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Abstract

This paper develops a cryptanalysis of the pairing based Diffie Hellman (DH) key
exchange schemes which have found important applications as in the tripartite exchange
scheme proposed in [1]. The analysis of weak keys of the standard DH scheme proposed
in [2] is applied to show existence of weak sessions for tripartite schemes over super-
singular curves. It is shown that for such sessions the associated Bilinear Diffie Hellman
Problem (BDHP) is solvable in polynomial time, without computing the private keys
i.e. without solving the discrete logarithms. Similar applications of the analysis to
Decisional Diffie Hellman Problem (DDHP)and the Identity Based DH scheme (IBS)
are also developed. The tripartite key exchange scheme is analyzed in detail and it
is shown that the number of weak keys increases in this scheme as compared to the
standard two party DH scheme. It is shown that the random choice of private keys by
the users independent of each other’s knowledge is insecure in these schemes. Algorithms
are suggested for checking weakness of private keys based on an order of selection. A
modified tripartite key exchange scheme is presented in which detection of weak keys is
incorporated.

1 Introduction

This paper develops an analysis of the pairing based Diffie Hellman (DH) key exchange
schemes on elliptic curves and shows existence of parameters of these schemes for which
the shared key can be computed in polynomial time without solving the associated discrete
logarithms. Hence private keys involved in such parameters are called weak keys of the
scheme.

In this second part of a series of two part papers we presents developments arising from
results of the first part [2]. The first part presents certain weak keys of the two party
DH scheme over the groups F

∗

pm and GLn over finite fields while this part is devoted to
the development of analogous weak parameters of pairing based DH schemes over elliptic
curves. These special parameters determine some of the weak keys of the tripartite key
agreement scheme proposed in [1].
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1.1 Pairing based DH schemes

Let P be a generator of a cyclic subgroup of G of order n. If A, B are users with private

keys k, l in Zn, then a session in a two party DH key exchange scheme is said to have
the session triple (P, k, l) with public data (P, Q, R) = (P, P k, P l). The shared key of the
session is S = P kl. The problem of computing S in terms of the public data is the well
known DH Problem (DHP). Now if e : G × G → K is a pairing1 with values in a finite
field K, then for a fixed T in G such that ω = e(P, T ) is not the identity of K, the above
setup results in a DH key exchange scheme over K with session triple (ω, k, l), public data
(ω, κ, λ) = (ω, ωk, ωl) and shared key s = ωkl = e(S, T ).

The DH scheme above on G is said to be a paring based scheme based on pairing e if
the shared key computed by the users is s in K. In a pairing based scheme it is s that
gets utilized for encryption purpose instead of S as in the standard DH scheme. Pairing
based DH schemes arise from the Bilinear DH Problem (BDHP) in the tripartite single pass
scheme referred above [1], the Identity based DH scheme [12] and the Decision DH Problem
(DDHP) on groups where a paring is available.

The above extensions of the DH scheme are practically feasible when the paring e(A, B)
itself can be computed for elements A, B of G without much overhead. Such is the case for
instance over super-singular and certain special elliptic curves [17]. Further, these schemes
are secure from the well known MOV attack [5] when the algorithms for solving discrete
logarithm problem (DLP) over K have sufficiently high time complexity such as when the
characteristic of K is sufficiently large.

1.2 Weak keys of the DHP over fields

In [2] a class of weak keys of the DHP over groups F
∗

pm and GLn are proposed. These
comprise of session triples (a, k, l) for say a in F

∗

pm for which the DHP can be solved in
polynomial time in m from the public data in Fp operations without solving the DLP. In
this paper we shall show how this analysis can be extended to prove existence of session
triples (P, k, l) of the DHP arising in paring based DH schemes on super-singular elliptic
curves for which the shared key s can be computed in polynomial time from the data (ω, κ, λ)
without solving the associated DLP. Further, this paper shall also develop the above class
of weak keys for the specialized situations of paring based DHPs such as the BDHP and
the DDHP. This leads to determining some of the weak keys of the tripartite DH scheme,
the Identity based DH scheme and that of the DDHP. We provide several examples of weak
keys of the tripartite key exchange scheme for illustration.

2 Tripartite Diffie Hellman scheme and the bilinear DHP

Consider three users A, B, C who can choose integers a, b, c randomly in Zn as private
keys. The single pass tripartite key exchange problem is concerned with creating a unique
common shared key between the users which they can compute once all of them generate
their individual public keys using a publicly known algorithm. The single pass term refers

1A pairing is a bilinear non-degenerate map i.e. satisfies e(an, b) = e(a, b)n, e(a, bn) = e(a, b)n for a, b in
G and n in Z and e(a, x) = 1 for all x in G implies a is identity in G.
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to the fact that no second stage computation requiring declared public keys of the users is
necessary for computing the shared key.

In [1] such a scheme is proposed over an elliptic curve E defined over Fp with the help of
the Tate paring on this curve. Let E[n] denote the set of n-torsion points of E(K) over K
the algebraic closure of Fp where p is coprime to n. Let e : E[n]×E[n] → K denote a paring
on E(K). Let P and Q be independent points in E[n] where P has order n. Now each of
the users A, B and C choose private keys a, b, c which are random integers modulo n and

declare their public keys as pairs of points2 (AP, AQ)
def
= (aP, aQ), (BP, BQ)

def
= (bP, bQ)

and (CP, CQ)
def
= (cP, cQ) respectively on E. Then A, B and C can compute e(aBP, CQ),

e(bCP, AQ) and e(cAP, BQ) respectively all of which equal to e(P, Q)abc which is the shared
key between them. Clearly, such a scheme is practically feasible only when the parings can
be computed inexpensively. Hence such paring based schemes are feasible mainly on super-
singular curves where the parings e(P, Q) can be computed in polynomial time complexity in
log p. Here Q is chosen such that e(P, Q) is not identity. An element Q in E[n] independent
of P serves this purpose when e(., .) is the Tate pairing. Consider now the Bilinear DHP
(BDHP) associated with this scheme.

