
Te
hniques for Random Masking in Hardware

Jovan Dj. Goli�


�

Abstra
t

A new te
hnique for Boolean random masking of the logi
 AND operation in terms

of NAND logi
 gates is presented and its potential for masking arbitrary 
ryptographi


fun
tions is pointed out. The new te
hnique is mu
h more eÆ
ient than a previously

known te
hnique, re
ently applied to AES. It is also applied for masking the integer

addition. In addition, new te
hniques for the 
onversions from Boolean to arithmeti


random masking and vi
e versa are developed. They are hardware oriented and do

not require additional random bits. Unlike the previous, software-oriented te
hniques

showing a substantial di�eren
e in the 
omplexity of the two 
onversions, they have a


omparable 
omplexity being about the same as that of one integer addition only. All

the te
hniques proposed are in theory se
ure against the �rst-order di�erential power

analysis on the logi
 gate level. They 
an be applied in hardware implementations of

various 
ryptographi
 fun
tions, in
luding AES, (keyed) SHA-1, IDEA, and RC6.

Key words. Digital 
ir
uits, logi
 
ir
uits, Boolean fun
tions, 
ryptography, arith-

meti
 
ir
uits, random masking, side-
hannel atta
ks, power analysis

1 Introdu
tion

Cryptographi
 fun
tions dealing with se
ret keys su
h as, for example, blo
k 
iphers or mes-

sage authenti
ation 
odes 
an be implemented in software or hardware on mi
roele
troni


data-pro
essing devi
es su
h as integrated 
ir
uit 
hip (smart) 
ards. During the exe
ution

of a 
ryptographi
 algorithm, sensitive data depending on the se
ret key is being pro
essed,

being sent over the internal links, and being stored in the internal memories of the devi
e.

It is known that even for tamper-resistant 
hips, where the underlying integrated 
ir
uit is

prote
ted by spe
ial physi
al measures, this sensitive information may leak out through vari-

ous side 
hannels, su
h as measurements of timing, power 
onsumption, and ele
tromagneti


�

The author is with A

ess Network and Terminals System Design, Tele
om Italia Lab, Tele
om Italia,

Via G. Reiss Romoli 274, 10148 Turin, Italy, Fax: +39 011 228 7140, Phone: +39 011 228 5572, Email:

jovan.goli
�tilab.
om.

1



radiation as well as monitoring of signals by mi
roprobing. The obje
tive of side-
hannel at-

ta
ks is to re
over the se
ret key by using the leaked information. Power analysis atta
ks [13℄

are powerful as they do not require expensive resour
es and as most implementations without


ountermeasures in
orporated are vulnerable to su
h atta
ks. The (�rst-order) di�erential

power analysis (DPA) atta
ks are parti
ularly interesting as they use a simple statisti
al

te
hnique that is almost independent of the implementation of the 
ryptographi
 algorithm.

The basis of power analysis atta
ks are elementary 
omputations within the 
rypto-

graphi
 devi
e that depend on a part of the se
ret key and on the known input and/or

output information. If the power 
onsumption 
orresponding to these elementary 
ompu-

tations depends on the values being 
omputed, then the power 
onsumption 
urves 
ontain

information about the se
ret key whi
h may be feasible to extra
t by statisti
al te
hniques.

In parti
ular, in DPA atta
ks, one guesses the involved part of the se
ret key, 
omputes

the values of a 
hosen intermediate variable, 
lassi�es the power 
urves a

ording to these

values, and then 
omputes and 
ompares the average values of the 
lassi�ed 
urves. Both

software and hardware implementations are potentially vulnerable.

1.1 Previous Work on Random Masking

A general method for 
ountera
ting power analysis atta
ks on the algorithmi
 level is to

randomize the 
omputations depending on the se
ret key by masking the original data with

random masks and by modifying the 
omputations a

ordingly. This method in fa
t origi-

nated as data splitting [3℄, [11℄, where the intermediate data is split into a number of shares

and the 
omputation is then performed on the shares. Masking [16℄ is essentially similar

to data splitting into two shares [11℄, with a di�eren
e that one does not have to perform

dupli
ate 
omputations on the resulting shares. The masking operation 
ombining the data

with a random mask is typi
ally adapted to the mathemati
al operations used in the 
ryp-

tographi
 algorithm [16℄, be
ause the required modi�
ations in the 
omputations are then

minimized. More pre
isely, assume that in some elementary 
omputation in the algorithm,

2



inputs x and y are 
ombined together into an output z by using a group operation Æ a

ord-

ing to xÆy = z. As using any group operation for masking is suÆ
ient to perfe
tly randomize

the data, assume that x and y are randomized by using the purely random (uniformly dis-

tributed) and mutually statisti
ally independent masks r

x

and r

y

through Æ, respe
tively.

Then the 
omputation does not have to be modi�ed, as (xÆ r

x

)Æ (y Æ r

y

) = z Æ (r

x

Æ r

y

). Note

that most random masking te
hniques proposed for publi
-key 
ryptosystems are essentially

of this type. Very frequently used group operations on n-bit words in 
ryptographi
 algo-

rithms are the bitwise XOR, denoted as �, and the integer addition and subtra
tion modulo

2

n

, whi
h are denoted just as + and �, respe
tively, if the module is 
lear from the 
ontext.

The 
orresponding random masking te
hniques are 
ommonly 
alled Boolean and arithmeti


masking, respe
tively.

If z = f(x; y), for an arbitrary fun
tion f , and if we want to obtain a masked output

z

0

= z Æ r

z

from masked inputs x

0

= x Æ r

x

and y

0

= y Æ r

y

, then the fun
tion f has to be

modi�ed into a new fun
tion f

0

determined by z

0

= f

0

(x

0

; y

0

; r

x

; r

y

; r

z

) = f(x

0

Ær

x

; y

0

Ær

y

)Ær

z

.

The problem is how to 
ompute f

0

se
urely, that is, in a way resistant to DPA. To this end,

f

0


an also depend on additional (dummy) random masking variables. The resistan
e to

DPA of a masked algorithm 
omputing f

0


an be 
ontrolled by a theoreti
al 
ondition that

ea
h variable in this algorithm should be statisti
ally independent of the (unmasked) input

information. This 
ondition is impli
itly rather than expli
itly respe
ted in previous works on

random masking in software, on the word level. In addition, for software implementations,

f

0

should be expressed in terms of word operations available on 
ommon pro
essors su
h

as logi
 and arithmeti
 operations. Consequently, in a masked 
ryptographi
 algorithm,

only the elementary 
omputations di�erent from the underlying group operation Æ have

to be modi�ed. The only known general te
hnique for doing this in software is based on

pre
omputed lookup tables stored in RAM. It 
onsists in pre
omputing a lookup table for

f

0

, given the values of r

x

; r

y

, and r

z

, and then in reading the values from this table a

ording

to the masked inputs x

0

and y

0

. If the bit size of the inputs is too large, then it may be

3



possible to apply the te
hnique to smaller input blo
ks.

