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Abstract

In 1998, Blaze, Bleumer, and Strauss (BBS) proposed an application calledatomic proxy re-encryption,
in which a semi-trusted proxy converts a ciphertext for Alice into a ciphertext for Bobwithoutseeing the
underlying plaintext. We predict that fast and secure re-encryption will become increasingly popular as a
method for managing encrypted file systems. Although efficiently computable, the wide-spread adoption
of BBS re-encryption has been hindered by considerable security risks. Following recent work of Dodis
and Ivan, we present new re-encryption schemes that realizea stronger notion of security, and we demon-
strate the usefulness of proxy re-encryption as a method of adding access control to a secure file system.
Performance measurements of our experimental file system demonstrate that proxy re-encryption can
work effectively in practice.

1 Introduction

Proxy re-encryption allows a proxy to transform a ciphertext computed under Alice’s public key into one
that can be opened by Bob’s secret key. There are many useful applications of this primitive. For instance,
Alice might wish to temporarily forward encrypted email to her colleague Bob, without giving him her
secret key. In this case, Alice the delegator could designate a proxy to re-encrypt her incoming mail into a
format that Bob the delegatee can decrypt using his own secret key. Alice could simply provide her secret
key to the proxy, but this requires an unrealistic level of trust in the proxy.

We present several efficient proxy re-encryption schemes that offer security improvements over earlier
approaches. The primary advantage of our schemes is that they are unidirectional (i.e., Alice can delegate
to Bob without Bob having to delegate to her) and do not require delegators to reveal all of their secret key
to anyone – or even interact with the delegatee – in order to allow a proxy to re-encrypt their ciphertexts.
In our schemes, only a limited amount of trust is placed in theproxy. For example, it is not able to decrypt
the ciphertexts it re-encrypts, and we prove our schemes secure even when the proxy publishes all the re-
encryption information it knows. This enables a number of applications that would not be practical if the
proxy needed to be fully trusted.
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We provide the first empirical performance measurements of applications using proxy re-encryption.
To demonstrate the practical utility of our proxy re-encryption schemes, we measure an implementation of
proxy re-encryption used in a secure file system. Our system uses a centralizedaccess control serverto
manage access to encrypted content stored on distributed, untrusted replicas. We use proxy re-encryption
to allow for centrally-managed access control without granting full decryption rights to the access control
server.

1.1 Proxy Re-encryption Background

A methodology for delegating decryption rights was first introduced by Mambo and Okamoto [34] purely
as an efficiency improvement over traditional decrypt-and-then-encrypt approaches.

In 1998, Blaze, Bleumer, and Strauss [7] proposed the notionof “atomic proxy cryptography,” in which
a semi-trusted proxy computes a function that converts ciphertexts for Alice into ciphertexts for Bob without
seeing the underlying plaintext. In their Elgamal based scheme, with modulus a safe primep = 2q+1, the
proxy is entrusted with the delegation keyb/a mod q for the purpose of diverting ciphertexts from Alice to
Bob via computing(mgk

mod p,(gak)b/a
mod p). The authors noted, however, that this scheme contained

an inherent restriction: it isbidirectional; that is, the valueb/a can be used to divert ciphertexts from
Alice to Bob and vice versa. Thus, this scheme is only useful when the trust relationship between Alice
and Bob is mutual. (This problem can be solved, for any scheme, by generating an additional, otherwise
unused, key pair for the delegatee, but this introduces additional overhead.) The BBS scheme leaves several
open problems. Delegation in the BBS scheme istransitive, which means that the proxy alone can create
delegation rights between two entities that have never agreed on this. For example, from the valuesa/b and
b/c, the proxy can re-encrypt messages from Alice to Carol. Another drawback to this scheme is that if the
proxy and Bob collude, they can recover her secret key as(a/b)∗b = a!

Jakobsson [30] developed a quorum-based protocol where theproxy is divided into sub-components,
each controlling a share of the re-encryption key; here, thekeys of the delegator are safe so long as some of
the proxies are honest. A similar approach was considered byZhou, Mars, Schneider and Redz [42].

Recently, Dodis and Ivan [16] realizedunidirectionalproxy encryption for Elgamal, RSA, and an IBE
scheme by sharing the user’s secret key between two parties.They also solved the problem of the proxy
alone assigning new delegation rights. In their unidirectional Elgamal scheme, Alice’s secret keys is divided
into two sharess1 ands2, wheres= s1+s2, and distributed to the proxy and Bob. On receiving ciphertexts of
the form(mgsk,gk), the proxy first computes(mgsk/(gk)s1), which Bob can decrypt as(mgs2k/(gk)s2) = m.
Although this scheme offers some advantages over the BBS approach, it introduces new drawbacks as well.
These “secret-sharing” schemes do not change ciphertexts for Alice into ciphertexts for Bob in the purest
sense (i.e., so that Bob can decrypt them withhis own secret key), they delegate decryption by requiring
Bob to store additional secrets (i.e., shares{s(i)

2 }) that may in practice be difficult for him to manage. For
example, in our file system in Section 4, the number of secretsa user must manage should remain constant
regardless of the number of files it accesses. One exception is the Dodis-Ivan IBE scheme [16] where the
global secret that decryptsall ciphertexts is shared between the proxy and the delegatee. Thus, the delegatee
need only store a single secret, but an obvious drawback is that when the proxy and any delegatee in the
system collude, they can decrypt everyone else’s messages.

Thus, proxy re-encryption protocols combining the variousadvantages of the BBS and Dodis-Ivan
schemes, along with new features such as time-limited delegations, remained an open problem. (We provide
a list of these desirable features in Section 3.) Our resultscan be viewed as contributing both to the set of
key-insulated [14, 15, 17] and signcryption [3, 5, 41] schemes, where Alice may expose her secret key with-
out needing to change her public key and/or use the same public key for encryption and signing purposes.
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This work should not be confused with the “universal re-encryption” literature [28], whichre-randomizes
ciphertexts instead of changing thepublic keythat they are encrypted under.

1.2 Applications of Proxy Re-encryption

Proxy re-encryption has many exciting applications in addition to the previous proposals [7, 16, 30, 42] for
email forwarding, law enforcement, and performing cryptographic operations on storage-limited devices.
In particular, proxy cryptography has natural applications to secure network file storage. The following
paragraphs describe potential applications of proxy re-encryption.

Secure File Systems.A secure file system is a natural application of proxy re-encryption because the system
often assumes a model of untrusted storage.

A number of file systems build confidential storage out of untrusted components by using cryptographic
storage [2, 6, 26, 32]. Confidentiality is obtained by encrypting the contents of stored files. These encrypted
files can then be stored on untrusted file servers. The server operators can distribute encrypted files without
having access to the plaintext files themselves.

In a single-user cryptographic file system, access control is straightforward. The user creates and re-
members all the keys protecting content. Thus, there is no key distribution problem. With group sharing in
cryptographic storage, group members must rendezvous withcontent owners to obtain decryption keys for
accessing files.

Systems with cryptographic storage such as the SWALLOW object store [36] or CNFS [29] assume an
out-of-band mechanism for distributing keys for access control. Other systems such as Cepheus [21] use a
trusted access control server to distribute keys.

The access control server model requires a great deal of trust in the server operator. Should the operator
prove unworthy of this trust, he or she could abuse the server’s key material to decrypt any data stored on
the system. Furthermore, even if the access control server operator is trustworthy, placing so much critical
key data in a single location makes for an inviting target.

In contrast, our system makes use of a semi-trusted access control server. We propose a significant
security improvement to the access control in cryptographic storage, using proxy cryptography to reduce
the amount of trust in the access control server. In our approach, keys protecting files are stored encrypted
under a master public key, using one of the schemes in Section3. When a user requests a key, the access
control server uses proxy cryptography to directly re-encrypt the appropriate key to the user without learning
the key in the process. Because the access control server does not itself possess the master secret, it cannot
decrypt the keys it stores. The master secret key can be stored offline, by a content owner who uses it
only to generate the re-encryption keys used by the access control server. In Section 4, we describe our
implementation and provide a performance evaluation of ourconstructions.