Definition 1 (Bilinear Diffie Hellman Problem). Let the pairing e : E[n]×E[n] → K on E
and P , Q be as above where E is super-singular. Given pairs of points (AP, AQ) = (aP, aQ),
(BP, BQ) = (bP, bQ), (CP, CQ) = (cP, cQ) on E determine the shared key s = e(P, Q)abc.
We call the pair (P, Q) along with the above pairs of points as the public data of the BDHP.

2.1 Weak keys of the BDHP

Since an adversary can compute ω = e(P, Q), e(AP, Q) = ωa, e(BP, Q) = ωb, e(CP, Q) =
ωc, security of the above scheme presupposes practical infeasibility of computing the DLP
in the field Fpm where ω belongs. For instance this can be achieved by starting with an
elliptic curve E defined over Fp for large enough prime p. It is well known that the best
algorithms for solving the DLP in such fields are of subexpoential time complexity in p.
However we show that, even if the DLP is hard in Fpm , there exist special classes of pairs
(P, Q) together with choices of private keys a, b, c for which the BDHP can be solved in
polynomial time in m without explicitly solving the DLPs. Hence for given pairs of points
(P, Q) on a super-singular elliptic curve E, private keys of such class can be considered as
weak keys of the BDHP. Investigation of such weak keys is the primary aim of this paper.

2.2 Solving the BDHP using solutions of the DHP

In [2] authors have determined certain weak keys of the two party DH scheme over finite
fields. It turns out that the BDHP associated with the tripartite scheme explained above
incorporates three DHPs over the field whose shared keys are equal to the shared key of the
tripartite scheme. Hence the set of weak keys of the BDHP includes the weak keys of the
three DHPs and possibly more. We now discuss these problems. Let the BDHP be given
as above and compute ωab = e(AP, BQ), ωbc = e(BP, CQ), ωca = e(CP, AQ) all from the
public key pairs of the three parties. The shared key is s = ωabc. Consider the three DHPs
in which ωa, ωb and ωc are computed from the public keys as shown above.

2Notation: aP equals a times sum of P in E for a in Zn and P in E.
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Problem 1. Given ω, ωa, ωbc in Fpm compute s.

Problem 2. Given ω, ωb, ωca in Fpm compute s.

Problem 3. Given ω, ωc, ωab in Fpm compute s.

It is apparent from these problems that if a class of weak session triples of the standard
DHP (between two users) is known then this would give rise to a class of weak keys of the
tripartite scheme. One such class is proposed in [2]. For this class of session triples of a
DHP over F

∗

pm the shared can be computed in polynomial time in m without solving the
DLP. We shall thus develop a class of weak keys for the tripartite scheme above by utilizing
this class of weak triples of the DHP.

3 Weak keys of the DHP in the field case

In this section we briefly recall some of the results of [2] giving weak keys of the DHP
over finite fields and also introduce notation which is at variance with that of [2] in certain
symbols. Consider a finite field K = Fpm where p is prime denoting the field characteristic.
Let ω be an element of K∗ of order n. A session triple of a DHP over K is the triple (ω, k, l)
where k, l in Zn are private keys of the session. The triple (ω, κ, λ) = (ω, ωk, ωl) is called
the public data of the session. The element s = ωkl in K is called the shared key. The DHP
is to compute s given the public data. The method initiated in [2] for seeking solutions of
the DHP makes use of the structure of algebra of K. For an element ω in Fpm let h(ω, x)
denote the minimal polynomial of ω in Fp[x]. Denote

hr(x) = lcm (h(ω, x), h(ωr, x))

The following subsets of Zn are important for further development.

Definition 2. Let ω in Fpm be fixed and has order n. Define

1. The Conjugate class

C(n) = {t ∈ Zn|t = pr mod n, for some 0 ≤ r ∈ Z}

(C(n) =< p > the multiplicative monoid of Z
∗

n generated by p).

2. Keys satisfying modulus condition C1. Given l ∈ Zn

W1(ω, l) = {k ∈ Zn|x
k mod h(ω, x) = xk mod hk(x)}

3. Keys satisfying modulus condition C2. Given l ∈ Zn

W2(ω, l) = {k ∈ Zn|x
l mod h(ω, x) = xl mod hl(x)}

Following results proved in [2] go to show that the above sets are weak keys of the DH
scheme since the shared key for the session triple (ω, k, l) can be computed in polynomial
time from the public data (ω, κ, λ) whenever either k or l belong to the above sets. Denote
W (ω, r) = W1(ω, r) ∪ W2(ω, r).
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Theorem 1. The following statements hold

1. There exists a polynomial f in Fp[x] such that

(a) deg f < deg h(ω, x)

(b) The following equations hold

κ = f(ω)
s = f(λ)

(1)

iff k belongs to W1(ω, l).

Moreover, f is the unique such polynomial satisfying the above two conditions

2. There exists a polynomial g in Fp[x] such that

(a) deg g < deg h(ω, x)

(b) The following equations hold

λ = g(ω)
s = g(κ)

(2)

iff k belongs to W2(ω, l).

Moreover, g is the unique such polynomial satisfying the above two conditions.

Theorem 2. The following statements hold

1. There exists a polynomial f in Fp[x] such that

(a) deg f < deg h(ω, x)

(b) The following equations hold

λ = f(ω)
s = f(κ)

(3)

iff l belongs to W1(ω, k).

Moreover, f is the unique such polynomial satisfying the above two conditions

2. There exists a polynomial g in Fp[x] such that

(a) deg g < deg h(ω, x)

(b) The following equations hold

κ = g(ω)
s = g(λ)

(4)

iff l belongs to W2(ω, k).

Moreover, g is the unique such polynomial satisfying the above two conditions.
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Theorem 3. h(ω, x) = h(ωk, x) iff k belongs to C(n). Moreover C(n) ⊂ W2(ω, k) for any
k in Zn.

Corollary 1. W1(ω, r) = Zn iff r ∈ C(n)

Corollary 2. C(n) =< p > is a multiplicative subgroup of Z
∗

n.

