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Abstract

We present a formal model and a simple architecture for robust pseudorandom generation
that ensures resilience in the face of an observer with partial knowledge/control of the generator’s
entropy source. Our model and architecture have the following properties:

• Resilience. The generator’s output looks random to an observer with no knowledge of the
internal state. This holds even if that observer has complete control over data that is used
to refresh the internal state.

• Forward security. Past output of the generator looks random to an observer, even if the
observer learns the internal state at a later time.

• Backward security/Break-in recovery. Future output of the generator looks random, even
to an observer with knowledge of the current state, provided that the generator is refreshed
with data of sufficient entropy.

Architectures such as above were suggested before. This work differs from previous attempts
in that we present a formal model for robust pseudo-random generation, and provide a formal
proof within this model for the security of our architecture. To our knowledge, this is the first
attempt at a rigorous model for this problem.

Our formal modeling advocates the separation of the entropy extraction phase from the
output generation phase. We argue that the former is information-theoretic in nature, and
could therefore rely on combinatorial and statistical tools rather than on cryptography. On
the other hand, we show that the latter can be implemented using any standard (non-robust)
cryptographic PRG.

We also discuss the applicability of our architecture for applications such as /dev/(u)random
in Linux and pseudorandom generation on smartcards.

1 Introduction

Randomness is a very useful resource, and nowhere more than in cryptographic applications. Ran-
domness is essential for secret keys, and inadequate source of randomness can compromise the
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strongest cryptographic protocol (e.g., see [GW96]). However, the reality is that procedures for
obtaining random bits (called pseudo-random generators) are often not designed as well as they
could have been. This is unfortunate since a security flaw in this procedure translates into a secu-
rity flaw in the whole system. Also, if this procedure does not have a rigorous security proof then
there is no hope for such a proof for the whole system.

In this work we formalize the requirements that we believe are needed from a robust pseudoran-
dom generator, and describe an architecture to realize these properties. Underlying our model is the
view that randomness must be assessed from the point of view of a potentially malicious observer,
and that this observer may have significant knowledge about inner workings of the system and the
environment in which it operates (and may even be able to influence that environment). Our goal
is to ensure (to the extent possible) that even such observer cannot distinguish the output of the
generator from an endless string of random bits. Our formal model clarifies the conditions that
must be met to achieve this goal, and our architecture demonstrates how to realize the security
goal when the necessary conditions are met.

Below we refer to this potentially malicious observer as the attacker. It is always assumed that
the attacker knows the code of the generator itself. Hence, knowledge of the generator’s internal
state would give the attacker the ability to predict its output. The heart of any design for robust
pseudorandom generator is therefore devoted to preventing an attacker from learning the internal
state (past, present, and future). This task is complicated by the fact that often times the attacker
can get at the internal state by “external means”. (For example, by compromising the OS and
reading the memory content of the generator process.) Hence, many designs incorporate a “refresh”
mechanism, by which the generator can modify its internal state using “new random data”. The
intent is that the new state be completely unknown, even to an attacker with knowledge of the old
state. Common pseudorandom generators therefore consist of two components:

• A function next() that generates the next output and then updates the state accordingly.
The goal of this component is to ensure that if the attacker does not know the state, then it
cannot distinguish the output (and new state) from random.

• A function refresh(x) that refreshes the current state using some additional input x. The goal
of this component is to ensure that if the input has “high-entropy” (from the attacker’s point
of view) then the resulting state is unknown to the attacker.

In some architectures these two components are mixed together, while in others they are separate.
In this work we advocate separating these components, and argue that they are very different in
nature. Some architectures include also an “entropy estimation” component, that tries to estimate
the entropy of the additional input before running the refresh function, with the intent of running
the refresh function only if the additional input is indeed “high-entropy”. We believe that such
component is counter-productive, since the quantity we are trying to estimate is the entropy from
the point of view of the attacker. The attacker, however, is an adversarial entity on which we know
next to nothing, so there is no conceivable way to actually estimate this entropy.1 Therefore, at best
the entropy estimator provides a false sense of security. At worst it can be actively manipulated by
an attacker, causing the generator to refresh its state using data that is guessable by the attacker (or,
in some cases, preventing refresh even though the available data is not guessable by the attacker).
See Section 5.2 for more discussion.

1The designer of the generator may not even know much on the system in which this generator is to run, let alone
the capabilities of an attacker on this system.

2



1.1 The model

The most important part of our formal model is modeling the capabilities of an attacker. Loosely
speaking, we consider an attacker that has access to the system where the generator is run, and
has the following capabilities:

• Prompting the generator for output and observing this output. Namely, the attacker has an
interface next-bits() that returns (say) the next m bits of output. (Throughout this paper, m
is fixed to be some security parameter of the generator.)

• Observing and even influencing some of the data that is used to refresh the internal state of
the generator. Roughly, we model this by allowing the attacker to specify the distribution
from which the refresh data in drawn. This capability can be thought of as an interface
refresh(D) that refreshes the internal state using an input that is drawn from the distribution
D (although our formal model is a bit different, see Section 2).

• Revealing and even modifying the internal state of the generator at will, i.e, an interface
set-state(s′) that returns to the attacker the internal state and then changes this state to s′.

The attacker interacts with the generator using these three interfaces, and the main security goal
can be informally stated as follows:

If the attacker calls refresh(D) with a “high entropy distribution” D, then the output of
the generator from that point and until the next set-state call must look random to the
attacker (even given the internal state obtained from that set-state call).

Note that this security goal in particular implies that once a “good” refresh occurred (i.e., a refresh
with high entropy), the output of the generator will look random to the attacker even if all later
refreshes are “bad” in the sense that they are completely known or even controlled by the attacker.

1.2 Additional requirements

In addition to making the output look random, it is also desirable that the generator protects the
secrecy of the input that was used in the refresh operation. The reason is that the refresh data
reveals things about the environment of the generator, and some of these things may be important
to keep secret for various reasons. Consider for example a generator that uses the user’s key-strokes
for refresh data, and imagine that the user types his/her password on the keyboard. Surely we
don’t want an attacker to learn the user’s password by attacking the pseudorandom generator, so
the generator should be built to protect this input: The level to which we can achieve input secrecy
depends on the specifics of the attack. We assume that the attacker sees the output of the generator
before and after the refresh operation, and in addition it may (or may not) know the internal state
before and/or after the refresh. Then we have two cases:

• If the attacker does not know the internal state of the generator before the refresh operation,
then we may be able to achieve semantic security for the refresh data. This means that the
attacker cannot even check if a certain guess for the refresh data is correct or not.