Outsourced Filtering of Encrypted Spam. Another promising application of proxy re-encryption is the
filtering of encrypted emails performed by authorized contractors. The sheer volume of unsolicited email,
along with rapid advances in filter-avoidance techniques, has overwhelmed the filtering capability of many
small businesses, leading to a potential market foroutsourced email filtering. New privacy regulations,
such as the US Health Insurance Portability and Accountability Act (HIPAA), are encouraging companies
to adopt institution-wide email encryption to ensure confidentiality of patient information [1]. By accept-
ing encrypted email from outside sources, institutions become “spam” targets and filters are only effective
on messages that are first decrypted (which could be unacceptably costly). Using proxy re-encryption,
it becomes possible to redirect incoming encrypted email toan external filtering contractor at the initial
mail gateway, without risking exposure of plaintexts at thegateway itself. Using ourtemporaryproxy
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re-encryption scheme presented in Section 3.2, a healthcare institution can periodically change filtering
contractors without changing its public key.

1.3 Roadmap

The rest of this paper consists of the following sections describing the theory and implementation of proxy
re-encryption. Section 2 gives number theoretic preliminaries and definitions necessary to understand our
schemes and their security guarantees. Section 3 presents improved proxy re-encryption schemes as well as
a discussion on the factors to consider when comparing proxyre-encryption schemes. Section 4 highlights
the design, implementation, and performance measurementsof our proxy re-encryption file system.

2 Definitions

Our protocols are based on bilinear maps [8, 9, 10, 31], whichwe implemented using the fast Tate pair-
ings [25].

Definition 2.1 (Bilinear Map) We say a mape : G1× Ĝ1→G2 is abilinear mapif: (1) G1, Ĝ1 are groups
of the same prime orderq; (2) for all a,b∈ Zq, g∈ G1, andh∈ Ĝ1, thene(ga,hb) = e(g,h)ab is efficiently
computable; and (3) the map is non-degenerate (i.e., ifg generatesG1 and h generatesĜ1, thene(g,h)
generatesG2). (In our scheme descriptions we treatG1 andĜ1 as the same group. However we recognize
that, for some instantiations of the mappings, it is more efficient to letG1 andĜ1 be distinct groups of size
q. Our constructions will work in this setting as well.)

Now, we define what a unidirectional proxy re-encryption scheme is and what minimum security prop-
erties it should have. We compare our definition to a similar definition due to Dodis and Ivan [16]. In
remarks 2.4 and 2.5, we discuss some of the short-comings andbenefits of this definition.

Definition 2.2 (Unidirectional Proxy Re-encryption) A unidirectional proxy re-encryption schemeis a
tuple of (possibly probabilistic) polynomial time algorithms(KG,RG,~E,R,~D), where the components are
defined as follows:

• (KG,~E,~D) are the standard key generation, encryption, and decryption algorithms for the underlying
cryptosystem. Here~E and~D are (possibly singleton) sets of algorithms. On input the security param-
eter 1k, KG outputs a key pair(pk,sk). On inputpkA and messagem∈M, for all Ei ∈ ~E the output is a
ciphertextCA. On inputskA and ciphertextCA, there exists aDi ∈ ~D that outputs the messagem∈M.

• On input (pkA,sk†
A,pkB,sk∗B), the re-encryption key generation algorithm,RG, outputs a keyrkA→B

for the proxy. The fourth input marked with a ’∗’ is sometimes omitted; when this happens we say
that RG is non-interactivesince the delegatee does not need to be involved in the generation of the
re-encryption keys. The second input marked with a ’†’ may insome cases be replaced by the tuple
(rkA→C,skC); see Remark 2.4 for more.

• On inputrkA→B and ciphertextCA, the re-encryption function,R, outputsCB.

Correctness. Informally, a party holding a secret keyskA should always be able to decrypt ciphertexts
encrypted underpkA; while a partyB should be able to decryptR(rkA→B,CA). ~E may contain multiple
encryption algorithms; for example, havingfirst-levelencryptions that cannot be re-encrypted by the proxy;
while second-levelencryptions can be re-encrypted by the proxy and then decrypted by delegatees. This
provides the sender with a choicegiven the same public keywhether to encrypt a message only to Alice or
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to Alice and, say, her secretary. Whenever a re-encryption does take place, however, we require that the
underlying plaintext remainconsistent– i.e., Bob should get exactly what Alice was supposed to receive.1

More formally, let key pairs(pkA,skA) and(pkB,skB), generated according toKG, belong to partiesA
andB, respectively, and letrkA→B be generated according toRG. Then, for all messagesm in the message
spaceM, the following equations hold with probability one:

∀Ei ∈ ~E, ∃D j ∈ ~D, D j(skA,Ei(pkA,m)) = m,

∃Ei ∈ ~E, ∃D j ∈ ~D, D j(skB,R(rkA→B,Ei(pkA,m))) = m.

We provide a security definition similar to that of Dodis and Ivan [16]. Although their definition was
for CCA2 security, they instead used CPA security for the Elgamal, RSA, and IBE-based schemes; for
simplicity, we focus directly on CPA security. The first maindifference between our definitions is that we
consider the security of a user against agroupof colluding parties; for example, the security of a delegator
against the proxy and many delegatees, whereas the Dodis-Ivan definition focused on a single delegatee.
Secondly, we discuss the system’s security for circular delegation where the adversary watches Alice and
Bob delegate to each other. Finally, we provide a new guarantee for the delegator – even if the proxy and all
delegatees collude, they can not recover his master secret key. We discuss some benefits of this last feature
in Remark 2.5.

Definition 2.3 (Security of Unidirectional Proxy Re-encryption)
Let Γ = (KG,RG,~E,R,~D) be a unidirectional proxy re-encryption scheme.

Standard Security. The underlying cryptosystem(KG,~E,~D) is semantically-secure [27] againstanyone
who has not been delegated the right to decrypt. We use subscript B to denote the target user,x to denote the
adversarial users, andh to denote the honest users (other thanB). That is, for all PPT algorithmsAk, Ei ∈ ~E,
andm0,m1 ∈Mk,

Pr[(pkB,skB)← KG(1k),{(pkx,skx)← KG(1k)},

{rkx→B← RG(pkx,skx,pkB,sk∗B)},

{(pkh,skh)← KG(1k)},

{rkB→h← RG(pkB,skB,pkh,sk∗h)},

{rkh→B← RG(pkh,skh,pkB,sk∗B)},

(m0,m1,α)← Ak(pkB,{(pkx,skx)},{pkh},{rkx→B},{rkB→h},{rkh→B}),

b←{0,1},b′← Ak(α,Ei(pkB,mb)) :

b = b′] < 1/2+1/poly(k).

The above definition capturesB’s security, even when the proxy (with knowledge of all the re-encryption
keys) and a group of adversarial users (with knowledge of their own secret keys) collude againstB – provided
thatB never delegated decryption rights to any adversarial user.

We now turn our attention to what security can be guaranteed in the case thatB doesdelegate decryption
rights to an adversarial user. Obviously, in this case, the adversary can simply decrypt and trivially win the
game above. However, we are now interested in determining whether or not an adversary (consisting of the

1Note, this only applies to ciphertexts that were honestly generated by the sender; no guarantee is implied in the case of
malformed ciphertexts.
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proxy and a group of colluding users) can recoverB’s master secret key. (We will later see some examples
where, for the same public key, two types of ciphertexts may be generated: one that can be opened by a
delegatee, and one that can only be opened with the master secret key.) Thus, we define here (and later
prove) that just becauseB delegates decryption rights to another party does not mean thatB surrenders his
digital identity (i.e., the meaningful parts of his secret key).

Master Secret Security.The long term secrets of a delegator (sometimes serving as a delegatee) cannot be
computed or inferred by even a coalition of colluding delegatees. We use subscriptB to denote the target
user andx to denote the adversarial users. For all PPT algorithmsAk,

Pr[(pkB,skB)← KG(1k),{(pkx,skx)← KG(1k)},

{rkB→x← RG(pkB,skB,pkx,sk∗x)},

{rkx→B← RG(pkx,skx,pkB,sk∗B)},

α← Ak(pkB,{(pkx,skx)},{rkB→x},{rkx→B}) :

α = skB] < 1/poly(k).

Remark 2.4 Unfortunately, achieving security based on the definition of the re-encryption key generation
functionRGas originally stated is very difficult to realize. We do not know of any such scheme, including
the prior work of Dodis and Ivan [16], that does not succumb tothe follow attack:transfer of delegation
rights, where, on inputskB andrkA→B, one can computerkA→C. (Recall our discussion of non-transferability
in Section 3.) To see this in our second and third schemes, consider that on inputb andgb/a, one can output
(gb/a)1/b = g1/a which would allow anyone to decrypt Alice’s second-level ciphertexts. Thus, we modify
the definition ofRG to be executed witheither the secret key of the delegator AliceskA or with both a
re-encryption key from Alice to BobrkA→B and Bob’s secret keyskB. This implies that Bob isallowedto
transfer Alice’s decryption capability. Arguably, this relaxed definition is not so damaging since Alice is
already trusting Bob enough to delegate decryption rights to him.