For many 
ryptographi
 fun
tions, su
h as AES [6℄, the RAM spa
e required for masking

the nonlinear parts, that is, the S-boxes, may be impra
ti
al for 
onstrained mi
roele
troni


devi
es su
h as smart 
ards. As for the solutions not based on pre
omputed and stored

lookup tables, the multipli
ative masking te
hnique [1℄ for the AES S-boxes is shown to be

vulnerable to the zero-value based DPA in [8℄, whereas the embedded multipli
ative masking

te
hnique [8℄, whi
h avoids this problem, does not provide ideal se
urity.

In many algorithms, the bitwise XOR and the modular integer addition or subtra
tion,

along with other Boolean and integer operations, are 
ombined together for 
ryptographi


se
urity. The best-known examples are the widely used 
ryptographi
 hash fun
tion SHA-1

[18℄ and the blo
k 
iphers IDEA [14℄ and RC6 [22℄. Note that SHA-1 in
orporates a se
ret

key if it is used for message authenti
ation. In su
h algorithms, it is 
onvenient to use both

group operations for random masking. Therefore, there is a need to 
onvert between the

two 
orresponding masks in a se
ure way. Namely, given an n-bit data word x and an n-bit

purely random masking word r, the problem is to 
ompute se
urely x+r from x�r and vi
e

versa. Alternatively, another, related problem is treated in the literature as it is 
loser to

data splitting, namely, to 
ompute se
urely x�r from x�r and vi
e versa. The two problems

are here referred to as the mask addition and mask subtra
tion problems, respe
tively.

The �rst solution to the problem is proposed in [16℄, but in [4℄ both 
onversions are

shown to be potentially vulnerable to a more sophisti
ated power analysis atta
k, due to the

fa
t that the intermediate variables were not all fully randomized as binary words. Under a


ertain power 
onsumption 
ondition, this atta
k may be regarded as a sort of word-based

DPA atta
k. New solutions for both 
onversions are proposed in [12℄. They are essentially

word, that is, software oriented and a

ording to them it appears that the 
onversion from

arithmeti
 to Boolean masking is inherently mu
h more diÆ
ult than the 
onversion in

the opposite dire
tion. More pre
isely, the solution for the 
onversion from Boolean to

arithmeti
 masking requires 7 n-bit word operations and an auxiliary n-bit random masking

4



word, namely, 5 bitwise XOR operations and 2 subtra
tions modulo 2

n

. The solution for the


onversion from arithmeti
 to Boolean masking is mu
h less eÆ
ient and requires 5(n + 1)

n-bit word operations and an auxiliary n-bit random masking word. For 
omparison, note

that the dire
t 
onversion of the masks 
ould be a
hieved by only two n-bit word operations,

namely, one XOR and one addition or subtra
tion modulo 2

n

, but is not 
omputationally

se
ure.

Another software-oriented solution for the 
onversion from arithmeti
 to Boolean mask-

ing, whi
h requires pre
omputation and RAM storage of 
ertain lookup tables and some

auxiliary random masking bits, is proposed in [5℄ and further improved in [19℄. It is gen-

erally more eÆ
ient than the 
orresponding solution from [12℄, depending on the pro
essor

word size, but remains mu
h less eÆ
ient than the solution from [12℄ for the 
onversion in the

opposite dire
tion. Consequently, the known software-oriented mask 
onversion te
hniques

are ineÆ
ient to be implemented in hardware.

Note that apart from using the mask 
onversion algorithms, it is also ne
essary to mask

the nonlinear Boolean and integer operations that exist in a given 
ryptographi
 algorithm.

For example, in (keyed) SHA-1 it is ne
essary to mask the logi
 AND operation for 32-bit

words with respe
t to the Boolean (XOR) mask. Due to the data splitting paradigm, it is

tempting, but in
orre
t, to 
on
lude [5℄ that two word operations suÆ
e for a
hieving this.

To avoid using a number of pre
omputed and stored lookup tables, one has to mask the

bitwise logi
 AND operation dire
tly.

If a 
ryptographi
 algorithm is implemented in hardware, by a digital integrated 
ir
uit,

then to prevent the (�rst-order) DPA atta
k, in theory it is ne
essary and suÆ
ient to

ensure that every elementary 
omputation involving the se
ret information and performed

by a logi
 gate is randomized. More pre
isely, the se
ure 
omputation 
ondition to be satis�ed

is that the output (binary) value of ea
h logi
 gate in the prote
ted hardware design should

have the same probability distribution for ea
h �xed value of the se
ret key and input

information. In other words, the output value of ea
h logi
 gate should be statisti
ally

5



independent of the se
ret key and input information. The randomness is provided by purely

random masks, whi
h should ideally be refreshed for every new input data to be pro
essed

by the 
ryptographi
 fun
tion 
onsidered. As far as resistan
e to DPA is 
on
erned, random

masking bits 
an be used repeatedly, but their number should be large enough in order to

prevent more sophisti
ated power analysis atta
ks targeting the outputs of several logi
 gates

jointly.

With an obje
tive to mask lookup table hardware implementations of Boolean fun
tions,

a te
hnique based on masking the MUX logi
 gate is proposed in [17℄, without de�ning the

se
ure 
omputation 
ondition expli
itly. It essentially 
onsists in repla
ing ea
h MUX gate

in the original lookup table by a masked MUX gate whi
h 
onsists of three MUX gates. The

gate 
ount is thus tripled, while the delay is doubled. This te
hnique 
an dire
tly be used for

masking the blo
k 
iphers by masking the lookup tables of S-boxes implemented in ROM,

but generally requires a large gate 
ount.

A general 
on
ept of random masking on the logi
 gate level and several te
hniques for

masking the AND and OR logi
 gates are proposed in [15℄ and [10℄, in
luding the se
ure


omputation 
ondition, whi
h is also expli
itly formulated in [9℄. Some other te
hniques for

random masking of logi
 gates are introdu
ed in [7℄, but are 
awed as the se
ure 
omputation


ondition is not respe
ted. The te
hniques for masking the S-box of AES re
ently des
ribed

in [23℄, [20℄, and [2℄ are all essentially based on the te
hnique [15℄, presented in [10℄, for

random masking of the logi
 AND operation.