• If the attacker knows the internal state of the generator before the refresh operation, it is
easy to see that we cannot get semantic security, since an attacker can always test if a certain
guess for the refresh data is consistent with the generator’s output after the refresh operation.
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In this case, we can still hope for a “one wayness” property, where the attacker cannot recover
the refresh data solely from its knowledge of the internal state before and after the refresh
operation. (Assuming that the refresh data had enough entropy to foil an exhaustive search
on all possible guesses.)2

1.3 The construction

The construction uses two distinct elements. One is a randomness extraction function extract(x)
that converts a “high entropy” input into a shorter “random” output. Namely, if the input is taken
from a “high entropy” source, then the output is almost uniformly random. We comment that
the function extract need not be cryptographic at all. (See Section 2 and Appendix A for details.)
The other element is a standard (non-robust) cryptographic PRG, that takes a random seed and
outputs a longer (e.g., of size twice the size of the seed) pseudorandom output, denoted G(s). The
output length of the extraction function equals the seed length of the cryptographic PRG (e.g., 128
bits if we use for cryptographic PRG, say, AES in counter mode).

Given these two elements, the construction is very simple: The internal state of the robust
generator consists of a seed of the cryptographic PRG, which we denote by s, and let m = |s|
be the security parameter. In response to a call next(), the generator runs G(s) to generate 2m
pseudorandom bits, outputs the first m of them and replaces the state s by the last m bits. On a
call refresh(x), the generator xors extract(x) into the current state, and then runs the cryptographic
PRG once more, setting s′ ← G(s ⊕ extract(x)).

1.4 Relation to previous work

The problem of designing pseudorandom generators satisfying similar notions of robustness is well
known and many designs have been suggested in the literature, some quite similar to ours. In
particular, the Fortuna architecture of Ferguson and Schneier [FS03] is very similar to what we
propose in this paper. (Some minor differences are discussed in Section 5.2.) Thus the novelty of
this paper is not in our particular design of a pseudorandom generator. Rather it is in our formal
and rigorous definition for this generator and in our proof that our design satisfies this definition.
In particular, our formal model incorporates the attacks that were discussed by Kelsey, Schneier,
Wagner, and Hall in [KSWH98].

In general, robust pseudorandom generation can be viewed as an extension of the notion of
forward security, adding the feature of automatic (or proactive) recovery from compromise. Indeed,
the construction that we describe in Section 4 is very similar to the forward-secure generator of
Bellare and Yee [BY03]. We also mention that the current design can be thought of as the “stand-
alone variant” of the proactive pseudo-random generators of Canetti and Herzberg [CH94]. (In
that work they considered robust pseudorandom generation is a distributed network where nodes
can help each other recover from state compromise.)

Finally, this work is concerned mostly with the algorithmic aspects of robust pseudorandom
generation. For an excellent exposition of the system aspects we refer the reader to Gutmann’s
paper [Gut98]. (However, we disagree with some of Gutmann’s opinions regarding the algorithmic
aspects. See discussion in Section 5.2.)

2We can actually achieve the slightly stronger property of “entropic security”, see [DS05].
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1.5 Organization

In Section 2 below we formalize the interface refresh(·) of the attacker that was sketched above.
Then in Section 3 we complete our formal modeling, providing a formal definition of a robust
pseudorandom generator. In Section 4 we describe our architecture and proves that it indeed
realizes a robust pseudorandom generator. Finally, in Section 5 we discuss several practical issues
with the use of robust generators and suggest a few application areas where an architecture such as
ours may be used. We mention some of the related work on randomness extraction on Appendix A.

2 State Refresh and Entropy Extraction

In this section we formally model the attacker’s interfaces to the state-refresh operation. An
important feature of our model is that it distinguishes between “normal” and “dysfunctional”
conditions of the system. Roughly, this models the fact that there are times when the system can
harvest enough entropy to recover from an exposure of the state, and other times when it cannot
(e.g., if the attacker installs a monitor on the system to track the collected bits).

Following the common practice in cryptographic modeling, we let the attacker decide whether
the system is in “normal” or “dysfunctional” state. Thus, the attacker in our model is given two
interfaces, good-refresh that models refreshing the state under “normal” conditions, and bad-refresh

that models refreshing the state under “dysfunctional” conditions. In both cases the attacker
specifies the distribution from which the refresh data is drawn, but in the “dysfunctional” case
the distribution can be arbitrary, while in the “normal” case we require that this be a “good
distribution”. This section is mostly about formalizing what we mean by “good distributions”.

2.1 Good distributions for the refresh data

What we need from a “good distribution” D is that drawing x ←R D and using x to refresh the state
will result in future outputs of the generator looking random to the attacker, even if this attacker
knows the current internal state of the generator. To illustrate the difficulties in formalizing this
notion, let Fs(x) be the function that returns the first output of the generator after refreshing the
current state s with the refresh data x. (Note that once the generator is fixed, the function Fs is a
well defined deterministic function for all s.)

Since we cannot say anything about the state of the generator before the refresh (for all we
know it may be completely controlled by the attacker), we would like to require that the output of
Fs(x) looks random to the attacker regardless of what s is. Namely, to define what it means for a
distribution D to be “good” we could consider the following game:

1. The attacker picks the current state s,

2. A refresh data x is drawn from D,

3. The attacker is given Fs(x).

We would like to say that a necessary condition for D to be “good” is that the attacker cannot
distinguish the value Fs(x) in this game from a truly random string. In practice, in many cases
people use a construction such as (say) Fs(x) = HMAC-SHA1s(x). Moreover, it seems that people
make the assumption that any distribution with enough entropy is “good” for such constructions.
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We stress, however, that this assumption is in fact false. Indeed, it is easy to see that for every
deterministic function Fs(x) there exists an (efficiently sampleable) distribution Ds (depending
on Fs) with roughly |x| − 1 bits of entropy, such that Fs(x ←R D) can be easily distinguished from
the uniform distribution. (For example, let Ds be the uniform distribution over all the strings x
for which the first bit of Fs(x) is zero.)