Remark 2.5 At first glance, master secret security may seem very weak. All it guarantees is that an ad-
versary cannot output a delegator’s secret keyskA. One might ask why this is useful. One motivation,
mentioned above, stems from the fact that some proxy re-encryption schemes define two or more types
of ciphertext, some of which may only be decrypted using the master secret. A scheme which provides
master secret security will protect those ciphertexts evenin the event that the proxy and delegatee collude.
A second motivation comes from the fact that most standard signature schemes, such as Elgamal [19] and
Schnorr [38], are actually proofs of knowledge of a discretelogarithm value, such asskA = a∈ Zq, turned
into a signature using the Fiat-Shamir heuristic [20]. Intuitively, if an adversary cannot output Alice’s secret
key, then the adversary cannot prove knowledge of it either.Thus, using a proxy re-encryption scheme with
master secret security means that a user may be able to safelydelegate decryption rights (via releasingga)
without delegating signing rights for thesame public key Za.

3 Improved Proxy Re-encryption Schemes

To talk about “improvements,” we need to get a sense of the benefits and drawbacks of previous schemes.
Here is a list of, in our opinion, the most useful properties of proxy re-encryption protocols:

1. Unidirectional: Delegation fromA→ B does not allow re-encryption fromB→ A.
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Property BBS [7] DI [16] This work
1. Unidirectional No Yes Yes
2. Non-interactive No Yes Yes
3. Proxy invisible Yes No Yes
4. Original-access Yes† Yes Yes†

5. Key optimal Yes No Yes
6. Collusion-“safe” No No Yes∗

7. Temporary Yes† Yes† Yes†

8. Non-transitive No Yes Yes
9. Non-transferable No No No

Table 1: We compare known proxy re-encryption schemes basedon the advantages described above; no
scheme achieves property 9. We refer to the unidirectional schemes of Dodis-Ivan.∗ indicates master secret
key only. † indicates possible to achieve with additional overhead.

2. Non-interactive:Re-encryption keys can be generated by Alice using Bob’s public key; no trusted
third party or interaction is required. (Such schemes were calledpassivein BBS [7].)

3. Proxy invisibility: This is an important feature offered by the original BBS scheme. The proxy in
the BBS scheme istransparentin the sense that neither the sender of an encrypted message nor any of the
delegatees have to be aware of the existence of the proxy. Clearly, transparency is very desirable but it is
achieved in the BBS scheme at the price of allowing transitivity of delegations and recovery of the master
secrets of the participants. Our pairing-based schemes, tobe described shortly, offer a weaker form of
transparency which we callproxy invisibility. In particular, both sender and recipient are aware of the proxy
re-encryption protocol but do not know whether the proxy is active, has performed any action or made any
changes, or even if it exists (the proxy is indeed “invisible”). More specifically, we allow the sender to
generate an encryption that can be opened only by the intended recipient (first-level encryption) or by any
of the recipient’s delegatees (second-level encryption). At the same time, we can ensure that any delegatee
will not be able to distinguish a first-level encryption (computed under his public key) from a re-encryption
of a ciphertext intended for another party (we are assuming that the encrypted message does not reveal
information that would help the delegatee to make this distinction).

4. Original-access:Alice can decrypt re-encrypted ciphertexts that were originally sent to her. In some
applications, it may be desirable to maintain access to her re-encrypted ciphertexts. This is an inherent fea-
ture of the Dodis-Ivan schemes (since the re-encryption keyis a share of the original); the BBS scheme and
the pairing schemes presented here can achieve this featureby adding an additional term to the ciphertext:
for example, in BBS a re-encrypted ciphertext with originalaccess looks like(mgk,gak,(gak)b/a). This may
impact proxy invisibility.

5. Key optimal:The size of Bob’s secret storage remains constant, regardless of how many delegations
he accepts. We call this akey optimalscheme. In the previous Elgamal and RSA based schemes [16], the
storage of both Bob and the proxy grows linearly with the number of delegations Bob accepts. This is an
important consideration, since the safeguarding and management of secret keys is often difficult in practice.

6. Collusion-“safe”: One drawback of all previous schemes is that by colluding, Bob and the proxy
can recover Alice’s secret key: for Dodis-Ivan,s= s1 + s2; for BBS, a = (a/b) ∗b. We will mitigate this
problem – allowing recovery of a “weak” secret key only. In a bilinear map setting, suppose Alice’s public
key ise(g,g)a and her secret key isa; then we might allow Bob and the proxy to recover the valuega, but
not a itself.
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The property of collusion “safeness” is extremely useful inour context since we allow the sender to
generate first-level encryptions, that can be opened only bythe intended recipient (Alice), or second-level
ones that can be opened by any of the recipient’s delegatees (e.g., Bob). Indeed, this property implies that
even if Bob and the proxy collude, they will not be able to openany of Alice’s first level-encryptions!

In general, collusion “safeness” allows Alice to delegate decryption rights, while keeping signing rights
for the same public key. In practice, a user can always use twopublic keys for encryption and signatures,
but it is theoretically interesting that she doesn’tneedto do so. Prior work on “signcryption” explored this
area (e.g., [41, 5, 3]); here we present, what can be viewed as, the first “signREcryption” scheme (although
we will not be formally concerning ourselves with the security of the signatures in this work).

7. Temporary:Dodis and Ivan [16] suggested applying generic key-insulation techniques [17, 14, 15] to
their constructions to form schemes where Bob is only able todecrypt messages intended for Alice that were
authored during some specific time periodi. Citing space considerations, they did not present any concrete
constructions. In Section 3.2, we provide a bilinear map construction designed specifically for this purpose.
In our construction, a trusted server broadcasts a new random number at each time period, which each user
can then use to update their delegated secret keys. This is animprovement over using current key-insulated
schemes where the trusted server needs to individually interact with each user to help them update their
master (and therefore, delegation) secret keys.

8. Non-transitive:The proxy, alone, cannot re-delegate decryption rights. For example, fromrka→b and
rkb→c, he cannot producerka→c.

9. Non-transferable:The proxy and a set of colluding delegatees cannot re-delegate decryption rights.
For example, fromrka→b, skb, andpkc, they cannot producerka→c.We are not aware of any scheme that
has this property, and it is a very desirable one. For instance, a hospital may be held legally responsible
for safeguarding the encrypted files of its patients; thus, if it chooses to delegate decryption capabilities
to a local pharmacy, it may need some guarantee that this information “goes no further.” First, we should
ask ourselves: istransferability really preventable? The pharmacy can always decrypt and forward the
plaintext files to a drug company. However, this approach requires that the pharmacy remain an active,
online participant. What we want to prevent is the pharmacy (plus the proxy) providing the drug company
with a secret value that it can use offline to decrypt the hospital’s ciphertexts. Again, the pharmacy can
trivially send its secret key to the drug company. But in doing so, it assumes a security risk that is as
potentially injurious to itself as the hospital. Achievinga proxy scheme that isnon-transferable, in the sense
that the only way for Bob to transfer offline decryption capabilities to Carol is to expose his own secret key,
seems to be the main open problem left for proxy re-encryption.

3.1 New Unidirectional Proxy Re-encryption Schemes

A First Attempt. As Dodis and Ivan pointed out [16], one method for delegatingdecryption rights is to
create a cryptosystem that has a two-stage decryption procedure with two different secret keys. In practice,
Alice’s secret keys is divided into two shares:s1, given to the proxy, ands2, given to Bob. A ciphertext
intended for Alice can be partially decrypted by the proxy via s1. Bob can complete the decryption process
by usings2 and then recover the message. We already noticed that this “secret sharing” approach does
not exactly yield to proxy re-encryption schemes given thatBob must use secrets other than his own to
recover the plaintext (i.e., there is no transformation of aciphertext under Alice’s public key into one under
Bob’s). In particular, this implies that the schemes as presented in [16] are not key optimal, proxy invisible,
or collusion-“safe.” Notice that there are trivial solutions to the collusion-“safe” problem when Alice is
allowed to use two different key pairs, but we are interestedin solutions that minimize the number of keys
to safeguard and manage while remaining efficient. Indeed, in our first attempt, we try to improve on this by
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providing a cryptosystem that generates ciphertexts that can be fully decrypted using either of two distinct
keys. In particular, we consider a variant of the Paillier cryptosystem with two trapdoors proposed by Cramer
and Shoup [13]. For simplicity, we will describe a version that is only semantically secure and we refer to
the original work [13] for the full CCA2 secure scheme. This simplified scheme was described in [11] where
the authors also show a variant of the scheme in [13] that works in the cyclic group of quadratic residues
modulon2.