1.2 Main Obje
tives and Results

The obje
tive of this paper is to introdu
e new te
hniques for random masking of 
rypto-

graphi
 algorithms in hardware, on the logi
 gate level, where the te
hniques should satisfy

the se
ure 
omputation 
ondition des
ribed above. A se
ure 
omputation on the word level

in software generally does not imply a se
ure 
omputation on the bit level in hardware. In

pra
ti
e, the se
ure 
omputation 
ondition on the bit level is ne
essary for providing re-

6



sistan
e to DPA atta
ks and is also likely to be suÆ
ient, although individual logi
 gates

do not a
hieve their �nal (random) values simultaneously and in the transition stage their

output values may vary (randomly) and may depend on their previous inputs. This e�e
t is

also present in software implementations and, in fa
t, generally makes the power analysis of

non-masked implementations more diÆ
ult, espe
ially so for logi
 
ir
uit implementations

in hardware.

The te
hniques proposed 
an be 
lassi�ed into Boolean masking te
hniques, whi
h apply

to arbitrary algorithms, and te
hniques for the 
onversion between Boolean and arithmeti


masking, whi
h apply to algorithms 
ontaining both Boolean and integer arithmeti
 oper-

ations. They are all bit based and hen
e suitable for dire
t hardware implementation by

logi
 
ir
uits. Boolean masking te
hniques 
an also be implemented on the word level, in

software.

A

ording to [10℄, two te
hniques for Boolean (XOR) masking of the logi
 AND and OR

operations, namely, the XOR-based and MUX-based te
hnique are pointed out. It is shown

that both of them 
an be se
urely implemented by using NAND gates only and that the

latter is mu
h more eÆ
ient than the former. An arbitrary logi
 
ir
uit, 
omposed of XOR,

NOT, AND, and OR gates, 
an thus be masked by using the te
hniques for masking the

AND and OR gates, where the masked 
ir
uit 
an be obtained by repla
ing the AND and

OR gates by masked AND and OR gates, respe
tively, by keeping the XOR and NOT gates

inta
t, and by distributing or adapting the masking bits appropriately. The distribution of

masking bits 
an be automatized, but this is a separate topi
, not treated in this paper.

An important example is a logi
 
ir
uit [24℄ for the S-box of AES [6℄, whi
h 
onsists

of AND, XOR, and NOT gates, and the MUX-based te
hnique thus yields a mu
h more

eÆ
ient solution than the XOR-based te
hnique [23℄. Another important example is the

bitwise logi
 AND operation in (keyed) SHA-1. The XOR-based te
hnique is also appli
able

for masking the multipli
ation operation in any ring stru
ture su
h as a �nite �eld or a ring

of integeres modulo a positive integer. For example, this 
an be used in IDEA and RC6.

7



If a round of an iterative 
ryptographi
 algorithm 
ontains both Boolean and integer

arithmeti
 operations, like in (keyed) SHA-1, IDEA, and RC6, then mask 
onversion te
h-

niques are useful for providing the prote
tion of hardware implementations against power

analysis and other side-
hannel atta
ks. The te
hniques proposed for the se
ure 
onversions

from arithmeti
 to Boolean random masking and vi
e versa, for both mask addition and

mask subtra
tion, do not require additional random masking bits and are both equally eÆ-


ient in terms of the gate 
ount of the 
orresponding logi
 
ir
uits. The gate 
ount is roughly

the same as that for one addition modulo 2

n

of two n-bit words, while the depth (i.e., the

delay) of the logi
 
ir
uit for the 
onversion from arithmeti
 to Boolean masking is about one

half of the depth of the logi
 
ir
uit for the 
onversion from Boolean to arithmeti
 masking

and is roughly the same as that for one addition modulo 2

n

of two n-bit words.

The te
hnique for the 
onversion from Boolean to arithmeti
 masking 
an also be used

for the se
ure hardware 
omputation of the arithmeti
 masking operation x + r, where x is

a se
ret n-bit word and r is an n-bit purely random mask. Note that if the masked value

is 
omputed dire
tly in terms of the 
arry bits, then the 
omputation is not se
ure on the

logi
 gate level as the 
arry bits are dependent on x and are thus not fully randomized.

The mask 
onversion te
hniques are espe
ially e�e
tive if a round of an iterative 
ryp-

tographi
 algorithm 
ontains a number of integer arithmeti
 operations in a row, whi
h is

the 
ase in (keyed) SHA-1, IDEA, and RC6. Alternatively, for hardware implementations,

instead of using the mask 
onversion te
hniques, one 
an mask the integer arithmeti
 opera-

tions dire
tly by using the proposed te
hniques for masking the AND logi
 gate. Therefore, a

logi
 
ir
uit for masking the addition of two integers modulo 2

n

is also provided, and 
an be

of separate interest. It thus turns out that this approa
h is e�e
tive if a small number (e.g.,

1 to 3) of additions modulo 2

n

are used in a row. For (keyed) SHA-1, where this number is

equal to 4, the alternative approa
h is hen
e less e�e
tive.

The rest of the paper is organized as follows. Te
hniques for Boolean masking of the logi


AND operation and their appli
ations are treated in Se
tion 2. Te
hniques for the 
onversions

8



from Boolean to arithmeti
 masking and vi
e versa, for mask addition, are introdu
ed in

Se
tions 3 and 4, respe
tively. Mask 
onversion te
hniques for mask subtra
tion are presented

Se
tion 5. In Se
tion 6, a te
hnique for Boolean masking of the addition of two integers is

des
ribed and usefulness of mask 
onversion te
hniques is then demonstrated. Con
lusions

are given in Se
tion 7.

2 Masking Logi
 AND Operation

For the Boolean operations, we adopted the usual notation: � for XOR or addition modulo

2, ^ for AND, _ for OR, and � for NOT, whereas for the MUX logi
 operation of two

data inputs x and y and a 
ontrol input 
 we use MUX(x; y; 
) = �
 ^ x _ 
 ^ y. Note that

x� y = �x^ y _ x^ �y = MUX(y; �y; x). As usual, ^ has the priority over � and _. The same

notation is used when the operations are applied bitwise, on the word level.

A masked AND logi
 gate, with respe
t to the Boolean (XOR) mask, operating on masked

inputs x

0

= x� r

x

and y

0

= y� r

y

and produ
ing the masked output z

0

= x ^ y� r

z

, should

implement the masked AND operation

z

0

= x

0

^

0

y

0

= (x

0

� r

x

) ^ (y

0

� r

y

)� r

z

(1)

by a logi
 
ir
uit in whi
h the outputs of all logi
 gates are 
omputed se
urely. As explained in

Se
tion 1, the se
ure 
omputation 
ondition means that the output value of every elementary

bit-based 
omputation in the algorithm, that is, the output of every elementary logi
 gate in

the 
orresponding logi
 
ir
uit, should have the same probability distribution for ea
h �xed

value of the data input, provided that the involved masking bits are uniformly distributed

and mutually statisti
ally independent.