It follows that no single construction can “work” for all the high-entropy distributions (in the
sense of the game from above). Of course, we only care about the construction “working” for
distributions that are likely to arise in practice, but it is not at all clear how to formally define such
distributions. Moreover, recall that we are interested in the distribution of refresh data from the
attacker’s perspective, on which we know very little.

To make the task of constructing, modeling and proving such generators more tractable, we
therefore propose the following approach: We introduce a parameter H which is supposed to
capture a family of “good distributions”, and formally define what it means for a generator be
secure with respect to a given family H (cf. Definition 3.1 in Section 3).3 We then advocate
splitting the construction of the generator into two orthogonal components:

• One component is a procedure for processing the refresh data x, trying to distill from it a
nearly-uniform string d of length m (where m is the security parameter). Such procedures are
commonly called extractors (cf., [Sha04] and references therein). In Definition 2.1 we formalize
what it means for a procedure extract(x) to “work” for a given distribution family H.

• The other component takes the (hopefully random) string d and uses it in the operation of
the generator. We give one simple example of how it can be constructed (using non-robust
cryptographic PRG) in Section 4.

The randomness extraction component of a generator needs to distill (something close to) true
randomness from the family H of distributions that are likely to arise in the system under “normal
working conditions”. Its design and analysis must therefore take into account at least some of
the specifics of the target system(s). For the design of this component we defer to previous works
such as [BST03, DGH+04] (which work for essentially as general families H as possible) and the
extensive research on randomness extractors as surveyed in [Sha04].

We note that extractors can be built using combinatorial and statistical tools, and in principle
need not use any cryptography at all (although there may be efficiency gains in using cryptographic
components for this task). We describe some of these previous works in the appendix, and we
also give some hints on concrete implementations in Section 4. Formally, we make the following
requirements from a randomness extraction function:

Definition 2.1 (Extraction functions). Let m be an integer, and let H be a family of distributions
over {0, 1}≥m (i.e., the set of strings of length at least m). A function extract : {0, 1}≥m → {0, 1}m

is an H-extractor if for every D ∈ H and every y ∈ {0, 1}m,

2−m(1 − 2−m) ≤ Pr
x←RD

[extract(x) = y] ≤ 2−m(1 + 2−m)

2.2 Back to our model

As we explained above, our formal model is parameterized with a family H of distributions that
the system uses under “normal” conditions. The attacker in our model is given the two interfaces

3 The notation H is meant to suggest High-entropy.
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good-refresh and bad-refresh. In principle, when using the interface good-refresh the attacker is
required to specify a distribution D ∈ H, and when using bad-refresh it can specify an arbitrary
distribution. We slightly simplify things by letting the attacker specify the actual input for the
refresh algorithm in the “dysfunctional” case, instead of the distribution from which this input
is taken. (These two formulations are equivalent as long as the distributions are efficiently sam-
pleable.) Hence the attacker has the interfaces good-refresh(D) that specifies a distribution D ∈ H
and bad-refresh(x) that specifies a single bit string x.

3 Robust Pseudorandom Generators

A robust pseudorandom generator consists of two functions:

(r, s′) ← next(s), where s is the current internal state. Returns (say) an m-bit string r, where m is
the security parameter of the generator,4 and replaces the internal state by the new state s′.

s′ ← refresh(s, x), with x a string of length at least m and s the current internal state. Updates
the internal state using the data x.

The security requirements from a robust generator are formulated via probabilistic games be-
tween two players: one player is the system that implements the generator, and the other is the
attacker that tries to attack the system. In the introduction we discussed several different proper-
ties that we expect from a robust pseudo-random generator. Instead of formulating each one via
a separate formal definition, we choose to define security via the ideal-world/real-world paradigm
(cf. [GMW87]). Namely, we have a real-world game that is meant to describe a real attacker that
interacts with the robust generator, and we have an ideal-world game that is meant to capture
“the most secure process that you could possibly get”. A construction is then deemed secure if no
attacker can distinguish between interacting with the generator in the real world and interacting
with the “secure process” in the ideal world. After presenting the formal definition, we briefly
explain why it implies all the properties that we described in the introduction.

The real-world game. We model an attacker on the generator in the “real world” as an effi-
cient procedure A that has four interfaces to the generator, namely good-refresh(·), bad-refresh(·),
set-state(·) and next-bits(). Formally, the real-world game is parameterized by a security parame-
ter m and a family of distribution H (as described in Section 2 above). The game begins with the
system player initializing the internal state of the generator to null, (i.e., s ← 0m), and then the
attacker interacts with the system using the following interfaces:

good-refresh(D) with D a distribution in H. The system draws x ←R D, sets s′ ← refresh(s, x),
and updates the internal state to s′.

bad-refresh(x) with a bit string x. The system sets s′ ← refresh(s, x) and updates the internal state
to s′.

set-state(s′) with an m-bit string s′. The system returns to the attacker the current internal state s
and then changes it to s′.

4We assume for simplicity that the generator always output exactly m bits, but both the definition and the
construction generalize easily to the case of variable-length output.
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next-bits(). The system runs (r, s′) ← next(s), replaces the internal state s by s′ and returns to the
attacker the m-bit string r.

The game continues in this fashion until the attacker decides to halt with some output in {0, 1}.
For a particular construction PRG = (next, refresh), we let Pr[A(m,H)R(PRG) → 1] denote the
probability that A outputs the bit “1” after interacting as above with the system that implements
the generator PRG and with parameters m,H. (Here R(PRG) stands for the “real-world process”
from above.)

The ideal-world game. The ideal-world game proceeds similarly to the real-world game, except
that the calls that A makes to its interfaces are handled differently. Specifically, whenever A
“expects to learn something new” from a next-bits() or set-state(·) call, the ideal process would
return to A a new random m-bit string, independent of everything else.

The exception, of course, is that if A already knows the internal state due to a previous set-state

call, then everything that it later sees until the next good-refresh call should be consistent with
that internal state. This is done by having the system maintains a flag compromised that is set on
a set-state call and reset on a good-refresh call, and the system behaves according to the prescribed
robust generator when compromised = true and returns random strings when compromised = false.

