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Abstrat. The group of m-torsion points on an ellipti urve, for a

prime number m, forms a two-dimensional vetor spae. It was sug-

gested and proven by Yoshida that under ertain onditions the vetor

deomposition problem (VDP) on a two-dimensional vetor spae is at

least as hard as the omputational DiÆe-Hellman problem (CDHP) on

a one-dimensional subspae. In this work we show that even though this

assessment is true, it applies to the VDP for m-torsion points on an el-

lipti urve only if the urve is supersingular. But in that ase the CDHP

on the one-dimensional subspae has a known sub-exponential solution.

Furthermore, we present a family of hyperellipti urves of genus two

that are suitable for the VDP.

Key words. Ellipti urve ryptography, Curves of genus two.

1 Introdution

It is generally believed that the omputational DiÆe-Hellman problem

(CDHP) is a mathematially hard problem. Yoshida et al. [YMF02℄,

[YMF03℄ proposed a new hard problem; that of vetor deomposition

(VD). Yoshida [Yos03℄ proves suÆient onditions for whih the VDP on

a two-dimensional vetor spae is at least as hard as the CDHP on a one-

dimensional subspae. We shall show that for every example on an ellipti

urve that meets the ondition, the DiÆe-Hellman problem is weak. We

then onsider the vetor deomposition problem for hyperellipti urves.

Preise de�nitions of CDHP and VDP are given in Setion 2. We reite

Theorem 2.21 from Yoshida [Yos03℄ that provides a set of suÆient on-

ditions on a two-dimensional vetor spae suh that its VDP is at least

as hard as the CDHP on a one-dimensional subspae. Then under these

onditions one an solve the CDHP in the underlying one-dimensional

subspae by alling two instanes of the VD problem. In Setion 3 we



prove that any ellipti urve for whih the suÆient onditions in Setion

2 hold is bound to be supersingular. In Setion 4 we onsider the lassi-

�ation of genus 2 urves aording to their automorphism group [Igu60℄

and give a family of hyperellipti urves of genus two that are suitable

for the VDP. In Setion 5 we prove that these urves satisfy the suÆient

onditions of Setion 2 and desribe the VDP for suh urves in details.

2 Vetor Deomposition Problem

We formally de�ne the vetor deomposition problem (VDP) and the

Computational DiÆe-Hellman problem (CDHP). More importantly The-

orem 2.21 of Yoshida [Yos03℄ is presented. This theorem states suÆient

onditions on the two-dimensional vetor spae under whih the VDP is

at least as hard as the CDHP on the one-dimensional subspae. The proof

of the suÆieny of these onditions an be found in Yoshida [Yos03℄.

De�nition 1. The Vetor Deomposition Problem on V (a two-dimensio-

nal vetor spae over F) is \Given e

1

; e

2

; v 2 V suh that fe

1

; e

2

g is an

F-basis for V, �nd the vetor u 2 V suh that u 2 he

1

i and v� u 2 he

2

i".

De�nition 2. The omputational DiÆe-Hellman problem on V

0

(a one-

dimensional vetor spae over F) is \Given e 2 V

0

n f0g and ae; be 2 hei,

�nd abe 2 hei".

Theorem 1. (Yoshida [Yos03, Theorem 2.21℄)

The Vetor Deomposition Problem on V is at least as hard as the

CDH problem on V

0

� V if for any e 2 V

0

there are linear isomorphisms

�

e

; F

e

: V ! V whih satisfy the following three onditions:

(1) For any v 2 V, �

e

(v) and F

e

(v) are e�etively de�ned and an be

omputed in polynomial time.

(2) fe; �

e

(e)g is an F-basis for V.

(3) There are �

1

; �

2

; �

3

2 F with

F

e

(e) = �

1

e;

F

e

(�

e

(e)) = �

2

e+ �

3

�

e

(e);

and �

1

; �

2

; �

3

6= 0. The elements �

1

; �

2

; �

3

and their inverses an be

omputed in polynomial time.

To make the theorem lear, we will present a slight modi�ation of the

proof given by Yoshida [Yos03℄ here.