Remark 1. Theorem 3 and the corollaries following establish existence of the sets W1(ω, .)
and W2(ω, .). Next theorem shall show that these are weak keys of the DHP. The last
corollary in particular shows that generators ω of order n for which the field characteristic
p is primitive in Zn should never be used in DH key exchange.

Theorem 4. Consider a session triple (ω, k, l) (with ω in Fpm such that deg h(ω, x) = m)
in which either k belongs to W (ω, l) or l belongs to W (ω, k). Then the DHP can be solved
in number of operations which grows at most as a polynomial in m over the field Fp. The
shared key computed is either f(c) or g(b). Moreover for k, l ≥ m this computation does
not yield any of k, l.

Definition 3 (Weak Keys of the DHP). A private key k or l of a session (ω, k, l) of a
DHP is said to be a weak key if the DHP for this session can be solved in polynomial time
proportional to the length of the public data (ω, κ, λ) of the session. In such cases the
session triple itself shall be called as a weak session triple.

Remark 2. From the above results it follows that session triples (ω, k, l) with k (respectively
l) belonging to W (ω, l) (respectively W (ω, k) are weak. The set C(n) is moreover fatally
weak since whenever l is in C(n) all k in Zn are weak. The weak session triples are exceptions
to the well known DH assumption according to which solution of the DLP is the only way
to solve the DHP. These aspects are discussed in detail in [2].

All of the above results are valid for the case when ω belongs to Fqm where q is not
prime. However then q must be of the form pt for some t. In this case statements of above
results can still be proved by replacing p with q. In [2] the resulting effect of change in the
polynomial ring from Fp[x] to Fq[x] is discussed. We shall skip this discussion.

3.1 Algorithm for computing the shared key

The problem of algorithmic computation of the shared key s for a session triple (ω, k, l) is
now considered, when one of the numbers k, l falls in the class of weak keys W1(ω, .)∪W2(ω, .)
discovered from the results of the previous section. Following algorithm returns the shared
key s when one of the private keys is weak.

Assume that the degree of minimal polynomial h(ω, x) of ω over Fpm is already computed
and without loss of generality let this be equal to m. This is a one time computation once
the generator ω is fixed and is not required to be repeated for new choices of private keys. In
any case this computation involves at most polynomial in m computations. The following
algorithm is reproduced from [2].

Algorithm 1. Input public data (ω, κ, λ).
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1. Compute the polynomials f , g in Fp[x] (which exist uniquely with degrees at most
m − 1) satisfying

κ = f(ω)
λ = g(ω)

2. Compute s1 = f(λ), s2 = g(κ).

3. Output shared key

• s = s1 if k ∈ W1(ω, l) or l ∈ W2(ω, k)

• s = s2 if k ∈ W2(ω, l) or l ∈ W1(ω, k)

Note that the solutions f , g always exist for arbitrary public data (ω, κ, λ) of a DH
session [2]. However s1 or s2 will return the actual shared key only when k or l belong
to the class of weak keys. Further, the solution of polynomials f and g can be obtained
by solving linear systems both of size m over Fp. Theorem 4 concludes the fact that this
computation along with computation of the co-efficients of these systems can be carried
out in time polynomial in m. Thus the algorithm above involves only polynomial time
computation. The problem of verifying whether the private keys k or l chosen last in a
session make the session triple weak or not is solved by the algorithm 3 given in section 6.

4 DHP over elliptic curves

The purpose of this section is to develop an extension of the weak keys of the DHP (over
F
∗

pm) discussed above (and developed in [2]) over elliptic curves. This is an independent
development of importance in its own right. As explained above the existence of weak keys
of the BDHP and their relevance to tripartite and identity based schemes follows directly
from the case of the standard DH scheme over the field case. However the notion of minimal
polynomial of the generator and its role in the solution of the DHP can be extended over
elliptic curves due to the existence of pairings on elliptic curves. It is for this reason that a
this special section is warranted.

Consider the DHP defined over an elliptic curve E over a finite field Fp for some prime
p. Of principal interest in this section is the well known reduction of [5] known as the
MOV attack based on the Weil pairing which provides an isomorphism of a cyclic subgroup
< P > in E of order n with that of the group µn of nth roots of unity in an extension field
of Fp. The notations of this construction are quite well known and may be referred from
the above reference.

Let e : E[n] × E[n] → K̄ denote the Weil pairing on the group E[n] of n-torsion points
of E(K̄) where K̄ is the algebraic closure of Fp. For the point P of order n (relatively prime
to p) there exists a point Q̃ in E[n] such that α = e(P, Q̃) is an element of Fpm for some m.
A smallest of such integers m is chosen. Then e([k]P, Q̃) = αk gives the isomorphism of the
two groups < P > and µn.

4.1 Associated DHP in the extension field and weak keys

Consider the DH scheme with session triple (P, k, l), k, l in Zn and public data (P, Q, R)
where Q = [k]P and R = [l]P . There is thus an associated DHP over Fpm with session
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triple (α, k, l) and public data (α, β, γ) where β = αk and γ = αl. Let S be the shared
key of the DH session in E. Then from the properties of the Weil pairing it follows that

ψ
def
= e(S, Q̃) = αkl is the shared key of the DH session in Fpm . We call ψ the image in

Fpm of the shared key S of the DH session over E. Conversely if ψ is the shared key of the
DH session in Fpm with (α, k, l) as the session triple then due to the above isomorphism
there exists a unique point S in E which is the shared key of the DH session over E such
that ψ = e(S, Q̃). Let T be any point in < P > and θ = e(T, Q̃). We call the minimal
polynomial h(θ, x) of θ over Fp[x] as the minimal polynomial of T over Fp and denote this
as h(T, x). Let hq(x) = lcm (h(P, x), h(Q, x)) while hr(x) = lcm (h(P, x), h(R, x)). Define
the analogous modulus conditions relative to the public data (P, Q, R) as follows.

Definition 4 (Modulus conditions). The triple (P, k, l) is said to satisfy the modulus con-
dition C1 if

xk mod h(P, x) = xk mod hr(x) (5)

while the triple (P, k, l) is said to satisfy modulus condition C2 if

xl mod h(P, x) = xl mod hq(x) (6)

Also define the analogous conjugate class of session triples as

Definition 5 (Conjugate class). The triple (P, k, l) is said to belong to the conjugate class
relative to k (respectively l) if h(P, x) = h(Q, x) (respectively if h(a, x) = h(R, x)).

