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Abstract

In 1998, Blaze, Bleumer, and Strauss (BBS) proposed ancapioln callecatomic proxy re-encryptign
in which a semi-trusted proxy converts a ciphertext for Alicto a ciphertext for Bolwvithoutseeing the
underlying plaintext. We predict that fast and secure rergstion will become increasingly popular as a
method for managing encrypted file systems. Although effibjecomputable, the wide-spread adoption
of BBS re-encryption has been hindered by considerableitgcsks. Following recent work of Dodis
and Ivan, we present new re-encryption schemes that reedizenger notion of security, and we demon-
strate the usefulness of proxy re-encryption as a methoddinhg access control to a secure file system.
Performance measurements of our experimental file systenonkgrate that proxy re-encryption can
work effectively in practice.

1 Introduction

Proxy re-encryption allows a proxy to transform a ciphdrsxmputed under Alice’s public key into one
that can be opened by Bob’s secret key. There are many uggflitaions of this primitive. For instance,
Alice might wish to temporarily forward encrypted email terhcolleague Bob, without giving him her
secret key. In this case, Alice the delegator could desggaairoxy to re-encrypt her incoming mail into a
format that Bob the delegatee can decrypt using his own tskeeye Alice could simply provide her secret
key to the proxy, but this requires an unrealistic level ottin the proxy.

We present several efficient proxy re-encryption schemasatfier security improvements over earlier
approaches. The primary advantage of our schemes is thyaatbeunidirectional (i.e., Alice can delegate
to Bob without Bob having to delegate to her) and do not regdélegators to reveal all of their secret key
to anyone — or even interact with the delegatee — in orderldava proxy to re-encrypt their ciphertexts.
In our schemes, only a limited amount of trust is placed inpifexy. For example, it is not able to decrypt
the ciphertexts it re-encrypts, and we prove our schemagsee&ven when the proxy publishes all the re-
encryption information it knows. This enables a number gfligptions that would not be practical if the
proxy needed to be fully trusted.

*An earlier version of this paper appeared in the Proceedifdgse 12th Annual Network and Distributed System Security
Symposium (NDSS), February 2005, and a journal version &as bceepted for publication in ACM Transactions on Infdroma
and System Security (TISSEC).
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We provide the first empirical performance measurementppliGtions using proxy re-encryption.
To demonstrate the practical utility of our proxy re-endigp schemes, we measure an implementation of
proxy re-encryption used in a secure file system. Our systsgs a centralizedccess control serveo
manage access to encrypted content stored on distributédisted replicas. We use proxy re-encryption
to allow for centrally-managed access control without granfull decryption rights to the access control
server.

1.1 Proxy Re-encryption Background

A methodology for delegating decryption rights was firstaduced by Mambo and Okamoto [34] purely
as an efficiency improvement over traditional decrypt-#reh-encrypt approaches.

In 1998, Blaze, Bleumer, and Strauss [7] proposed the nofiéatomic proxy cryptography,” in which
a semi-trusted proxy computes a function that convertsectphts for Alice into ciphertexts for Bob without
seeing the underlying plaintext. In their Elgamal baseswd with modulus a safe prinee= 2q+ 1, the
proxy is entrusted with the delegation Keya mod q for the purpose of diverting ciphertexts from Alice to
Bob via computing(md‘mod p, (g®)®2mod p). The authors noted, however, that this scheme contained
an inherent restriction: it ididirectional that is, the valueb/a can be used to divert ciphertexts from
Alice to Bob and vice versa. Thus, this scheme is only usehgmthe trust relationship between Alice
and Bob is mutual. (This problem can be solved, for any schéygenerating an additional, otherwise
unused, key pair for the delegatee, but this introducediaddi overhead.) The BBS scheme leaves several
open problems. Delegation in the BBS schem@assitive which means that the proxy alone can create
delegation rights between two entities that have neverealgoe this. For example, from the value4 and
b/c, the proxy can re-encrypt messages from Alice to Carol. Aeotirawback to this scheme is that if the
proxy and Bob collude, they can recover her secret kepAs) «b = al

Jakobsson [30] developed a quorum-based protocol wherprthxy is divided into sub-components,
each controlling a share of the re-encryption key; herekéys of the delegator are safe so long as some of
the proxies are honest. A similar approach was considerethby, Mars, Schneider and Redz [42].

Recently, Dodis and Ivan [16] realizeahidirectional proxy encryption for Elgamal, RSA, and an IBE
scheme by sharing the user’s secret key between two paftesy also solved the problem of the proxy
alone assigning new delegation rights. In their unidite@i Elgamal scheme, Alice’s secret kg divided
into two shares; ands,, wheres=s; + s, and distributed to the proxy and Bob. On receiving ciphestef
the form(mg g*), the proxy first computegmg™/(g¥)>), which Bob can decrypt agng?*/(g*)%2) = m.
Although this scheme offers some advantages over the BB®aqd it introduces new drawbacks as well.
These “secret-sharing” schemes do not change cipheriaxlite into ciphertexts for Bob in the purest
sense (i.e., so that Bob can decrypt them hithown secret key), they delegate decryption by requiring
Bob to store additional secrets (i.e., sha{e@}) that may in practice be difficult for him to manage. For
example, in our file system in Section 4, the number of seeretser must manage should remain constant
regardless of the number of files it accesses. One exceptithe iDodis-lvan IBE scheme [16] where the
global secret that decryp#dl ciphertexts is shared between the proxy and the delegates, he delegatee
need only store a single secret, but an obvious drawbaclaisathen the proxy and any delegatee in the
system collude, they can decrypt everyone else’s messages.

Thus, proxy re-encryption protocols combining the variagvantages of the BBS and Dodis-lvan
schemes, along with new features such as time-limited dgtets, remained an open problem. (We provide
a list of these desirable features in Section 3.) Our resaltsbe viewed as contributing both to the set of
key-insulated [14, 15, 17] and signcryption [3, 5, 41] sckemwhere Alice may expose her secret key with-
out needing to change her public key and/or use the samecgkaylifor encryption and signing purposes.
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This work should not be confused with the “universal re-gpton” literature [28], whichre-randomizes
ciphertexts instead of changing thablic keythat they are encrypted under.

1.2 Applications of Proxy Re-encryption

Proxy re-encryption has many exciting applications in iddito the previous proposals [7, 16, 30, 42] for
email forwarding, law enforcement, and performing crypéminic operations on storage-limited devices.
In particular, proxy cryptography has natural applicagida secure network file storage. The following
paragraphs describe potential applications of proxy mygmion.

Secure File SystemsA secure file system is a natural application of proxy re-goton because the system
often assumes a model of untrusted storage.

A number of file systems build confidential storage out of ustied components by using cryptographic
storage [2, 6, 26, 32]. Confidentiality is obtained by entingprthe contents of stored files. These encrypted
files can then be stored on untrusted file servers. The sepegaiors can distribute encrypted files without
having access to the plaintext files themselves.

In a single-user cryptographic file system, access cordretraightforward. The user creates and re-
members all the keys protecting content. Thus, there is palistribution problem. With group sharing in
cryptographic storage, group members must rendezvouscatittent owners to obtain decryption keys for
accessing files.

Systems with cryptographic storage such as the SWALLOWobls@re [36] or CNFS [29] assume an
out-of-band mechanism for distributing keys for accesgrobnOther systems such as Cepheus [21] use a
trusted access control server to distribute keys.

The access control server model requires a great deal ofnirtiee server operator. Should the operator
prove unworthy of this trust, he or she could abuse the serkey material to decrypt any data stored on
the system. Furthermore, even if the access control seperator is trustworthy, placing so much critical
key data in a single location makes for an inviting target.

In contrast, our system makes use of a semi-trusted acces®iceerver. We propose a significant
security improvement to the access control in cryptog@ghirage, using proxy cryptography to reduce
the amount of trust in the access control server. In our a@mprokeys protecting files are stored encrypted
under a master public key, using one of the schemes in Segtidhen a user requests a key, the access
control server uses proxy cryptography to directly re-gpicthe appropriate key to the user without learning
the key in the process. Because the access control sernve&ndbiself possess the master secret, it cannot
decrypt the keys it stores. The master secret key can bedstiilene, by a content owner who uses it
only to generate the re-encryption keys used by the accegsotserver. In Section 4, we describe our
implementation and provide a performance evaluation ofcoustructions.