Formally, the ideal-world game is parametrized by the same security parameter m and family
of distribution H as before. The game begins with the system player initializing s ← 0m and
compromised ← true and then the attacker interacts with the system using the following interfaces:

good-refresh(D) with D a distribution in H. The system resets compromised ← false.

bad-refresh(x) with a bit string x. If compromised = true then the system sets s′ ← refresh(s, x)
and updates the internal state to s′. Otherwise (if compromised = false) it does nothing.

set-state(s′) with an m-bit string s′. If compromised = true then the system returns to the attacker
the current internal state s, and if compromised = false then it chooses a new random string
s ←R {0, 1}m and returns it to the attacker.

Either way, the system also sets compromised ← true and sets the new internal state to s′.

next-bits(). If compromised = true then the system runs (r, s′) ← next(s), replaces the internal
state s by s′ and returns to the attacker the m-bit string r. If compromised = false then the
system chooses a new random string r ←R {0, 1}m and returns it to the attacker.

The game continues in this fashion until the attacker decides to halt with some output in
{0, 1}. For a particular construction PRG = (next, refresh), we let Pr[A(m,H)I(PRG) → 1] denote
the probability that A outputs the bit “1” after interacting as above with the system. (Here I(PRG)
stands for the “ideal process” from above and note that we only use PRG in this game to answer
queries that are made while the compromised flag is set to true.)

As we explained above, we say that a construction PRG is secure if no attacker can tell the
difference between interacting with the system implementing PRG in the real world and interacting
with the “ideal process”. Formally, we have the following:

Definition 3.1. We say that PRG = (next, refresh) is a robust pseudorandom generator (with re-
spect to a family H of distributions) if for every probabilistic polynomial-time attacker algorithm A,
the difference

∣

∣

∣
Pr[A(m,H)R(PRG) → 1] − Pr[A(m,H)I(PRG) → 1]

∣

∣

∣
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is negligible in the security parameter m.

3.1 Output randomness and input secrecy

We observe that the output-randomness requirement that we discussed in the introduction is hard-
wired into the formal definition above. Indeed, the ideal process — when not compromised —
always returns truly random strings. Thus, saying that an attacker cannot distinguish between the
“real” and “ideal” processes in particular implies that it cannot distinguish the output of the real
process from truly random bits.

It is not hard to see that Definition 3.1 implies also the two input-secrecy requirements from the
introduction. To see that, notice that as long as the ideal process is not compromised, it completely
ignores the input to the refresh calls. Hence in the ideal world the attacker can neither recover the
refresh data in a good-refresh call (regardless of whether the system is compromised before that
call), nor can it check the refresh data in a bad-refresh call in which the system is not compromised.
And since the attacker cannot distinguish the ideal process from the real one, it also cannot do
these things when it interacts with the robust generator in the real world.

4 A Construction

Now that we defined our formal model, we turn to presenting a simple construction that can be
rigorously proven to satisfy our definition of a robust pseudorandom generator.

The two components of our construction are the extraction function extract(·) and a simple
(non-robust) cryptographic PRG G(·). A cryptographic PRG is a stateless function G : {0, 1}m →
{0, 1}2m such that G(Um) is computationally indistinguishable from U2m (where m is a security
parameter and Ui is the uniform distribution on {0, 1}i). Such a generator can be built from
symmetric ciphers and hash functions (e.g., either AES or HMAC-SHA1 in counter mode), the
factoring problem [BM84], or even any arbitrary one way function [GL89, HILL99].

Below we write (r, s′) ← G(s) to denote that r is the first m bits in the output of G(s) and s′

is the last m bits. Also, we denote by G′ the function that on input s ∈ {0, 1}m outputs only the
first m bits of G(s). Our pseudorandom generators operates as follows:

Operation of PRG. For security parameter m, given an H-extractor extract : {0, 1}≥m → {0, 1}m

and a cryptographic non-robust PRG G : {0, 1}m → {0, 1}2m, our robust PRG behaves as follows:
It has a state s ∈ {0, 1}m, and the functions refresh and next are defined as:

• refresh(s, x) returns s′ ← G′(s ⊕ extract(x)).

• next(s) returns (r, s′) ← G(s).

Our main theorem regarding this pseudorandom generator is the following:

Theorem 4.1. Let m be a security parameter, let extract : {0, 1}≥m → {0, 1}m and let H be a family
of distributions over bit strings, such that extract is an H-extractor. Also, let G be a cryptographic
PRG. Then the construction from above is a robust pseudorandom generator with respect to the
family H.

Proof. Let us fix some efficient attacking algorithm A. We consider the following two experiments:
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Expr. R A interacts with the real system R(PRG).

Expr. I A interacts with the ideal process I(PRG).

We want to prove that A outputs “1” in both experiments with almost the same probability.
To this end, we consider another experiment, denoted Expr. H (for Hybrid). This is similar to
Expr. R, except that it uses a truly random m-bit string to refresh the state in the good refresh
calls (instead of the output of extract(x) for x ←R D ∈ H). Namely, in Expr. H the attacker A
interacts with a modified process that works as follows:

good-refresh(D) with D a distribution in H. The system draws d ←R {0, 1}m, sets s′ ← G′(s ⊕ d),
and updates the internal state to s′.

bad-refresh(x) with a bit string x. The system sets s′ ← refresh(s ⊕ extract(x)) and updates the
internal state to s′.

set-state(s′) with an m-bit string s′. The system returns to the attacker the current internal state s
and then changes it to s′.

next-bits(). The system runs (r, s′) ← next(s), replaces the internal state s by s′ and returns to the
attacker the m-bit string r.

On one hand, we show that the view of A in Expr. H is statistically close to its view in
Expr. R. On the other hand, we show that to distinguish between Expr. H and Expr. I the
attacker A would have to break the underlying cryptographic PRG.

Proving the first claim is fairly straightforward. Let qr be a (polynomial) upper-bound on the
number of good-refresh(·) calls that A makes during the attack, and notice that the view of A is
a deterministic function of the (qr or less) m-bit strings that are the result of extract(·) in these
good-refresh(·) calls. In Expr. H the distribution over these strings is the uniform distribution,
whereas in Expr. R each of these string is set to extract(x) where x is chosen from (a convex
combination of) the distribution in H.5 But since the statistical distance between the uniform
distribution and extract(D) is bounded by 2−n for every D ∈ H, it follows that the statistical
distance between the view of A in the two games Expr. H and Expr. R cannot exceed qr/2n.