Lemma 1. A session triple (P, k, l) satisfies modulus condition C1 (respectively C2) iff the
triple (α, k, l) satisfies modulus condition C1 (respectively C2). The triple (P, k, l) is in the
conjugate class relative to k (respectively l) iff (α, k, l) is in the conjugate class relative to
k (respectively l).

The proof is obvious from the above definitions. From the case of DHP over finite fields
developed in the last section it now follows that the image ψ of the shared key S of the
DHP on E can be solved in Fp operations which grow at most as a polynomial in d the
degree of the minimal polynomial of P . We state this as the next theorem.

Theorem 5. Let the session triple (P, k, l) satisfy modulus condition C1 or C2 and k, l ≥ d.
Let S be the shared key of the DH session. Given the data (α, β, γ) of the associated DHP
in Fpm , the image of the shared key ψ = e(S, Q̃) can be computed in number of operations
in Fp which grow at most as a polynomial in d. There exist unique polynomials f , g in Fp

of degrees at most d−1 such that ψ equals one of ψ1 = f(e(R, Q̃)) or ψ2 = g(e(Q, Q̃)). The
computation of f , g moreover does not yield k or l.

Proof. From the lemma above the triple (α, k, l) satisfies modulus condition C1 or C2 re-
spectively where α = e(P, Q̃) and has minimal polynomial of degree d in Fp[x]. Hence from
theorems 1, 2 there exist unique polynomials f , g for the DHP with public data (α, β, γ)
which express the shared key ψ as either ψ1 = f(γ) or ψ2 = g(β). From theorem 4 it
follows that computation of f or g can be accomplished in number of Fp operations which
grow at most as a polynomial in d. Finally from the properties of the Weil pairing we have
ψ1 = f(e(R, Q̃), ψ2 = g(e(Q, Q̃) and ψ = e(S, Q̃) where S is the shared key of the DH ses-
sion on E with public data (P, Q, R). Also from theorem 4 it follows that this computation
does not yield k or l.
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Above theorem shows that for session triples (P, k, l) satisfying either of the modulus
conditions, the DHP can in principle be solved without solving the DLP on E. While this
fact makes such session triples exceptions to be excluded from the DH conjecture from a
theoretical standpoint, it by itself is not cryptographically significant unless the rest of the
computations involved in computing the Weil pairings and inverse mapping from ψ to S
also depend polynomially on the data. In the next section we discuss a possibility in which
the image ψ of the shared key can be computed in polynomial time.

4.2 Application to pairing based key exchange

In this section we highlight key exchange schemes for which the above theorem is of crypto-
graphic significance. These schemes are defined over elliptic curves which are super-singular
on which the computation of pairings such as e(Q, Q̃) can be carried out in polynomial time
in the embedding degree m. Hence the computation of the pairing can be achieved in-
expensively. However the prime p is large enough so that the DLP in Fpm is intractable
being of sub exponential order. Pairing based schemes proposed by [1] and [12] on super-
singular elliptic curves involve m ≤ 6 and are important for tripartite and identity based
key exchange.

The importance of the above theorem for the pairing based schemes referred above is as
follows. In these schemes the shared key actually utilized for various cryptographic tasks
is the shared key ψ of the DHP in Fpm . This key is the image of S, the shared key of the
DHP with session triple (P, k, l) on E and is computed from the pairing as ψ = e(S, Q̃).
Thus whenever E is super-singular, the computation of the public data of the DHP in Fpm

is possible in polynomial time. Above theorem shows that when (P, k, l) satisfies one of
the modulus conditions, ψ can be computed as a solution of the DHP in Fpm with public
data (α, β, γ) in Fp operations depending polynomially on d. The degree d of the minimal
polynomial of P (same as that of α) is itself computable in at most polynomial number of
operations in m. Hence for the pairing based schemes on super-singular curves the DHP
can be solved in Fp operations which grow at most as a polynomial in m when the session
triple (P, k, l) satisfies one of the modulus conditions.

4.3 Weak parameters of pairing based schemes

We shall formally call a DH scheme on an elliptic curve E to be pairing based if there is a
pairing ω : E[n] × E[n] → Fpm and that the shared key used for encryption is a result of a
DH scheme on Fpm . Multiparty DH scheme and the identity based scheme on elliptic curves
referred above are examples of such schemes. As discussed above, when m is sufficiently
small the polynomial time computation of the shared key ψ in Fpm should turn out to be a
powerful attack whenever the session triples satisfy modulus conditions. For instance when
m = 6 the solution of the DHP in these special cases requires computation in Fp of at
most a fixed order however nothing can be said about the DLP for these special cases. We
shall leave this as an open question to be investigated in future. Similar conclusions can be
drawn with respect to other well known pairing based problems such as the Bilinear DHP
and the Decisional DHP. Detailed study of DHPs of these types is beyond the scope of this
paper and shall be pursued in a separate article.
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While the actual bounds on computation can be worked out for specific curves we
mention that it would be important to avoid the following list of weak parameters on super-
singular E over Fp for which the DHP can be solved in polynomial time in the embedding
degree m.

1. Points P of order n such that < p >= Z
∗

n.

2. Given l, private keys k which belong to W1(α, l) ∪ W2(α, l). Similarly for l when k is
given.

3. If l is the private key of the session chosen first, then those l for which number of
weak k is larger than a certain fraction of n − 2 since 1 < l ≤ (n − 1).

Thus the nature of weak keys k, l in the case of DH schemes on super-singular curves is
the same as that in the field case Fpm for an appropriate generator. Hence the existence of
such weak keys follows from the existence of such keys in the field case treated above. The
first item in the above list identifies generators for which α are not primitive elements of
Fpm but for which all numbers in Zn are conjugate class keys. Such generators are fatally
weak. This shows that increasing the order of P by itself does not make the session secure
in pairing based schemes. Computational algorithms for identifying weak parameters over
super-singular curves of realistic orders shall be necessary for future implementations of
these schemes. These developments shall be reported separately.