Outsourced Filtering of Encrypted Spam. Another promising application of proxy re-encryption igth
filtering of encrypted emails performed by authorized cactiors. The sheer volume of unsolicited email,
along with rapid advances in filter-avoidance techniquas,dverwhelmed the filtering capability of many
small businesses, leading to a potential marketoisisourced email filtering New privacy regulations,
such as the US Health Insurance Portability and Accourtialdict (HIPAA), are encouraging companies
to adopt institution-wide email encryption to ensure cogtitiality of patient information [1]. By accept-
ing encrypted email from outside sources, institutionsobee “spam” targets and filters are only effective
on messages that are first decrypted (which could be unatieptostly). Using proxy re-encryption,
it becomes possible to redirect incoming encrypted emadrtexternal filtering contractor at the initial
mail gateway, without risking exposure of plaintexts at dsteway itself. Using outemporary proxy



re-encryption scheme presented in Section 3.2, a headthoatitution can periodically change filtering
contractors without changing its public key.

1.3 Roadmap

The rest of this paper consists of the following sectionsdeing the theory and implementation of proxy
re-encryption. Section 2 gives number theoretic prelim@saand definitions necessary to understand our
schemes and their security guarantees. Section 3 presgmidvied proxy re-encryption schemes as well as
a discussion on the factors to consider when comparing pe»gncryption schemes. Section 4 highlights
the design, implementation, and performance measurerakats proxy re-encryption file system.

2 Definitions

Our protocols are based on bilinear maps [8, 9, 10, 31], whielimplemented using the fast Tate pair-
ings [25].

Definition 2.1 (Bilinear Map) We say a mag: G; x G; — G, is abilinear mapif: (1) G1, G; are groups

of the same prime ordey, (2) for all a,b € Zg, g € G, andh Gy, thene(g?, hP) = e(g,h)2 is efficiently
computable; and (3) the map is non-degenerate (i.@,géneratess; and h generates3;, then e(g,h)
generatess,). (In our scheme descriptions we tréag andG; as the same group. However we recognize
that, for some instantiations of the mappings, it is moreigffit to letG; andG; be distinct groups of size
g. Our constructions will work in this setting as well.)

Now, we define what a unidirectional proxy re-encryptionesok is and what minimum security prop-
erties it should have. We compare our definition to a simikfinition due to Dodis and Ivan [16]. In
remarks 2.4 and 2.5, we discuss some of the short-comingbearedits of this definition.

Definition 2.2 (Unidirectional Proxy Re-encryption) A unidirectional proxy re-encryption schenee a
tuple of (possibly probabilistic) polynomial time algdmihs (KG,RG, E,R,Iﬁ), where the components are
defined as follows:

e (KG, E, 5) are the standard key generation, encryption, and decryptgorithms for the underlying
cryptosystem. Herg andD are (possibly singleton) sets of algorithms. On input theiggy param-
eter ¥, KG outputs a key paifpk, sk). On inputpk, and message € M, for all E; € E the outputis a
ciphertextCa. On inputsks and ciphertexCa, there exists ®; € D that outputs the messagec M.

e On input(pkA,sl{&,pkB,sI@, the re-encryption key generation algorithR(, outputs a keyka .g
for the proxy. The fourth input marked with a’’is sometimes omitted; when this happens we say
that RG is non-interactivesince the delegatee does not need to be involved in the diemecd the
re-encryption keys. The second input marked with a 't magdme cases be replaced by the tuple
(rka—c,skc); see Remark 2.4 for more.

e Oninputrka_g and ciphertexCa, the re-encryption functiorR, outputsCg.

Correctness. Informally, a party holding a secret keska should always be able to decrypt ciphertexts
encrypted undepk,; while a partyB should be able to decryfR(rka_.g,Ca). E may contain multiple
encryption algorithms; for example, havifigst-levelencryptions that cannot be re-encrypted by the proxy;
while second-levekncryptions can be re-encrypted by the proxy and then desmiypy delegatees. This
provides the sender with a choigeven the same public keyhether to encrypt a message only to Alice or
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to Alice and, say, her secretary. Whenever a re-encryptams dake place, however, we require that the
underlying plaintext remainonsistent- i.e., Bob should get exactly what Alice was supposed tavede

More formally, let key pairgpka,ska) and(pkg, sks), generated according G, belong to partieg\
andB, respectively, and leka_.g be generated according RG. Then, for all messages in the message
spaceM, the following equations hold with probability one:

VE; € E, 3D; € D, Dj(ska,Ei(pks,m)) =m,
JE; € E, 3Dj € D, Dj(sks,R(rka_s,Ei(pka,m))) =m.

We provide a security definition similar to that of Dodis andn [16]. Although their definition was
for CCA2 security, they instead used CPA security for theailgl, RSA, and IBE-based schemes; for
simplicity, we focus directly on CPA security. The first maiifference between our definitions is that we
consider the security of a user againgjraup of colluding parties; for example, the security of a delegat
against the proxy and many delegatees, whereas the Datisdefinition focused on a single delegatee.
Secondly, we discuss the system’s security for circulaeghdion where the adversary watches Alice and
Bob delegate to each other. Finally, we provide a new gueediolr the delegator — even if the proxy and all
delegatees collude, they can not recover his master semretWe discuss some benefits of this last feature
in Remark 2.5.

Definition 2.3 (Security of Unidirectional Proxy Re-encrygion)
LetI = (KG,RG,E,R, D) be a unidirectional proxy re-encryption scheme.

Standard Security. The underlying cryptosyster(KG,E,ﬁ) is semantically-secure [27] agairatyone
who has not been delegated the right to decrypt. We use $piBto denote the target userto denote the
adversarial users, aitto denote the honest users (other tBynThat is, for all PPT algorithméy, E; € E,
andmg, m; € My,

Pr(pkg, ska) — KG(1%), { (pky, sk) < KG(1“)},

{rkx—B — RG(pk, sk, pkg, sk§) },

{(Pkn, Skn) — KG(1)},

{rke—.h < RG(pkg, ska, pky,SK,) },

{rkn—p < RG(pky, Skh, Pkg, Skg) },

(Mo, My, @) — Ax(pKg, { (PKy; SKo) }, {Pkn}, {rkx—B}, {rke—n}, {rkn—8}),
b—{0,1},b' — Ac(a, Ei(pkg,mp)) :

b=1b] <1/2+1/poly(k).

The above definition capturdss security, even when the proxy (with knowledge of all theereryption
keys) and a group of adversarial users (with knowledge af tiwen secret keys) collude agair3t provided
thatB never delegated decryption rights to any adversarial user.

We now turn our attention to what security can be guaranteéukei case thd doesdelegate decryption
rights to an adversarial user. Obviously, in this case, thvemsary can simply decrypt and trivially win the
game above. However, we are now interested in determinireghgh or not an adversary (consisting of the

INote, this only applies to ciphertexts that were honestlyegated by the sender; no guarantee is implied in the case of
malformed ciphertexts.



proxy and a group of colluding users) can recoBisrmaster secret key. (We will later see some examples
where, for the same public key, two types of ciphertexts maygénerated: one that can be opened by a
delegatee, and one that can only be opened with the mastet &eg.) Thus, we define here (and later
prove) that just becaud® delegates decryption rights to another party does not niedB tsurrenders his
digital identity (i.e., the meaningful parts of his secreyk

Master Secret Security. The long term secrets of a delegator (sometimes serving elegadee) cannot be
computed or inferred by even a coalition of colluding detega. We use subscriptto denote the target
user andk to denote the adversarial users. For all PPT algoritAms

Prl(pks, skg) — KG(L¥), { (Pk,,ske) — KG(1)},
{rks—.x — RG(pkg, ska, pky; SK) },

{rkx—8 — RG(pk;, sk, pkg, skg) },

o — Ax(Pkg; { (PKy, SK) }, {rke—x}, {Tkx-8}) :

a = sks] < 1/poly(k).

Remark 2.4 Unfortunately, achieving security based on the definitibthe re-encryption key generation
function RG as originally stated is very difficult to realize. We do noblknof any such scheme, including
the prior work of Dodis and Ivan [16], that does not succumkh&sfollow attack:transfer of delegation
rights, where, on inpusks andrka_.g, one can computeka_.c. (Recall our discussion of non-transferability
in Section 3.) To see this in our second and third schemesjdzmmrthat on inpub andg® 2, one can output
(g°/2)1/b = g¥/a which would allow anyone to decrypt Alice’s second-levegitartexts. Thus, we modify
the definition ofRG to be executed witleither the secret key of the delegator Alis, or with both a
re-encryption key from Alice to Bobka_.g and Bob'’s secret kegks. This implies that Bob isllowedto
transfer Alice’s decryption capability. Arguably, thidared definition is not so damaging since Alice is
already trusting Bob enough to delegate decryption rightsrh.

