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Abstract

A new technique for Boolean random masking of the logic AND operation in terms
of NAND logic gates is presented and its potential for masking arbitrary cryptographic
functions is pointed out. The new technique is much more efficient than a previously
known technique, recently applied to AES. It is also applied for masking the integer
addition. In addition, new techniques for the conversions from Boolean to arithmetic
random masking and vice versa are developed. They are hardware oriented and do
not require additional random bits. Unlike the previous, software-oriented techniques
showing a substantial difference in the complexity of the two conversions, they have a
comparable complexity being about the same as that of one integer addition only. All
the techniques proposed are in theory secure against the first-order differential power
analysis on the logic gate level. They can be applied in hardware implementations of
various cryptographic functions, including AES, (keyed) SHA-1, IDEA, and RC6.

Key words. Digital circuits, logic circuits, Boolean functions, cryptography, arith-
metic circuits, random masking, side-channel attacks, power analysis

1 Introduction

Cryptographic functions dealing with secret keys such as, for example, block ciphers or mes-
sage authentication codes can be implemented in software or hardware on microelectronic
data-processing devices such as integrated circuit chip (smart) cards. During the execution
of a cryptographic algorithm, sensitive data depending on the secret key is being processed,
being sent over the internal links, and being stored in the internal memories of the device.
It is known that even for tamper-resistant chips, where the underlying integrated circuit is
protected by special physical measures, this sensitive information may leak out through vari-

ous side channels, such as measurements of timing, power consumption, and electromagnetic
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radiation as well as monitoring of signals by microprobing. The objective of side-channel at-
tacks is to recover the secret key by using the leaked information. Power analysis attacks [13]
are powerful as they do not require expensive resources and as most implementations without
countermeasures incorporated are vulnerable to such attacks. The (first-order) differential
power analysis (DPA) attacks are particularly interesting as they use a simple statistical
technique that is almost independent of the implementation of the cryptographic algorithm.

The basis of power analysis attacks are elementary computations within the crypto-
graphic device that depend on a part of the secret key and on the known input and/or
output information. If the power consumption corresponding to these elementary compu-
tations depends on the values being computed, then the power consumption curves contain
information about the secret key which may be feasible to extract by statistical techniques.
In particular, in DPA attacks, one guesses the involved part of the secret key, computes
the values of a chosen intermediate variable, classifies the power curves according to these
values, and then computes and compares the average values of the classified curves. Both

software and hardware implementations are potentially vulnerable.

1.1 Previous Work on Random Masking

A general method for counteracting power analysis attacks on the algorithmic level is to
randomize the computations depending on the secret key by masking the original data with
random masks and by modifying the computations accordingly. This method in fact origi-
nated as data splitting [3], [11], where the intermediate data is split into a number of shares
and the computation is then performed on the shares. Masking [16] is essentially similar
to data splitting into two shares [11], with a difference that one does not have to perform
duplicate computations on the resulting shares. The masking operation combining the data
with a random mask is typically adapted to the mathematical operations used in the cryp-
tographic algorithm [16], because the required modifications in the computations are then

minimized. More precisely, assume that in some elementary computation in the algorithm,



inputs = and y are combined together into an output z by using a group operation o accord-
ing to roy = 2. As using any group operation for masking is sufficient to perfectly randomize
the data, assume that = and y are randomized by using the purely random (uniformly dis-
tributed) and mutually statistically independent masks r, and r, through o, respectively.
Then the computation does not have to be modified, as (xor,)o(yor,) = zo(ryor,). Note
that most random masking techniques proposed for public-key cryptosystems are essentially
of this type. Very frequently used group operations on n-bit words in cryptographic algo-
rithms are the bitwise XOR, denoted as @, and the integer addition and subtraction modulo
2", which are denoted just as 4+ and —, respectively, if the module is clear from the context.
The corresponding random masking techniques are commonly called Boolean and arithmetic
masking, respectively.

If 2 = f(z,y), for an arbitrary function f, and if we want to obtain a masked output
2" = zor, from masked inputs ' = x or, and y' = y ory, then the function f has to be
modified into a new function f’ determined by 2’ = f'(«', ¢, ry, 1y, 72) = f(2' 014,y 01y) O,
The problem is how to compute f’ securely, that is, in a way resistant to DPA. To this end,
f' can also depend on additional (dummy) random masking variables. The resistance to
DPA of a masked algorithm computing f’ can be controlled by a theoretical condition that
each variable in this algorithm should be statistically independent of the (unmasked) input
information. This condition is implicitly rather than explicitly respected in previous works on
random masking in software, on the word level. In addition, for software implementations,
f" should be expressed in terms of word operations available on common processors such
as logic and arithmetic operations. Consequently, in a masked cryptographic algorithm,
only the elementary computations different from the underlying group operation o have
to be modified. The only known general technique for doing this in software is based on
precomputed lookup tables stored in RAM. It consists in precomputing a lookup table for
f', given the values of r,, 7, and r,, and then in reading the values from this table according

to the masked inputs 2’ and y'. If the bit size of the inputs is too large, then it may be



possible to apply the technique to smaller input blocks.