5 Weak keys of the tripartite scheme

The problem of determining weak keys of the BDHP is now considered using the weak keys

W (ω, r)
def
= W1(ω, r) ∪ W2(ω, r) of weak keys of a DHP over F

∗

pm . These are expressed
in following corollaries of the above theorems and are directly related to the three DHPs
associated with the BDHP discussed previously. We shall call private keys of a BDHP as
weak if the BDHP can be solved in polynomial time in the public data.

Corollary 3. Following statements hold

1. If b, c are private keys of users B, C of the BDHP then all integers a in W1(ω, bc) ∪
W2(ω, bc) are weak keys for user A.

2. If c, a are private keys of users C, A of the BDHP then all integers b in W1(ω, ca) ∪
W2(ω, ca) are weak keys for user B.

3. If a, b are private keys of users A, B of the BDHP then all integers c in W1(ω, ab) ∪
W2(ω, ab) are weak keys for user C.

Proof. Only the first item is proved since the other items are similar. The problem 1 is a
DHP with the session triple (ω, a, bc). Hence from theorem 4 it follows that numbers a in
W1(ω, bc) ∪ W2(ω, bc) are weak keys of user A. Hence the BDHP can also be solved from
the public data in polynomial time.
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The problem of deciding whether user A has weak key using public keys of users B,
C can be answered quite easily from the definitions of the sets W1 and W2 as well as
characterization of the conjugate class C(n). We discuss such algorithms in a later section.
Next corollary shows that choice of a private key by one user can cause weak keys in
combination of the keys of the other two users.

Corollary 4. Following statements hold

1. If a is the private key of user A, then all keys b, c of users B, C respectively such that
bc ∈ W1(ω, a) ∪ W2(ω, a) are weak keys of the tripartite scheme.

2. If b is the private key of user B, then all keys c, a of users C, A respectively such that
ca ∈ W1(ω, b) ∪ W2(ω, b) are weak keys of the tripartite scheme.

3. If c is the private key of user C, then all keys a, b of users A, B respectively such that
ab ∈ W1(ω, c) ∪ W2(ω, c) are weak keys of the tripartite scheme.

Proof. Consider the first item. The triple (ω, a, bc) is a session triple for the problem 1.
Hence it follows from theorem 1, 2 that the condition claimed on b, c results in bc as a weak
key of this problem. Other items can be proved similarly.

Corollary 5. Following statements hold

1. If a belongs to C(n) then W1(ω, a) = Zn hence all keys b, c are weak.

2. If b belongs to C(n) then W1(ω, b) = Zn hence all keys c, a are weak.

3. If c belongs to C(n) then W1(ω, c) = Zn hence all keys a, b are weak.

Proof. Follows from theorem 3 and the formulations of Problem 1, 2 and 3 respectively.

We can similarly have the following corollary when private keys of two users in combi-
nation belong to the conjugate class.

Corollary 6. Following statements hold

1. If bc belongs to C(n) then W1(ω, bc) = Zn hence all keys a of the users A are weak.

2. If ca belongs to C(n) then W1(ω, ca) = Zn hence all keys b of the user B are weak.

3. If ab belongs to C(n) then W1(ω, ab) = Zn hence all keys c of the user C are weak.

Proof. Follows from the definitions of the three DHPs Problems 1,2,3 and above discussion.

Above corollary shows that if product of any two private keys belong to C(n) then
the combination is fatally weak since the third party has no choice of a key by which the
corresponding session triple is not weak. However there is the larger class of pairs of private
keys (say a, b) whose product lies in the union W1(ω, c) ∪ W2(ω, c) which make the session
triples (ω, c, ab) weak and subsequently the session3 of the tripartite DH scheme weak. This
class is described by the following

3We call (ω, a, b, c) the session of the tripartite DH scheme with private keys of the parties as (a, b, c) and
call the session weak if the BDHP can be solved in polynomial time in the public data
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Corollary 7. Let a tripartite DH scheme have the private keys (a, b, c). Then the session
(ω, a, b, c) is weak if any one of the following conditions hold

1. ab belongs to W1(ω, c) ∪ W2(ω, c)

2. bc belongs to W1(ω, a) ∪ W2(ω, a)

3. ca belongs to W1(ω, b) ∪ W2(ω, b)

The proof is omitted since it follows from the themes of the above corollaries and previous
results. In a later section we present algorithms which determine whether a session is weak
which take into account all the cases of weakness of keys described in the above corollary.

5.1 Computation of the tripartite shared key

Computation of the shared key s in the tripartite case is now considered when the session
is weak. Due to the formulation of the three DHPs associated with the BDHP this can be
accomplished by repeated application of Algorithm 1. We assume the super-singular elliptic
curve E/Fp be given as above with a pairing e such that e(P, Q) is in Fpm but is not an
identity.

Algorithm 2. This algorithm computes the shared key s of the BDHP when the session
triple (ω, a, bc) of an associated two party DHP is weak.

Input public data (P, Q), (AP, AQ), (BP, BQ), (CP, CQ).

1. Compute ω = e(P, Q), κ = e(AP, Q), λ = e(BP, CQ).

2. Compute the polynomials f , g in Fp[x] (which exist uniquely with degrees at most
m − 1) satisfying

κ = f(ω)
λ = g(ω)

3. Compute s1 = f(λ), s2 = g(κ).

4. Output shared key

• s = s1 if a ∈ W1(ω, bc) or bc ∈ W2(ω, a)

• s = s2 if a ∈ W2(ω, bc) or bc ∈ W1(ω, a)

The above algorithm must be repeated to take into account possibly weak cases with
respect to weak sessions (ω, b, ca) and (ω, c, ab) of the other two DHPs associated with
the BDHP. The shared key in the tripartite case is thus obtained in three repetitions of
Algorithm 1 when the session is weak. Nevertheless since all steps are computed in time
polynomial in m, the solution of the BDHP is obtained in polynomial time whenever any of
the keys satisfy above conditions of weakness. Here the time required for computation of the
pairing is not considered. However it is well known from [5, 8, 11, 9, 10] that computation
of pairings can be carried out in polynomial time for super-singular curves for which m
above turns out to be at most 6. Hence such curves are suitable for implementation of
pairing based schemes. The security of such schemes therefore relies more on the difficulty
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of computation of discrete logarithms in the field Fpm and the DH assumption that the
DHP cannot be solved without computing the logarithms. In this paper we have shown
weak cases which are exceptions to be excluded from this assumption. From this viewpoint
the need for computation of pairings in the direct solution of the DHP as well as BDHP
is not an additional hurdle, it is required even for implementation of the scheme. While
the direct solution of BDHP in the weak cases is far less expensive than the solution of the
DLP.

