: An XOR-based iruit for masking the AND gate.

The other solution uses a tehnique [17℄ for masking a MUX logi gate. The masked

MUX gate is a asade onnetion of the SWITCH gate and the MUX gate, the SWITCH

gate being ontrolled by the ontrol masking bit and the MUX gate being ontrolled by the

masked ontrol bit, where SWITCH(x; y; ) = (MUX(x; y; );MUX(y; x; )). It is assumed

that the two input masking bits and the output masking bit are all the same and that the

ontrol masking bit is statistially independent of them. A diret appliation of this tehnique

to the lookup table implementation of the AND funtion requires four MUX gates, one of

whih is an XOR gate, in order to implement the masked AND gate.

However, if we allow for the output masking bit to be the same as one of the two input
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masking bits, then only three MUX gates suÆe to ompute seurely the masked AND gate,

and the number of masking bits needed is redued from three to two. The new tehnique

onsists in using the expression z = x ^ y = MUX(0; x; y) for the AND funtion and in

masking the MUX funtion. We thus obtain

z

0

= z � r

x

= MUX(MUX(r

x

; x

0

; r

y

);MUX(x

0

; r

x

; r

y

); y

0

)

= �y

0

^ (�r

y

^ r

x

_ r

y

^ x

0

) _ y

0

^ (r

y

^ r

x

_ �r

y

^ x

0

); (3)

see Figs. 2 and 3. The logi iruit shown in Fig. 3 onsists of 6 AND, 3 OR, and 2 NOT

gates. All the involved omputations are seure.

More preisely, for eah �xed value of (x; y), the output bit of eah MUX gate in Fig.

2 (i.e., the output bit of eah OR gate in Fig. 3) is uniformly distributed as eah of its

two data input bits is uniformly distributed and statistially independent of the ontrol bit,

whereas the output bit of eah AND gate in Fig. 3 has the probability 1/4 of being equal

to 1 as its two input bits are uniformly distributed and mutually statistially independent.

Figure 2: A MUX-based iruit for masking the AND gate.
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Figure 3: An (AND, OR, NOT)-based iruit for masking the AND gate.

Other equivalent iruits an be obtained similarly. Logi iruits for masking the OR

gate an be obtained, for example, by applying the duality priniple to (2) and (3), respe-

tively. When a number of 2-input AND gates are onneted together, assuming that the

input y

0

is used for the onnetion, the depth per masked AND gate is 1 AND and 2 XOR

gates for the �rst solution and 1 AND, 1 OR, and 1 NOT gate for the seond solution.

Another solution an be derived from the MUX-based iruit for masking the AND

gate, by implementing the MUX gates in terms of NAND gates. This solution is pratially

important sine NAND gates are suitable for implementation in CMOS transistor tehnology.

It is known that it takes 4 CMOS transistors to implement one NAND or one NOR gate.

One MUX gate an be implemented by a iruit omposed of 4 NAND gates, whose depth

is 2 NAND gates with respet to two data inputs and 3 NAND gates with respet to the

ontrol input, assuming, for simpliity, that a NOT gate is implemented as a NAND gate

(in fat, it takes only two CMOS transistors to implement a NOT gate).

Similarly, yet another solution an be derived from the XOR-based iruit for masking

the AND gate, by implementing the XOR and AND gates in terms of NAND gates. It is

known that one XOR gate an be implemented by a iruit omposed of 4 NAND gates,

whose depth is 3 NAND gates with respet to both inputs, whereas one AND gate is, for
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simpliity, assumed to be implemented by two NAND gates.

It follows that all the omputations remain seure on the NAND logi gate level, in both

the iruits. In terms of NAND gates, the MUX-based solution is superior to the XOR-based

solution. Namely, the gate ounts are then 12 versus 24 NAND gates, and the depths are

4 versus 12 NAND gates, respetively. Here, we did not ount the delays of 1 NAND gate

for omputing �r

y

and 2 NAND gates for omputing r

x

^ r

y

, respetively, as these terms are

data-independent and an hene be preomputed. When a number of 2-input AND gates

are onneted together, then the depths per masked gate redue to 3 NAND gates and 8

NAND gates, respetively.

However, for the word operations, suh as the bitwise AND operation in SHA-1 imple-

mented in software, the XOR-based solution is better with regard to ommon instrution

sets, as (2) and (3) an be implemented in 8 and 11 proessor yles, respetively. The

solution based on (2) is also appliable for masking the multipliation in an arbitrary �eld

or ring struture, e.g., for modular integer multipliation in IDEA or RC6.