To prove the second claim, we show that distinguishing Expr. H from Expr. I implies breaking
the underlying cryptographic PRG. Let pH be the probability that A outputs one in Expr. H, and
similarly let pI be the probability that A outputs one in Expr. I. We show a procedure B that
breaks the cryptographic PRG G with advantage of at least (pH − pI)/q, where q is a polynomial
bound on the total number of calls made by A to all of its interfaces. The procedure B gets as input
two m-bit string r∗, s∗, and it tries to determine if they were chosen at random and independently
from {0, 1}m, or were set as (r∗, s∗) ← G(s) for a random s ←R {0, 1}m.

The procedure B(r∗, s∗) uses the attacker A as a subroutine, implementing for it the system.
It begins by choosing at random an index i∗ ←R {1, 2, . . . , q}, and also setting s ← 0m and
compromised ← true, and then it runs A, roughly answering the first i∗ − 1 calls of A with random
bit-strings, answering the i∗’th call using the input (r∗, s∗), and answering calls i∗ + 1 and on as is
done in Expr. H. More specifically, the i’th call of A is answered as follows:

5Note that the attacker A can specify different distributions from H, depending on its internal randomness and
its view thus far. Hence, each distribution in H has some probability of being specified as the next distribution in a
good-refresh(·) call, so the overall distribution from which x is drawn is a convex sum of all the distributions in H.
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good-refresh(D) with D a distribution in H. If i < i∗ then B chooses at random s′ ←R {0, 1}m. If
i = i∗ then B uses its input, setting s′ = s∗. If i > i∗ then B chooses at random d ←R {0, 1}m

and sets s′ ← G′(s ⊕ d) where s is the current internal state. Either way, B updates the
internal state to s′ and sets compromised ← false.

bad-refresh(x) with a bit string x. If compromised = true or i > i∗ then B sets s′ ← G′(s ⊕
extract(x)). If compromised = false and i < i∗ then B chooses at random s′ ←R {0, 1}m,
and if compromised = false and i = i∗ then B uses its input, setting s′ = s∗. Either way, B
updates the internal state to s′ (but does not modify the flag compromised).

set-state(s′). B returns to the attacker the current internal state s and then changes it to s′, and
also sets compromised ← true.

next-bits(). If compromised = true or i > i∗ then B sets (r, s′) ← G(s). If compromised = false and
i < i∗ then B chooses at random r, s′ ←R {0, 1}m, and if compromised = false and i = i∗ then
B uses its input, setting r = r∗ and s′ = s∗. Either way, B replaces the internal state s by s′

and returns to the attacker the m-bit string r.

The procedure B continues this way until A halts and outputs a bit, and then B outputs the
same bit. To analyze the advantage of the procedure B, consider the q + 1 experiments H(i),
i = 0, 1, . . . , q, where in experiment H(i) the first i calls of A to its interfaces are processed the way
B processes queries for i < i∗, and the rest are processed the way B processes queries for i > i∗.
Also, let p(i) be the probability that A outputs one in the experiment H(i).

It is clear that p(q) = ph, since B answers all the queries i > i∗ just as in Expr. H. We claim
that also p(0) = p0. To see this, notice that the flag compromised is set by B in exactly the same
way as in Expr. I, and the queries of A are always answered as in the “real world” with PRG when
compromised = true (in both the run of B and in the experiment H(0)). Also, all the queries i < i∗

with compromised = false are answered by B with random and independent bit strings, just as in
the experiment H(0). (The only tricky case is a set-state(·) query, but notice that B returns the
“current state s”, which is a random bit string that was never used by B in any other query, since
we have i < i∗ and compromised = true.)

It is also clear that when B chooses some i∗ and its input is chosen at random (r∗, s∗ ←R {0, 1}m)
then B outputs one with probability exactly p(i∗). Moreover, it is not hard to see that when B
chooses some i∗ and its input is chosen as the output of G ((r∗, s∗) ← G(s) for s ←R {0, 1}m) then
B outputs one with probability p(i∗−1). Specifically, for the latter case we note the following:

• If the i∗ call of A is good-refresh(·) then B would set the internal state to s′ ← G′(s) where
s is the randomness that was used to generate the input for B, whereas in the experiment
H(i∗−1) the new state would be set to s′ ← G′(s ⊕ d) with s the prior state and a newly
random choice d ←R {0, 1}m, so the distribution of s′ is the same in both.

• If the i∗ call of A is bad-refresh(x) with compromised = false, then again B would set the
internal state to s′ ← G′(s) where s is the randomness that was used to generate the input
for B, whereas in the experiment H(i∗−1) the new state would be set to s′ ← G′(s⊕extract(x))
with s the previous state. However, since compromised = false and since all the calls upto
i∗ − 1 with compromised = false were processed with random strings, it follows that in this
case the previous state is itself uniform in {0, 1}m (and independent of everything else), so
again the distribution of s′ is the same in both.
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• If the i∗ call of A is next-bits() with with compromised = false, then B would set (r, s′) ← G′(s)
where s is the randomness that was used to generate the input for B. In the the experiment
H(i∗−1) these values are would be set to (r, s′) ← G′(s) with s the previous state. Again,
since compromised = false and since all the calls upto i∗ − 1 with compromised = false were
processed with random strings, the previous state is itself uniform in {0, 1}m (and independent
of everything else), so the distribution of (r, s′) is the same in both.

From all the above it follows that the advantage of B is

Pr
s,coins

[B(G(s)) → 1] − Pr
r∗,s∗,coins

[B(r∗, s∗) → 1] =

q
∑

i∗=1

p(i∗−1) − p(i∗)

q
=

p0 − ph

q

4.1 A concrete construction

Although this paper is mostly focused on defining what it means for a robust generator to be secure
(rather than on suggesting a concrete implementation), we still feel compelled to at least give some
hints regarding what we think would be acceptable for the underlying primitives. Specifically, below
we list some reasonable choices for implementing the cryptographic PRG and the randomness
extractor. For the cryptographic PRG, there are many good implementations and the choice is
rather arbitrary. One reasonable choice would be to use the AES block cipher in counter mode.