Proof. We will show that given (e; ae; be), the quantity abe an be om-

puted by solving two instanes of the VD problem. For the nontrivial ase

of ae 6= 0 we ompute the following,

e

0

= (�

�1

2

(�

3

� �

1

)ae� �

�1

2

e) = �e;

e

1

= ae+ �

e

(e

0

) = ae+ ��

e

(e);

e

2

= F

e

(e

1

) = (�

3

a� 1)e+ �

3

��

e

(e):

It is lear that �

3

e

1

� e

2

= e and the deomposition of be on the

basisfe

1

; e

2

g is u = �

3

be

1

. Furthermore deomposition of u on the basis

fe; �

e

(e)g results in u

0

= �

3

abe. The answer to the DHP is �

�1

3

u

0

= abe.

A key step in the above solution is that fe

1

; e

2

g should form a F-basis

for V. The ondition (2) above implies that fe; �

e

(e)g is an F-basis for

V. The ondition for fe

1

; e

2

g forming a basis is that the following matrix

must be nonsingular,

�

a �

�

3

a� 1 �

3

�

�

:

Clearly if � 6= 0 then the matrix above is nonsingular. Now assume

that � = 0. Then a = (�

3

� �

1

)

�1

and the desired quantity abe =

(�

3

� �

1

)

�1

be. �

Next we shall show an example of applying VDP for solving CDHP.

For reasons that will beome lear, in analogy to the notation for a point

on an algebrai urve, we shall represent an element of the vetor spae

V

0

with letter P .

Example 1. We will illustrate the theorem for the values �

1

= 1; �

2

=

�1; �

3

= �1. Also we shall assume that the maps �

P

and F

P

do not

depend on P and thus the subsript P an be dropped,

F (P ) = P;

F (�(P )) = �P � �(P ):

Let P;A = aP;B = bP be given. Then abP an be omputed from

the VDP as follows. Let

S = A+ 2�(A) + �(P )

= aP + (2a+ 1)�(P ):



And let T = F (S), so that

T = A+ 2(�A� �(A))� P � �(P )

= (�a� 1)P � (2a+ 1)�(P ):

Then S + T = �P and V DP ((S; T );�B) gives omponent bS on S.

Finally, V DP ((P; �(P )); bS) gives omponent abP on P .

The onditions stated in the theorem are stronger than what is in

fat neessary to prove the theorem. Indeed it is enough to have two

linear endomorphisms that satisfy the ondition stated above. The last

ondition and the fat that fe; �

e

(e)g is an F-basis for V, fores F

e

to

have an inverse, while �

e

is simply an endomorphism of the vetor spae

that does not need to have an inverse. The signi�ane of this beomes

apparent in the ase where V is hosen to be the vetor spae of m-

torsion points of an ellipti urve. Then studying the endomorphism ring

of the urve lassi�es all the possibilities for the linear endomorphisms

�

e

; F

e

: V ! V.

The theorem above indeed seems quite strong. Basially, as long as

the two-dimensional vetor spae V is equipped with the proper linear

endomorphisms, then the VDP is at least as hard as the CDHP on the

one-dimensional subspae.

The above theorem is an elegant result, but it is of no signi�ane as

long as one annot �nd an example of the vetor spae V and a subspae

V

0

satisfying the desired onditions.

3 Vetor Deomposition Problem on Ellipti Curves

In this setion we prove that an ellipti urve that meets the onditions

of Theorem 1 has to be supersingular and thus not appropriate for ryp-

tographi purposes.

Yoshida [Yos03℄ proposes to hoose V = E[m℄, the full group of m-

torsion points on an ellipti urve, and V

0

= E(F

p

)\E[m℄, the subgroup

of F

p

-rational m-torsion points, where

Notation 1.

p : a prime with p � 2 (mod 3);

E : y

2

= x

3

+ 1; an ellipti urve over F

p

;

m : a prime suh that 6m = p+ 1;

E[m℄ = fP 2 E j mP = 0g � E(F

p

2
):



The map F is the Frobenius map, F (x; y) = (x

p

; y

p

), and the map � is

hosen to be

�(x; y) = (!x; y); where !