The proposed tehniques an be used for masking an arbitrary logi iruit, omposed

of XOR, AND, OR, and NOT gates, where only AND and OR gates have to be e�etively

masked, and the masking bits have to be distributed or adapted appropriately. In partiular,

they an be applied for masking the logi iruit [24℄ for the S-box of AES, whih onsists

of XOR, NOT, and AND gates. The iruit is obtained by using the omposite �eld repre-

sentation of GF(2

8

) based on quadrati extensions, to represent one inversion in GF(2

8

) in

terms of one inversion and a number of additions and multipliations in GF(2

4

) and, fur-

ther, by reduing the operations in GF(2

4

) to additions and multipliatons in GF(2). Suh

a solution using the XOR-based masking tehnique is desribed in [23℄, without referring

to the seure omputation ondition. Aordingly, the solution using the novel MUX-based

masking tehnique is muh more eÆient, as the the number of NAND gates per masked

AND gate is halved and the depth is redued about three times!

The solutions from [20℄ and [2℄ for masking the S-box of AES in hardware are essentially

13



the same, whereas the former is also implemented [21℄, but does not invoke the seure

omputation ondition. They also use the omposite �eld representation of GF(2

8

) based on

quadrati extensions and are in spirit similar to the solution from [23℄. The only essential

di�erene is that the resulting multipliations in GF(2

4

) and/or GF(2

2

) are masked diretly

by using (2) over the respetive sub�elds. More preisely, in [2℄, an equivalent form of (2) is

used instead.

3 Conversion from Boolean to Arithmeti Masking

In this setion, an algorithm for the onversion from Boolean to arithmeti masking, with

respet to the mask addition, is proposed. In mathematial terms, given an n-bit data word

x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word r = r

n�1

r

n�2

� � � r

1

r

0

, the

problem onsidered is to ompute seurely x + r from x � r, where the addition is modulo

2

n

.

Let x

0

= x

0

n�1

x

0

n�2

� � �x

0

1

x

0

0

= x � r and x

00

= x

00

n�1

x

00

n�2

� � �x

00

1

x

00

0

= x + r, where the least

signi�ant bit has index 0. Then aording to the well-known shool method for integer

addition with arry, we have

x

00

i

= x

i

� r

i

� 

i�1

= x

0

i

� 

i�1

; 0 � i � n� 1 (4)

where 

�1

= 0 and



i�1

= x

i�1

^ r

i�1

_ 

i�2

^ (x

i�1

� r

i�1

) = �x

0

i�1

^ r

i�1

_ 

i�2

^ x

0

i�1

; 1 � i � n� 1: (5)

Further, in (5), if i = 1, then we substitute 

i�2

= 0, and if 2 � i � n� 1, then, due to

(4), we substitute 

i�2

= x

0

i�1

� x

00

i�1

. Thus we obtain 

0

= �x

0

0

^ r

0

and



i�1

= �x

0

i�1

^ r

i�1

_ x

0

i�1

^ �x

00

i�1

; 2 � i � n� 1: (6)

Now, by substituting 

i�1

in (4), after an additional algebrai manipulation, we �nally get

the reursive equations

x

00

0

= x

0

0

(7)

14



x

00

1

= �x

0

0

^ (�x

0

1

^ r

0

_ x

0

1

^ �r

0

) _ x

0

0

^ x

0

1

(8)

x

00

i

= �x

0

i�1

^ (�x

0

i

^ r

i�1

_ x

0

i

^ �r

i�1

) _ x

0

i�1

^ (�x

0

i

^ �x

00

i�1

_ x

0

i

^ x

00

i�1

); 2 � i � n� 1:

(9)

In equations (8) and (9), one an reognize the underlying strutures of MUX and XOR

gates. Aordingly, they an also be put in a more insightful form

x

00

1

= MUX(x

0

1

� r

0

; x

0

1

; x

0

0

) (10)

x

00

i

= MUX(x

0

i

� r

i�1

; x

0

i

� �x

00

i�1

; x

0

i�1

); 2 � i � n� 1: (11)

Equations (8) and (9) an be implemented by a logi iruit omposed of elementary

bloks shown in Fig. 4, for 2 � i � n � 1, whereas for i = 1, the blok is simpli�ed by

formally setting x

00

0

= 1. The involved logi gates are AND, OR, and NOT gates, whih are

all elementary, and NOT gates are not shown for simpliity.

Figure 4: A blok for onversion from Boolean to added arithmeti mask.

The elementary blok for the logi iruit omposed of MUX and XOR gates aording
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to (10) and (11) is shown in Fig. 5. Despite some similarity with the logi iruit from Fig.