The public key is(n,g,h = gx) with g of orderλ(n) = 2p′q′, themastersecret key is the factorization
of n = pq (wherep = 2p′+1,q = 2q′+1 are safe primes), and the “weak” secret key isx∈ [1,n2/2]. (As
remarked in [13], such ag can be easily found by selecting a randoma∈ Z∗n2 and computingg =−a2n.) To
encrypt a messagem∈ Zn, select a randomr ∈ [1,n/4] and compute:T1 = gr ,T2 = hr(1+mn) (mod n2).

If x is known, then the message can be recovered as:m = L(T2/Tx
1 mod n2), whereL(u) = u−1

n , for
all u ∈ {u < n2 | u = 1 mod n}. If (p,q) are known, thenm can be recovered fromT2 by noticing that

Tλ(n)
2 = gλ(n)xr(1+ mλ(n)n) = (1+ mλ(n)n). Thus, given that gcd(λ(n),n) = 1, m can be recovered as:

m= L(Tλ(n)
2 mod n2)[λ(n)]−1

mod n.
Part of the cryptosystem above can be seen as a variation of Elgamal when working modulo a squared

composite number. So, similarly to the Dodis-Ivan scheme, we can dividex into two sharesx1 andx2, such
thatx = x1 +x2. The sharex1 is given to the proxy whilex2 is stored by Bob. The scheme is collusion-safe
since only the “weak” secretx is exposed if Bob and the proxy collude, but the factors ofn, p andq, remain
secret. Indeed, one could send only the valueT2, rather than the ciphertext pair(T1,T2), to allow Alice, and
only her, to decrypt the message. (Remember that we are assuming that ciphertexts are generated correctly.)
Although collusion-“safe,” this scheme is not key optimal or proxy invisible but it remains theoretically
interesting because it is not based on bilinear pairings. However, it cannot yet be seen as a pure proxy
re-encryption scheme since there is no transformation of ciphertexts computed under Alice’s key into ones
under Bob’s.

One way to address this, which also applies to the Dodis-Ivanschemes, is to let the proxy store Bob’s
shares encrypted under his own public key. For instance, in the case where Alice is the delegator, the proxy
could storex1 andx2, the latter encrypted under Bob’s public key. The encryptedshare will be sent to Bob
along with the ciphertext partially decrypted by the proxy.This solution, however, is not satisfactory: It
requires more bandwidth, it doubles the cost of decrypting,it forces Bob to perform distinct decryption
procedures based on whether he receives ciphertexts intended for him or ciphertexts from the proxy, and it
complicates the revocation of decryption rights.

A Second Attempt. To minimize a user’s secret storage and thus become key optimal, we present the
BBS [7], Elgamal based [19] scheme operating over two groupsG1,G2 of prime orderq with a bilinear map
e : G1×G1→G2. The system parameters are random generatorsg∈G1 andZ = e(g,g) ∈G2.

• Key Generation (KG). A userA’s key pair is of the formpka = ga,ska = a.
• Re-Encryption Key Generation (RG). A userA delegates toB by publishing the re-encryption key

rkA→B = gb/a ∈G1, computed fromB’s public key.
• First-Level Encryption ( E1). To encrypt a messagem∈G2 underpka in such a way that it can only

be decrypted by the holder ofska, outputc = (Zak,mZk).
• Second-Level Encryption (E2). To encrypt a messagem∈G2 underpka in such a way that it can be

decrypted byA and her delegatees, outputc = (gak,mZk).
• Re-Encryption (R). Anyone can change a second-level ciphertext forA into a first-level ciphertext for

B with rkA→B = gb/a. Fromca = (gak,mZk), computee(gak,gb/a) = Zbk and publishcb = (Zbk,mZk).
• Decryption (D1,D2). To decrypt a first-level ciphertextca = (α,β) with secret keysk= a, compute
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m= β/α1/a. To decrypt a second-level ciphertextca = (α,β) with secret keysk= a, computem=
β/e(α,g)1/a.

Discussion of Scheme.This scheme is very attractive; it is unidirectional, non-interactive, proxy invisible,
collusion-safe, key optimal, and non-transitive. In particular, notice that first-level encryptions intended for
Alice are safe even if Bob and the proxy collude. Indeed, the weak secretg1/a cannot be used to decrypt
first-level encryptions (but only second-level ones, whichBob and the proxy can open anyway).

The scheme is also very efficient since both encryption and decryption operations are similar to those of
plain Elgamal while the pairing computation is only performed by the proxy.

The security of this scheme depends upon (at least) the assumption that the following problem is hard in
(G1,G2):

Given(g,ga,gb,Q), for g←G1, a,b← Zq

andQ∈G2, decide ifQ = e(g,g)a/b.

To see where the above assumption comes into play, think ofga asgbk for somek∈ Zq. Now, consider
the second-level ciphertextc = (ga,mQ) encrypted for public keygb for messagem. If Q = e(g,g)a/b =
e(g,g)bk/b = e(g,g)k, thenc is a proper encryption ofm; otherwise, it is an encryption of some other message
m′ 6= m. Thus, an adversary that can break the above decisional assumption can easily be made into an
adversary that breaks the semantic security of this scheme.Recently, the above assumption was proven
hard in the generic group model by Dodis and Yampolskiy [18].(Indeed, Dodis and Yampolskiy address
a stronger version calledq-Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI) where for a random
g∈G1, x∈ Zq, andQ∈G2, given(g,gx,gx2

, . . . ,gxq
,Q), it is hard to decide ifQ = e(g,g)1/x or not.)

However, the security of the above scheme also appears to rely on the assumption that given(g,ga), the
valuea cannot be derived from seeing thea-th root of a polynomial set of random values. (This appears
necessary to generate the appropriate re-encryption keys). Although this assumption seems plausible in a
group of prime order, by making a few alterations to this coreidea we are able to provide a solution which
makes fewer (and more standard) assumptions.

A Third Attempt. The global system parameters(g,Z) remain unchanged.

• Key Generation (KG). A userA’s key pair is of the formpka = (Za1,ga2) andska = (a1,a2). (A user
can encrypt, sign, and delegate decryption rights all underZa1; if the valuega2 is present, it signifies
that the user is willing to accept delegations.)

• Re-Encryption Key Generation (RG). A user A delegates toB publishing the re-encryption key
rkA→B = ga1b2 ∈G1, computed fromB’s public information.

• First-Level Encryption ( E1). To encrypt a messagem∈ G2 underpka in such a way that it can
only be decrypted by the holder ofska, outputca,1 = (Za1k,mZk) (to achieve proxy invisibility output
ca,2 = (Za2k,mZk)).

• Second-Level Encryption (E2). To encrypt a messagem∈G2 underpka in such a way that it can be
decrypted byA and her delegatees, outputca,r = (gk,mZa1k).

• Re-Encryption (R). Anyone can change a second-level ciphertext forA into a first-level ciphertext
for B with rkA→B = ga1b2. Fromca,r = (gk,mZa1k), computee(gk,ga1b2) = Zb2a1k and publishcb,2 =
(Zb2a1k,mZa1k) = (Zb2k′ ,mZk′).

• Decryption (D1,D2). To decrypt a first-level ciphertextca,i = (α,β) with secret keyai ∈ ska, compute
m= β/α1/ai for i ∈ {1,2}. To decrypt a second-level ciphertextca = (α,β) with secret keya1 ∈ ska,
computem= β/e(α,g)a1 .
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Discussion of Scheme.This scheme is similar to the previous one, except to accept delegations, a user must
store two secret keys. If Bob and the proxy collude, they cannot decrypt first-level encryptions intended
for Alice. Indeed, they can recover only the weak secretga1 that can only be used to decrypt second-level
encryptions (which Bob and the proxy can already open anyway).

As in our previous scheme, both encryption and decryption operations are similar to those of plain
Elgamal, thus very efficient, while the pairing computationis performed only by the proxy.

The security of this scheme relies on an extension of the decisional bilinear Diffie-Hellman (DBDH)
assumption [8, 12]; the proof of Boneh and Franklin [8] that the DBDH problem is hard in generic groups,
in the sense of Shoup [40], can be easily extended to this problem, when one recalls that the additional
parametere(g,g)bc2

is represented as a random string in the range of the mapping.When no delegations
are made, original first-level ciphertexts of the form(Za1k,mZk) are exactly like Elgamal [19] and thus their
external security only depends on DDH inG2.