6 Other applications

The above algorithm can be extended to compute the shared key in case of multiparty
key exchange schemes such as that proposed in [13] based on multilinear forms. Another
application of the weak keys of the DHP proposed in [2] can be made for solution of the
DHP associated with the Identity based DH key exchange scheme [12]. This scheme is
another example of a pairing based DH scheme. In this section we shall discuss this scheme
and also show an application of the above theory to determining weak keys of the DDHP.

6.1 Identity based DH scheme

This scheme can be conceptually described as follows. For more detailed description we
refer the reader to [12, 17]. Let E be a super-singular elliptic curve defined over Fq of
characteristic p and let e : E[n] × E[n] → Fqm be a pairing on the n torsion points. In
this scheme the private keys are integers a, b modulo a prime n and the publicly known

data consists of points P , aP , PBob

def
= bP and QBob in E[n]. The shared key is computed

as s = e(QBob, PBob)
a. Thus we have a pairing based DHP with session triple (ω, a, b)

where ω = e(QBob, P ) and the public data (ω, κ, la) with κ = ωa = e(QBob, aP ), λ = ωb =
e(QBob, PBob). The shared key is s = ωab. Clearly sets W1(ω, b), W2(ω, b) defined for this
DHP are the weak keys of the identity based DH scheme.

6.2 The decisional DHP

The Decision Diffie Hellman Problem (DDHP) [17] is defined on an elliptic curve E as
follows. Let points P, aP, bP, cP be publicly given on E. Given a point Q in E determine
whether Q = abcP . (Suppose there is given a public data (P, kP, lP ) of a DHP on E and
given Q it is required to find out whether Q = abP . Then such a problem can be solved with
the help of a pairing by computing s = e(P, Q). Then Q = abP iff s = (aP, bP )). Hence the
DDHP is nontrivial only due to the three public data points instead of two. We now consider
the DDHP after computing the pairings. Define ω = e(P, P ), κ = e(mP, P ), λ = e(kP, lP ).
(Here e(, ) is the Tate pairing for which e(P, P ) is not the identity). Then we are given the
public data of a DHP (ω, ωm, ωkl) = (ω, κ, λ) whose shared key is s = e(abP, P ) = ωklm.
Hence Q = abP iff s = e(Q, P ). Hence whenever the computation of pairing can be done
in polynomial time and the session triple (ω, m, kl) of the DHP is weak, the DDHP can be
solved in polynomial time. Hence the weak keys of the DDHP can be derived from that
of the weak keys of the DHP proposed in [2]. Here there are two other choices of session
triples for solving the DDHP in weak cases, these are respectively (ω, k, lm) and (ω, l, km).
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Hence weak keys are obtained in terms of weak keys of three different pairing based DHPs
as in the case of the BDHP. Since the sets of weak keys are exactly the same as that in
BDHP we shall skip the corresponding corollaries.

7 Existence and examples of weak keys of the tripartite scheme

We now provide examples of weak keys of the tripartite DH scheme to get an empirical
estimate of their occurrence. First note that in the standard two party DH scheme on
groups F

∗

pm the existence of the set of conjugates C(n) being equal to the multiplicative
subgroup < p > proves existence of weak keys. In [2] several examples are presented which
show the occurrence of weak keys in sets W1(ω, l) and W2(ω, l) outside the set C(n) of
conjugate class. If we consider the DH scheme on elliptic curves E/Fp with a generator P
of order n, then the existence of a pairing on E[n] with values in Fpm shows that the weak
keys of the pairing based DH scheme are precisely that of the weak keys of the associated
DH scheme in Fpm . Hence whenever the embedding degree m is small enough the pairing
can be computed inexpensively and then the weak keys of the DH scheme in Fpm are of
practical significance. These facts have been analyzed in [2].

In the case of the BDHP the weak keys are derived from the weak keys of the three
associated DHPs discussed above. Hence existence of weak keys of the BDHP follows from
the above arguments. In particular it may be noted that in any one of these DHPs say with
private keys a and bc the weak keys correspond to the product bc and not the individual
keys b, c. Hence there arises a situation in which a random choice of keys b, c even if chosen
to avoid the weak class individually, causes the product bc to be weak. This causes a larger
number of keys to be weak in the tripartite scheme than the sum of weak keys of the three
associated DH problems. The sets of weak keys W (ω, l), W (ω, k) of the standard DH scheme
proposed in [2] await further characterization. However due to the characterization of the
set C(n) of conjugate class it is convenient to determine a lower bound on the number of
weak keys of the tripartite scheme. Recall that C(n) is the multiplicative subgroup < p >
in Z

∗

n since n is prime in the usual DH scheme. The number of conjugate class keys of
practical interest in the standard DH scheme is

N2 = | < p > |

where m = deg h(a, x). Since the number of possible keys chosen equals n − m,4 the
percentage of weak keys in this scheme is at least as large as

w2 = N2 × 100/(n − m)

We also define a related number for tripartite scheme as follows:

Definition 6. Define N3 to be the number of pairs (b, c) for m < b, c < n such that bc
belongs to C(n) among all possible pairs (b, c) with m < b, c < n.