For many cryptographic functions, such as AES [6], the RAM space required for masking
the nonlinear parts, that is, the S-boxes, may be impractical for constrained microelectronic
devices such as smart cards. As for the solutions not based on precomputed and stored
lookup tables, the multiplicative masking technique [1] for the AES S-boxes is shown to be
vulnerable to the zero-value based DPA in [8], whereas the embedded multiplicative masking
technique (8], which avoids this problem, does not provide ideal security.

In many algorithms, the bitwise XOR and the modular integer addition or subtraction,
along with other Boolean and integer operations, are combined together for cryptographic
security. The best-known examples are the widely used cryptographic hash function SHA-1
[18] and the block ciphers IDEA [14] and RC6 [22]. Note that SHA-1 incorporates a secret
key if it is used for message authentication. In such algorithms, it is convenient to use both
group operations for random masking. Therefore, there is a need to convert between the
two corresponding masks in a secure way. Namely, given an n-bit data word x and an n-bit
purely random masking word r, the problem is to compute securely x+r from z @ r and vice
versa. Alternatively, another, related problem is treated in the literature as it is closer to
data splitting, namely, to compute securely = —r from x@r and vice versa. The two problems
are here referred to as the mask addition and mask subtraction problems, respectively.

The first solution to the problem is proposed in [16], but in [4] both conversions are
shown to be potentially vulnerable to a more sophisticated power analysis attack, due to the
fact that the intermediate variables were not all fully randomized as binary words. Under a
certain power consumption condition, this attack may be regarded as a sort of word-based
DPA attack. New solutions for both conversions are proposed in [12]. They are essentially
word, that is, software oriented and according to them it appears that the conversion from
arithmetic to Boolean masking is inherently much more difficult than the conversion in
the opposite direction. More precisely, the solution for the conversion from Boolean to

arithmetic masking requires 7 n-bit word operations and an auxiliary n-bit random masking



word, namely, 5 bitwise XOR operations and 2 subtractions modulo 2". The solution for the
conversion from arithmetic to Boolean masking is much less efficient and requires 5(n + 1)
n-bit word operations and an auxiliary n-bit random masking word. For comparison, note
that the direct conversion of the masks could be achieved by only two n-bit word operations,
namely, one XOR and one addition or subtraction modulo 2", but is not computationally
secure.

Another software-oriented solution for the conversion from arithmetic to Boolean mask-
ing, which requires precomputation and RAM storage of certain lookup tables and some
auxiliary random masking bits, is proposed in [5] and further improved in [19]. It is gen-
erally more efficient than the corresponding solution from [12], depending on the processor
word size, but remains much less efficient than the solution from [12] for the conversion in the
opposite direction. Consequently, the known software-oriented mask conversion techniques
are inefficient to be implemented in hardware.

Note that apart from using the mask conversion algorithms, it is also necessary to mask
the nonlinear Boolean and integer operations that exist in a given cryptographic algorithm.
For example, in (keyed) SHA-1 it is necessary to mask the logic AND operation for 32-bit
words with respect to the Boolean (XOR) mask. Due to the data splitting paradigm, it is
tempting, but incorrect, to conclude [5] that two word operations suffice for achieving this.
To avoid using a number of precomputed and stored lookup tables, one has to mask the
bitwise logic AND operation directly.

If a cryptographic algorithm is implemented in hardware, by a digital integrated circuit,
then to prevent the (first-order) DPA attack, in theory it is necessary and sufficient to
ensure that every elementary computation involving the secret information and performed
by a logic gate is randomized. More precisely, the secure computation condition to be satisfied
is that the output (binary) value of each logic gate in the protected hardware design should
have the same probability distribution for each fixed value of the secret key and input

information. In other words, the output value of each logic gate should be statistically



independent of the secret key and input information. The randomness is provided by purely
random masks, which should ideally be refreshed for every new input data to be processed
by the cryptographic function considered. As far as resistance to DPA is concerned, random
masking bits can be used repeatedly, but their number should be large enough in order to
prevent more sophisticated power analysis attacks targeting the outputs of several logic gates
jointly.

With an objective to mask lookup table hardware implementations of Boolean functions,
a technique based on masking the MUX logic gate is proposed in [17], without defining the
secure computation condition explicitly. It essentially consists in replacing each MUX gate
in the original lookup table by a masked MUX gate which consists of three MUX gates. The
gate count is thus tripled, while the delay is doubled. This technique can directly be used for
masking the block ciphers by masking the lookup tables of S-boxes implemented in ROM,
but generally requires a large gate count.

A general concept of random masking on the logic gate level and several techniques for
masking the AND and OR logic gates are proposed in [15] and [10], including the secure
computation condition, which is also explicitly formulated in [9]. Some other techniques for
random masking of logic gates are introduced in [7], but are flawed as the secure computation
condition is not respected. The techniques for masking the S-box of AES recently described
in [23], [20], and [2] are all essentially based on the technique [15], presented in [10], for

random masking of the logic AND operation.