A

ording to [10℄, two solutions to this problem are pointed out. One solution [15℄


onsists in applying the distributive property to (1) and in grouping the terms appropriately

to obtain

z

0

= z � r

z

= (((r

z

� (r

x

^ r

y

))� (r

x

^ y

0

))� (r

y

^ x

0

))� (x

0

^ y

0

) (2)

9



in whi
h all the 
omputations are se
ure if r

x

, r

y

, and r

z

are uniformly distributed and

mutually statisti
ally independent, see Fig. 1. The 
orresponding logi
 
ir
uit 
onsists of 4

AND and 4 XOR gates. The 
omputations are se
ure as for ea
h �xed value of (x; y), the

two inputs to ea
h AND gate are uniformly distributed and mutually statisti
ally indepen-

dent, whereas, due to r

z

, one of the inputs to ea
h XOR gate is uniformly distributed and

statisti
ally independent of the other input. Other similar expressions 
an also be derived.

�

? ?

?

(x ^ y)� r

z

�

? ?

�

? ?

�

? ?

r

z

^

? ?

r

x

r

y

^

? ?

y

0

r

x

^

? ?

r

y
x

0

^

? ?

x

0

y

0

Figure 1: An XOR-based 
ir
uit for masking the AND gate.

The other solution uses a te
hnique [17℄ for masking a MUX logi
 gate. The masked

MUX gate is a 
as
ade 
onne
tion of the SWITCH gate and the MUX gate, the SWITCH

gate being 
ontrolled by the 
ontrol masking bit and the MUX gate being 
ontrolled by the

masked 
ontrol bit, where SWITCH(x; y; 
) = (MUX(x; y; 
);MUX(y; x; 
)). It is assumed

that the two input masking bits and the output masking bit are all the same and that the


ontrol masking bit is statisti
ally independent of them. A dire
t appli
ation of this te
hnique

to the lookup table implementation of the AND fun
tion requires four MUX gates, one of

whi
h is an XOR gate, in order to implement the masked AND gate.

However, if we allow for the output masking bit to be the same as one of the two input

10



masking bits, then only three MUX gates suÆ
e to 
ompute se
urely the masked AND gate,

and the number of masking bits needed is redu
ed from three to two. The new te
hnique


onsists in using the expression z = x ^ y = MUX(0; x; y) for the AND fun
tion and in

masking the MUX fun
tion. We thus obtain

z

0

= z � r

x

= MUX(MUX(r

x

; x

0

; r

y

);MUX(x

0

; r

x

; r

y

); y

0

)

= �y

0

^ (�r

y

^ r

x

_ r

y

^ x

0

) _ y

0

^ (r

y

^ r

x

_ �r

y

^ x

0

); (3)

see Figs. 2 and 3. The logi
 
ir
uit shown in Fig. 3 
onsists of 6 AND, 3 OR, and 2 NOT

gates. All the involved 
omputations are se
ure.

More pre
isely, for ea
h �xed value of (x; y), the output bit of ea
h MUX gate in Fig.

2 (i.e., the output bit of ea
h OR gate in Fig. 3) is uniformly distributed as ea
h of its

two data input bits is uniformly distributed and statisti
ally independent of the 
ontrol bit,

whereas the output bit of ea
h AND gate in Fig. 3 has the probability 1/4 of being equal

to 1 as its two input bits are uniformly distributed and mutually statisti
ally independent.

Figure 2: A MUX-based 
ir
uit for masking the AND gate.

11



_

?

(x ^ y)� r

x

? ?

�

�

�

�

^

? ?

�

�

�y

0

^

? ?

�

�

y

0

_

? ?

�

�

�

�

_

? ?

�

�

�

�

^

? ?

�r

y

x

0

^

? ?

r

x

r

y

^

? ?

r

y

x

0

^

? ?

�r

y

r

x

Figure 3: An (AND, OR, NOT)-based 
ir
uit for masking the AND gate.

Other equivalent 
ir
uits 
an be obtained similarly. Logi
 
ir
uits for masking the OR

gate 
an be obtained, for example, by applying the duality prin
iple to (2) and (3), respe
-

tively. When a number of 2-input AND gates are 
onne
ted together, assuming that the

input y

0

is used for the 
onne
tion, the depth per masked AND gate is 1 AND and 2 XOR

gates for the �rst solution and 1 AND, 1 OR, and 1 NOT gate for the se
ond solution.

Another solution 
an be derived from the MUX-based 
ir
uit for masking the AND

gate, by implementing the MUX gates in terms of NAND gates. This solution is pra
ti
ally

important sin
e NAND gates are suitable for implementation in CMOS transistor te
hnology.

It is known that it takes 4 CMOS transistors to implement one NAND or one NOR gate.

One MUX gate 
an be implemented by a 
ir
uit 
omposed of 4 NAND gates, whose depth

is 2 NAND gates with respe
t to two data inputs and 3 NAND gates with respe
t to the


ontrol input, assuming, for simpli
ity, that a NOT gate is implemented as a NAND gate

(in fa
t, it takes only two CMOS transistors to implement a NOT gate).

Similarly, yet another solution 
an be derived from the XOR-based 
ir
uit for masking

the AND gate, by implementing the XOR and AND gates in terms of NAND gates. It is

known that one XOR gate 
an be implemented by a 
ir
uit 
omposed of 4 NAND gates,

whose depth is 3 NAND gates with respe
t to both inputs, whereas one AND gate is, for

12



simpli
ity, assumed to be implemented by two NAND gates.

It follows that all the 
omputations remain se
ure on the NAND logi
 gate level, in both

the 
ir
uits. In terms of NAND gates, the MUX-based solution is superior to the XOR-based

solution. Namely, the gate 
ounts are then 12 versus 24 NAND gates, and the depths are

4 versus 12 NAND gates, respe
tively. Here, we did not 
ount the delays of 1 NAND gate

for 
omputing �r

y

and 2 NAND gates for 
omputing r

x

^ r

y

, respe
tively, as these terms are

data-independent and 
an hen
e be pre
omputed. When a number of 2-input AND gates

are 
onne
ted together, then the depths per masked gate redu
e to 3 NAND gates and 8

NAND gates, respe
tively.