Then it is easy to observe

4Since k < deg h(a, x) = m is always weak we can trivially remove these from discussion.
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Proposition 1. The percentage of session quadruples (ω, a, b, c) in a tripartite DH scheme
for which the keys are weak for one of the three associated DHPs among all possible quadru-
ples with ω of order n is greater than or equal to w3 where

w3 = N3 × 100/(n − m)2

Proof. Choose a pair of private keys say (b, c). The session triple (ω, a, bc) for an associated
DHP is weak if bc belongs to C(n). There are N3 such pairs out of the possible pairs
(n − m)2 from which the percentage follows.

Example 1. Consider the field Fpm for p = 2, m = 6. ord a = 62. w2 = 8.06 while
w3 = 16.545.
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Figure 1: Key pairs (b, c) such that bc ∈ C(n) for F26

Example 2. Consider the field Fpm for p = 3, m = 4. ord a = 80. w2 = 3.75 while
w3 = 7.46.
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Figure 2: Key pairs (b, c) such that bc ∈ C(n) for F34

Example 3. Consider the field Fpm for p = 2, m = 7. ord a = 127. w2 = 4.95 while
w3 = 12.47.
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Figure 3: Key pairs (b, c) such that bc ∈ C(n) for F27

Example 4. Consider the field Fpm for p = 5, m = 3. ord a = 124. w2 = 1.64 while
w3 = 4.57.

Example 5. In this example we consider a super singular elliptic curve. Let E is given as
y2 = x3 + 1 over a field F101. A point P = (21, 24) has order 17. Under the Weil pairing it
is mapped to a cyclic subgroup of order 17 in the field F1012 . Hence consider the field Fpm

for p = 101, m = 2, w2 = 5.88, w3 = 30.10.

Example 6. Consider the field Fpm with p = 5 and m = 2. Choosing the minimal poly-
nomial h(ω, x) = x2 + 2 we get n = ordω = 24. Let a = 6. We plot all those pairs (b, c)
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Figure 4: Key pairs (b, c) such that bc ∈ C(n) for F53

such that the triple (ω, a, bc) satisfies one of the modulus conditions. This plot is shown in
figure 6. The number of weak pairs (b, c) is 130 while the total number of possible pairs
equals (n = m)2 = 529. Hence the percentage of weak pairs is 130 × 100/529 = 24.57%.
However note that for each b there exist weak pairs (a, c) and for each c there exist weak
pairs (a, b). Hence the actual percentage of weak private key triples (a, b, c) for a tripartite
session should be higher than the percentage of weak pairs computed above.

Example 7. Now we present an example with practical parameters and show the in-
stances of keys satisfying modulus condition and conjugate class as complete listing of
weak keys by exhaustive search is infeasible in reasonable time. Let Fp be a field with
p = 593917583375891588584754753148372137203682206097. Let ω be a root of an irre-
ducible polynomial h(x) = x2 + x + 2 over Fp with order n = p2 − 1. Consider a private
keys (b, c) with

b = 593917583375891588584754753148372137203682205793

c = 754523256898294975232475804884023412859850956402

03818054246099645349661449424681940813983641137

It can be seen that bc mod n = p. This shows that even if b, c are not in conjugate class
but their product belongs to C(n). Now we give an instance of private key pairs (b, c) such
that their product satisfies modulus condition. Let

a = 10002

b = 2023609450338312739394035451

c = 44611114391684133095747

It can be seen that for this choice of private keys, the modulus condition xbc mod h(ω, x) =
xbc mod h(ωa, x) is satisfied. Therefore the shared key ωabc can be computed as f(ωa),
where f(x) = xbc mod h(ω, x) = 5708990770823839524233143877797980545530986496x.
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Figure 5: Key pairs (b, c) such that bc ∈ C(n) for E over F101

Note that in some of the above examples, the weak key pairs (b, c) are obtained when bc
belongs to the conjugate class C(n). Since as shown in [2], there exist nontrivial elements
in the set W (ω, a) not belonging to C(n), the percentage of actual weak pairs (b, c) for
which bc belongs to W (ω, a) should be higher. Hence the percentages w3 indicated in the
examples are lower bounds on the percentage of weak key pairs. Further, this percentage
would increase if all the weak keys of all the three possible DHPs are taken into account.

8 Algorithms

Above examples show that the set of weak keys of the tripartite DH scheme is not negligible
enough to be ignored, although we do not have a complete characterization of the density
of their occurrence. The problem of choosing private keys which are not weak thus assumes
importance in the tripartite DH scheme. In this section we develop algorithms for checking
whether the private keys chosen by users of the tripartite DH scheme are weak. The problem
of choosing keys which are not weak is not yet resolved. However since checking weakness of
keys can be done by a very inexpensive computation and since the weak keys are relatively
small in proportion to the set of all keys their selection if done repeatedly shall return strong
keys. Hence the algorithms for checking weakness of keys can be utilized for choosing strong
keys by repeated selection and checking weakness. The proofs that these algorithms work
can be established easily from theorems 1 and 2 which we shall skip for brevity.

8.1 Weak keys of the standard DH scheme

The following algorithm checks for weakness of private keys of the standard DH scheme.
The session triple (a, k, l) in this case is assumed to have a generator a whose order n
satisfies the condition that p, the field characteristics, is not a primitive element of Z

∗

n and
that n is prime.
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Algorithm 3. (This algorithm checks whether a choice of k belongs to W1(a, l) ∪ W2(a, l)
for a given l).

Input Generator a a primitive element in the field Fpm and the public key c.

1. Choose k in Zn randomly.

2. Compute b = ak.

3. Compute polynomials f(x), g(x) in Fp[x] of degrees less than m such that

b = f(a)

c = g(a)

4. Compute s = ck.

5. Set boolean variable X = 1 if (s − f(c))(s − g(b)) = 0 else X = 0.

Output k, X. (Key k is weak if X = 1).

It has been shown in [2] that the above algorithm can be executed in polynomial time
(in m).