2

+ ! + 1 = 0:

Theorem 1 applies with �

1

= 1; �

2

= �1; �

3

= �1, whih is the

speial ase illustrated in Example 1.

Unfortunately the proposed urve E : y

2

= x

3

+1 is supersingular and

thus suseptible to the MOV attak [MOV93℄. This is not a mere inidene

of a bad hoie; we will show that under the onditions of Theorem 1, if V

is hosen to be E[m℄, the group of m-torsion points on an ellipti urve,

then the urve is fored to be supersingular.

Theorem 2. Any ellipti urve with the two linear endomorphisms �

e

; F

e

:

V ! V satisfying the onditions of Theorem 1, where V is hosen to be

E[m℄, the group of m-torsion points, is supersingular.

Proof. End(E), the endomorphism ring of E, is of one of three types: the

ring of integers Z, an order in an imaginary quadrati �eld, or an order in

a quaternion algebra. Over a �nite �eld only the last two our, and the

last type ours if and only if the urve is supersingular [Sil99℄, [BSS00℄.

Now assume that the urve is not supersingular, then the endomorphism

ring is of rank two and as vetor spae over Q , End(E) 


Z

Q = h1; �i.

Thus we have:

F = a+ b� and � = + d�:

The ondition F (e) = �

1

e and the fat that fe; �(e)g is an F-basis

implies that b = 0 and a = �

1

, and

F Æ �(e) = �

1

�(e):

But fe; �(e)g is a basis, thus

F Æ �(e) = �

2

e+ �

3

�(e)

implies �

2

= 0 (and �

1

= �

3

). �

4 Curves of Genus Two

The diÆulty of the vetor deomposition problem is based on The-

orem 1 [Yos03, Theorem 2.21℄. Under the onditions of the theorem,

the vetor deomposition problem an be alled to solve the underlying



one-dimensional DiÆe-Hellman problem. Thus the vetor deomposition

problem is hard if the DiÆe-Hellman problem on a one-dimensional sub-

spae is hard.

This will be the ase for example if the one-dimensional subspae is

a yli subgroup Z=mZ of large prime order in the group of points of a

general ellipti urve. Assume that the full m-torsion of the ellipti urve

is de�ned over a small extension of the original base �eld so that we an

hoose as our two-dimensional vetor spae the group Z=mZ� Z=mZ

of all m-torsion points on the ellipti urve. Then, the Weil-pairing is

non-degenerate over the extension �eld and the MOV attak applies to

redue the one-dimensional DiÆe-Helman problem to a problem in the

multipliative group of the extension �eld, where it has a sub-exponential

solution. More seriously, as shown by Theorem 2, the onditions of The-

orem 1 hold for the group Z=mZ�Z=mZ of m-torsion points only if the

ellipti urve is of supersingular type. And in that ase the MOV attak

applies with small degree (at most six) of the extension �eld. Altogether,

this means that the full m-torsion of an ellipti urve is not a suitable

vetor spae for the two-dimensional VDP.

If we hoose the group Z=mZ�Z=mZ as a subgroup of the m-torsion

points in the Jaobian of a higher genus urve then we an avoid the MOV

attak and the Frey-R�uk attak [FR94℄, [FMR99℄ and we an satisfy the

onditions of Theorem 1 for urves that are not supersingular.

In this setion we onsider urves of higher genus. We an indeed �nd

urves with m-torsion of rank two among families of hyperellipti urves

with non-trivial automorphisms. Suh families have been lassi�ed for

urves of genus two. In the next setion we reall these results and present

a family of genus 2 urves that is suitable for the vetor deomposition

problem.

4.1 A Suitable Class of Genus 2 Curves

Igusa's lassi�ation of genus 2 urves aording to their automorphism

group [Igu60, Setion 8, Hyperellipti urves with many automorphisms℄

lists three in�nite families and three speial urves. The more reent publi-

ations [CGLR99℄, [CQ02℄, [GS01℄, [SV04℄ desribe these families in more

detail and add further properties. We give the lassi�ation and some im-

portant properties. In the next setion, we fous on one of the in�nite

families.