Remark 2.5 At first glance, master secret security may seem very weakit liarantees is that an ad-
versary cannot output a delegator’s secret &y One might ask why this is useful. One motivation,
mentioned above, stems from the fact that some proxy regption schemes define two or more types
of ciphertext, some of which may only be decrypted using tlastar secret. A scheme which provides
master secret security will protect those ciphertexts évehe event that the proxy and delegatee collude.
A second motivation comes from the fact that most standayobsiire schemes, such as Elgamal [19] and
Schnorr [38], are actually proofs of knowledge of a disctetgrithm value, such asky = a € Zq, turned
into a signature using the Fiat-Shamir heuristic [20]. itintaly, if an adversary cannot output Alice’s secret
key, then the adversary cannot prove knowledge of it eiffieus, using a proxy re-encryption scheme with
master secret security means that a user may be able to dafelyate decryption rights (via releasigt)
without delegating signing rights for tleame public key Z

3 Improved Proxy Re-encryption Schemes

To talk about “improvements,” we need to get a sense of theflierand drawbacks of previous schemes.
Here is a list of, in our opinion, the most useful propertieproxy re-encryption protocols:
1. Unidirectional: Delegation fromA — B does not allow re-encryption froB— A.



Property BBS [7] DI[16] This work

1. Unidirectional No Yes Yes
2. Non-interactive No Yes Yes
3. Proxy invisible Yes No Yes
4. Original-access Yés  Yes Yed
5. Key optimal Yes No Yes
6. Collusion-“safe” No No Yes
7. Temporary Yes  Yes' Yes'
8. Non-transitive No Yes Yes
9. Non-transferable No No No

Table 1: We compare known proxy re-encryption schemes basdtle advantages described above; no
scheme achieves property 9. We refer to the unidirectiart@raes of Dodis-lvans indicates master secret
key only. T indicates possible to achieve with additionarbead.

2. Non-interactive: Re-encryption keys can be generated by Alice using Bob'dipiby; no trusted
third party or interaction is required. (Such schemes walle¢passiven BBS [7].)

3. Proxy invisibility: This is an important feature offered by the original BBS sube The proxy in
the BBS scheme igansparentin the sense that neither the sender of an encrypted messagaynof the
delegatees have to be aware of the existence of the proxgrlgleransparency is very desirable but it is
achieved in the BBS scheme at the price of allowing transitinf delegations and recovery of the master
secrets of the participants. Our pairing-based schemese wescribed shortly, offer a weaker form of
transparency which we caroxy invisibility. In particular, both sender and recipient are aware of theypro
re-encryption protocol but do not know whether the proxydsve, has performed any action or made any
changes, or even if it exists (the proxy is indeed “invisipleMore specifically, we allow the sender to
generate an encryption that can be opened only by the inderaipient first-level encryptiohor by any
of the recipient’'s delegateesdgcond-level encryptignAt the same time, we can ensure that any delegatee
will not be able to distinguish a first-level encryption (gomed under his public key) from a re-encryption
of a ciphertext intended for another party (we are assuntiat the encrypted message does not reveal
information that would help the delegatee to make thismlision).

4. Original-access:Alice can decrypt re-encrypted ciphertexts that were pally sent to her. In some
applications, it may be desirable to maintain access todiencrypted ciphertexts. This is an inherent fea-
ture of the Dodis-lvan schemes (since the re-encryptiorikayshare of the original); the BBS scheme and
the pairing schemes presented here can achieve this fdgtadding an additional term to the ciphertext:
for example, in BBS a re-encrypted ciphertext with origiaetess looks likémd<, g?, (g®)/2). This may
impact proxy invisibility.

5. Key optimal: The size of Bob’s secret storage remains constant, regardfehow many delegations
he accepts. We call thiskey optimalscheme. In the previous Elgamal and RSA based schemeslj#6], t
storage of both Bob and the proxy grows linearly with the nandf delegations Bob accepts. This is an
important consideration, since the safeguarding and neameqt of secret keys is often difficult in practice.

6. Collusion-“safe”: One drawback of all previous schemes is that by colludindy Bid the proxy
can recover Alice’s secret key: for Dodis-lvasy= s; + ; for BBS,a = (a/b) «b. We will mitigate this
problem — allowing recovery of a “weak” secret key only. Iniknlear map setting, suppose Alice’s public
key ise(g,g)? and her secret key & then we might allow Bob and the proxy to recover the vajgiebut
nota itself.



The property of collusion “safeness” is extremely usefubur context since we allow the sender to
generate first-level encryptions, that can be opened onthdyntended recipient (Alice), or second-level
ones that can be opened by any of the recipient’s delegatags Bob). Indeed, this property implies that
even if Bob and the proxy collude, they will not be able to opag of Alice’s first level-encryptions!

In general, collusion “safeness” allows Alice to delegagergiption rights, while keeping signing rights
for the same public key. In practice, a user can always useptibtic keys for encryption and signatures,
but it is theoretically interesting that she doesréedto do so. Prior work on “signcryption” explored this
area (e.g., [41, 5, 3]); here we present, what can be viewgtafirst “signREcryption” scheme (although
we will not be formally concerning ourselves with the setyuof the signatures in this work).

7. Temporary:Dodis and Ivan [16] suggested applying generic key-ingraechniques [17, 14, 15] to
their constructions to form schemes where Bob is only abiietoypt messages intended for Alice that were
authored during some specific time periodCiting space considerations, they did not present anyretac
constructions. In Section 3.2, we provide a bilinear mapstroction designed specifically for this purpose.
In our construction, a trusted server broadcasts a new namdonber at each time period, which each user
can then use to update their delegated secret keys. Thidrigpaavement over using current key-insulated
schemes where the trusted server needs to individuallyaicttevith each user to help them update their
master (and therefore, delegation) secret keys.

8. Non-transitive:The proxy, alone, cannot re-delegate decryption rights ekample, frontk,_.,, and
rkp_.c, he cannot produceka_.c.

9. Non-transferable:The proxy and a set of colluding delegatees cannot re-deletgcryption rights.
For example, frontk,_.p, Sky, andpk., they cannot producek,_...We are not aware of any scheme that
has this property, and it is a very desirable one. For instaacospital may be held legally responsible
for safeguarding the encrypted files of its patients; thig, dhooses to delegate decryption capabilities
to a local pharmacy, it may need some guarantee that thigmation “goes no further.” First, we should
ask ourselves: isransferability really preventable? The pharmacy can always decrypt andafdrthe
plaintext files to a drug company. However, this approachuireq that the pharmacy remain an active,
online participant. What we want to prevent is the pharmabys(the proxy) providing the drug company
with a secret value that it can use offline to decrypt the hakpiciphertexts. Again, the pharmacy can
trivially send its secret key to the drug company. But in dogo, it assumes a security risk that is as
potentially injurious to itself as the hospital. Achieviagproxy scheme that izon-transferablgin the sense
that the only way for Bob to transfer offline decryption capaés to Carol is to expose his own secret key,
seems to be the main open problem left for proxy re-encrgiptio

3.1 New Unidirectional Proxy Re-encryption Schemes

A First Attempt. As Dodis and lvan pointed out [16], one method for delegatiegryption rights is to
create a cryptosystem that has a two-stage decryption guoeevith two different secret keys. In practice,
Alice’s secret keys is divided into two sharess;, given to the proxy, and,, given to Bob. A ciphertext
intended for Alice can be partially decrypted by the proxgsi. Bob can complete the decryption process
by usings, and then recover the message. We already noticed that #usetssharing” approach does
not exactly yield to proxy re-encryption schemes given Bab must use secrets other than his own to
recover the plaintext (i.e., there is no transformation cifpliertext under Alice’s public key into one under
Bob’s). In particular, this implies that the schemes asqite in [16] are not key optimal, proxy invisible,
or collusion-“safe.” Notice that there are trivial solut®to the collusion-“safe” problem when Alice is
allowed to use two different key pairs, but we are interegtesblutions that minimize the number of keys
to safeguard and manage while remaining efficient. Indeealii first attempt, we try to improve on this by
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providing a cryptosystem that generates ciphertexts trate fully decrypted using either of two distinct

keys. In particular, we consider a variant of the Pailligptosystem with two trapdoors proposed by Cramer
and Shoup [13]. For simplicity, we will describe a versioattis only semantically secure and we refer to
the original work [13] for the full CCA2 secure scheme. Thimglified scheme was described in [11] where

the authors also show a variant of the scheme in [13] that sviorkhe cyclic group of quadratic residues

modulon?.