8.2 Weak keys of the tripartite scheme

The weak keys of the tripartite case proposed above are obtained from weak keys of the
three associated standard DH problems as shown. Since the characterization of weak keys
of the DH scheme is given above in terms of the sets Wi(a, l), i = 1, 2. It is necessary to
freeze one of the keys say l to describe weak choice of k and vice versa. Analogously in the
tripartite case we develop the algorithms by fixing an arbitrary order of choice of private
keys say a, b, c. Note further that since weak keys discussed above arise from weak keys
of any one of the three DHPs, none of a, b, c are chosen fatally weak i.e. all of them are
chosen randomly to lie outside the set C(n). Next, the choice of private keys is governed
by computation of weakness of the last chosen key in following stages

1. Having chosen a outside C(n), to determine if b chosen outside C(n) makes ab belong
to C(n).

2. Having chosen a, b so that a, b, ab are outside C(n) to determine if the chosen c makes
the session triples weak for any one of the three DHPs.

Algorithm 4. (Given the key a of A, this algorithm checks whether b chosen by user B
makes the key ab fatally weak (i.e. belongs to C(n)) in which case there is no choice for c
to be safe).

Input Public data (AP, AQ) of user A.

1. Choose b randomly in Zn outside C(n).

2. Compute the pairing ω = e(P, Q).
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3. Compute the public data (BP, BQ) and pairing λ = e(AP, BQ).

4. Compute the minimal polynomials h(ω, x) and h(λ, x) of ω and λ respectively in Fp[x].

5. Assign boolean variable Z = 1 if h(ω, x) = h(λ, x) else Z = 0.

Output Z. (ab is fatally weak if Z = 1).

Next we consider the problem of determining whether the key c chosen randomly by C
makes the session triple weak in any one of the the three DHPs given that keys a, b have
already been chosen and none of them including their product ab is in C(n) i.e. fatally
weak. It is assumed that ω = e(P, Q) is computed beforehand as well as the degree of the
minimal polynomial h(ω, x) of ω over Fp[x].

Algorithm 5. (This algorithm checks whether the key c to be chosen by the user C belongs
to the class of weak keys of the associated DH problem with public data (ω, ωc, ωab) from
the public keys (AP, AQ), (BP, BQ) of users A, B where ω = e(P, Q)).

Input Public data (AP, AQ), (BP, BQ) of users A, B respectively, m = deg h(ω, x).

1. Choose c randomly in Zn.

2. Compute the public key (CP, CQ).

3. Compute pairings κ = e(CP, Q), λ = e(AP, BQ).

4. Compute polynomials f , g in Fp[x] of degrees less than m such that κ = f(ω), λ =
g(ω).

5. Compute s = λc.

6. Assign boolean Z = 1 if (s − f(λ))(s − g(κ)) = 0

Output c, Z. (c is weak if Z = 1).

Next algorithm checks for weakness of c with respect to the DHP with public data
(ω, ωa, ωbc) where a and b are already chosen.

Algorithm 6. (Algorithm to check if either a belongs to W1(ω, bc) ∪ W2(ω, bc) or that
bc belongs to W1(ω, a) ∪ W2(ω, a) where a, b are given and c is chosen randomly by the
algorithm).

Input Public data (AP, AQ), (BP, BQ) of A, B respectively and m = deg h(ω, x).

1. Choose c randomly in Zn.

2. Compute the public data (CP, CQ).

3. Compute κ = e(AP, Q), λ = e(BP, Q)c, µ = e(AP, BQ) and s = µc.

4. Compute f , g in Fp[x] of degrees less than m such that κ = f(ω), λ = g(ω).

5. Assign boolean Z = 1 if (s − f(λ))(s − g(κ)) = 0.
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Output c, Z. (c is weak if Z = 1).

We now take up the third associated DHP with public data (ω, ωb, ωca) and present an
algorithm to determine whether a chosen key c is weak while having already chosen a and
b.

Algorithm 7. (Algorithm to check whether the DHP with public data (ω, ωb, ωca) has a
weak session triple where a, b are given, c is chosen by the algorithm and ω = e(P, Q)).

Input Public data (AP, AQ), (BP, BQ) of A, B respectively and m = deg h(ω, x).

1. Choose c randomly in Zn.

2. Compute κ = e(BP, Q), λ = e(CP, AQ), µ = e(AP, BQ) and s = µc

3. Compute f , g in Fp[x] of degrees less than m such that κ = f(ω) and λ = g(ω).

4. Assign boolean Z = 1 if (s − f(λ))(s − g(κ)) = 0 else Z = 0.

Output c, Z. (c is weak if Z = 1).

All of the above algorithms involve important computational steps such as the compu-
tation of pairings, the computation of polynomials f , g and the computation of the minimal
polynomial of an element of Fpm where m is the embedding degree of the group of n-torsion
points of the elliptic curve. The later two computations can be easily shown to be possible
in polynomial time once the pairing is computed. These facts are discussed in [2].

9 Conclusions

Weak keys of the DH key exchange scheme proposed in [2] lead to weak keys of the tripartite
DH key exchange scheme. More generally, these lead to weak keys of the pairing based DH
schemes which subsume problems such as the BDHP and the DDHP. For the session triples
determined by such weak keys these problems can be solved in polynomial time in the given
data without solving the discrete logarithm problems. At present pairing based schemes
are utilized only over super-singular elliptic curves where the pairings can be computed in
polynomial time however nonsingular elliptic curves with small embedding degrees under a
pairing are fast becoming popular for pairing based schemes. Weak keys proposed in this
paper should be avoided in such schemes.

The weak keys of both, the BDHP and the DDHP are obtained in terms of weak keys
of three different standard DHPs. A blowing up of the number of weak keys in the pairing
based problems occurs due to the fact that these associated standard DHPs involve products
of two private keys which can turn out to be fatally weak even if the individual keys are
chosen carefully not to fall in the fatally weak class. Further, just as in the case of standard
DH scheme, the choice of private keys of the tripartite DH scheme must be carried out in
an order. This allows private keys to be tested for weakness based on the public data of the
choices of private keys made beforehand. This fact shows that a random and independent
choice of private keys in the tripartite key exchange protocol is not secure and must be
modified to include an order of selection of keys.
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In conclusion it can be said that pairing based DH schemes involving three choices of
private keys are more insecure than the standard DH schemes involving only two parties.
Further the practice of random and independent choice of private keys by users is insecure
and should be replaced by choice in an order accompanied by testing of weakness of the
choice.
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