Theorem 3.1 The above scheme is correct and secure assuming the extendedDecisional Bilinear Diffie-
Hellman (eDBDH) that for random g← G1, a,b,c← Zq, and Q∈ G2, given(g,ga,gb,gc,e(g,g)bc2

,Q) it
is hard to decide if Q= e(g,g)abc (standard security) and the discrete logarithm assumption(master secret
security).

More precisely, any adversary that can break the standard security of this scheme with probability
(1/2+ε) can be used to break the eDBDH problem in(G1,G2) with probability(1/2+ε/2). Any adversary
that can break the master secret security of this scheme withprobability ε can be used to break the discrete
logarithm problem in G1 with probabilityε.

Proof. Our security definition quantifies over all encryption algorithms Ei ∈ ~E; in this case, we have two
algorithmsE1,E2, where anE1 ciphertext takes the form(Za1k,mZk). This construction is equivalent to that
of the form(Zk,mZa1k) [19]. Now, it is clear if theE2 ciphertext of the form(gk,mZa1k) is secure, then so
are theE1 versions, sinceE2 ciphertexts reveal strictly more information (i.e.,gk ∈ G1). Thus, it suffices to
argue the security of theE2 ciphertexts only.

Standard Security. SupposeA distinguishes encryptions ofE2 with non-negligible probability, we
simulate an adversaryS that decides eDBDH as follows:

1. On eDBDH input(y,ya,yb,yc,e(y,y)bc2
,e(y,y)d), the simulator sets up a proxy re-encryption world

for the adversaryA with the goal of usingA to decide ifd = abc or not. To begin, the simulator
outputs the global parameters for the system(g,Z). Here, for reasons we will later see, the simulator
setsg = yc, Z = e(g,g) = e(y,y)c2

. Next, the simulator sends to adversaryA the target public key
pkB = (e(y,y)bc2

= Zb,(yc)t = gt), wheret is randomly selected fromZq by the simulator. Thus, we
can think of(b, t) as the secret key of the target user.

2. Next, fori = 1 up to poly(k), A can request:

(a) rkx→B, a delegation toB from a party corrupted byA. A can generate these delegations for as
many corrupted users as it liked by internally by running(pkx,skx)← KG(1k) and computing
rkx→B = (gt)sk(x,1) , whereskx = (sk(x,1),sk(x,2)).

(b) rkB→h, a delegation fromB to an honest partyh. The simulator randomly selects two values
r(h,1), r(h,2)←Zq, setsrkB→h = (yb)r(h,2) = gb(r(h,2)/c) andpkh = (Zr(h,1) ,yr(h,2) = gr(i,2)/c), and sends
(pkh, rkB→h) to A. The corresponding secret key isskh = (r(h,1),(r(h,2)/c)).

(c) rkh→B, a delegation toB from an honest partyh. The simulator uses either the recorded value
r(h,1) from the previous step if the honest party already exists, orgenerates fresh random values
for a new party, and computesrkh→B = (gt)r

(h,1).
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3. Eventually,A must output a challenge(m0,m1,τ), wherem0 6= m1 ∈M andτ is its internal state in-
formation. The simulator randomly selectss∈ {0,1}, computes the ciphertextcs = (ya,mse(y,y)d) =

(ga/c,mse(g,g)d/c2
), sends(cs,τ) to A, and waits forA to outputs′ ∈ {0,1}.

4. If s= s′, thenSguesses “d = abc”; otherwiseSguesses “d 6= abc”.

First, we observe that ifd = abc, then the simulation is perfect; that is, the ciphertext output is of
the proper form(ga/c,mbZ(abc)/c2

= mbZb(a/c)) for the user withsk(B,1) = b. However, ifd 6= abc, then
mb is information-theoretically hidden fromA, sinced was chosen independently ofa,b,c. Thus, if A
succeeds with probability 1/2+ε, thenSsucceeds with probability(1/2+ε) (whend = abc) and probability
exactly 1/2 (whend 6= abc), for an overall success probability of(1/2+ ε/2). This contradicts the eDBDH
assumption whenε is non-negligible.

Master Secret Security. Suppose an adversaryA can recover the secret key of a targeted userB (i.e.,
skB = (sk(B,1),sk(B,2))) with non-negligible probabilityε by interacting withB according to the second part
of definition 2.3, then we can build an adversaryS that takes discrete logs inG1 with probability ε. Let us
focus our attention on recovering only the valuesk(B,1) (which is arguably the most valuable of the two).
Our simulatorSworks as follows:

1. On input(g,ga) in G1, output the global parameters(g,Z = e(g,g)) and the target public keypkB =
(e(g,ga), gsk(B,2)), wheresk(B,2) is chosen at random fromZq. We can think ofsk(B,1) = a.

2. Next, fori = 1 up to poly(k), A can request:

(a) rkB→x, a delegation fromB to a party corrupted byA. S randomly selectsr(x,1), r(x,2)← Zq, sets
rkB→x← gar(x,2) , pkx = (Zr(x,1) ,gr(x,2)), andskx = (r(x,1), r(x,2)), and sends(pkx,skx, rkB→x) to A.

(b) rkx→B, a delegation toB from a party corrupted byA. A can generate these delegations internally
by running(pkx,skx)← KG(1k) and computingrkx→B = (gsk(B,2))sk(x,1) .

3. Eventually,A must output a purported secret key forB of the form(α,β). The simulator returns the
valueα.

The simulation is perfect; thusA must not be able to recover the master secret key ofB, despite accepting
and providing numerous delegations toB, because otherwise,Scan efficiently solve the discrete logarithm
problem inG1. 2

3.2 Temporary Unidirectional Proxy Re-encryption

In this section, we improve our temporary unidirectional proxy re-encryption scheme over the conference
version of this paper [4], by a slight alteration in the first-level encryption which does not increase the
running time, but allows us to prove the scheme’s security under a more standard assumption.

In addition to the global parameters(g,Z), suppose there is a trusted server that broadcasts a random
valuehi ∈ G1 for each time periodi ≥ 1 for all users to see. LetZi = e(g,hi) ∈ G2. We enable Alice to
delegate to Bob only for time periodi, say, while she is on vacation, as follows.

• Key Generation (KG). A user A’s key pair is of the formpka = (ga0,gar ),ska = (a0,ar), (plus a
temporarysecretai for time periodi which will be generated inRG).

• Re-Encryption Key Generation (RG). A user A publicly delegates toB during time period ias
follows: (1)B chooses and stores a random valuebi ∈ Zq, and publisheshbi

i ; then, (2)A computes and

publishesrki
A→B = har bi/a0

i .
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• First-Level Encryption ( E1). To encryptm∈G2 underpka during time periodi in such a way that it
can only be decrypted byA, computeZark

i = e(gar ,hi)
k and outputca,r = (Zar k

i ,mZk
i ).

• Second-Level Encryption (E2). To encryptm∈G2 underpka during time periodi in such a way that
it can be decrypted byA and her delegatees, computeZark

i = e(gar ,hi)
k, and outputca,i = (ga0k,mZark

i ).
• Re-Encryption (R). Anyone can change a second-level ciphertext forA into a first-level ciphertext

for B with rkA→B,i = har bi/a0
i . Fromca,i = (ga0k,mZark

i ), computeZbiar k
i = e(ga0k, rkA→B) and publish

cb,i = (Zbiar k
i ,mZark

i ) = (Zbik′

i ,mZk′
i ).

• Decryption (D1,D2). To decrypt a first-level ciphertextca, j = (α,β) with secret keya j ∈{ar ,a1,a2, . . .}
(corresponding to a re-encryption from thejth time period or a first-level original ciphertext with per-
manent keyar ), computem= β/α1/aj . To decrypt a second-level ciphertextca, j = (α,β) with secret
key (a0,ar), computem= βa0/e(α,h j )

ar .

Discussion of Scheme.A single global change can invalidate all previous delegations withoutany user
needing to change their public key.

Theorem 3.2 The above scheme is correct and secure assuming the Decisional Bilinear Diffie-Hellman
(DBDH) that for random g← G1, a,b,c← Zq and Q∈ G2, given(g,ga,gb,gc,Q) it is hard to decide if
Q = e(g,g)abc (standard security) and the discrete logarithm assumption(master secret security).

More precisely, let T be the maximum number of time steps. Anyadversary that can break the standard
security of this scheme with probability(1/2+ ε) can be used to break the DBDH problem in(G1,G2) with
probability (1/2+ ε/(2T)). Any adversary that can break the master secret security of this scheme with
probability ε can be used to break the discrete logarithm problem in G1 with probabilityε.