Ignoring the ase of even harateristi, a hyperellipti urve of genus

two is birationally equivalent to a urve in Rosenhain normal form

y

2

= x(x� 1)(x � �)(x� �)(x� �): (1)

The moduli spae M

2

of genus 2 urves is an aÆne variety of dimen-

sion three whose oordinate ring is generated by the lassial invariants

J

2

; J

4

; J

6

; J

10

of a binary sexti [Igu60℄. Let G denote the full automor-

phism group of a urve and e

0

2 G the anonial involution. Igusa las-

si�es urves with non-trivial redued automorphism group

�

G = G=he

0

i

aording to their Rosenhain form. For the speial hoie � = �(1 �

�)=(1 � �), the three fators x� �, x(x� �) and (x � 1)(x � �) beome

linearly dependent and the urve has a nontrivial involution that ats on

the roots of the Rosenhain form as (1�)(0�)(1 �). The same family is

desribed in Jaobi normal form by an equation

y

2

= x(x� 1)(x� a)(x� b)(x� ab): (2)

The hoie  = ab makes the fators x, (x� a)(x� b) and (x� 1)(x� )

linearly dependent and orresponds to a nontrivial involution that ats

on the roots of the Jaobi form as (1 0)(a b)(1 ab). Cassels and Flynn

[CF96℄ desribe a straightforward proedure to bring a urve with given

non-trivial involution in the form

C : y

2

= 

3

x

6

+ 

2

x

4

+ 

1

x

2

+ 

0

: (3)

So that the non-trivial involutions e

1

= (x; y) 7! (�x; y) and e

2

=

(x; y) 7! (�x;�y) at on the roots via x 7! �x. The quotients E

1

=

C=he

1

i and E

2

= C=he

2

i are the ellipti urves

E

1

: y

2

= 

3

x

3

+ 

2

x

2

+ 

1

x+ 

0

; C �! E

1

: (x; y) 7! (x

2

; y);

E

2

: y

2

= 

0

x

3

+ 

1

x

2

+ 

2

x+ 

3

; C �! E

2

: (x; y) 7! (1=x

2

; y=x

3

):

The Jaobian J of C deomposes up to isogeny as J � E

1

�E

2

. Existene

of the isogeny is immediate with the tehniques from [KR89℄. The isogeny

is indued by the produt of the quotient maps and has kernel of type

Z

2

� Z

2

with non-trivial elements (e; 0) � (�e; 0), for (e; 0) 2 C:

After saling, (3) beomes

y

2

= x

6

� s

1

x

4

+ s

2

x

2

� 1: (4)

Following [SV04℄, let

u = s

1

s

2

=



2



1



3



0

; v = s

3

1

+ s

3

2

=



3

2



0

+ 

3

1



3



2

3



2

0

:



Observe that, for y

2

= f(x),

u = (

X

f(z)=0

z

2

)(

X

f(z)=0

z

�2

); u

2

+ 4u� 2v = (

X

f(z)=0

z

4

)(

X

f(z)=0

z

�4

):

The following theorem by Shaska and V�olklein shows that u; v param-

eterize the moduli spae of genus 2 urves together with the image of an

ellipti involution in the redued automorphism group. In other words, a

point in this moduli spae represents the isomorphism lass of a Galois

over C=P

1

of type Z

2

�Z

2

= f1; e

0

; e

1

; e

2

g, suh that e

0

is the anonial

involution and the quotients C=he

1

i = E

1

and C=he

2

i = E

2

are ellipti

urves.

Theorem 3. [SV04, Lemma 1℄ For (s

1

; s

2

) 2 k

2

with �(x

6

� s

1

x

4

+

s

2

x

2

� 1) 6= 0, Equation (4) de�nes a genus 2 �eld K

s

1

;s

2

: Its redued

automorphism group ontains the ellipti involution �

s

1

;s

2

: x 7! �x. Two

suh pairs (K

s

1

;s

2

; �

s

1

;s

2

) and (K

s

0

1

;s

0

2

; �

s

0

1

;s

0

2

) are isomorphi if and only if

(u; v) = (u

0

; v

0

), where

(u; v) = (s

1

s

2

; s

3

1

+ s

3

2

)

Remark 1. Formulas to ompute the Igusa invariants J

2

; J

4

; J

6

; J

10

and

thus the absolute invariants i

2

; i

4

; i

10

from (u; v) an be found in [SV04℄.