The public key is(n,g,h = g*) with g of orderA(n) = 2p'q, the mastersecret key is the factorization
of n= pq(wherep =2p’ +1,q = 2q¢ + 1 are safe primes), and the “weak” secret key is[1,n?/2]. (As
remarked in [13], such gcan be easily found by selecting a randara Z;, and computingy = —a®.) To
encrypt a message € Z,, select a randome [1,n/4] and computeT; = ¢, T, = h' (1+mn) (mod n?).

If x is known, then the message can be recoveredras:L(T,/T; mod n?), whereL(u) = Y=L, for
allue {u<nr?|u=1mod n}. If (p,g) are known, therm can be recovered frofi, by noticing that
T;(”) = @ X(1+ mA(n)n) = (1+ mA(n)n). Thus, given that gdd(n),n) = 1, m can be recovered as:
m=L(T}"” mod n?)[A(n)]~mod n.

Part of the cryptosystem above can be seen as a variatiomgaf&al when working modulo a squared
composite number. So, similarly to the Dodis-lvan schenmecan dividex into two sharex; andx,, such
thatx = x1 + Xo. The share; is given to the proxy whiles is stored by Bob. The scheme is collusion-safe
since only the “weak” secretis exposed if Bob and the proxy collude, but the factors,qf andqg, remain
secret. Indeed, one could send only the valyeather than the ciphertext pdify, T»), to allow Alice, and
only her, to decrypt the message. (Remember that we are agptimat ciphertexts are generated correctly.)
Although collusion-“safe,” this scheme is not key optimalpwoxy invisible but it remains theoretically
interesting because it is not based on bilinear pairingswe¥er, it cannot yet be seen as a pure proxy
re-encryption scheme since there is no transformationpbfectexts computed under Alice’s key into ones
under Bob’s.

One way to address this, which also applies to the Dodis-beduiemes, is to let the proxy store Bob's
shares encrypted under his own public key. For instanchgeirase where Alice is the delegator, the proxy
could storex; andx,, the latter encrypted under Bob'’s public key. The encrysteaie will be sent to Bob
along with the ciphertext partially decrypted by the prodhis solution, however, is not satisfactory: It
requires more bandwidth, it doubles the cost of decryptinfprces Bob to perform distinct decryption
procedures based on whether he receives ciphertexts @itdadhim or ciphertexts from the proxy, and it
complicates the revocation of decryption rights.

A Second Attempt. To minimize a user’'s secret storage and thus become key alptime present the
BBS [7], Elgamal based [19] scheme operating over two gréup&,; of prime order with a bilinear map
e: Gy x G; — Gy. The system parameters are random genergtar&; andZ = e(g,g) € Go.

e Key Generation (KG). A userA’s key pair is of the fornpk, = g2, sky = a.

e Re-Encryption Key Generation (RG). A userA delegates t@® by publishing the re-encryption key
rka_g = g% € G1, computed fronB'’s public key.

e First-Level Encryption (E;). To encrypt a messaga € G, underpk;, in such a way that it can only
be decrypted by the holder ek, outputc = (23 mz¥).

e Second-Level Encryption E€2). To encrypt a message € G, underpk, in such a way that it can be
decrypted byA and her delegatees, output (g7, mzX).

e Re-Encryption (R). Anyone can change a second-level ciphertexifoto a first-level ciphertext for
B with rka_.g = g”2. Fromc, = (g2, mZ¥), computee(g®, g°/2) = zP% and publishc, = (Z°% mZ¥).

e Decryption (D1,D5). To decrypt a first-level ciphertext, = (a,3) with secret keysk= a, compute



m= B/al/a. To decrypt a second-level cipherteogt= (a,3) with secret keysk= a, computem =
B/e(a,g)2.

Discussion of Schem@.his scheme is very attractive; it is unidirectional, nateractive, proxy invisible,
collusion-safe, key optimal, and non-transitive. In gautér, notice that first-level encryptions intended for
Alice are safe even if Bob and the proxy collude. Indeed, teaknsecret’/2 cannot be used to decrypt
first-level encryptions (but only second-level ones, whdi and the proxy can open anyway).

The scheme is also very efficient since both encryption andygéon operations are similar to those of
plain Elgamal while the pairing computation is only perfauarby the proxy.

The security of this scheme depends upon (at least) the asismnthat the following problem is hard in
(Gl, Gg)l

Given(g,0?,0°,Q), for g« Gy, a,b «+ Zq
andQ € G,, decide ifQ = e(g,9)¥".

To see where the above assumption comes into play, thigk a§g< for somek € Zq. Now, consider
the second-level ciphertext= (g2, mQ) encrypted for public keyP for messagem. If Q = e(g,9)¥° =
e(g, g)b"/ b— e(g,0)¥, thencis a proper encryption af; otherwise, it is an encryption of some other message
m' # m. Thus, an adversary that can break the above decisionahptisn can easily be made into an
adversary that breaks the semantic security of this schdRegently, the above assumption was proven
hard in the generic group model by Dodis and Yampolskiy [X8)deed, Dodis and Yampolskiy address
a stronger version callegtDecisional Bilinear Diffie-Hellman Inversiorg{DBDHI) where for a random
g€ Gy, X € Zq, andQ € Gy, given(g, 9, g¢, ... ,g¢,Q), itis hard to decide i) = e(g,g)>* or not.)

However, the security of the above scheme also appears/tomghe assumption that givég, g?), the
valuea cannot be derived from seeing theh root of a polynomial set of random values. (This appears
necessary to generate the appropriate re-encryption.kéyslough this assumption seems plausible in a
group of prime order, by making a few alterations to this ade=a we are able to provide a solution which
makes fewer (and more standard) assumptions.

A Third Attempt. The global system parametdig Z) remain unchanged.

e Key Generation (KG). A userA's key pair is of the fornpk, = (Z%,¢?) andsk, = (a3,a2). (A user
can encrypt, sign, and delegate decryption rights all ugéerif the valueg® is present, it signifies
that the user is willing to accept delegations.)

e Re-Encryption Key Generation (RG). A userA delegates td publishing the re-encryption key
rka_g = g2 € Gy, computed fronB’s public information.

e First-Level Encryption (E;). To encrypt a messaga € G, underpk, in such a way that it can
only be decrypted by the holder sk, outputc,; = (Z2k mZX) (to achieve proxy invisibility output
Ca2 = (Z%%, mZ¥)).

e Second-Level Encryption €3). To encrypt a message € G, underpk, in such a way that it can be
decrypted byA and her delegatees, outmy, = (g¢, mz2k).

e Re-Encryption (R). Anyone can change a second-level ciphertextXanto a first-level ciphertext
for B with rka g = g2P2. Fromca, = (g¢, mZ2X), computee(g*, g:P2) = %k and publishcy, =
(ZP22uk mzasky = (702K mZK).

e Decryption (D1,D5). To decrypt a first-level ciphertext; = (a, ) with secret keyg; € sk, compute
m=B/a%/a fori € {1,2}. To decrypt a second-level ciphertext= (a, ) with secret keya; € sk,
computem= f3/e(a,g)*.
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Discussion of Schem&his scheme is similar to the previous one, except to acadpygdtions, a user must
store two secret keys. If Bob and the proxy collude, they otdecrypt first-level encryptions intended
for Alice. Indeed, they can recover only the weak segfethat can only be used to decrypt second-level
encryptions (which Bob and the proxy can already open anyway

As in our previous scheme, both encryption and decryptiogeraipns are similar to those of plain
Elgamal, thus very efficient, while the pairing computatisperformed only by the proxy.

The security of this scheme relies on an extension of thesaeal bilinear Diffie-Hellman (DBDH)
assumption [8, 12]; the proof of Boneh and Franklin [8] theg DBDH problem is hard in generic groups,
in the sense of Shoup [40], can be easily extended to thidgmmhbw~hen one recalls that the additional
parametee(qg, g)bc2 is represented as a random string in the range of the mappifigen no delegations
are made, original first-level ciphertexts of the fofEfk, mZ¥) are exactly like Elgamal [19] and thus their
external security only depends on DDH@®3.