For the randomness extractor, on the other hand, the choice seems harder. In many cases it
may be reasonable to use AES with a fixed random key in CBC mode. Here one may rely on the
(partially heuristic) analysis of Dodis et al. [DGH+04], which we briefly describe in the appendix.
The problem with that, however, is that plugging the block size m = 128 in the bounds from
[DGH+04] gives a rather poor result. One could alternatively use HMAC-SHA1 for extraction,
but again the result from [DGH+04] regarding HMAC-SHA1 are a bit too weak for comfort. Yet
another alternative is to use a block cipher with block size of 256 bits (with a fixed random key and
CBC mode) for the randomness extraction. A candidate cipher for this implementation is Rijndael,
which has a variant with 256-bit blocks. (This last alternative would probably be our choice if we
had to actually implement a robust generator.)

5 Practical Considerations

5.1 Drawing and extracting from random sources

In our formal model we have the system draws from a distribution D only when it is queried with
good-refresh(D). Most realistic implementations, however, would likely draw from their entropy
sources frequently (e.g., every few milliseconds), but will only modify the internal state every so
often (e.g., once every few minutes). Conceptually, we would like to think of this process as buffering
all the data until a refresh is performed, and then using it all at once. However, it is not realistic to
expect that so much data will be buffered between refresh operations. Instead, implementations are
likely to use an extraction function that can process the data in an on-line fashion, only keeping a
few bytes (e.g., 256 bits) of state. As mentioned above, a plausible candidate for such an extractor
is to use a block cipher with a fixed random key in CBC mode [DGH+04].
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5.2 To refresh or not to refresh

An important issue in the deployment of robust pseudo-random generator is to decide when to run
the refresh algorithm. On the one hand, refreshing very often pose the risk of using refresh data
that does not have enough entropy, thus allowing an attacker that knows the previous internal state
to learn the new state by exhaustively searching through the limited space of possibilities (cf. the
“State Compromise Extension Attacks” from [KSWH98]). On the other hand, refreshing the state
very infrequently means that it takes longer to recover from a compromise.

We stress that refreshing the state only helps if an attacker was able to compromise the previous
internal state but not the new state.6 For example, when the system was infected with a virus
that leaked the previous internal state, but later the virus was removed so the new state can no
longer leak. Indeed, we believe that in most all real-life systems, the frequency of events in which
an attacker broke into the system and then “left it” is very low. Moreover, if the “system cleanup”
requires explicit human interaction, then the same human interaction can possibly be used also
to generate sufficient entropy before refreshing the state (if nothing else, by having the human
randomly hitting the keyboard for a little while). It seems therefore that in most realistic settings,
the default frequency for refreshing the state could be very low (e.g., once every five minutes).

Recommended refresh strategy. As we discussed in the introduction, we believe that imple-
menting an automated entropy estimation routine for the purpose of scheduling a state refresh is
counter productive, since measuring of entropy from the point of view of an attacker is well beyond
what can be expected from a computer program. Instead, we advocate either using a periodic
refresh with very low period (e.g., once every five minutes), or using a very low static estimate
for the entropy (e.g., 1/2 entropy bit per sample). In the latter case, one should set a minimum
time interval between consecutive automatic refreshes (e.g., not more than once a minute). This
minimum delay is suggested to avoid an attack where an adversary generates a great number of
events with zero entropy (as far as the adversary’s knowledge is concerned). In any case, it is
recommended to provide an interface to allow a manual refresh of the generator with user-supplied
data (independently of the system-harvested entropy). The properties of our security definition
guarantee that there is no damage in allowing an attacker the ability to perform such a manual
refresh.

The Fortuna heuristic. The Fortuna architecture by Ferguson and Schneier [FS03] uses a so-
phisticated heuristic to automatically schedule refreshes without having to estimate the entropy.
Roughly, the refresh data is divided between several “pools”, and the different pools are used with
different frequencies. In particular, they use 32 pools where the ith pool is used every 2i refreshes.
Intuitively, this heuristic is supposed to “eat the cake and have it too” in the sense that it should en-
joy both the recovery speed of a frequent refreshes (up to a factor of 64) and the security advantages
of infrequent refreshes.

However, we point out that there is a strong assumption underlying this heuristic, and the
heuristic may fail to enjoy neither recovery speed nor security if this assumption fails. Specifically,
the heuristic assumes that the different pools are “reasonably independent”. Making such indepen-
dence assumption seems to be assuming quite a lot, especially if we recall that we must consider

6 This is because for an attacker that did not know this state, the generator will remain secure even if it is always
refreshed with zero entropy (or even with adversarially chosen data).
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the distribution of the different entropy pools from the attacker’s point of view. This is even more
so due to the specific way that the multi-pool idea is implemented in Fortuna. Namely, each source
spreads its bytes among all of the pools in a cyclical / “round robin” fashion (see [FS03, Sec 10.5.2,
Page 169]), so it many cases “the next bytes” in pool i + 1 will be highly correlated to “the next
bytes” in pool i.

To see what goes wrong when the independence assumption fails, consider the case in which
there is just a single source, and that source has just one bit of entropy every 32nd time that it is
called and zero entropy otherwise. Namely, from the point of view of an attacker that knows all
the outputs of the source thus far there are only two possibilities for its output in the next call,
and the output of the source in the 31 calls after this time that are completely determined by this
next output (say for simplicity that the next 32 calls all return exactly the same sequence of bytes).
Now, if the system refreshes its state using the Fortuna heuristic, then it is not hard to see that the
attacker can mount an “state-compromise extension attack” (a-la-[KSWH98]), and will only need
to try two possible values for the refresh data to maintain its complete knowledge of all the pools.
This means that regardless of how long the system runs, it will never recover to a secure state,
even though it could have recovered to a secure state if it only used a single pool with a sufficiently
conservative estimate to refresh instead of using the Fortuna heuristic.

Although this is a very extreme example, we believe that in general it is better to refresh the
internal state very rarely when possible, as opposed to trying to speed things up at the expense of
making extra assumptions on the distributions of the various sources. (Note that our model also
assumes a conditional entropy requirement between all the good refreshes, since a good refresh is
made from a distribution in H regardless of the outcome of the previous good refresh. However,
it seems more reasonable to assume independence or conditional entropy between data that is
collected in disjoint time intervals than between data that is collected in roughly the same time as
in the case of Fortuna.)