1.2 Main Objectives and Results

The objective of this paper is to introduce new techniques for random masking of crypto-
graphic algorithms in hardware, on the logic gate level, where the techniques should satisfy
the secure computation condition described above. A secure computation on the word level
in software generally does not imply a secure computation on the bit level in hardware. In

practice, the secure computation condition on the bit level is necessary for providing re-



sistance to DPA attacks and is also likely to be sufficient, although individual logic gates
do not achieve their final (random) values simultaneously and in the transition stage their
output values may vary (randomly) and may depend on their previous inputs. This effect is
also present in software implementations and, in fact, generally makes the power analysis of
non-masked implementations more difficult, especially so for logic circuit implementations
in hardware.

The techniques proposed can be classified into Boolean masking techniques, which apply
to arbitrary algorithms, and techniques for the conversion between Boolean and arithmetic
masking, which apply to algorithms containing both Boolean and integer arithmetic oper-
ations. They are all bit based and hence suitable for direct hardware implementation by
logic circuits. Boolean masking techniques can also be implemented on the word level, in
software.

According to [10], two techniques for Boolean (XOR) masking of the logic AND and OR
operations, namely, the XOR-based and MUX-based technique are pointed out. It is shown
that both of them can be securely implemented by using NAND gates only and that the
latter is much more efficient than the former. An arbitrary logic circuit, composed of XOR,
NOT, AND, and OR gates, can thus be masked by using the techniques for masking the
AND and OR gates, where the masked circuit can be obtained by replacing the AND and
OR gates by masked AND and OR gates, respectively, by keeping the XOR and NOT gates
intact, and by distributing or adapting the masking bits appropriately. The distribution of
masking bits can be automatized, but this is a separate topic, not treated in this paper.

An important example is a logic circuit [24] for the S-box of AES [6], which consists
of AND, XOR, and NOT gates, and the MUX-based technique thus yields a much more
efficient solution than the XOR-based technique [23]. Another important example is the
bitwise logic AND operation in (keyed) SHA-1. The XOR-based technique is also applicable
for masking the multiplication operation in any ring structure such as a finite field or a ring

of integeres modulo a positive integer. For example, this can be used in IDEA and RC6.



If a round of an iterative cryptographic algorithm contains both Boolean and integer
arithmetic operations, like in (keyed) SHA-1, IDEA, and RC6, then mask conversion tech-
niques are useful for providing the protection of hardware implementations against power
analysis and other side-channel attacks. The techniques proposed for the secure conversions
from arithmetic to Boolean random masking and vice versa, for both mask addition and
mask subtraction, do not require additional random masking bits and are both equally effi-
cient in terms of the gate count of the corresponding logic circuits. The gate count is roughly
the same as that for one addition modulo 2" of two n-bit words, while the depth (i.e., the
delay) of the logic circuit for the conversion from arithmetic to Boolean masking is about one
half of the depth of the logic circuit for the conversion from Boolean to arithmetic masking
and is roughly the same as that for one addition modulo 2" of two n-bit words.

The technique for the conversion from Boolean to arithmetic masking can also be used
for the secure hardware computation of the arithmetic masking operation x 4 r, where x is
a secret n-bit word and r is an n-bit purely random mask. Note that if the masked value
is computed directly in terms of the carry bits, then the computation is not secure on the
logic gate level as the carry bits are dependent on = and are thus not fully randomized.

The mask conversion techniques are especially effective if a round of an iterative cryp-
tographic algorithm contains a number of integer arithmetic operations in a row, which is
the case in (keyed) SHA-1, IDEA, and RC6. Alternatively, for hardware implementations,
instead of using the mask conversion techniques, one can mask the integer arithmetic opera-
tions directly by using the proposed techniques for masking the AND logic gate. Therefore, a
logic circuit for masking the addition of two integers modulo 2" is also provided, and can be
of separate interest. It thus turns out that this approach is effective if a small number (e.g.,
1 to 3) of additions modulo 2™ are used in a row. For (keyed) SHA-1, where this number is
equal to 4, the alternative approach is hence less effective.

The rest of the paper is organized as follows. Techniques for Boolean masking of the logic

AND operation and their applications are treated in Section 2. Techniques for the conversions



from Boolean to arithmetic masking and vice versa, for mask addition, are introduced in
Sections 3 and 4, respectively. Mask conversion techniques for mask subtraction are presented
Section 5. In Section 6, a technique for Boolean masking of the addition of two integers is
described and usefulness of mask conversion techniques is then demonstrated. Conclusions

are given in Section 7.

2 Masking Logic AND Operation

For the Boolean operations, we adopted the usual notation: & for XOR or addition modulo
2, A for AND, Vv for OR, and ~ for NOT, whereas for the MUX logic operation of two
data inputs « and y and a control input ¢ we use MUX(z,y;¢) = ¢ Az V e Ay. Note that
r®y=TAyVaAy=MUX(y,y;2z). As usual, A has the priority over @ and V. The same
notation is used when the operations are applied bitwise, on the word level.

A masked AND logic gate, with respect to the Boolean (XOR) mask, operating on masked
inputs ' = v @ 1, and y' = y @ r, and producing the masked output 2’ =« Ay @ r,, should

implement the masked AND operation
d =Ny = @er)AY D) O, (1)

by a logic circuit in which the outputs of all logic gates are computed securely. As explained in
Section 1, the secure computation condition means that the output value of every elementary
bit-based computation in the algorithm, that is, the output of every elementary logic gate in
the corresponding logic circuit, should have the same probability distribution for each fixed
value of the data input, provided that the involved masking bits are uniformly distributed
and mutually statistically independent.