Theorem 3.1 The above scheme is correct and secure assuming the extBredézional Bilinear Diffie-
Hellman (eDBDH) that for random g- Gy, a,b,c « Zq, and Q< G, given(g,d?,a®, o, (g, g)bCZ,Q) it
is hard to decide if Q= e(g,g)2"° (standard security) and the discrete logarithm assumptinaster secret
security).

More precisely, any adversary that can break the standaalsty of this scheme with probability
(1/2+¢) can be used to break the eDBDH problen{@y, G,) with probability (1/2+€/2). Any adversary
that can break the master secret security of this schemepnothability € can be used to break the discrete
logarithm problem in G with probability €.

Proof. Our security definition quantifies over all encryption alons E; € E; in this case, we have two
algorithmsEj, E», where arE; ciphertext takes the forrfz®*, mZ¥). This construction is equivalent to that
of the form (ZK,mz%¥) [19]. Now, it is clear if theE, ciphertext of the form(gk, mz%¥) is secure, then so
are theE; versions, sincé, ciphertexts reveal strictly more information (i.g5,€ Gy). Thus, it suffices to
argue the security of the, ciphertexts only.

Standard Security. SupposeA distinguishes encryptions d&, with non-negligible probability, we
simulate an adversaythat decides eDBDH as follows:

1. On eDBDH input(y,ya,yb,yc,e(y,y)bcz,e(y,y)d), the simulator sets up a proxy re-encryption world
for the adversanA with the goal of usingA to decide ifd = abc or not. To begin, the simulator
outputs the global parameters for the systenz). Here, for reasons we will later see, the simulator
setsg =V°, Z=1¢€(g,09) = e(y,y)cz. Next, the simulator sends to adversdrghe target public key
pks = (e(y,y)P® = ZP, (y°)t = ¢'), wheret is randomly selected froiiq by the simulator. Thus, we
can think of(b,t) as the secret key of the target user.

2. Next, fori = 1 up to polyk), A can request:

(a) rkx_p, a delegation td3 from a party corrupted byA. A can generate these delegations for as
many corrupted users as it liked by internally by runnipg,, sk, «— KG(1¥) and computing
rkyog = (0)%Kx, wheresk, = (sky 1), SKx2))-

(b) rkg_n, a delegation fronB to an honest parth. The simulator randomly selects two values
M(h1)"(h2) < Zqg, SEtSKp .p = (yb)r<h>2> — gb(r<h‘2)/c) andpk, = (Z',yTha) = gfa‘z)/c)’ and sends
(Pkn, rks—n) to A. The corresponding secret keysig, = (I, 1), (In2)/C))-

(c) rkn_p, a delegation td from an honest partir. The simulator uses either the recorded value
rn,1) from the previous step if the honest party already existgeoerates fresh random values
for a new party, and computeky, .5 = (gt)zh 1)
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3. Eventually,A must output a challeng@m, my, 1), wheremy # m; € M andt is its internal state in-
formation. The simulator randomly selests {0, 1}, computes the ciphertegt = (y2, mse(y,y)%) =
(g7/¢, me(g,9)%/%), sendg(cs, T) to A, and waits forA to outputs € {0,1}.

4. If s=¢, thenSguessesd = abc’; otherwiseSguessesd # abc'.

First, we observe that ifl = abg then the simulation is perfect; that is, the ciphertextpatiiis of
the proper form(g¥/,m,Z(®9/¢* = m,zP(®/°)) for the user withskg 1) = b. However, ifd # abg then
my is information-theoretically hidden from, sinced was chosen independently afb,c. Thus, if A
succeeds with probability/2+ €, thenSsucceeds with probabilityl/2+€) (whend = abg and probability
exactly /2 (whend # abg), for an overall success probability @f/2+ €/2). This contradicts the eDBDH
assumption whenis non-negligible.

Master Secret Security. Suppose an adversafycan recover the secret key of a targeted Bére.,
sks = (skg 1),SKg,2))) with non-negligible probabilite by interacting withB according to the second part
of definition 2.3, then we can build an advers&that takes discrete logs @; with probability €. Let us
focus our attention on recovering only the vaklgs ;) (which is arguably the most valuable of the two).
Our simulatorSworks as follows:

1. Oninput(g,g?) in G4, output the global parametefg,Z = e(g,g)) and the target public kepks =
(e(g,9?), gS‘YBl)), whereskg ) is chosen at random frotf,. We can think oskg 1) = a.
2. Next, fori = 1 up to polyk), A can request:

(@) rke—x, a delegation fronB to a party corrupted bj. Srandomly selectsy 1),r (x2) < Zq, SEtS
rkg_x « g%, pk, = (20, g'*2), andsk, = (r(x 1), (x2)), and sendsgpk,, sk, rks_.x) to A.

(b) rky_g, a delegation t@® from a party corrupted bj.. A can generate these delegations internally
by running(pk,, sk) — KG(1¥) and computingky_g = (g°K82))Skx1,

3. Eventually,A must output a purported secret key ®pof the form(a, ). The simulator returns the
valuead.

The simulation is perfect; thusmust not be able to recover the master secret k& déspite accepting
and providing numerous delegationsBpbecause otherwis& can efficiently solve the discrete logarithm
problem inG;. O

3.2 Temporary Unidirectional Proxy Re-encryption

In this section, we improve our temporary unidirectionabXy re-encryption scheme over the conference
version of this paper [4], by a slight alteration in the filstel encryption which does not increase the
running time, but allows us to prove the scheme’s securitieua more standard assumption.

In addition to the global parametefg,Z), suppose there is a trusted server that broadcasts a random
valueh; € G; for each time period > 1 for all users to see. Leti = e(g,h;) € G,. We enable Alice to
delegate to Bob only for time periadsay, while she is on vacation, as follows.

e Key Generation (KG). A userA's key pair is of the formpk, = (g%,0%),sky = (ap,a), (plus a
temporarysecretg; for time periodi which will be generated iRG).

e Re-Encryption Key Generation (RG). A userA publicly delegates t@B during time period ias
follows: (1) B chooses and stores a random vaue Zq, and publishesibi; then, (2)A computes and

: i by
publishesrkly g = h*™/2,
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e First-Level Encryption (E;). To encryptm € G, underpk, during time period in such a way that it
can only be decrypted b, computez®¥ = e(g? , h)* and output,, = (Z&, mZ ).

e Second-Level Encryption ). To encryptme G, underpk, during time period in such a way that
it can be decrypted band her delegatees, compife® = e(g? , hi)¥, and outputy; = (g?%, mZ*¥).

e Re-Encryption (R). Anyone can change a second-level ciphertexi&anto a first-level ciphertext
for B with rka_.g; = hia*bi/ao. Fromc,; = (g% mZ**), computez®®* = e(g®k, rka_g) and publish
Coi = (2%, mZ¥¥) = (2P%, mZ").

e Decryption (D1,D5). To decrypt afirst-level ciphertext, j = (a, B) with secret ke, € {a,, a1, ap, ...}
(corresponding to a re-encryption from tftl time period or a first-level original ciphertext with per-
manent keyg,), computem = 3/a'/3. To decrypt a second-level ciphertext; = (a,3) with secret
key (ap,ar), computem = 3% /e(a, h;j ).

Discussion of SchemeA single global change can invalidate all previous delegations withemuy user
needing to change their public key.

Theorem 3.2 The above scheme is correct and secure assuming the DegiBdimear Diffie-Hellman
(DBDH) that for random g— Gy, a,b,c < Zq and Qe G, given (g, g®,¢°,¢%, Q) it is hard to decide if
Q = e(g,9)?° (standard security) and the discrete logarithm assumptioaster secret security).

More precisely, let T be the maximum number of time stepsa@wvgrsary that can break the standard
security of this scheme with probabilit¥/2+ €) can be used to break the DBDH problem({&;, G) with
probability (1/2+¢/(2T)). Any adversary that can break the master secret securithisfscheme with
probability € can be used to break the discrete logarithm problem jm@h probability €.

Proof. Our security definition quantifies over all encryption alons E; € E; in this case, we have two
algorithmsEg, E; which produce different types of ciphertexts. Our secypityof will address both styles
of ciphertexts.