Proof. Our security definition quantifies over all encryption algorithms Ei ∈ ~E; in this case, we have two
algorithmsE1,E2 which produce different types of ciphertexts. Our securityproof will address both styles
of ciphertexts.

Standard Security. Let T be the maximum number of time periods. SupposeA distinguishesE1

ciphertexts with non-negligible probability (we will addressE2 shortly), we simulate an adversaryS that
decides DBDH as follows:

1. On input(g,ga,gb,gc,Zd), the simulator sendsA the global parameters(g,e(g,g) = Z) and the target
public keypkB = (gt ,ga), wheret is randomly selected fromZq, and the corresponding secret key is
skB = (t,a). The simulator also honestly generates and publishes the public keys of all other parties.

2. For j = 1 up toT time periods, the simulator publishes the public delegation parameter for that time
periodh j = gxj , wherex j is randomly selected fromZq. The simulator also publishes the delegation
acceptance valueD(U, j) = h

z(U, j)

j for all usersU , includingB, wherez(U, j) is randomly selected from
Zq.

(a) Next, fori = 1 up to poly(k), A can request:
i. rkx→B, a delegation toB from a party corrupted byA. A can generate these delegations

internally by running(pkx,skx) ← KG(1k), whereskx = (sk(x,0),sk(x,r)), and computing

rkx→B = D
sk(x,r)/sk(x,0)

(B, j) .
ii. rkB→h, a delegation fromB to an honest partyh with delegation acceptance valueD(h, j) for

time period j. Scomputes and sendsrkB→h← (ga)xj z(h, j)/t = Da/t
(h, j) to A.

iii. rkh→B, a delegation toB from an honest partyh with secret keyskh = (sk(h,0),sk(h,r)). S

trivially computesrkh→B = D
sk(h,r)/sk(h,0)

(B, j) .
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3. Eventually, during the last time period,A must output a challenge(m0,m1,τ), wherem0 6= m1∈M and
τ is its internal state information. The simulator randomly selectss∈ {0,1}, computes the ciphertext
cs = (Zd,e(gb,gc)ms), sends(cs,τ) to A, and waits forA to outputs′ ∈ {0,1}.

4. If s= s′, thenSguesses “d = abc”; otherwiseSguesses “d 6= abc”.

First, we observe that ifd = abc, then the simulation is perfect; that is, the ciphertext output is of
the proper form(Zabc,Zbcms) for the user withsk(B,r) = a. However, ifd 6= abc, thenms is information-
theoretically hidden fromA. Thus, ifA succeeds with probability 1/2+ ε at distinguishingE1 ciphertexts,
thenSsucceeds with probability(1/2+ ε) (whend = abc) and probability exactly 1/2 (whend 6= abc), for
an overall probability of(1/2+2/ε). This contradicts the DBDH assumption whenε is non-negligible.

Now, suppose thatA distinguishesE2 ciphertexts with non-negligible probability, we simulatea different
adversaryS that decides DBDH as follows:

1. On input(g,ga,gb,gc,Zd), the simulator sendsA the global parameters(y= gc,e(y,y) = e(g,g)c2
) and

the target public keypkB = (y1/c = g,ya/c = ga/c) and the corresponding secret key isskB = (1/c,a/c).
The simulator also honestly generates and publishes the public keys of all other parties.

2. For j = 1 up toT time periods, the simulator publishes the public delegation parameter for that time
periodh j = yxj = (gc)xj , wherex j is randomly selected fromZq. The simulator also publishes the
delegation acceptance valueD(U, j) = h

z(U, j)/c

j = gxj z(U, j) for all usersU , including B, wherez(U, j) is
randomly selected fromZq. The simulator pretends to give the temporary secret(z(U, j)/c) to each
honest party (it cannot actually do so, since it does not knowthe value 1/c). These acceptance values
are generated without the 1/c term for all corrupted users.

(a) Next, fori = 1 up to poly(k), A can request:
i. rkx→B, a delegation toB from a party corrupted byA. A can generate these delegations

internally by running(pkx,skx) ← KG(1k), whereskx = (sk(x,0),sk(x,r)), and computing

rkx→B = D
sk(x,r)/sk(x,0)

(B, j) .
ii. rkB→h, a delegation fromB to an honest partyh with delegation acceptance valueD(h, j) for

time period j. Scomputes and sendsrkB→h = D
sk(B,r)/sk(B,0)

(h, j) = yxj z(h, j)(a/c)/(1/c) = (ga)xj z(h, j) .

iii. rkh→B, a delegation toB from an honest partyh. Scomputes and sendsrkh→B = D
sk(h,r)/sk(h,0)

(B, j)
to A.

3. Eventually, during the last time period,A must output a challenge(m0,m1,τ), wherem0 6= m1∈M and
τ is its internal state information. The simulator randomly selectss∈ {0,1}, computes the ciphertext
cs = (gb,ms(Zd)xj ) = (yb/c,mse(y,h j )

d/c2
), sends(cs,τ) to A, and waits forA to outputs′ ∈ {0,1}.

4. If s= s′, thenSguesses “d = abc”; otherwiseSguesses “d 6= abc”.

Now, we observe that ifd = abc, then the simulation is perfect; that is, the challenge ciphertext is of
the proper form(ysk(B,0)b,mse(y,h j )

sk(B,r)b). However, ifd 6= abc, thenms is information-theoretically hidden
from A. Thus, ifA succeeds with probability 1/2+ ε at distinguishingE2 ciphertexts, thenSsucceeds with
probability(1/2+ ε) (whend = abc) and probability exactly 1/2 (whend 6= abc), for an overall probability
of (1/2+2/ε). This contradicts the DBDH assumption whenε is non-negligible.

Master Secret Security.Let T be the maximum number of time periods. Suppose an adversaryA can
recover the secret key of a targeted userB (i.e., skB = (sk(B,1),sk(B,2))) with non-negligible probability by
interacting withB according to the second part of definition 2.3, then we can build an adversaryS that takes
discrete logs inG1. Let us focus our attention on recovering only the valuesk(B,2). Our simulatorSworks
as follows:
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1. On input(g,ga) in G1, output the global parameters(g,Z = e(g,g)) and the target public keypkB =
(gsk(B,0) ,ga), wheresk(B,0) is chosen randomly fromZq. We can think ofsk(B,r) = a.

2. For j = 1 up toT time periods, the simulator publishes the public delegation parameter for that time
periodh j = gxj , wherex j is randomly selected fromZq. The simulator also publishes the delegation
acceptance valueh

z(U, j)

j for all usersU , includingB, wherez(U, j) is randomly selected fromZq.
3. Next, fori = 1 up to poly(k), A can request:

(a) rkB→U , a delegation fromB to a party corrupted byA. Let j be the current time period.Ssets

rkB→U = (ga)xj z(U, j)/sk(B,0) = h
az(U, j)/sk(B,0)

j = h
sk(B,r)z(U, j)/sk(B,0)

j .
(b) rkU→B, a delegation toB from a party corrupted byA. A can generate these delegations internally

using the public information ofB.

4. Eventually,A must output a purported secret key forB of the form(α,β). The simulator returns the
valueβ.

The simulation is perfect; thusA must not be able to recover the master secret key ofB, despite accepting
and providing numerous delegations toB, because otherwise,Scan efficiently solve the discrete logarithm
problem inG1. 2

4 Encrypted File Storage

4. Re-encrypted lockbox

3. Encrypted lockbox1. Block request

Block Store Client Access Control

Server

2. Encrypted data block

Figure 1: Operation of the proxy re-encryption file system. The user’s client machine fetches encrypted
blocks from the block store. Each block includes a lockbox encrypted under a master public key. The client
then transmits lockboxes to the access control server for re-encryption under the user’s public key. If the
access control server possesses the necessary re-encryption key, it re-encrypts the lockbox and returns the
new ciphertext. The client can then decrypt the re-encrypted block with the user’s secret key.

In this section we describe a file system which uses an untrustedaccess control serverto manage access
to encrypted files stored on distributed, untrusted block stores. We use proxy re-encryption to allow for
access control without granting full decryption rights to the access control server. To our knowledge, our
implementation represents the first experimental implementation and evaluation of a system using proxy
re-encryption.

Overview. In our file system, end users on client machines wish to obtainaccess to integrity-protected,
confidential content. A content owner publishes encrypted content in the form of a many-reader, single-
writer file system. The owner encrypts blocks of content withunique, symmetriccontent keys. A content
key is then encrypted with an asymmetric master key to form alockbox. The lockbox resides with the block
it protects.