According to [10], two solutions to this problem are pointed out. One solution [15]
consists in applying the distributive property to (1) and in grouping the terms appropriately

to obtain

2 =z2@®r,=(((r:®(ra A1y))® (ra AY)) & (ry A2')) @ (2" A YY) (2)
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in which all the computations are secure if r,, r,, and 7, are uniformly distributed and
mutually statistically independent, see Fig. 1. The corresponding logic circuit consists of 4
AND and 4 XOR gates. The computations are secure as for each fixed value of (z,y), the
two inputs to each AND gate are uniformly distributed and mutually statistically indepen-
dent, whereas, due to r,, one of the inputs to each XOR gate is uniformly distributed and

statistically independent of the other input. Other similar expressions can also be derived.
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Figure 1: An XOR-based circuit for masking the AND gate.

The other solution uses a technique [17] for masking a MUX logic gate. The masked
MUX gate is a cascade connection of the SWITCH gate and the MUX gate, the SWITCH
gate being controlled by the control masking bit and the MUX gate being controlled by the
masked control bit, where SWITCH(z, y; ¢) = (MUX(z, y;¢), MUX(y,z;c)). It is assumed
that the two input masking bits and the output masking bit are all the same and that the
control masking bit is statistically independent of them. A direct application of this technique
to the lookup table implementation of the AND function requires four MUX gates, one of
which is an XOR gate, in order to implement the masked AND gate.

However, if we allow for the output masking bit to be the same as one of the two input
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masking bits, then only three MUX gates suffice to compute securely the masked AND gate,
and the number of masking bits needed is reduced from three to two. The new technique
consists in using the expression z = z Ay = MUX(0,z;y) for the AND function and in

masking the MUX function. We thus obtain

2= z®r, = MUX(MUX(rgz'sr,), MUX (2", rg;my);4")

= GANTyAreVry N YV Y A(ry Arg Vi, Aa'), (3)

see Figs. 2 and 3. The logic circuit shown in Fig. 3 consists of 6 AND, 3 OR, and 2 NOT
gates. All the involved computations are secure.

More precisely, for each fixed value of (z,y), the output bit of each MUX gate in Fig.
2 (i.e., the output bit of each OR gate in Fig. 3) is uniformly distributed as each of its
two data input bits is uniformly distributed and statistically independent of the control bit,
whereas the output bit of each AND gate in Fig. 3 has the probability 1/4 of being equal

to 1 as its two input bits are uniformly distributed and mutually statistically independent.
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Figure 2: A MUX-based circuit for masking the AND gate.
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Figure 3: An (AND, OR, NOT)-based circuit for masking the AND gate.

Other equivalent circuits can be obtained similarly. Logic circuits for masking the OR
gate can be obtained, for example, by applying the duality principle to (2) and (3), respec-
tively. When a number of 2-input AND gates are connected together, assuming that the
input 3’ is used for the connection, the depth per masked AND gate is 1 AND and 2 XOR
gates for the first solution and 1 AND, 1 OR, and 1 NOT gate for the second solution.

Another solution can be derived from the MUX-based circuit for masking the AND
gate, by implementing the MUX gates in terms of NAND gates. This solution is practically
important since NAND gates are suitable for implementation in CMOS transistor technology.
It is known that it takes 4 CMOS transistors to implement one NAND or one NOR gate.
One MUX gate can be implemented by a circuit composed of 4 NAND gates, whose depth
is 2 NAND gates with respect to two data inputs and 3 NAND gates with respect to the
control input, assuming, for simplicity, that a NOT gate is implemented as a NAND gate
(in fact, it takes only two CMOS transistors to implement a NOT gate).

Similarly, yet another solution can be derived from the XOR-based circuit for masking
the AND gate, by implementing the XOR and AND gates in terms of NAND gates. It is
known that one XOR gate can be implemented by a circuit composed of 4 NAND gates,

whose depth is 3 NAND gates with respect to both inputs, whereas one AND gate is, for

12



simplicity, assumed to be implemented by two NAND gates.

It follows that all the computations remain secure on the NAND logic gate level, in both
the circuits. In terms of NAND gates, the MUX-based solution is superior to the XOR-based
solution. Namely, the gate counts are then 12 versus 24 NAND gates, and the depths are
4 versus 12 NAND gates, respectively. Here, we did not count the delays of 1 NAND gate
for computing 7, and 2 NAND gates for computing 7, A r,, respectively, as these terms are
data-independent and can hence be precomputed. When a number of 2-input AND gates
are connected together, then the depths per masked gate reduce to 3 NAND gates and 8
NAND gates, respectively.

However, for the word operations, such as the bitwise AND operation in SHA-1 imple-
mented in software, the XOR-based solution is better with regard to common instruction
sets, as (2) and (3) can be implemented in 8 and 11 processor cycles, respectively. The
solution based on (2) is also applicable for masking the multiplication in an arbitrary field
or ring structure, e.g., for modular integer multiplication in IDEA or RC6.