However, for the word operations, su
h as the bitwise AND operation in SHA-1 imple-

mented in software, the XOR-based solution is better with regard to 
ommon instru
tion

sets, as (2) and (3) 
an be implemented in 8 and 11 pro
essor 
y
les, respe
tively. The

solution based on (2) is also appli
able for masking the multipli
ation in an arbitrary �eld

or ring stru
ture, e.g., for modular integer multipli
ation in IDEA or RC6.

The proposed te
hniques 
an be used for masking an arbitrary logi
 
ir
uit, 
omposed

of XOR, AND, OR, and NOT gates, where only AND and OR gates have to be e�e
tively

masked, and the masking bits have to be distributed or adapted appropriately. In parti
ular,

they 
an be applied for masking the logi
 
ir
uit [24℄ for the S-box of AES, whi
h 
onsists

of XOR, NOT, and AND gates. The 
ir
uit is obtained by using the 
omposite �eld repre-

sentation of GF(2

8

) based on quadrati
 extensions, to represent one inversion in GF(2

8

) in

terms of one inversion and a number of additions and multipli
ations in GF(2

4

) and, fur-

ther, by redu
ing the operations in GF(2

4

) to additions and multipli
atons in GF(2). Su
h

a solution using the XOR-based masking te
hnique is des
ribed in [23℄, without referring

to the se
ure 
omputation 
ondition. A

ordingly, the solution using the novel MUX-based

masking te
hnique is mu
h more eÆ
ient, as the the number of NAND gates per masked

AND gate is halved and the depth is redu
ed about three times!

The solutions from [20℄ and [2℄ for masking the S-box of AES in hardware are essentially

13



the same, whereas the former is also implemented [21℄, but does not invoke the se
ure


omputation 
ondition. They also use the 
omposite �eld representation of GF(2

8

) based on

quadrati
 extensions and are in spirit similar to the solution from [23℄. The only essential

di�eren
e is that the resulting multipli
ations in GF(2

4

) and/or GF(2

2

) are masked dire
tly

by using (2) over the respe
tive sub�elds. More pre
isely, in [2℄, an equivalent form of (2) is

used instead.

3 Conversion from Boolean to Arithmeti
 Masking

In this se
tion, an algorithm for the 
onversion from Boolean to arithmeti
 masking, with

respe
t to the mask addition, is proposed. In mathemati
al terms, given an n-bit data word

x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word r = r

n�1

r

n�2

� � � r

1

r

0

, the

problem 
onsidered is to 
ompute se
urely x + r from x � r, where the addition is modulo

2

n

.

Let x

0

= x

0

n�1

x

0

n�2

� � �x

0

1

x

0

0

= x � r and x

00

= x

00

n�1

x

00

n�2

� � �x

00

1

x

00

0

= x + r, where the least

signi�
ant bit has index 0. Then a

ording to the well-known s
hool method for integer

addition with 
arry, we have

x

00

i

= x

i

� r

i

� 


i�1

= x

0

i

� 


i�1

; 0 � i � n� 1 (4)

where 


�1

= 0 and




i�1

= x

i�1

^ r

i�1

_ 


i�2

^ (x

i�1

� r

i�1

) = �x

0

i�1

^ r

i�1

_ 


i�2

^ x

0

i�1

; 1 � i � n� 1: (5)

Further, in (5), if i = 1, then we substitute 


i�2

= 0, and if 2 � i � n� 1, then, due to

(4), we substitute 


i�2

= x

0

i�1

� x

00

i�1

. Thus we obtain 


0

= �x

0

0

^ r

0

and




i�1

= �x

0

i�1

^ r

i�1

_ x

0

i�1

^ �x

00

i�1

; 2 � i � n� 1: (6)

Now, by substituting 


i�1

in (4), after an additional algebrai
 manipulation, we �nally get

the re
ursive equations

x

00

0

= x

0

0

(7)

14



x

00

1

= �x

0

0

^ (�x

0

1

^ r

0

_ x

0

1

^ �r

0

) _ x

0

0

^ x

0

1

(8)

x

00

i

= �x

0

i�1

^ (�x

0

i

^ r

i�1

_ x

0

i

^ �r

i�1

) _ x

0

i�1

^ (�x

0

i

^ �x

00

i�1

_ x

0

i

^ x

00

i�1

); 2 � i � n� 1:

(9)

In equations (8) and (9), one 
an re
ognize the underlying stru
tures of MUX and XOR

gates. A

ordingly, they 
an also be put in a more insightful form

x

00

1

= MUX(x

0

1

� r

0

; x

0

1

; x

0

0

) (10)

x

00

i

= MUX(x

0

i

� r

i�1

; x

0

i

� �x

00

i�1

; x

0

i�1

); 2 � i � n� 1: (11)

Equations (8) and (9) 
an be implemented by a logi
 
ir
uit 
omposed of elementary

blo
ks shown in Fig. 4, for 2 � i � n � 1, whereas for i = 1, the blo
k is simpli�ed by

formally setting x

00

0

= 1. The involved logi
 gates are AND, OR, and NOT gates, whi
h are

all elementary, and NOT gates are not shown for simpli
ity.

Figure 4: A blo
k for 
onversion from Boolean to added arithmeti
 mask.

The elementary blo
k for the logi
 
ir
uit 
omposed of MUX and XOR gates a

ording

15



to (10) and (11) is shown in Fig. 5. Despite some similarity with the logi
 
ir
uit from Fig.

2, the logi
 
ir
uit from Fig. 5 is essentially di�erent.

Figure 5: A MUX-based blo
k for 
onversion from Boolean to added arithmeti
 mask.

All the 
omputations in (10) and (11) as well as in (8) and (9) are se
ure, that is, the

output value of ea
h logi
 gate in the 
orresponding logi
 
ir
uit has the same probability

distribution for every �xed value of the input x. Unlike the previously proposed te
hniques,

it is interesting that no additional masking bits are required. The desired randomization is

provided by x

0

i

, that is, by the underlying masking bit r

i

, whi
h is statisti
ally independent

of r

i�1

, x

00

i�1

, and x

0

i�1

.

More pre
isely, assume that the input x has an arbitrary �xed value. Then the output

bit of ea
h XOR gate in Fig. 5 (i.e., the output bit of ea
h 
orresponding OR gate in Fig.

4) is uniformly distributed as its two input bits are uniformly distributed and mutually

statisti
ally independent. The output bit of the MUX gate in Fig. 5 (i.e., the output bit of

the 
orresponding OR gate in Fig. 4) is uniformly distributed as ea
h of its two data input

bits is uniformly distributed and statisti
ally independent of the 
ontrol bit, whereas the

output bit of ea
h AND gate in Fig. 4 has the probability 1/4 of being equal to 1 as its two

input bits are uniformly distributed and mutually statisti
ally independent.