Standard Security. Let T be the maximum number of time periods. Supp#@sdistinguishesE;
ciphertexts with non-negligible probability (we will adehsE, shortly), we simulate an adversaBthat
decides DBDH as follows:

1. Oninput(g,g? g°, o, Z9%), the simulator senda the global parameter, e(g,g) = Z) and the target
public keypks = (¢f,g%), wheret is randomly selected frorfi, and the corresponding secret key is
sks = (t,a). The simulator also honestly generates and publishes thie keys of all other parties.

2. Forj =1 up toT time periods, the simulator publishes the public delegaparameter for that time
periodh; = g*i, wherex; is randomly selected frorfiq. The simulator also publishes the delegation
acceptance valuby j) = h?“‘” for all usersU, including B, wherez, ;) is randomly selected from
L.

(a) Next, fori =1 up to polyk), A can request:

i. rky_p, a delegation td from a party corrupted byA. A can generate these delegations
internally by running(pk,, sk <« KG(1¥), wheresk, = (skix0):SKxr)), and computing
rkx_g = Do /xo)

ii. rkg_n, a delegation fronB to an honest parti with delegation acceptance valDe, ;) for
time periodj. Scomputes and sendkg_ ., < (ga)XJZmi)/t = D?étj) to A.

iii. rkn_pg, a delegation td from an honest party with secret kéysqu = (sKn,0);Sknr))- S

trivially computesrky,_.g = D?lé.hj‘;)/sl?hp)'
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3. Eventually, during the last time periolmust output a challengeny, m, 1), wheremp # my € M and
T is its internal state information. The simulator randorméfestss € {0,1}, computes the ciphertext
cs = (Z29,e(g?,g%)ms), sends(cs, T) to A, and waits forA to outputs € {0,1}.

4. If s=¢, thenSguessesd = abc’; otherwiseSguessesd # abc'.

First, we observe that ifl = abg then the simulation is perfect; that is, the ciphertexipatiis of
the proper form(Z3¢, Z"my) for the user withskg,) = a. However, ifd 3 abg thenm is information-
theoretically hidden fromA\. Thus, if A succeeds with probability /2 + € at distinguishingg; ciphertexts,
thenS succeeds with probabilityl/2+ €) (whend = abg) and probability exactly 1/2 (wheth # abg), for
an overall probability of1/2+ 2/¢). This contradicts the DBDH assumption wheis non-negligible.

Now, suppose thak distinguisheg, ciphertexts with non-negligible probability, we simulatdifferent
adversanSthat decides DBDH as follows:

1. Oninput(g,g?,d°, g%, Z%), the simulator send& the global parametefy = o¢, e(y,y) = (g, g)cz) and
the target public kepkg = (y/° = g,y¥/¢ = g¥/°) and the corresponding secret kegg = (1/c,a/c).
The simulator also honestly generates and publishes tHe elys of all other parties.

2. Forj =1 up toT time periods, the simulator publishes the public delegaparameter for that time
periodhj =y = (g°)%, wherex; is randomly selected frorfi;. The simulator also publishes the
delegation acceptance val@gy j) = h?”‘”/c = g¥%u for all usersU, including B, wherezy j) is
randomly selected frorq. The simulator pretends to give the temporary se(gt;/c) to each
honest party (it cannot actually do so, since it does not ki@walue Jc). These acceptance values
are generated without thgdterm for all corrupted users.

(a) Next, fori =1 up to polyk), A can request:
i. rky_p, a delegation tdB from a party corrupted byA. A can generate these delegations
internally by running(pk,, sk) <+ KG(1¥), wheresk, = (Skix0):SKxr)), and computing
xr) /Sk(xo
rkX~>B - Sk<

ii. rkg_p, a delegatlon fronB to an honest partp with delegation acceptance valDg, j, for

time periodj. Scomputes and sendgg_., = DSk‘Br )/skeo = Yz (&/0)/(1/€) — (ga)Xizn)),

iii. rkn_pg, a delegation t® from an honest partlyg. Scomputes and sends,,_.g = ?g"lg /Km0

to A

3. Eventually, during the last time periolmust output a challengeny, m, 1), wheremy # my € M and
T is its internal state information. The simulator randormé{estss € {0,1}, computes the ciphertext
— (gP,ms(Z9)%) = (yP/°, mee(y, h;)¥/"), sendg(cs, T) to A, and waits forA to outputs’ € {0,1}.
4, If s=¢, thenS guessesd abc’; otherW|seS guessesd # abc'.

Now, we observe that ifl = abc then the simulation is perfect; that is, the challenge eif#xt is of
the proper form(y*keoP mge(y, hj)*kenP). However, ifd # abg, thenm is information-theoretically hidden
from A. Thus, if A succeeds with probability/2 + € at distinguishinge, ciphertexts, thei® succeeds with
probability (1/2+ €) (whend = abg) and probability exactly 1/2 (wheth# abg), for an overall probability
of (1/2+ 2/¢). This contradicts the DBDH assumption wheis non-negligible.

Master Secret Security.Let T be the maximum number of time periods. Suppose an advefseay
recover the secret key of a targeted uBdi.e., sks = (skg 1), Skg2))) With non-negligible probability by
interacting withB according to the second part of definition 2.3, then we cald laun adversargthat takes
discrete logs irG;. Let us focus our attention on recovering only the vaikg 5. Our simulatorSworks
as follows:
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1. Oninput(g,g?) in Gy, output the global parametefg,Z = e(g,g)) and the target public kegks =
(gKe0) g?), whereskg o) is chosen randomly frorfi,. We can think ofkg,) = a.

2. Forj =1 up toT time periods, the simulator publishes the public delegap@arameter for that time
periodh; = g*, wherex; is randomly selected frorfiq. The simulator also publishes the delegation
acceptance vaIUeT‘“‘” for all usersJ, including B, wherezy, j) is randomly selected frog.

3. Next, fori = 1 up to polyk), A can request:

(a) rkg_u, a delegation fronB to a party corrupted byA. Let j be the current time periods sets
rkg_uy = (ga)XJ u.))/SKB0) — az(u i)/sKe.0) _ Sk(Br (u.,j) /Sk(Bo

(b) rky_.g, a delegation t® from a party corrupted b Acan generate these delegations internally
using the public information dB.

4. Eventually,A must output a purported secret key ®of the form(a,). The simulator returns the
value.

The simulation is perfect; thusmust not be able to recover the master secret k@& déspite accepting
and providing numerous delegationsBpbecause otherwis& can efficiently solve the discrete logarithm
problem inG;. O

4 Encrypted File Storage

1. Block request

<€

3. Encrypted lockbox

A 4

> —\ €
2. Encrypted data block = 4. Re-encrypted lockbox

Block Store Client Access Control
Server

Figure 1. Operation of the proxy re-encryption file systenheTuser’s client machine fetches encrypted
blocks from the block store. Each block includes a lockbargoted under a master public key. The client
then transmits lockboxes to the access control server fenceyption under the user’s public key. If the
access control server possesses the necessary re-emcigyi it re-encrypts the lockbox and returns the
new ciphertext. The client can then decrypt the re-encdypteck with the user’s secret key.

In this section we describe a file system which uses an uettastess control servéo manage access
to encrypted files stored on distributed, untrusted blookest We use proxy re-encryption to allow for
access control without granting full decryption rights e taccess control server. To our knowledge, our
implementation represents the first experimental implaatem and evaluation of a system using proxy
re-encryption.

Overview. In our file system, end users on client machines wish to ol#agess to integrity-protected,
confidential content. A content owner publishes encrypadent in the form of a many-reader, single-
writer file system. The owner encrypts blocks of content witique, symmetricontent keysA content
key is then encrypted with an asymmetric master key to fotatkbox The lockbox resides with the block
it protects.
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Untrusted block stores make the encrypted content avaital#veryone. Users download the encrypted
content from a block store, then communicate with an acomssat server to decrypt the lockboxes pro-
tecting the content. The content owner selects which u$engld have access to the content and gives the
appropriate delegation rights to the access control server

Access Control Using Proxy Cryptography. We propose an improvement on the access control server
model that reduces the server’s trust requirements by ysimng cryptography. In our approach, the content
keys used to encrypt files are themselves securely encryptist a master public key, using a unidirectional
proxy re-encryption scheme of the form described in thiskw@ecause the access control server does not
possess the corresponding secret key, it cannot be cadrspias to gain access to the content keys necessary
to access encrypted files. The secret master secret keynzoféine, in the care of a content owner who
uses it only to generate the re-encryption keys used by tbesaccontrol server. When an authorized
user requests access to a file, the access control serveproggsre-encryption to directly re-encrypt the
appropriate content key(s) from the master public key taufe’s public key.