The proposed techniques can be used for masking an arbitrary logic circuit, composed
of XOR, AND, OR, and NOT gates, where only AND and OR gates have to be effectively
masked, and the masking bits have to be distributed or adapted appropriately. In particular,
they can be applied for masking the logic circuit [24] for the S-box of AES, which consists
of XOR, NOT, and AND gates. The circuit is obtained by using the composite field repre-
sentation of GF(2®) based on quadratic extensions, to represent one inversion in GF(2®) in
terms of one inversion and a number of additions and multiplications in GF(2*) and, fur-
ther, by reducing the operations in GF(2%) to additions and multiplicatons in GF(2). Such
a solution using the XOR-based masking technique is described in [23], without referring
to the secure computation condition. Accordingly, the solution using the novel MUX-based
masking technique is much more efficient, as the the number of NAND gates per masked
AND gate is halved and the depth is reduced about three times!

The solutions from [20] and [2] for masking the S-box of AES in hardware are essentially
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the same, whereas the former is also implemented [21], but does not invoke the secure
computation condition. They also use the composite field representation of GF(2®) based on
quadratic extensions and are in spirit similar to the solution from [23]. The only essential
difference is that the resulting multiplications in GF(2*) and/or GF(2?) are masked directly
by using (2) over the respective subfields. More precisely, in [2], an equivalent form of (2) is

used instead.

3 Conversion from Boolean to Arithmetic Masking

In this section, an algorithm for the conversion from Boolean to arithmetic masking, with
respect to the mask addition, is proposed. In mathematical terms, given an n-bit data word
T = Tp_1Tpn_o- - 129 and an n-bit purely random masking word r = r,,_1r,_o - 11719, the
problem considered is to compute securely x 4+ r from x @ r, where the addition is modulo
2",

Let o' =) _ja), o -alog =2 @rand 2" =a] _ a2l .- -2fxy = x+r, where the least
significant bit has index 0. Then according to the well-known school method for integer

addition with carry, we have
= 5 ®ri @ = 1,®c¢q, 0<i<n-—1 (4)
where ¢_; = 0 and
Cic1 = Tisa ATic1 V Ga N (i1 @ 1im1) = T AT Vo Az, 1<i<n-—1. (5)

Further, in (5), if i = 1, then we substitute ¢;_» = 0, and if 2 < i < n — 1, then, due to

(4), we substitute ¢; o = 2}_; ® x/_,. Thus we obtain ¢y = T} A ry and
Ci—1 — j;—l VAN Ti—1 \% JI;_I A i’g_l, 2 S 1 S n—1. (6)

Now, by substituting ¢; ; in (4), after an additional algebraic manipulation, we finally get

the recursive equations
"o 1
o= (7)
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ol = TyAN (T ATV Ay AT) Vg A (8)
] = T, N(ToAr Ve AT Vo  AN@ AT VANl ), 2<i<n-—1.

(9)

In equations (8) and (9), one can recognize the underlying structures of MUX and XOR

gates. Accordingly, they can also be put in a more insightful form

= MUX(x] & ro, 2); xp) (10)

wi = MUX(; @711, 2 ® T_y5774), 2<i<n-—L (11)

Equations (8) and (9) can be implemented by a logic circuit composed of elementary
blocks shown in Fig. 4, for 2 < ¢ < n — 1, whereas for i = 1, the block is simplified by
formally setting xj = 1. The involved logic gates are AND, OR, and NOT gates, which are

all elementary, and NOT gates are not shown for simplicity.

Figure 4: A block for conversion from Boolean to added arithmetic mask.

The elementary block for the logic circuit composed of MUX and XOR gates according

15



to (10) and (11) is shown in Fig. 5. Despite some similarity with the logic circuit from Fig.

2, the logic circuit from Fig. 5 is essentially different.

L X x'

i i—1

.

B

Figure 5: A MUX-based block for conversion from Boolean to added arithmetic mask.

All the computations in (10) and (11) as well as in (8) and (9) are secure, that is, the
output value of each logic gate in the corresponding logic circuit has the same probability
distribution for every fixed value of the input x. Unlike the previously proposed techniques,
it is interesting that no additional masking bits are required. The desired randomization is
provided by zf, that is, by the underlying masking bit r;, which is statistically independent
of ri_y, x|, and z} ;.

More precisely, assume that the input x has an arbitrary fixed value. Then the output
bit of each XOR gate in Fig. 5 (i.e., the output bit of each corresponding OR gate in Fig.
4) is uniformly distributed as its two input bits are uniformly distributed and mutually
statistically independent. The output bit of the MUX gate in Fig. 5 (i.e., the output bit of
the corresponding OR gate in Fig. 4) is uniformly distributed as each of its two data input
bits is uniformly distributed and statistically independent of the control bit, whereas the
output bit of each AND gate in Fig. 4 has the probability 1/4 of being equal to 1 as its two

input bits are uniformly distributed and mutually statistically independent.
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The computations remain secure even when MUX, XOR, and NOT gates from Fig. 5
are implemented in terms of NAND gates. In fact, the XOR gate with one input negated
(XNOR) can also be securely implemented by using 3 NAND gates and 1 NOR gate.