2, the logi iruit from Fig. 5 is essentially di�erent.

Figure 5: A MUX-based blok for onversion from Boolean to added arithmeti mask.

All the omputations in (10) and (11) as well as in (8) and (9) are seure, that is, the

output value of eah logi gate in the orresponding logi iruit has the same probability

distribution for every �xed value of the input x. Unlike the previously proposed tehniques,

it is interesting that no additional masking bits are required. The desired randomization is

provided by x

0

i

, that is, by the underlying masking bit r

i

, whih is statistially independent

of r

i�1

, x

00

i�1

, and x

0

i�1

.

More preisely, assume that the input x has an arbitrary �xed value. Then the output

bit of eah XOR gate in Fig. 5 (i.e., the output bit of eah orresponding OR gate in Fig.

4) is uniformly distributed as its two input bits are uniformly distributed and mutually

statistially independent. The output bit of the MUX gate in Fig. 5 (i.e., the output bit of

the orresponding OR gate in Fig. 4) is uniformly distributed as eah of its two data input

bits is uniformly distributed and statistially independent of the ontrol bit, whereas the

output bit of eah AND gate in Fig. 4 has the probability 1/4 of being equal to 1 as its two

input bits are uniformly distributed and mutually statistially independent.
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The omputations remain seure even when MUX, XOR, and NOT gates from Fig. 5

are implemented in terms of NAND gates. In fat, the XOR gate with one input negated

(XNOR) an also be seurely implemented by using 3 NAND gates and 1 NOR gate.

The gate ount of all the iruits is equivalent to 3n � 4 MUX gates and the depth is

about 2n� 2 MUX gates. For omparison, note that the shool method for integer addition

with arry has an equivalent gate ount of about 3n � 2 MUX gates and depth of about

n MUX gates. The proposed tehnique an also be adapted to other methods for integer

addition.

4 Conversion from Arithmeti to Boolean Masking

In this setion, an algorithm for the onversion from arithmeti to Boolean masking, with

respet to the mask addition, is proposed. In mathematial terms, given an n-bit data word

x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word r = r

n�1

r

n�2

� � � r

1

r

0

, the

problem onsidered is to ompute seurely x � r from x + r, where the addition is modulo

2

n

. We use the same notation as in Setion 3.

We start from the equations (10) and (11) developed in Setion 3. The main point is

that (11) an be inverted by swithing x

0

i

and x

00

i

and keeping everything else the same, and

the same is true for (10) and x

0

1

and x

00

1

. Aordingly, we thus obtain

x

0

1

= MUX(x

00

1

� r

0

; x

00

1

; x

0

0

) (12)

x

0

i

= MUX(x

00

i

� r

i�1

; x

00

i

� �x

00

i�1

; x

0

i�1

); 2 � i � n� 1: (13)

In terms of AND, OR, and NOT gates, we equivalently have

x

0

0

= x

00

0

(14)

x

0

1

= �x

0

0

^ (�x

00

1

^ r

0

_ x

00

1

^ �r

0

) _ x

0

0

^ x

00

1

(15)

x

0

i

= �x

0

i�1

^ (�x

00

i

^ r

i�1

_ x

00

i

^ �r

i�1

) _ x

0

i�1

^ (�x

00

i

^ �x

00

i�1

_ x

00

i

^ x

00

i�1

); 2 � i � n� 1:

(16)
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Equations (15) and (16) an be implemented by a logi iruit omposed of elementary

bloks shown in Fig. 6, for 2 � i � n � 1, whereas for i = 1, the blok is simpli�ed by

formally setting x

00

0

= 1. The elementary blok for the logi iruit omposed of MUX and

XOR gates aording to (12) and (13) is shown in Fig. 7.

Figure 6: A blok for onversion from added arithmeti to Boolean mask.

All the omputations in (12) and (13) as well as in (15) and (16) are seure, where the

desired randomization is provided by x

00

i

, that is, by the underlying masking bit r

i

, whih is

statistially independent of r

i�1

, x

00

i�1

, and x

0

i�1

. As in Setion 3, no additional masking bits

are required. As in Fig. 5, the omputations remain seure if MUX, XOR, and NOT gates

from Fig. 7 are implemented in terms of NAND and NOR gates.

The gate ount of all the iruits is equivalent to 3n � 4 MUX gates and the depth is

now redued to about n MUX gates. The depth redution is due to the fat that the values

x

00

i�1

are already available.
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Figure 7: A MUX-based blok for onversion from added arithmeti to Boolean mask.