16



The 
omputations remain se
ure even when MUX, XOR, and NOT gates from Fig. 5

are implemented in terms of NAND gates. In fa
t, the XOR gate with one input negated

(XNOR) 
an also be se
urely implemented by using 3 NAND gates and 1 NOR gate.

The gate 
ount of all the 
ir
uits is equivalent to 3n � 4 MUX gates and the depth is

about 2n� 2 MUX gates. For 
omparison, note that the s
hool method for integer addition

with 
arry has an equivalent gate 
ount of about 3n � 2 MUX gates and depth of about

n MUX gates. The proposed te
hnique 
an also be adapted to other methods for integer

addition.

4 Conversion from Arithmeti
 to Boolean Masking

In this se
tion, an algorithm for the 
onversion from arithmeti
 to Boolean masking, with

respe
t to the mask addition, is proposed. In mathemati
al terms, given an n-bit data word

x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word r = r

n�1

r

n�2

� � � r

1

r

0

, the

problem 
onsidered is to 
ompute se
urely x � r from x + r, where the addition is modulo

2

n

. We use the same notation as in Se
tion 3.

We start from the equations (10) and (11) developed in Se
tion 3. The main point is

that (11) 
an be inverted by swit
hing x

0

i

and x

00

i

and keeping everything else the same, and

the same is true for (10) and x

0

1

and x

00

1

. A

ordingly, we thus obtain

x

0

1

= MUX(x

00

1

� r

0

; x

00

1

; x

0

0

) (12)

x

0

i

= MUX(x

00

i

� r

i�1

; x

00

i

� �x

00

i�1

; x

0

i�1

); 2 � i � n� 1: (13)

In terms of AND, OR, and NOT gates, we equivalently have

x

0

0

= x

00

0

(14)

x

0

1

= �x

0

0

^ (�x

00

1

^ r

0

_ x

00

1

^ �r

0

) _ x

0

0

^ x

00

1

(15)

x

0

i

= �x

0

i�1

^ (�x

00

i

^ r

i�1

_ x

00

i

^ �r

i�1

) _ x

0

i�1

^ (�x

00

i

^ �x

00

i�1

_ x

00

i

^ x

00

i�1

); 2 � i � n� 1:

(16)

17



Equations (15) and (16) 
an be implemented by a logi
 
ir
uit 
omposed of elementary

blo
ks shown in Fig. 6, for 2 � i � n � 1, whereas for i = 1, the blo
k is simpli�ed by

formally setting x

00

0

= 1. The elementary blo
k for the logi
 
ir
uit 
omposed of MUX and

XOR gates a

ording to (12) and (13) is shown in Fig. 7.

Figure 6: A blo
k for 
onversion from added arithmeti
 to Boolean mask.

All the 
omputations in (12) and (13) as well as in (15) and (16) are se
ure, where the

desired randomization is provided by x

00

i

, that is, by the underlying masking bit r

i

, whi
h is

statisti
ally independent of r

i�1

, x

00

i�1

, and x

0

i�1

. As in Se
tion 3, no additional masking bits

are required. As in Fig. 5, the 
omputations remain se
ure if MUX, XOR, and NOT gates

from Fig. 7 are implemented in terms of NAND and NOR gates.

The gate 
ount of all the 
ir
uits is equivalent to 3n � 4 MUX gates and the depth is

now redu
ed to about n MUX gates. The depth redu
tion is due to the fa
t that the values

x

00

i�1

are already available.

18



Figure 7: A MUX-based blo
k for 
onversion from added arithmeti
 to Boolean mask.

5 Conversions for Mask Subtra
tion

In this se
tion, the mask 
onversion problems in whi
h the mask is being subtra
ted from

instead of added to data are 
onsidered. The two proposed algorithms are for the 
onversion

from Boolean to arithmeti
 masking and vi
e versa, respe
tively. In mathemati
al terms,

given an n-bit data word x = x

n�1

x

n�2

� � � x

1

x

0

and an n-bit purely random masking word

r = r

n�1

r

n�2

� � � r

1

r

0

, the problems 
onsidered are to 
ompute se
urely x

00

= x � r from

x

0

= x � r and vi
e versa, where the subtra
tion is modulo 2

n

. The starting point is the

well-known expression for the additive inverse modulo 2

n

, namely, �r � �r + 1 (mod 2

n

).

A

ordingly, by substituting �r for r and by setting the initial 
arry as 


�1

= 1, we obtain

the following re
ursive equations for the 
onversion from Boolean to arithmeti
 masking

x

00

0

= x

0

0

(17)

x

00

1

= x

0

0

^ (�x

0

1

^ r

0

_ x

0

1

^ �r

0

) _ �x

0

0

^ x

0

1

(18)

x

00

i

= x

0

i�1

^ (�x

0

i

^ r

i�1

_ x

0

i

^ �r

i�1

) _ �x

0

i�1

^ (�x

0

i

^ x

00

i�1

_ x

0

i

^ �x

00

i�1

); 2 � i � n� 1

(19)

19



and, in terms of MUX and XOR operations,

x

00

1

= MUX(x

0

1

� r

0

; x

0

1

; �x

0

0

) (20)

x

00

i

= MUX(x

0

i

� r

i�1

; x

0

i

� x

00

i�1

; �x

0

i�1

); 2 � i � n� 1: (21)

Figure 8: A MUX-based blo
k for 
onversion from Boolean to subtra
ted arithmeti
 mask.

From these equations, similarly as in Se
tion 4, we obtain the following re
ursive equa-

tions for the 
onversion from arithmeti
 to Boolean masking

x

0

0

= x

00

0

(22)

x

0

1

= x

0

0

^ (�x

00

1

^ r

0

_ x

00

1

^ �r

0

) _ �x

0

0

^ x

00

1

(23)

x

0

i

= x

0

i�1

^ (�x

00

i

^ r

i�1

_ x

00

i

^ �r

i�1

) _ �x

0

i�1

^ (�x

00

i

^ x

00

i�1

_ x

00

i

^ �x

00

i�1

); 2 � i � n� 1

(24)

and, in terms of MUX and XOR operations,

x

0

1

= MUX(x

00

1

� r

0

; x

00

1

; �x

0

0

) (25)

x

0

i

= MUX(x

00

i

� r

i�1

; x

00

i

� x

00

i�1

; �x

0

i�1

); 2 � i � n� 1: (26)

20



For both 
onversions, the resulting logi
 
ir
uits are analogous to those de�ned for the

mask addition and have the same gate 
ount and depth, respe
tively. The 
orresponding

elementary blo
ks in terms of MUX and XOR gates are shown in Figs. 8 and 9, respe
tively.