The gate count of all the circuits is equivalent to 3n — 4 MUX gates and the depth is
about 2n — 2 MUX gates. For comparison, note that the school method for integer addition
with carry has an equivalent gate count of about 3n — 2 MUX gates and depth of about
n MUX gates. The proposed technique can also be adapted to other methods for integer

addition.

4 Conversion from Arithmetic to Boolean Masking

In this section, an algorithm for the conversion from arithmetic to Boolean masking, with
respect to the mask addition, is proposed. In mathematical terms, given an n-bit data word
T = Tp_1Tpn_o- - T12o and an n-bit purely random masking word r» = r,,_1r,_o - 11719, the
problem considered is to compute securely x @ r from x + r, where the addition is modulo
2". We use the same notation as in Section 3.

We start from the equations (10) and (11) developed in Section 3. The main point is
that (11) can be inverted by switching z} and z7 and keeping everything else the same, and

the same is true for (10) and ), and z/. Accordingly, we thus obtain

= MUX(z] & ro, a]; xy) (12)

r; = MUX(z] ®@rig, oz &7 _;2,_4), 2<i<n-—1. (13)

)

In terms of AND, OR, and NOT gates, we equivalently have

Ty = Tp (14)

= Ty AN (T Arg V! ARy Vg A (15)

o, = T N@ A VEl ATV  ANE AT val Al ), 2<i<n-—1
(16)
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Equations (15) and (16) can be implemented by a logic circuit composed of elementary
blocks shown in Fig. 6, for 2 < ¢ < n — 1, whereas for i = 1, the block is simplified by
formally setting =; = 1. The elementary block for the logic circuit composed of MUX and

XOR gates according to (12) and (13) is shown in Fig. 7.

Figure 6: A block for conversion from added arithmetic to Boolean mask.

All the computations in (12) and (13) as well as in (15) and (16) are secure, where the
desired randomization is provided by 7, that is, by the underlying masking bit r;, which is
statistically independent of r; 1, 7 |, and z_;. As in Section 3, no additional masking bits
are required. As in Fig. 5, the computations remain secure if MUX, XOR, and NOT gates
from Fig. 7 are implemented in terms of NAND and NOR gates.

The gate count of all the circuits is equivalent to 3n — 4 MUX gates and the depth is
now reduced to about n MUX gates. The depth reduction is due to the fact that the values

x_, are already available.
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Figure 7: A MUX-based block for conversion from added arithmetic to Boolean mask.

5 Conversions for Mask Subtraction

In this section, the mask conversion problems in which the mask is being subtracted from
instead of added to data are considered. The two proposed algorithms are for the conversion
from Boolean to arithmetic masking and vice versa, respectively. In mathematical terms,
given an n-bit data word x = x,, 12, o --- 129 and an n-bit purely random masking word
I = rp_1Tn_2--*r1rg, the problems considered are to compute securely z” = x — r from
' = x @ r and vice versa, where the subtraction is modulo 2". The starting point is the
well-known expression for the additive inverse modulo 2", namely, —r =7+ 1 (mod 2").
Accordingly, by substituting 7 for  and by setting the initial carry as ¢c_; = 1, we obtain

the following recursive equations for the conversion from Boolean to arithmetic masking

vy = 4 (17)

o = ag N (Y AoV al ATo) VIg A (18)

o = T AT AT A VAT ) VT AT AT VAT ), 2<i<n-—1
(19)
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and, in terms of MUX and XOR operations,

o = MUX(x] & ro, 2}; Tp)

LL‘;’ = MUX(,I‘; D ’I“ifl,l‘; S ngl_l;i‘;—l)a 2<i<n-—1L
! ”
Fi-1 X; !

7

X,

I

Figure 8: A MUX-based block for conversion from Boolean to subtracted arithmetic mask.

From these equations, similarly as in Section 4, we obtain the following recursive equa-

tions for the conversion from arithmetic to Boolean masking

/ _ "
Lo = Ty
oy = g AN(@ AoVl ATy) VT Al
!/ / =1 " = =/ =1 " " =

and, in terms of MUX and XOR operations,

! 14 n. =1
zy = MUX(x] & ro, x7; Ty)
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r; = MUX(z] ®@riy, oz @2 ;%,_), 2<i<n-—1.

(22)
(23)
2<i1<n-1

(24)

(25)

(26)



For both conversions, the resulting logic circuits are analogous to those defined for the
mask addition and have the same gate count and depth, respectively. The corresponding

elementary blocks in terms of MUX and XOR gates are shown in Figs. 8 and 9, respectively.

Figure 9: A MUX-based block for conversion from subtracted arithmetic to Boolean mask.

All the involved elementary computations are secure for essentially the same reasons as
for the mask addition. When MUX and XOR gates are implemented in terms of NAND
gates, all the computations remain secure. Consequently, the gate count is equivalent to
3n—4 MUX gates for both conversions, whereas the depth is about 2n—2 and n MUX gates

for the two conversions, respectively.