15



Untrusted block stores make the encrypted content available to everyone. Users download the encrypted
content from a block store, then communicate with an access control server to decrypt the lockboxes pro-
tecting the content. The content owner selects which users should have access to the content and gives the
appropriate delegation rights to the access control server.

Access Control Using Proxy Cryptography. We propose an improvement on the access control server
model that reduces the server’s trust requirements by usingproxy cryptography. In our approach, the content
keys used to encrypt files are themselves securely encryptedunder a master public key, using a unidirectional
proxy re-encryption scheme of the form described in this work. Because the access control server does not
possess the corresponding secret key, it cannot be corrupted so as to gain access to the content keys necessary
to access encrypted files. The secret master secret key remains offline, in the care of a content owner who
uses it only to generate the re-encryption keys used by the access control server. When an authorized
user requests access to a file, the access control server usesproxy re-encryption to directly re-encrypt the
appropriate content key(s) from the master public key to theuser’s public key.

This architecture has significant advantages over systems with trusted access control servers. The key
material stored on the access control server cannot be used to access stored files, which reduces the need
to absolutely trust the server operator, and diminishes theserver’s value to attackers. The master secret key
itself is only required by a content owner when new users are added to the system, and can therefore be stored
safely offline where it is less vulnerable to compromise. Finally, the schemes in Section 3 areunidirectional
andnon-interactive, meaning that users do not need to communicate or reveal their secret keys in order
to join the system. This allows content owners to add users tothe system without interaction, simply by
obtaining their public key. Because this system works with users’ long-term keys (rather than generating
ephemeral keys for the user), there is an additional incentive for users not to reveal their decryption keys.

The proposed design fundamentally changes the security of an access control server storage system. In
this new model, much of the security relies on the strength ofa provably-secure cryptosystem, rather than
on the trust of a server operator for mediating access control. Because the access control server cannot
successfully re-encrypt a file key to a user without possessing a valid delegation key, the access control
server cannot be made to divulge file keys to a user who has not been specifically authorized by the content
owner, unless this attacker has previously stolen a legitimate user’s secret key.

Chefs. We implemented our file system on top of Chefs [22], a confidentiality-enabled version of the SFS
read-only file system [23]. Chefs is a single-writer, many-reader file system that provides decentralized ac-
cess control in integrity-protected content distribution. A content owner creates a signed, encrypted database
from a directory tree of content. The database is then replicated on untrusted hosts (e.g., volunteers). A client
locates a replica, then requests the encrypted blocks. We chose the Chefs architecture because it allowed us
to experiment with different granularities of encryption (per-file and per-block) while providing a transparent
file system interface for our experiments.

Chefs tags each content block with a lockbox. In the originalChefs design, the lockbox contains a 128-
bit AES key, itself encrypted with a shared group AES key. Chefs assumes an out-of-band mechanism for
content owners to distribute group keys to users.

4.1 Design and Implementation

To implement our proposed design, we modified Chefs to include an access control server. Every block in
a Chefs database is encrypted with a 128-bit AES content key in CBC mode. Depending on the granularity
of the encryption, a content key can be shared across all of the blocks in a particular file, directory or
database, or unique keys can be used for each block. Content keys are themselves encrypted under a system
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master public key using the “Third Attempt” bilinear Elgamal scheme from Section 3.1. This encryption
results in a set of lockboxes stored with the file data, eitherin file or directory inodes (per-file and per-
directory encryption) or within the blocks themselves (per-block encryption). The parameters of the proxy
re-encryption scheme causes a sealed lockbox to expand to several hundred bits, even though the underlying
plaintext is a 128-bit AES key.

When a client encounters a block for which it does not possessa content key, it asks the access control
server to re-encrypt the lockbox from the master key to the client’s public key. If the access control server
possesses an appropriate re-encryption key from the masterkey to the client’s key, it performs the appropriate
proxy re-encryption and returns the resulting ciphertext to the client, which can then decrypt the lockbox
under its own secret key. Figure 1 illustrates this procedure.

Each re-encryption call necessarily results in a round-trip network request, in addition to the proxy
re-encryption and client-side decryption of the re-encrypted ciphertext. Thus, the choice of encryption
granularity greatly affects the number of re-encryption calls made from the client to the access control
server, which in turn affects the end-to-end performance ofthe system.

4.2 Experimental Results

In implementing a proxy re-encryption file system, we had twogoals in mind. First, we wished to show
that proxy re-encryption could be successfully incorporated into a basic cryptographic file system. Second,
we sought to prove that the additional security semantics provided by a proxy re-encrypting access control
server came at an acceptable cost to end-to-end performance.

To achieve this second goal, we conducted a number of benchmarks using the proxy-enabled Chefs file
system using various granularities of content key usage (per-block and per-file). Along with these exper-
iments, we conducted microbenchmarks of the proxy re-encryption functions used in our implementation,
as well as application-level benchmarks measuring file system performance. To provide a standard of com-
parison, we conducted the same experiments on an unmodified Chefs configuration with no access control
server or proxy re-encryption, using only a single preset AES key to secure the contents of the database.

Experimental Setup. For the purposes of our testing, we used two machines to benchmark the proxy-
enabled Chefs file system. The client machine consisted of anAMD Athlon 2100+ 1.8 GHz with 1 Gbyte
RAM and an IBM 7200 RPM, 40 Gbyte, Ultra ATA/100 hard drive. The server machine was an Intel
Pentium 4 2.8 GHz with 1 Gbyte RAM and a Seagate Barracuda 7200RPM, 160 Gbyte, Ultra ATA/100
hard drive. Both systems were running Debian testing/unstable with the Linux 2.6.8 kernel. The client and
the server were situated in different cities, representinga distributed file system scenario. We measured the
round-trip latency between the two machines at 13 msec, and the maximum sustained throughput of the
network link at 7 Mbit/sec. We implemented the cryptographic primitives for the “Third Attempt” bilinear
Elgamal scheme using version 4.83 of the MIRACL cryptographic library [39], which contains efficient
implementations of the Tate pairing as well as fast modular exponentiation and point multiplication.

Cryptographic Benchmark. Table 2 presents average times over 100 runs of the cryptographic operations
in the bilinear proxy re-encryption scheme (the third one from Section 3.1). The measurements provide
some basis for understanding the impact of the proxy re-encryption on overall file system performance.
These results indicate that re-encryption is the one of the most time consuming operations in our file system.

We were surprised that our 1.8 GHz AMD Athlon 2100 performed better than our 2.8 GHz Intel Pen-
tium 4 server in the microbenchmarks. We attribute this advantage to modular arithmetic routines in MIR-
ACL that perform faster on the Athlon. The MIRACL library provides many hints for selecting assembly
code optimizations. Because other benchmarks such as the OpenSSL RSA “speed” test run faster on our
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Parameter Machine Encryption Decryption Re-encryption Decryption
size (by original recipient) (by delegatee)

256-bit
client 3.1 msec 8.7 msec 8.6 msec 1.5 msec
server 3.3 msec 8.8 msec 8.7 msec 1.5 msec

512-bit
client 7.8 msec 22.5 msec 22.0 msec 3.4 msec
server 9.3 msec 26.5 msec 26.7 msec 4.1 msec

Table 2: Average operation times for 100 runs of the “Third Attempt” bilinear Elgamal proxy re-
encryption scheme on our client and server. All operations refer to re-encryptable “second-level”
ciphertexts.

server, we suspect that the Intel server would perform better with proper selection of optimizations in MIR-
ACL.

We conducted our remaining benchmarks using various encryption granularities, including per-block
and per-file. For each measurement, we report the median result of five samples. In all measurements, the
server has a warm block cache and the client has a cold block cache. Our microbenchmarks, presented in
Figures 2 and 3, include runs of the small-file and large-file test from the LFS suite of file system perfor-
mance tests [37]. We use the read phases of the LFS test to measure the fundamental performance of our
system.

The first test reads several small files. The second test consists of a sequential read of a large file. These
two tests capture common workloads in a typical file system. For each of these tests, we experimented with
different encryption granularities, including per-blockand per-file content keys. The small file benchmark in
particular is a worst-case scenario for a proxy-enabled filesystem, as it requires a large number of lockbox
re-encryptions relative to the amount of data read. On the other hand, the large-file workload tends to exhibit
exactly the opposite effect, as the ratio of re-encryptionsto data read is much smaller. In general, all per-
block encryption scenarios tend to be the least efficient (and least practical) when proxy re-encryption is
enabled.