Figure 9: A MUX-based blo
k for 
onversion from subtra
ted arithmeti
 to Boolean mask.

All the involved elementary 
omputations are se
ure for essentially the same reasons as

for the mask addition. When MUX and XOR gates are implemented in terms of NAND

gates, all the 
omputations remain se
ure. Consequently, the gate 
ount is equivalent to

3n�4 MUX gates for both 
onversions, whereas the depth is about 2n�2 and n MUX gates

for the two 
onversions, respe
tively.

6 Masking Integer Addition and Comparison

Let x = x

n�1

x

n�2

� � � x

1

x

0

and y = y

n�1

y

n�2

� � � y

1

y

0

be two given n-bit data words, and let

r

x

= r

x;n�1

r

x;n�2

� � � r

x;1

r

x;0

and r

y

= r

y;n�1

r

y;n�2

� � � r

y;1

r

y;0

be the 
orresponding statisti
ally

independent purely random masking words to be used as Boolean masks. Let z = x + y,

where the addition is modulo 2

n

, and let r

z

be the output Boolean mask, whi
h 
an be

related to r

x

and r

y

or statisti
ally independent of them. The problem 
onsidered is to

21




ompute se
urely (x + y) � r

z

from x � r

x

and y � r

y

. Let x

0

= x � r

x

, y

0

= y � r

y

, and

z

0

= z � r

z

.

A

ording to the well-known s
hool method for integer addition with 
arry, we have

z

i

= x

i

� y

i

� 


i�1

; 0 � i � n� 1 (27)

where 


�1

= 0 and




i�1

= x

i�1

^ y

i�1

� 


i�2

^ (x

i�1

� y

i�1

); 1 � i � n� 1: (28)

Here, in 
omparison with (5), _ is repla
ed by � as it is easier to mask. Equations (27) and

(28) essentially de�ne the one-bit full adder.

In light of Se
tion 2, the solution 
onsists in repla
ing the AND operation in (28) at two

pla
es by the masked AND operation by using (3), and in distributing the masking bits so

that the relation between the output and input masks is relatively simple and that the depth

of the masked 
ir
uit is as small as possible. As argued in Se
tion 2, the solution using (3) is

mu
h more eÆ
ient than that using (2), whi
h is proposed in [15℄. Let 


0

i

denote the masked


arry bit 


i

where the masking bit is to be determined, 0 � i � n� 2. We thus obtain

z

0

i

= x

0

i

� y

0

i

� 


0

i�1

; 0 � i � n� 1 (29)

where 


0

�1

= 0,




0

0

= MUX(MUX(r

y;0

; y

0

0

; r

x;0

);MUX(y

0

0

; r

y;0

; r

x;0

); x

0

0

); (30)

and for 2 � i � n� 1




0

i�1

= MUX(MUX(r

x;i�1

; x

0

i�1

; r

y;i�1

);MUX(x

0

i�1

; r

x;i�1

; r

y;i�1

); y

0

i�1

)

� MUX(MUX(r

x;i�1

� r

y;i�1

; x

0

i�1

� y

0

i�1

; r

y;i�2

);

MUX(x

0

i�1

� y

0

i�1

; r

x;i�1

� r

y;i�1

; r

y;i�2

); 


0

i�2

): (31)

To minimize the depth, 


0

i�2

is used as the 
ontrol bit of the MUX gate for masking the

right-hand AND operation in (28), so that the 
orresponding output masking bit is equal to

22



r

x;i�1

� r

y;i�1

. As the 
ontrol bit of the MUX gate for masking the left-hand AND operation

is 
hosen to be y

0

i�1

in (31), the output masking bit for the masked left-hand AND gate

is equal to r

x;i�1

. As a 
onsequen
e, the masking bit for 


0

i�1

is then equal to r

y;i�1

, for

2 � i � n � 2. For i = 1, the right-hand AND operation does not e�e
tively exist in (28),

the 
ontrol bit of the MUX gate for masking the left-hand AND operation is 
hosen to be

x

0

i�1

in (30), and the masking bit for 


0

i�1

is then also r

y;i�1

. The output masking bits are

then purely random and are given as r

z;i

= r

x;i

� r

y;i

� r

y;i�1

, 0 � i � n� 1, where formally

r

y;�1

= 0. If desired, the output mask 
an be adapted to r

x

� r

y

by using additional n � 1

XOR operations. All the involved 
omputations are se
ure.

Altogether, the gate 
ount required is about 10n�14 MUX gates and the depth is about

2n�1 MUX gates. In 
omparison with integer addition, the gate 
ount is slightly more than

tripled, while the depth is doubled. The proposed te
hnique 
an also be applied to other

methods for integer addition, for example, to the so-
alled Walla
e trees, where the one-bit

full adders are arranged in a tree to redu
e the total depth.

We now 
ompare the two masking approa
hes, that is, the mask 
onversion with integer

addition and the masked integer addition without the mask 
onversion, taking (keyed) SHA-

1 for example. In ea
h iteration of the 
ompression fun
tion of SHA-1, one has to 
ompute

4 integer additions. One of the 5 operands that is a 
onstant requires the masked integer

addition, but not the 
onversion from Boolean to arithmeti
 masking. A

ordingly, the gate


ounts of the basi
 implementations of the two approa
hes are then equivalent to about

9 versus 13 integer additions, respe
tively, and the depths are both equivalent to about

6 integer additions. Here, we did not 
ount operations involving only the masking bits

as they are data-independent and 
an hen
e be pre
omputed. In parti
ular, some masks


an be adapted to be the same in every iteration of SHA-1. This demonstrates that the

mask 
onversion te
hniques are also important for hardware implementations. In general,

the se
ond approa
h 
an be more e�e
tive if the number of 
onse
utive integer additions is

relatively small.

23



7 Con
lusions

It is shown that arbitrary logi
 
ir
uits 
an be randomly masked, in a way theoreti
ally

se
ure against the �rst-order DPA on the logi
 gate level, by using a new algorithm for

Boolean masking of the logi
 AND operation in terms of NAND gates. The new algorithm

is 
onsiderably more eÆ
ient than the previously known algorithm, re
ently applied to AES.

In parti
ular, the gate 
ount and the delay of the 
orresponding logi
 
ir
uit are redu
ed two

and three times, respe
tively. An algorithm for Boolean masking of the integer addition is

also derived.

A new method for the se
ure 
onversion between Boolean and arithmeti
 random masking

is introdu
ed. The developed mask 
onversion algorithms do not require auxiliary random

masking bits and are signi�
antly more eÆ
ient than the previously known algorithms when

applied in hardware, espe
ially for the 
onversion from arithmeti
 to Boolean masking.