5 Conversions for Mask Subtration

In this setion, the mask onversion problems in whih the mask is being subtrated from

instead of added to data are onsidered. The two proposed algorithms are for the onversion

from Boolean to arithmeti masking and vie versa, respetively. In mathematial terms,

given an n-bit data word x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word

r = r

n�1

r

n�2

� � � r

1

r

0

, the problems onsidered are to ompute seurely x

00

= x � r from

x

0

= x � r and vie versa, where the subtration is modulo 2

n

. The starting point is the

well-known expression for the additive inverse modulo 2

n

, namely, �r � �r + 1 (mod 2

n

).

Aordingly, by substituting �r for r and by setting the initial arry as 

�1

= 1, we obtain

the following reursive equations for the onversion from Boolean to arithmeti masking

x

00

0

= x

0

0

(17)

x

00

1

= x

0

0

^ (�x

0

1

^ r

0

_ x

0

1

^ �r

0

) _ �x

0

0

^ x

0

1

(18)

x

00

i

= x

0

i�1

^ (�x

0

i

^ r

i�1

_ x

0

i

^ �r

i�1

) _ �x

0

i�1

^ (�x

0

i

^ x

00

i�1

_ x

0

i

^ �x

00

i�1

); 2 � i � n� 1

(19)
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and, in terms of MUX and XOR operations,

x

00

1

= MUX(x

0

1

� r

0

; x

0

1

; �x

0

0

) (20)

x

00

i

= MUX(x

0

i

� r

i�1

; x

0

i

� x

00

i�1

; �x

0

i�1

); 2 � i � n� 1: (21)

Figure 8: A MUX-based blok for onversion from Boolean to subtrated arithmeti mask.

From these equations, similarly as in Setion 4, we obtain the following reursive equa-

tions for the onversion from arithmeti to Boolean masking

x

0

0

= x

00

0

(22)

x

0

1

= x

0

0

^ (�x

00

1

^ r

0

_ x

00

1

^ �r

0

) _ �x

0

0

^ x

00

1

(23)

x

0

i

= x

0

i�1

^ (�x

00

i

^ r

i�1

_ x

00

i

^ �r

i�1

) _ �x

0

i�1

^ (�x

00

i

^ x

00

i�1

_ x

00

i

^ �x

00

i�1

); 2 � i � n� 1

(24)

and, in terms of MUX and XOR operations,

x

0

1

= MUX(x

00

1

� r

0

; x

00

1

; �x

0

0

) (25)

x

0

i

= MUX(x

00

i

� r

i�1

; x

00

i

� x

00

i�1

; �x

0

i�1

); 2 � i � n� 1: (26)
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For both onversions, the resulting logi iruits are analogous to those de�ned for the

mask addition and have the same gate ount and depth, respetively. The orresponding

elementary bloks in terms of MUX and XOR gates are shown in Figs. 8 and 9, respetively.

Figure 9: A MUX-based blok for onversion from subtrated arithmeti to Boolean mask.

All the involved elementary omputations are seure for essentially the same reasons as

for the mask addition. When MUX and XOR gates are implemented in terms of NAND

gates, all the omputations remain seure. Consequently, the gate ount is equivalent to

3n�4 MUX gates for both onversions, whereas the depth is about 2n�2 and n MUX gates

for the two onversions, respetively.

6 Masking Integer Addition and Comparison

Let x = x

n�1

x

n�2

� � � x

1

x

0

and y = y

n�1

y

n�2

� � � y

1

y

0

be two given n-bit data words, and let

r

x

= r

x;n�1

r

x;n�2

� � � r

x;1

r

x;0

and r

y

= r

y;n�1

r

y;n�2

� � � r

y;1

r

y;0

be the orresponding statistially

independent purely random masking words to be used as Boolean masks. Let z = x + y,

where the addition is modulo 2

n

, and let r

z

be the output Boolean mask, whih an be

related to r

x

and r

y

or statistially independent of them. The problem onsidered is to
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ompute seurely (x + y) � r

z

from x � r

x

and y � r

y

. Let x

0

= x � r

x

, y

0

= y � r

y

, and

z

0

= z � r

z

.

Aording to the well-known shool method for integer addition with arry, we have

z

i

= x

i

� y

i

� 

i�1

; 0 � i � n� 1 (27)

where 

�1

= 0 and



i�1

= x

i�1

^ y

i�1

� 

i�2

^ (x

i�1

� y

i�1

); 1 � i � n� 1: (28)

Here, in omparison with (5), _ is replaed by � as it is easier to mask. Equations (27) and

(28) essentially de�ne the one-bit full adder.