This architecture has significant advantages over systathdnwsted access control servers. The key
material stored on the access control server cannot be asstéss stored files, which reduces the need
to absolutely trust the server operator, and diminisheseineer’s value to attackers. The master secret key
itself is only required by a content owner when new usersa@de@to the system, and can therefore be stored
safely offline where it is less vulnerable to compromise alfynthe schemes in Section 3 ameidirectional
and non-interactive meaning that users do not need to communicate or revealdbeiet keys in order
to join the system. This allows content owners to add usethdasystem without interaction, simply by
obtaining their public key. Because this system works wihrg’ long-term keys (rather than generating
ephemeral keys for the user), there is an additional ineefdir users not to reveal their decryption keys.

The proposed design fundamentally changes the security af@ess control server storage system. In
this new model, much of the security relies on the strength pfovably-secure cryptosystem, rather than
on the trust of a server operator for mediating access donBecause the access control server cannot
successfully re-encrypt a file key to a user without posagsaivalid delegation key, the access control
server cannot be made to divulge file keys to a user who haseeot $pecifically authorized by the content
owner, unless this attacker has previously stolen a legitmser’s secret key.

Chefs. We implemented our file system on top of Chefs [22], a confidéitytenabled version of the SFS
read-only file system [23]. Chefs is a single-writer, maagéer file system that provides decentralized ac-
cess control in integrity-protected content distributidncontent owner creates a signed, encrypted database
from a directory tree of content. The database is then r&eliton untrusted hosts (e.g., volunteers). A client
locates a replica, then requests the encrypted blocks. d&edhe Chefs architecture because it allowed us
to experiment with different granularities of encryptiqe(-file and per-block) while providing a transparent
file system interface for our experiments.

Chefs tags each content block with a lockbox. In the orig@laéfs design, the lockbox contains a 128-
bit AES key, itself encrypted with a shared group AES key. f€lassumes an out-of-band mechanism for
content owners to distribute group keys to users.

4.1 Design and Implementation

To implement our proposed design, we modified Chefs to irchml access control server. Every block in
a Chefs database is encrypted with a 128-bit AES contentrk€BIC mode. Depending on the granularity
of the encryption, a content key can be shared across alleoblitcks in a particular file, directory or
database, or unique keys can be used for each block. Comtgnbke themselves encrypted under a system
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master public key using the “Third Attempt” bilinear Elgansaheme from Section 3.1. This encryption
results in a set of lockboxes stored with the file data, eithdile or directory inodes (per-file and per-

directory encryption) or within the blocks themselves {plerck encryption). The parameters of the proxy
re-encryption scheme causes a sealed lockbox to expanda@kkundred bits, even though the underlying
plaintext is a 128-bit AES key.

When a client encounters a block for which it does not possesstent key, it asks the access control
server to re-encrypt the lockbox from the master key to thent$ public key. If the access control server
possesses an appropriate re-encryption key from the ni@stés the client’s key, it performs the appropriate
proxy re-encryption and returns the resulting ciphertexthe client, which can then decrypt the lockbox
under its own secret key. Figure 1 illustrates this procedur

Each re-encryption call necessarily results in a rounu+etwork request, in addition to the proxy
re-encryption and client-side decryption of the re-entagipciphertext. Thus, the choice of encryption
granularity greatly affects the number of re-encryptiofiscmade from the client to the access control
server, which in turn affects the end-to-end performandbh@ystem.

4.2 Experimental Results

In implementing a proxy re-encryption file system, we had tals in mind. First, we wished to show
that proxy re-encryption could be successfully incorparanto a basic cryptographic file system. Second,
we sought to prove that the additional security semantiogiged by a proxy re-encrypting access control
server came at an acceptable cost to end-to-end performance

To achieve this second goal, we conducted a number of bemkbrasing the proxy-enabled Chefs file
system using various granularities of content key usagebloek and per-file). Along with these exper-
iments, we conducted microbenchmarks of the proxy re-g@tiony functions used in our implementation,
as well as application-level benchmarks measuring fileegygierformance. To provide a standard of com-
parison, we conducted the same experiments on an unmodifief$ Configuration with no access control
server or proxy re-encryption, using only a single preseBAEY to secure the contents of the database.

Experimental Setup. For the purposes of our testing, we used two machines to bwaréhthe proxy-
enabled Chefs file system. The client machine consisted 8D Athlon 2100+ 1.8 GHz with 1 Gbyte
RAM and an IBM 7200 RPM, 40 Gbyte, Ultra ATA/100 hard drive. €Tkerver machine was an Intel
Pentium 4 2.8 GHz with 1 Gbyte RAM and a Seagate Barracuda RFM, 160 Gbyte, Ultra ATA/100
hard drive. Both systems were running Debian testing/biestaith the Linux 2.6.8 kernel. The client and
the server were situated in different cities, represendilistributed file system scenario. We measured the
round-trip latency between the two machines at 13 msec, landnbximum sustained throughput of the
network link at 7 Mbit/sec. We implemented the cryptograptimitives for the “Third Attempt” bilinear
Elgamal scheme using version 4.83 of the MIRACL cryptograpibrary [39], which contains efficient
implementations of the Tate pairing as well as fast modwpoeentiation and point multiplication.

Cryptographic Benchmark. Table 2 presents average times over 100 runs of the cryoigraperations
in the bilinear proxy re-encryption scheme (the third or@frSection 3.1). The measurements provide
some basis for understanding the impact of the proxy reyetion on overall file system performance.
These results indicate that re-encryption is the one of th&t trme consuming operations in our file system.
We were surprised that our 1.8 GHz AMD Athlon 2100 performettdy than our 2.8 GHz Intel Pen-
tium 4 server in the microbenchmarks. We attribute this athge to modular arithmetic routines in MIR-
ACL that perform faster on the Athlon. The MIRACL library ptides many hints for selecting assembly
code optimizations. Because other benchmarks such as eSS RSA “speed” test run faster on our
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Parameter| Machine| Encryption Decryption Re-encryption| Decryption
size (by original recipient) (by delegatee

256-Dit client | 3.1 msec 8.7 msec 8.6 msec 1.5 msec

server| 3.3 msec 8.8 msec 8.7 msec 1.5 msec

512-bit client | 7.8 msec 22.5 msec 22.0 msec 3.4 msec

server| 9.3 msec 26.5 msec 26.7 msec 4.1 msec

Table 2. Average operation times for 100 runs of the “ThirdeAtpt” bilinear Elgamal proxy re-
encryption scheme on our client and server. All operati@isrrto re-encryptable “second-level”
ciphertexts.

server, we suspect that the Intel server would perform beith proper selection of optimizations in MIR-
ACL.

We conducted our remaining benchmarks using various etigrygranularities, including per-block
and per-file. For each measurement, we report the mediatl oéfive samples. In all measurements, the
server has a warm block cache and the client has a cold blatiec&®ur microbenchmarks, presented in
Figures 2 and 3, include runs of the small-file and large-&k from the LFS suite of file system perfor-
mance tests [37]. We use the read phases of the LFS test tairadhs fundamental performance of our
system.

The first test reads several small files. The second teststerdia sequential read of a large file. These
two tests capture common workloads in a typical file systeon.e&ch of these tests, we experimented with
different encryption granularities, including per-bloakd per-file content keys. The small file benchmark in
particular is a worst-case scenario for a proxy-enabledsyisdem, as it requires a large number of lockbox
re-encryptions relative to the amount of data read. On therdtand, the large-file workload tends to exhibit
exactly the opposite effect, as the ratio of re-encryptimndata read is much smaller. In general, all per-
block encryption scenarios tend to be the least efficierd (aast practical) when proxy re-encryption is
enabled.

Small-file Benchmark. The SFSRO and Chefs benchmarks each generate 2,022 RP&€# todietent from
the block store (1,000 files, 10 directories, and one roeftliry — each generating two RPCs: one for the
inode, one for the content).