6 Masking Integer Addition and Comparison

Let t = xp_1xp_o-- x129 and y = yp_1Yn_2 -+ Y140 be two given n-bit data words, and let
Tw = Tom—1Ten—2" " Te1Teo a0 Ty = Ty, 1Ty 2Ty 1Ty 0 be the corresponding statistically
independent purely random masking words to be used as Boolean masks. Let z = = + y,
where the addition is modulo 2", and let r, be the output Boolean mask, which can be

related to r, and r, or statistically independent of them. The problem considered is to
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compute securely (r +y) @ r, from v @ r, and y® ry. Let 2/ =2 @1y, v = y P 1y, and
Z=z2Dr,.

According to the well-known school method for integer addition with carry, we have
2 = ;DY Dy, 0<i<n-1 (27)
where ¢_; = 0 and
Cic1 = Timi A1 @ o A (21 D Y1), 1<i<n—1 (28)

Here, in comparison with (5), V is replaced by & as it is easier to mask. Equations (27) and
(28) essentially define the one-bit full adder.

In light of Section 2, the solution consists in replacing the AND operation in (28) at two
places by the masked AND operation by using (3), and in distributing the masking bits so
that the relation between the output and input masks is relatively simple and that the depth
of the masked circuit is as small as possible. As argued in Section 2, the solution using (3) is
much more efficient than that using (2), which is proposed in [15]. Let ¢, denote the masked

carry bit ¢; where the masking bit is to be determined, 0 < 7 < n — 2. We thus obtain

!

5= 5 @y@c,, 0<i<n-—1 (29)
where ¢ =0,

co = MUX (MUX(ry0,y0; 7,0) MUX (g, 79,03 70,0); 0) (30)
and for2<i<n-1

i1 = MUX(MUX(rg,i-1, 2713 Tyi-1), MUX(Z]_1, i1 Tyi-1)3 Yi—1)
@& MUX (MUX(ra,i—1 @ ry,i-1, Ti_1 ® Yi_1; Ty,i-2),

MUX (21 @ Yi_1, Taim1 @ Tyim13 Tyi-2)i Cg)- (31)

To minimize the depth, ¢,_, is used as the control bit of the MUX gate for masking the

right-hand AND operation in (28), so that the corresponding output masking bit is equal to
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Tzi—1 D 7Tyi—1. As the control bit of the MUX gate for masking the left-hand AND operation
is chosen to be y!_, in (31), the output masking bit for the masked left-hand AND gate
is equal to r,,_1. As a consequence, the masking bit for ¢, ; is then equal to r,;_;, for
2 <i<n-—2. Fori=1, the right-hand AND operation does not effectively exist in (28),
the control bit of the MUX gate for masking the left-hand AND operation is chosen to be
xi_; in (30), and the masking bit for ¢} _; is then also r, ;. The output masking bits are
then purely random and are given as 7, ; = 1,; @1, ; ®71y;-1, 0 <2 < n — 1, where formally
ry—1 = 0. If desired, the output mask can be adapted to r, @ r, by using additional n — 1
XOR operations. All the involved computations are secure.

Altogether, the gate count required is about 10n — 14 MUX gates and the depth is about
2n—1 MUX gates. In comparison with integer addition, the gate count is slightly more than
tripled, while the depth is doubled. The proposed technique can also be applied to other
methods for integer addition, for example, to the so-called Wallace trees, where the one-bit
full adders are arranged in a tree to reduce the total depth.

We now compare the two masking approaches, that is, the mask conversion with integer
addition and the masked integer addition without the mask conversion, taking (keyed) SHA-
1 for example. In each iteration of the compression function of SHA-1, one has to compute
4 integer additions. One of the 5 operands that is a constant requires the masked integer
addition, but not the conversion from Boolean to arithmetic masking. Accordingly, the gate
counts of the basic implementations of the two approaches are then equivalent to about
9 versus 13 integer additions, respectively, and the depths are both equivalent to about
6 integer additions. Here, we did not count operations involving only the masking bits
as they are data-independent and can hence be precomputed. In particular, some masks
can be adapted to be the same in every iteration of SHA-1. This demonstrates that the
mask conversion techniques are also important for hardware implementations. In general,
the second approach can be more effective if the number of consecutive integer additions is

relatively small.
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7 Conclusions

It is shown that arbitrary logic circuits can be randomly masked, in a way theoretically
secure against the first-order DPA on the logic gate level, by using a new algorithm for
Boolean masking of the logic AND operation in terms of NAND gates. The new algorithm
is considerably more efficient than the previously known algorithm, recently applied to AES.
In particular, the gate count and the delay of the corresponding logic circuit are reduced two
and three times, respectively. An algorithm for Boolean masking of the integer addition is
also derived.

A new method for the secure conversion between Boolean and arithmetic random masking
is introduced. The developed mask conversion algorithms do not require auxiliary random
masking bits and are significantly more efficient than the previously known algorithms when
applied in hardware, especially for the conversion from arithmetic to Boolean masking.

The new random masking algorithms are practically important for protecting hardware
implementations of cryptographic algorithms against power analysis and other side-channel
attacks. They can also be used in the hardware design of arithmetic and logic units for

secure processors.

References

[1] M.-L. Akkar and C. Giraud, “An implementation of DES and AES, secure against some
attacks,” Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes

in Computer Science, vol. 2162, pp. 309-318, 2001.