In light of Setion 2, the solution onsists in replaing the AND operation in (28) at two

plaes by the masked AND operation by using (3), and in distributing the masking bits so

that the relation between the output and input masks is relatively simple and that the depth

of the masked iruit is as small as possible. As argued in Setion 2, the solution using (3) is

muh more eÆient than that using (2), whih is proposed in [15℄. Let 

0

i

denote the masked

arry bit 

i

where the masking bit is to be determined, 0 � i � n� 2. We thus obtain

z

0

i

= x

0

i

� y

0

i

� 

0

i�1

; 0 � i � n� 1 (29)

where 

0

�1

= 0,



0

0

= MUX(MUX(r

y;0

; y

0

0

; r

x;0

);MUX(y

0

0

; r

y;0

; r

x;0

); x

0

0

); (30)

and for 2 � i � n� 1



0

i�1

= MUX(MUX(r

x;i�1

; x

0

i�1

; r

y;i�1

);MUX(x

0

i�1

; r

x;i�1

; r

y;i�1

); y

0

i�1

)

� MUX(MUX(r

x;i�1

� r

y;i�1

; x

0

i�1

� y

0

i�1

; r

y;i�2

);

MUX(x

0

i�1

� y

0

i�1

; r

x;i�1

� r

y;i�1

; r

y;i�2

); 

0

i�2

): (31)

To minimize the depth, 

0

i�2

is used as the ontrol bit of the MUX gate for masking the

right-hand AND operation in (28), so that the orresponding output masking bit is equal to

22



r

x;i�1

� r

y;i�1

. As the ontrol bit of the MUX gate for masking the left-hand AND operation

is hosen to be y

0

i�1

in (31), the output masking bit for the masked left-hand AND gate

is equal to r

x;i�1

. As a onsequene, the masking bit for 

0

i�1

is then equal to r

y;i�1

, for

2 � i � n � 2. For i = 1, the right-hand AND operation does not e�etively exist in (28),

the ontrol bit of the MUX gate for masking the left-hand AND operation is hosen to be

x

0

i�1

in (30), and the masking bit for 

0

i�1

is then also r

y;i�1

. The output masking bits are

then purely random and are given as r

z;i

= r

x;i

� r

y;i

� r

y;i�1

, 0 � i � n� 1, where formally

r

y;�1

= 0. If desired, the output mask an be adapted to r

x

� r

y

by using additional n � 1

XOR operations. All the involved omputations are seure.

Altogether, the gate ount required is about 10n�14 MUX gates and the depth is about

2n�1 MUX gates. In omparison with integer addition, the gate ount is slightly more than

tripled, while the depth is doubled. The proposed tehnique an also be applied to other

methods for integer addition, for example, to the so-alled Wallae trees, where the one-bit

full adders are arranged in a tree to redue the total depth.

We now ompare the two masking approahes, that is, the mask onversion with integer

addition and the masked integer addition without the mask onversion, taking (keyed) SHA-

1 for example. In eah iteration of the ompression funtion of SHA-1, one has to ompute

4 integer additions. One of the 5 operands that is a onstant requires the masked integer

addition, but not the onversion from Boolean to arithmeti masking. Aordingly, the gate

ounts of the basi implementations of the two approahes are then equivalent to about

9 versus 13 integer additions, respetively, and the depths are both equivalent to about

6 integer additions. Here, we did not ount operations involving only the masking bits

as they are data-independent and an hene be preomputed. In partiular, some masks

an be adapted to be the same in every iteration of SHA-1. This demonstrates that the

mask onversion tehniques are also important for hardware implementations. In general,

the seond approah an be more e�etive if the number of onseutive integer additions is

relatively small.
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7 Conlusions

It is shown that arbitrary logi iruits an be randomly masked, in a way theoretially

seure against the �rst-order DPA on the logi gate level, by using a new algorithm for

Boolean masking of the logi AND operation in terms of NAND gates. The new algorithm

is onsiderably more eÆient than the previously known algorithm, reently applied to AES.

In partiular, the gate ount and the delay of the orresponding logi iruit are redued two

and three times, respetively. An algorithm for Boolean masking of the integer addition is

also derived.

A new method for the seure onversion between Boolean and arithmeti random masking

is introdued. The developed mask onversion algorithms do not require auxiliary random

masking bits and are signi�antly more eÆient than the previously known algorithms when

applied in hardware, espeially for the onversion from arithmeti to Boolean masking.

The new random masking algorithms are pratially important for proteting hardware

implementations of ryptographi algorithms against power analysis and other side-hannel

attaks. They an also be used in the hardware design of arithmeti and logi units for

seure proessors.
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