The new random masking algorithms are pra
ti
ally important for prote
ting hardware

implementations of 
ryptographi
 algorithms against power analysis and other side-
hannel

atta
ks. They 
an also be used in the hardware design of arithmeti
 and logi
 units for

se
ure pro
essors.

Referen
es

[1℄ M.-L. Akkar and C. Giraud, \An implementation of DES and AES, se
ure against some

atta
ks," Cryptographi
 Hardware and Embedded Systems - CHES 2001, Le
ture Notes

in Computer S
ien
e, vol. 2162, pp. 309-318, 2001.

[2℄ J. Bl�omer, G. Mer
han, and V. Krummel, \Provably se
ure masking of AES," Sele
ted

Areas in Cryptography - SAC '04, Le
ture Notes in Computer S
ien
e, to appear.

[3℄ S. Chari, C. Jutla, J. Rao, and P. Rohatgi, \Towards sound approa
hes to 
ounter-

a
t power-analysis atta
ks," Advan
es in Cryptology - CRYPTO '99, Le
ture Notes in

Computer S
ien
e, vol. 1666, pp. 398-412, 1999.

24



[4℄ J.-S. Coron and L. Goubin, \On Boolean and arithmeti
 masking against di�erential

power analysis," Cryptographi
 Hardware and Embedded Systems - CHES 2000, Le
ture

Notes in Computer S
ien
e, vol. 1965, pp. 231-237, 2000.

[5℄ J.-S. Coron and A. T
hulkine, \A new algorithm for swit
hing from arithmeti
 to

Boolean masking," Cryptographi
 Hardware and Embedded Systems - CHES 2003,

Le
ture Notes in Computer S
ien
e, vol. 2779, pp. 89-97, 2003.

[6℄ J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advan
ed En
ryption

Standard . Berlin: Springer-Verlag, 2002.

[7℄ B. Gammel, F. Klug, and O. Kni�er, \Arithmeti
 unit and method for 
arrying out

an arithmeti
 operation with 
oded operands," WIPO PCT patent No. WO 03/060691

A2, July 24, 2003 (see also German patent No. DE10201449C1, Aug. 14, 2003).

[8℄ J. Dj. Goli�
 and C. Tymen, \Multipli
ative masking and power analysis of AES," Cryp-

tographi
 Hardware and Embedded Systems - CHES 2002, Le
ture Notes in Computer

S
ien
e, vol. 2523, pp. 198-212, 2002.

[9℄ J. Dj. Goli�
, \DeKaRT: A new paradigm for key-dependent reversible 
ir
uits," Cryp-

tographi
 Hardware and Embedded Systems - CHES 2003, Le
ture Notes in Computer

S
ien
e, vol. 2779, pp. 98-112, 2003.

[10℄ J. Dj. Goli�
 and R. Meni
o

i, \Universal masking on logi
 gate level," Ele
troni
s

Letters, vol. 40(9), pp. 526-527, Apr. 2004.

[11℄ L. Goubin and J. Patarin, \DES and di�erential power analysis - The dupli
ation

method," Cryptographi
 Hardware and Embedded Systems - CHES '99, Le
ture Notes

in Computer S
ien
e, vol. 1717, pp. 158-172, 1999.

25



[12℄ L. Goubin, \A sound method for swit
hing between Boolean and arithmeti
 masking,"

Cryptographi
 Hardware and Embedded Systems - CHES 2001, Le
ture Notes in Com-

puter S
ien
e, vol. 2162, pp. 3-15, 2001.

[13℄ P. Ko
her, J. Ja�e, and B. Jun, \Di�erential power analysis," Advan
es in Cryptology

- CRYPTO '99, Le
ture Notes in Computer S
ien
e, vol. 1666, pp. 388-397, 1999.

[14℄ X. Lai and J. Massey, \A proposal for a new blo
k en
ryption standard," Advan
es

in Cryptology - EUROCRYPT '90, Le
ture Notes in Computer S
ien
e, vol. 473, pp.

389-404, 1991.

[15℄ R. Meni
o

i and J. Pas
al, \Elaborazione 
rittogra�
a di dati digitali mas
herati",

Italian patent pending MI2003A001375, July 2003.

[16℄ T. Messerges, \Se
uring the AES �nalists against power analysis atta
ks," Fast Software

En
ryption - FSE 2000, Le
ture Notes in Computer S
ien
e, vol. 1978, pp. 150-164, 2001.

[17℄ T. Messerges, E. Dabbish, and L. Puhl, \Method and apparatus for preventing infor-

mation leakage atta
ks on a mi
roele
troni
 assembly," US patent No. US 6,295,606 B1,

Sept. 25, 2001.

[18℄ National Institute of Standards and Te
hnology, \Se
ure Hash Standard," Federal In-

formation Pro
essing Standards Publi
ation 180-1, 1995.

[19℄ O. Nei�e and J. Pulkus, \Swit
hing blindings with a view towards IDEA," Crypto-

graphi
 Hardware and Embedded Systems - CHES 2004, Le
ture Notes in Computer

S
ien
e, vol. 3156, pp. 230-239, 2004.

[20℄ E. Oswald, S. Mangard, and N. Pramstaller, \Se
ure and eÆ
ient masking of the AES - a

mission impossible?," Cryptology ePrint Ar
hive, Report 2004/134, Jun. 2004, available

at http://eprint.ia
r.org/.

26



[21℄ N. Pramstaller, F.K. G�urkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fi
htner,

\Towards an AES 
rypto-
hip resistant to di�erential power analysis," Pro
eedings of

European Solid-State Cir
uits Conferen
e - ESSCIRC 2004, Leuven, Belgium, pp. 307-

310, Sept. 2004.

[22℄ R. L. Rivest, M. J. B. Robshaw, R. Sydney, and Y. L. Yin, \The RC6 blo
k 
ipher,"

v1.1, Aug. 1998, available at http://www.rsase
urity.
om/rsalabs/r
6.

[23℄ E. Tri
hina and T. Korkishko, \Small size, low power, side-
hannel-immune AES 
opro-


essor," presented at the 4. Conferen
e on the Advan
ed En
ryption Standard (AES),

Bonn, Germany, May 2004 (see also E. Tri
hina, \Combinational logi
 design for AES

subbyte transformation on masked data," Cryptology ePrint Ar
hive, Report 2003/236,

Nov. 2003, available at http://eprint.ia
r.org/).

[24℄ J. Wolkerstorfer, E. Oswald, and M. Lamberger, \An ASIC implementation of the AES

SBoxes," CT-RSA 2002, Le
ture Notes in Computer S
ien
e, vol. 2271, pp. 67-78, 2002.

27