Small-file Benchmark. The SFSRO and Chefs benchmarks each generate 2,022 RPCs to fetch content from
the block store (1,000 files, 10 directories, and one root directory — each generating two RPCs: one for the
inode, one for the content).

Note that Chefs adds virtually no discernible overhead, even though the client decrypts every content
fetch with 128-bit AES in CBC mode. With the round-trip time accounting for at least 26 seconds of the
measurement, the network overshadows the cost of cryptography.

The proxy re-encryption file system first makes 2,022 fetchesof content, just like Chefs. With per-
file granularity of content keys, the small-file benchmark generates 1,011 re-encryption RPCs. The proxy
re-encryption file system takes 44 seconds longer than Chefs. The 44 seconds corresponds exactly to the
13 msec round-trip time, 26.7 msec re-encryption time on theserver, and 3.4 msec delegatee decryption
time on the client for each of the 1,011 re-encryption RPCs (See Table 2).

With per-block granularity, the small-file benchmark generates 2,022 re-encryption RPCs. A file or
directory consists of an inode and data block, thus each readnow generates two re-encryptions. The proxy
re-encryption file system takes 87 seconds longer than Chefs. Because the per-block re-encryption generates
twice as many re-encryption RPCs as the per-file scenario, the results concur with our expectations.

Large-file Benchmark. The large-file benchmark generates 5,124 RPCs to fetch 40 Mbyte of content from
the block store (two RPCs for the root directory, two for the file, and 5,120 for the file data). In the SFSRO
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Figure 2: Small-file microbenchmark from LFS suite. We perform a complete read on 1,000 1 Kbyte files
dispersed in 10 directories.
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Figure 3: Large-file microbenchmark from LFS suite. We perform a sequential read on a 40 Mbyte file in
8 Kbyte blocks.
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and Chefs experiments, the 7 Mbit bandwidth largely dominates the throughput.
The measurement of Chefs demonstrates that the cost of adding confidentiality to SFSRO comes at no

cost to throughput when fetching data across the Internet. Chefs runs slightly faster than SFSRO, initially
causing us to question the validity of the measurements. We conducted further measurements to ensure
confidence in our results. We verified that both SFSRO and Chefs issue the same type and number of RPCs.
The responses to content fetching RPCs in SFSRO are 8,200 bytes. The responses in Chefs are 8,244 bytes
because of PKCS#7 padding overhead with AES-CBC encryption. We suspect that byte alignment and
fortuitous interleaving of asynchronous RPCs allowed Chefs to slightly outperform SFSRO. In a run of the
large-file benchmark, SFSRO encountered locking contention 16,054 times (when a callback encounters a
locked a cache). Chefs encountered only slightly less locking contention — 15,981 times.

Because the large-file workload involves only a single file, the per-file proxy re-encryption has no dis-
cernible cost. There are a mere two proxy re-encryption RPCs(one for the root, one for the file). The
per-block proxy re-encryption generates 5,124 re-encryption RPCs, thus we expect a significant degradation
of throughput because of the 13 msec network round-trip time.

The cost of per-block re-encryption is prohibitively expensive for large files. We expect that per-file
granularity or per-file-system granularity will be much more common than per-block granularity. For in-
stance, we do not expect users to grant access to portions of asingle file. Rather, we expect users would
share access-controlled content in collections of files — similar to a collection of Web pages or a directory
subtree.

Note that the large file benchmark in this extended document differs from that of previous versions of
this paper. Our original file system clients unintentionally prefetched file content. Furthermore, a race con-
dition had the potential to generate unnecessary RPCs to fetch content. The race condition did not affect
measurements in the original paper; the correct function always won the race. In later unpublished measure-
ments, the race generated twice as many RPCs as necessary to fetch content. Removing the unintentional
prefetching and fixing the race condition with a locking protocol slightly reduced the baseline throughput
for sequential reads.

Application-level Benchmark. Our application-level benchmark consists of an Emacs version 21.3 com-
pilation. The source code is stored in our file system, while the resulting binaries are written to a local
disk. We first runconfigure, then compile withmake. This CPU-intensive workload requires access to
approximately 300 files. The results of this test are presented in Figure 4, and show that the per-file and even
per-block proxy cryptography adds negligible overhead forthis application workload. We believe the cost
is nominal for the additional security semantics of proxy re-encryption. The original paper did not take into
account the time to runconfigure. Therefore, the new timings are slightly longer for all tests.

Scalability. We also measured how well the access control server performsunder a heavy load. Figure 5
shows that our proxy re-encryption server can scale up to 1,000 pending requests before exhibiting signs
of stress. We replayed a trace of proxy re-encryption RPCs. This required no computation on the client
side, but caused the server to perform proxy re-encryption.We start by issuing a single request, waiting for
the response before issuing another request. To simulate many simultaneous clients, we gradually increase
the window size of outstanding RPCs. Our server is able to sustain 100 re-encryptions/sec until reaching
about 1,000 outstanding requests. The server coped with up to 10,000 outstanding re-encryption requests,
but quickly spiraled downwards thereafter.
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Figure 4: Application-level benchmark. We record the time to compile Emacs version 21.3.
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4.3 Discussion

Our access control server acts like a credentials download service. For instance, PDM [35] stores encrypted
credentials on a server. A user decrypts the credentials with a password. PDM works fine when an encrypted
credential is available to a single individual. However, our file system supports group access control. We
could use PDM instead of our access control server, but this would reduce the key distribution problem to
that of sharing a password with all group members.

We selected a single-writer, many-reader file system ratherthan a general purpose file system to experi-
ment with proxy re-encryption in content distribution. This eliminates problems not directly related to proxy
re-encryption, such as fork consistency [33].

In practice, an organization’s data may consist of many distinct file sets or equivalence classes, access
to each of which should be limited to a subset of the organization’s members. For instance, a large company
with several departments might wish to keep data from individual departments confidential within the origi-
nating department. However, an access control server shared with other departments would have advantages
in reliability and logging. This can easily be achieved by using many different master keys, each of which
encrypts content keys for files owned to a different group. The corresponding secret keys can be held by
different content owners, whose only operational responsibility is to generate re-encryption keys for new
users.

Because there is no fundamental difference in format between a master public key and a user’s public
key, individual users can use their own public keys as masterkeys, allowing users to act as content owners of
their own personal file sets. Additional possibilities can be achieved if multiple file keys are used to encrypt
single files, allowing for files that are available only to users who belong to multiple groups simultaneously.

We believe that our experimental results demonstrate the practicality of proxy re-encryption in protecting
stored content. Though proxy re-encryption adds a level of overhead to file system, this overhead is not
extreme, and can be worth the additional security that comesfrom using a centralized, semi-trusted access
control server. Various system choices, such as parameter sizes and encryption granularity can greatly affect
the efficiency of the system; we have selected the ones we believe to be most promising.

5 Conclusions and Future Work

In this paper, we explored proxy re-encryption from both a theoretical and practical perspective. We outlined
the characteristics and security guarantees of previouslyknown schemes, and compared them to a suite
of improved re-encryption schemes we present over bilinearmaps. These pairing-based schemes realize
important new features, such as safeguarding the master secret key of the delegator from a colluding proxy
and delegatee. One of the most promising applications for proxy re-encryption is giving proxy capabilities
to the key server of a confidential distributed file system; this way the key server need not be fully trusted
with all the keys of the system and the secret storage for eachuser can also be reduced. We implemented this
idea in the context of the Chefs file system, and showed experimentally that the additional security benefits
of proxy re-encryption can be purchased for a manageable amount of run-time overhead. We leave open
the theoretical problem of finding a proxy re-encryption scheme that does not allow further delegations; that
is, Bob (plus the proxy) can not delegate to Carol what Alice has delegated to him. Another challenging
problem is to find unidirectional re-encryption schemes that allow ciphertexts to be re-encrypted in sequence
and multiple times. We also leave open the practical problems of finding more efficient implementations of
secure proxy re-encryption schemes, as well as conducting more experimental tests in other applications.

As future work, we plan to explore definitions of proxy re-encryption to achieve CCA2 security in a
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multi-user setting. This requires careful consideration of the secrets involved, including those held by the
proxy and delegatees themselves. One promising direction is to deploy a variation of certain standard trans-
formations, such as the one proposed by Fujisaki-Okamoto in[24], that allow to transform the ciphertext
so that the non-malleability of the encrypted message is guaranteed while allowing the public key of the
intended recipient to be changed.

Source code for our proxy re-encryption library and file system is available upon email request.
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