(2] J. Blémer, G. Merchan, and V. Krummel, “Provably secure masking of AES,” Selected

Areas in Cryptography - SAC ’04, Lecture Notes in Computer Science, to appear.

[3] S. Chari, C. Jutla, J. Rao, and P. Rohatgi, “Towards sound approaches to counter-
act power-analysis attacks,” Advances in Cryptology - CRYPTO 99, Lecture Notes in

Computer Science, vol. 1666, pp. 398-412, 1999.

24



4]

[5]

(6]

9]

[10]

[11]

J.-S. Coron and L. Goubin, “On Boolean and arithmetic masking against differential
power analysis,” Cryptographic Hardware and Embedded Systems - CHES 2000, Lecture

Notes in Computer Science, vol. 1965, pp. 231-237, 2000.

J.-S. Coron and A. Tchulkine, “A new algorithm for switching from arithmetic to
Boolean masking,” Cryptographic Hardware and Embedded Systems - CHES 2003,

Lecture Notes in Computer Science, vol. 2779, pp. 89-97, 2003.

J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryption

Standard. Berlin: Springer-Verlag, 2002.

B. Gammel, F. Klug, and O. Kniffler, “Arithmetic unit and method for carrying out
an arithmetic operation with coded operands,” WIPO PCT patent No. WO 03/060691
A2, July 24, 2003 (see also German patent No. DE10201449C1, Aug. 14, 2003).

J. Dj. Goli¢ and C. Tymen, “Multiplicative masking and power analysis of AES,” Cryp-
tographic Hardware and Embedded Systems - CHES 2002, Lecture Notes in Computer

Science, vol. 2523, pp. 198-212, 2002.

J. Dj. Goli¢, “DeKaRT: A new paradigm for key-dependent reversible circuits,” Cryp-
tographic Hardware and Embedded Systems - CHES 2003, Lecture Notes in Computer
Science, vol. 2779, pp. 98-112, 2003.

J. Dj. Goli¢ and R. Menicocci, “Universal masking on logic gate level,” FElectronics

Letters, vol. 40(9), pp. 526-527, Apr. 2004.

L. Goubin and J. Patarin, “DES and differential power analysis - The duplication
method,” Cryptographic Hardware and Embedded Systems - CHES ’99, Lecture Notes

in Computer Science, vol. 1717, pp. 158-172, 1999.

25



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

L. Goubin, “A sound method for switching between Boolean and arithmetic masking,”
Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Com-

puter Science, vol. 2162, pp. 3-15, 2001.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Advances in Cryptology
- CRYPTO ’99, Lecture Notes in Computer Science, vol. 1666, pp. 388-397, 1999.

X. Lai and J. Massey, “A proposal for a new block encryption standard,” Advances
in Cryptology - EUROCRYPT ’90, Lecture Notes in Computer Science, vol. 473, pp.
389-404, 1991.

R. Menicocci and J. Pascal, “Elaborazione crittografica di dati digitali mascherati”,

Italian patent pending MI2003A001375, July 2003.

T. Messerges, “Securing the AES finalists against power analysis attacks,” Fast Software

Encryption - FSE 2000, Lecture Notes in Computer Science, vol. 1978, pp. 150-164, 2001.

T. Messerges, E. Dabbish, and L. Puhl, “Method and apparatus for preventing infor-
mation leakage attacks on a microelectronic assembly,” US patent No. US 6,295,606 B1,
Sept. 25, 2001.

National Institute of Standards and Technology, “Secure Hash Standard,” Federal In-

formation Processing Standards Publication 180-1, 1995.

O. Neifle and J. Pulkus, “Switching blindings with a view towards IDEA,” Crypto-
graphic Hardware and Embedded Systems - CHES 2004, Lecture Notes in Computer
Science, vol. 3156, pp. 230-239, 2004.

E. Oswald, S. Mangard, and N. Pramstaller, “Secure and efficient masking of the AES - a
mission impossible?,” Cryptology ePrint Archive, Report 2004/134, Jun. 2004, available

at http://eprint.iacr.org/.

26



[21]

[22]

23]

[24]

N. Pramstaller, F.K. Giirkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fichtner,
“Towards an AES crypto-chip resistant to differential power analysis,” Proceedings of
European Solid-State Circuits Conference - ESSCIRC 2004, Leuven, Belgium, pp. 307-
310, Sept. 2004.

R. L. Rivest, M. J. B. Robshaw, R. Sydney, and Y. L. Yin, “The RC6 block cipher,”

v1.1, Aug. 1998, available at http://www.rsasecurity.com/rsalabs/rc6.

E. Trichina and T. Korkishko, “Small size, low power, side-channel-immune AES copro-
cessor,” presented at the 4. Conference on the Advanced Encryption Standard (AES),
Bonn, Germany, May 2004 (see also E. Trichina, “Combinational logic design for AES
subbyte transformation on masked data,” Cryptology ePrint Archive, Report 2003 /236,

Nov. 2003, available at http://eprint.iacr.org/).

J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of the AES
SBoxes,” CT-RSA 2002, Lecture Notes in Computer Science, vol. 2271, pp. 67-78, 2002.

27