Refreshing after reboot/compromise. One case where the “very rare refresh” rule of thumb
cannot be applied is the initial refresh of the system when it is first started (or rebooted), or when
it recovers from a known compromise. Clearly, in most cases we cannot stop the boot process for
several minutes to get entropy. Even in this case we argue that run-time entropy estimation is a bad
idea (for the same reasons that it is a bad idea in other cases). Instead, several system-engineering
solutions should be applied, (e.g., trying to save the random state from previous boot, or from
hardware resources that are only available at boot time). As a last resort, we suggest setting
a system parameter that specifies the time until first refresh, with a reasonable default (e.g., 10
seconds?) that an administrator can override.

Another idea is to use here “exponentially increasing intervals”, similarly to the Fortuna heuris-
tic from above. Namely, at boot time one could schedule the first refresh after ten seconds, then
after twenty more seconds, then forty, etc., until the system reaches the steady state where it only
refreshes the state (say) every five minutes.7 Assuming that the sources have more or less constant
rate and that data drawn from the sources in non-overlapping time intervals is “reasonably indepen-
dent”, this lets the system reach a secure state after no more than twice what is strictly needed. Of
course when using this approach one needs to ensure that the “reasonable independence” condition
can be assumed. One possible heuristic is that after sampling data for an interval of x seconds,

7Of course we would keep sampling from the source at regular intervals (e.g., every few milliseconds) but we will
accumulate more and more data from one refresh to the next.
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the system would wait another x seconds without sampling any data, to increase the likelihood
that the data sampled next would be independent from the previous sample. This may be a good
heuristic to apply in other cases as well.

Entropy testing. Some works advocate the use of entropy estimators as a security measure,
to avoid the generator “running on empty” (e.g., see [Gut98]). As stated above, we reject this
approach as entropy estimation in general is an inherently impossible task. Nevertheless, for some
specific entropy sources (e.g., hardware-based generators) it may be possible to use tests to detect
failures. In any case, we believe any such test should be tailored to the specific source and rightly
considered part of the source sampling procedure and not part of the generator itself. In contrast
to [Gut98], we do not see any benefit in testing the output of the generator.

5.3 Discussion and relevance to /dev/random

The current implementation of Linux has two sources of randomness: /dev/random that should
provide information-theoretic (i.e. statistical) security, and /dev/urandom that should provide
computational security. Specifically, the manual reads as follows:

When read, the /dev/random device will only return random

bytes within the estimated number of bits of noise in the

entropy pool. /dev/random should be suitable for uses

that need very high quality randomness such as one-time

pad or key generation. When the entropy pool is empty,

reads to /dev/random will block until additional environ-

mental noise is gathered.

When read, /dev/urandom device will return as many bytes

as are requested. As a result, if there is not sufficient

entropy in the entropy pool, the returned values are theo-

retically vulnerable to a cryptographic attack on the

algorithms used by the driver. Knowledge of how to do

this is not available in the current non-classified liter-

ature, but it is theoretically possible that such an

attack may exist. If this is a concern in your applica-

tion, use /dev/random instead.

Given this documentation, it is expected that programmers will often use /dev/random in a
security-related applications. We strongly disagree with that approach, and believe that in most
situations, security will be enhanced if both /dev/random and /dev/urandom perform the same
function, which is to run an instance of the general scheme described in this paper. Our reasons
are the following:

1. It is not at all clear that /dev/random, whose implementation relies on an entropy estimator
and the cryptographic hash function SHA1 indeed provides information-theoretic security.
Indeed, we suspect that it sometimes does not.
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2. A design like ours allows for much more conservative entropy estimates (one needs fresh
randomness much less quickly) than the current design of /dev/random and thus we believe
will result in better chances of recovering from a leakage of the internal state.

3. The blocking behavior of /dev/random introduces uncertainty in the scheduling of security-
related programs. This uncertainty may be exploited for attacks by an adversary.

The manual page from above seem to suggest that security of outputs from /dev/urandom relies
on unproven assumption, whereas the security of /dev/random does not and holds even with respect
to computationally unbounded attackers. In our view, there is nothing further from the truth.
Leaving aside the fact that /dev/random uses SHA1 as an entropy extractor, the “information
theoretical security” that it provides relies on a heuristic approach to entropy estimation. As we
said several times in this note, the goal of that heuristic is to estimate the entropy from the attacker’s
point of view, and it operates without any clue as to the environment in which it runs and the
capabilities of the attacker. It all but certain that there are environments in which this estimation is
far too optimistic. We believe that it is far safer to trust the security of a published cryptographic
design such as HMAC-SHA1 or CBC-AES than to trust the entropy estimation heuristic. We
also remark that the design in this paper can be instantiated with different primitives, and so can
be made to rely on security of different problems (e.g., symmetric or public-key cryptography)
or different key sizes. This can allow to use different tradeoffs between security and efficiency in
different systems.

Moreover, we point out that /dev/random may fail to provide information-theoretic security
even if the entropy estimator is correct. For example, in the version or random.c that was used in the
Linux kernel v2.4, both streams used the same entropy pool, so the output of /dev/urandom leaked
information also about the state of /dev/random. And even when the two streams use syntactically
distinct pools (as in the Linux kernel v2.6), as long as they are refreshed from possibly dependent
data there is no guarantee of information-theoretic security for /dev/random.

5.4 Other use cases

We note that there are other scenarios besides /dev/random where our architecture may be of use.
One example is a smartcard that has no entropy generator of its own and can get what is supposed
to be fresh randomness whenever it is connected to a reader. The properties of our architecture
ensure that as long as this card gets randomness from an honest reader every once in a while, there
is no harm in letting it act also on “randomness” from a malicious readers. This may be sometimes
safer than including an entropy-generator in a smart-card, since those are often prone to attacks
or malfunction.

6 Conclusions

In the course of this work we arrived at the following observations/recommendations for the design
of robust pseudorandom generators.

1. The generator design should be explicitly split into two parts, namely the randomness extrac-
tion and the output generation. Moreover, it is possible to provide a modular design that allows
changing the primitives to achieve different security/efficiency tradeoffs.
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2. We advise against using run-time entropy estimation, and believe that having frequent auto-
matic refreshes is almost never beneficial. Instead, we advocate making the refresh rate as low as
possible, specifically in the order of once every few minutes.