Note that Chefs adds virtually no discernible overheadnetieugh the client decrypts every content
fetch with 128-bit AES in CBC mode. With the round-trip timecaunting for at least 26 seconds of the
measurement, the network overshadows the cost of crytogra

The proxy re-encryption file system first makes 2,022 fetabfesontent, just like Chefs. With per-
file granularity of content keys, the small-file benchmarkeayates 1,011 re-encryption RPCs. The proxy
re-encryption file system takes 44 seconds longer than CHdils 44 seconds corresponds exactly to the
13 msec round-trip time, 26.7 msec re-encryption time onstitger, and 3.4 msec delegatee decryption
time on the client for each of the 1,011 re-encryption RP@e (Bable 2).

With per-block granularity, the small-file benchmark gextes 2,022 re-encryption RPCs. A file or
directory consists of an inode and data block, thus eachrreacgenerates two re-encryptions. The proxy
re-encryption file system takes 87 seconds longer than CRetsaause the per-block re-encryption generates
twice as many re-encryption RPCs as the per-file scenaegagsults concur with our expectations.

Large-file Benchmark. The large-file benchmark generates 5,124 RPCs to fetch 4@evitbyontent from
the block store (two RPCs for the root directory, two for the, fand 5,120 for the file data). In the SFSRO
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Figure 2: Small-file microbenchmark from LFS suite. We parfa complete read on 1,000 1 Kbyte files
dispersed in 10 directories.
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Figure 3: Large-file microbenchmark from LFS suite. We perf@a sequential read on a 40 Mbyte file in
8 Kbyte blocks.
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and Chefs experiments, the 7 Mbit bandwidth largely donem#te throughput.

The measurement of Chefs demonstrates that the cost ofgadalitiidentiality to SFSRO comes at no
cost to throughput when fetching data across the InternkéfsQruns slightly faster than SFSRO, initially
causing us to question the validity of the measurements. aWducted further measurements to ensure
confidence in our results. We verified that both SFSRO and<dkstie the same type and number of RPCs.
The responses to content fetching RPCs in SFSRO are 8,266. Gyte responses in Chefs are 8,244 bytes
because of PKCS#7 padding overhead with AES-CBC encryptide® suspect that byte alignment and
fortuitous interleaving of asynchronous RPCs allowed €heflightly outperform SFSRO. In a run of the
large-file benchmark, SFSRO encountered locking conterit&054 times (when a callback encounters a
locked a cache). Chefs encountered only slightly less tmckbntention — 15,981 times.

Because the large-file workload involves only a single fiie, per-file proxy re-encryption has no dis-
cernible cost. There are a mere two proxy re-encryption R{@@s for the root, one for the file). The
per-block proxy re-encryption generates 5,124 re-enmgRPCs, thus we expect a significant degradation
of throughput because of the 13 msec network round-trip.time

The cost of per-block re-encryption is prohibitively expie for large files. We expect that per-file
granularity or per-file-system granularity will be much ma@ommon than per-block granularity. For in-
stance, we do not expect users to grant access to portionsiofle file. Rather, we expect users would
share access-controlled content in collections of files milar to a collection of Web pages or a directory
subtree.

Note that the large file benchmark in this extended documiffietrsl from that of previous versions of
this paper. Our original file system clients unintentiopgltefetched file content. Furthermore, a race con-
dition had the potential to generate unnecessary RPCsdio éeintent. The race condition did not affect
measurements in the original paper; the correct functimays won the race. In later unpublished measure-
ments, the race generated twice as many RPCs as necessatghtadntent. Removing the unintentional
prefetching and fixing the race condition with a locking paul slightly reduced the baseline throughput
for sequential reads.

Application-level Benchmark. Our application-level benchmark consists of an Emacs eer2iL.3 com-
pilation. The source code is stored in our file system, whike resulting binaries are written to a local
disk. We first runconfi gure, then compile withrake. This CPU-intensive workload requires access to
approximately 300 files. The results of this test are preskeint Figure 4, and show that the per-file and even
per-block proxy cryptography adds negligible overheadtlics application workload. We believe the cost
is nominal for the additional security semantics of proxyereryption. The original paper did not take into
account the time to ruoonf i gur e. Therefore, the new timings are slightly longer for all $est

Scalability. We also measured how well the access control server perfonthsr a heavy load. Figure 5
shows that our proxy re-encryption server can scale up t@0lp@nding requests before exhibiting signs
of stress. We replayed a trace of proxy re-encryption RPCss fequired no computation on the client
side, but caused the server to perform proxy re-encrypiiémstart by issuing a single request, waiting for
the response before issuing another request. To simulaig smraultaneous clients, we gradually increase
the window size of outstanding RPCs. Our server is able ttagud00 re-encryptions/sec until reaching
about 1,000 outstanding requests. The server coped with 1,000 outstanding re-encryption requests,
but quickly spiraled downwards thereafter.

20



150
n _
°
c 4
o
) _
() —
£ 1004
< J
£
Q _
a
g -
0
% % 83
S 0% z 3
(@) ® 9
Proxy s

Re-encryption

Figure 4: Application-level benchmark. We record the timedmpile Emacs version 21.3.
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4.3 Discussion

Our access control server acts like a credentials downleadce. For instance, PDM [35] stores encrypted
credentials on a server. A user decrypts the credentiatsanpassword. PDM works fine when an encrypted
credential is available to a single individual. However ble system supports group access control. We
could use PDM instead of our access control server, but thiddweduce the key distribution problem to
that of sharing a password with all group members.

We selected a single-writer, many-reader file system rdkfzar a general purpose file system to experi-
ment with proxy re-encryption in content distribution. $kliminates problems not directly related to proxy
re-encryption, such as fork consistency [33].

In practice, an organization’s data may consist of manyraisfile sets or equivalence classes, access
to each of which should be limited to a subset of the orgaiozatmembers. For instance, a large company
with several departments might wish to keep data from inldiad departments confidential within the origi-
nating department. However, an access control serverghadiie other departments would have advantages
in reliability and logging. This can easily be achieved byngsmany different master keys, each of which
encrypts content keys for files owned to a different groupe Tbrresponding secret keys can be held by
different content owners, whose only operational resilityi is to generate re-encryption keys for new
users.

Because there is no fundamental difference in format batvaemaster public key and a user’s public
key, individual users can use their own public keys as mastgs, allowing users to act as content owners of
their own personal file sets. Additional possibilities caaehieved if multiple file keys are used to encrypt
single files, allowing for files that are available only to isse@ho belong to multiple groups simultaneously.

We believe that our experimental results demonstrate tiatipality of proxy re-encryption in protecting
stored content. Though proxy re-encryption adds a levelvefttead to file system, this overhead is not
extreme, and can be worth the additional security that cdmes using a centralized, semi-trusted access
control server. Various system choices, such as parame¢srand encryption granularity can greatly affect
the efficiency of the system; we have selected the ones wevbeld be most promising.

5 Conclusions and Future Work

In this paper, we explored proxy re-encryption from botheotietical and practical perspective. We outlined
the characteristics and security guarantees of previckrsbyvn schemes, and compared them to a suite
of improved re-encryption schemes we present over bilineaps. These pairing-based schemes realize
important new features, such as safeguarding the mastet &ey of the delegator from a colluding proxy
and delegatee. One of the most promising applications fmtypre-encryption is giving proxy capabilities
to the key server of a confidential distributed file systens ttay the key server need not be fully trusted
with all the keys of the system and the secret storage foresehcan also be reduced. We implemented this
idea in the context of the Chefs file system, and showed expeatally that the additional security benefits
of proxy re-encryption can be purchased for a manageableiatnod run-time overhead. We leave open
the theoretical problem of finding a proxy re-encryptionesole that does not allow further delegations; that
is, Bob (plus the proxy) can not delegate to Carol what Alies Helegated to him. Another challenging
problem is to find unidirectional re-encryption schemes &tlaw ciphertexts to be re-encrypted in sequence
and multiple times. We also leave open the practical probleffinding more efficient implementations of
secure proxy re-encryption schemes, as well as conductorg experimental tests in other applications.
As future work, we plan to explore definitions of proxy re-giption to achieve CCA2 security in a
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multi-user setting. This requires careful consideratibthe secrets involved, including those held by the
proxy and delegatees themselves. One promising direditindeploy a variation of certain standard trans-
formations, such as the one proposed by Fujisaki-Okamof24ih that allow to transform the ciphertext
so that the non-malleability of the encrypted message isagir@ed while allowing the public key of the
intended recipient to be changed.

Source code for our proxy re-encryption library and file eysis available upon email request.
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