3. In a well-designed generator, there is no harm in allowing refresh data to come from any
source, even one that is not trusted. This can be important, e.g., for smartcards, or when allowing
user-supplied data to be used for refreshing the state.
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A More on Randomness Extraction

We now return to the issue of extracting “truly random” strings from high-entropy sources. Recall
that in our context, we need a function extract : {0, 1}≥m → {0, 1}m that returns an almost
uniformly distributed string under “normal conditions” (and we do not care what it does under
“dysfunctional conditions”). These “normal conditions” are codified by a family H of distributions
on bit strings, such that we can assume that the refresh data is drawn from some distribution
D ∈ H under “normal conditions”.

The design of the function extract depends on the family of distributions H that one wishes to
extract from, which depend of course on the type of data that we will use to refresh the generator.
Below we briefly describe the work of Barak et al. [BST03] that sets up a model obtaining essentially
the most general family H and shows a rater efficient combinatorial construction that can be proven
to work in that model. Later we discuss some other approaches to entropy extraction, and in
particular describes briefly the work of Dodis et al. [DGH+04] that deals with using constructions
such as CBC-AES and HMAC-SHA1 for extraction.

A.1 The Barak-Shaltiel-Tromer model

The work [BST03] deals with extracting truly random bits from sources that have high entropy but
are far from uniform. The goal is to construct H-extractors (cf. Definition 2.1) where H includes
all the high-entropy distributions that we likely to see in practice.
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Before proceeding further we mention the minor technical problem that Shannon entropy is not
a good measure for the quality of distribution in our case. For example, a distribution that outputs
the n-bit all-zero string with probability 1/2, and otherwise outputs a uniform n-bit string, has
about n − 1 bits of entropy, but it is easy to see that it is not possible to extract from it more
than one bit of true randomness. It turns out that the right measure to use is the min-entropy
of a source, which is defined as log(1/p) where p is the probability of the most likely output of
that source.8 Hence, we require that all the distributions in H will have more than m bits of
min-entropy.

Recall further that the designer of the extraction function typically knows very little about the
environment in which it will be used. Therefore, the model of Barak et al. lets the attacker specify
the family H, subject to two constraints: (a) all the distributions in H must have (significantly)
more than m bits of min-entropy9, and (b) the family H is not too large: at most 2t distributions
where t is a parameter. The parameter t can be thought of as the degree of influence that the
attacker has on the environment under “normal conditions”. Namely, if there are t aspects of the
environment that the attacker can control (and each of these is a boolean flag) then the attacker
can choose one of 2t different distributions depending on how it sets these flags.

In more details, the work [BST03] utilizes randomized extraction functions, extract : Coins ×
{0, 1}n → {0, 1}m, (for some n > m) and considers the following “game” between the designer and
the attacker (with parameter t):

1. The attacker chooses a family of 2t distributions,

H = {D1, . . . ,D2t}

2. The designer chooses “once and for all” the randomness s ←R Coins for the extraction func-
tion. The coins s are made public (and in particular given to the attacker).

The randomized construction extract is considered good if for every family H of 2t distributions,
for all but a 2−m fraction of the coins s ∈ Coins, the deterministic function extracts(·) = extract(s, ·)
is an H-extractor as per Definition 2.1. Namely, no matter how the attacker chooses its family H in
Step 1, the resulting extraction function extracts extracts nearly uniform bits from every distribution
in H (except perhaps with insignificant probability over the choice of the coins in Step 2). It was
shown in [BST03] how to construct efficient randomized extraction functions extract that work as
long as every distribution in H has more than 2t + 4m bits of min-entropy. This construction is
not cryptographic, and in particular it does not rely on any hardness assumption.

Some additional comments. We briefly mention that the result of Barak et al. from [BST03]
is slightly stronger than what is implied by the text above. In particular, it can be shown that any
extractor that works for a family H also works for every distribution in the convex hull of H, so
one does not really have to think of the aspects that the attacker controls as being just boolean
flags. Also, for our purposes we do not necessarily have to think of the different samples from the
sources as independent, as long as we can assume that the distribution of the outputs conditioned
on the previous samples belong to the family H. Finally, we do not claim that the model in [BST03]

8A closely related measure is the Renyi entropy of order two.
9Recall that H describes the distributions over refresh data under normal working conditions, so it is reasonable

to require that these distributions have high entropy.
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is necessarily “the right model” to use in this context. Indeed, we expect that more work has to
be done before we have a model for randomness extraction that is both theoretically sound and
“practically interesting”.

A.2 Using cryptographic modes of operation

Many systems today use cryptographic functions in some mode of operation for randomness extrac-
tion. Although it is not at all clear what properties are needed from the cryptographic functions
themselves for this to work, one can at least examine the properties of the mode of operation,
assuming that the cryptographic primitive is replaced by a truly random function. Indeed, this
was recently studied by Dodis, Gennaro, H̊astad, Krawczyk and Rabin in [DGH+04]. Specifically,
they studied the CBC-Π construction with Π a truly random permutation over {0, 1}m, and the
HMAC-f construction where f is a truly random “compression function” from {0, 1}n to {0, 1}m,
and analyzed the extraction properties of these functions.

Their results indicates that CBC-Π for a random permutation Π is a “reasonably good” ex-
tractor. Namely, for every distribution D on {0, 1}mL (for some L > 1) that has more than 2m
bits of min-entropy, and with very high probability over the choice of Π, the statistical distance
between CBC-Π(D) and Um is bounded by roughly L/2m/2. (This means more or less that for any
m-bit string y, Prx←RD[CBC-Π(x) = y] = 2−m(1± L

2m/2
). Their results for HMAC-f are somewhat

weaker (but similar in spirit).

A.3 Other approaches to entropy extraction

Extraction using several independent sources. If one assume that we are given access to
several sources of high entropy that are independent then the impossibility result for a single
deterministic extraction function can be avoided, and it is possible to use a single deterministic
function extract(·) to extract randomness from such sources. See [BIW04] and the references therein
for discussion of this model.

Extraction from sampleable sources. Trevisan and Vadhan [TV00] put forward a theoreti-
cally very interesting model of randomness extraction from sampleable sources. The idea is that
distributions arising in nature must be efficiently sampleable. They give both a construction of a
function ensemble (as in the later work [BST03]) and a construction of a single function based on
complexity assumptions (which unfortunately has rather weak parameters). The main problem in
this approach is that complexity of the extraction function must be greater than the complexity of
the sampling algorithm.
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