There one an also �nd formulas for the j�invariants of the ellipti urves

E

1

and E

2

in terms of u; v.

Remark 2. A pair (u; v) desribes a pair (K; f1; e

0

; e

1

; e

2

g). Thus the quo-

tients C �! E

1

and C �! E

2

of C orrespond to the same point (u; v)

in the moduli spae, although E

1

and E

2

need not be isomorphi. And to

�nd the number of nonisomorphi quotients C �! E, for a given urve

C, a point in the moduli spae may need to be ounted with multipliity

two. In addition, some urves C may orrespond to more than one point

(u; v) in the moduli spae. This happens for example for (u; v) = (0; 0)

and (u; v) = (15

2

; 2 � 15

3

) that represent nonisomorphi Z

2

�Z

2

quotients

of the same urve. The involution w 7! �w on z

2

= w

6

+ 1 is the unique

entral involution in the redued automorphism group D

12

. Under the

isomorphism from y

2

= 2x

6

+ 30x

4

+ 30x

2

+ 2 to z

2

= w

6

+ 1 given

by w = (x + 1)=(x � 1); z = y=(x � 1)

3

the ellipti involution x 7! �x

orresponds to w 7! 1=w whih is ontained in a subgroup S

3

of D

12

.

Igusa's lassi�ation of genus two urves with many (more than two)

automorphisms ontains the three in�nite families (1), (2) and (3) and



Table 1. Igusa's Classi�ation of Genus 2 Curves.

Family

�

G = G=he

o

i G (�; �; �) Comment

(1) Z

2

V

4

� = �(1� �)=(1� �) (1�)(0�)(1 �) 2

�

G

(2) S

3

D

12

� = �1=�+ 1; � = 1=(1� �) (1 1 0)(�� �) 2

�

G

(3) V

4

D

8

� = 1=�; � = �1 (1 0)(��) 2

�

G

(3') V

4

D

8

� = 1=(2� �); � = �=(2� �) (1�)(0 �) 2

�

G

(4)=(2) \ (3) D

12

Z

3

oD

8

(2; 1=2;�1) ' y

2

= x

6

+ 1

(5)=(2) \ (3') S

4

GL

2

(3) (1 + i; (1 + i)=2; i) ' y

2

= x

5

� x

(6) Z

5

Z

10

' y

2

= x

5

� 1

the three speial urves (4), (5) and (6). Table 1 depits their redued

automorphism group, full automorphism group and Rosenhain form. For

the family (3), we add an equivalent desription (3').

In eah ase a urve belongs to a family whenever its redued au-

tomorphism group ontains the partiular permutation given in the last

olumn. Conversely, a urve in a family an always be represented suh

that it has a redued automorphism of the given form.

The families (2) and (3) ('(3')) are one-dimensional subfamilies of

the two-dimensional family (1). They interset in the two speial urves

(4) and (5). In [CGLR99℄, [CQ02℄, it is erroneously laimed that only

(4) lies in the intersetion of (2) and (3). The last olumn provides gen-

erators for the redued automorphism group. For any given family, the

redued automorphism group is obtained by adding the generator in the

last olumn to the group generated by the parent families.

For eah family, the number of subgroups of type Z

2

�Z

2

are listed in

Table 2. In the same table, we list the number of these subgroups up to

onjugay and the resulting number of nonisomorphi ellipti quotients

[CGLR99℄, [CQ02℄, [SV04℄. For eah family, all the numbers in Table 2

follow immediately from the properties of the group G. The upper bound

2 for the number of nonisomorphi ellipti quotients is established in a

di�erent way in [GS01℄. There all ellipti quotients for a given Rosen-

hain form are omputed and ompared. The proof of [GS01, Theorem

11℄ misrepresents the involution �

1

whih is onfusing but does not harm



Table 2. Enumeration of Subgroups of Type Z

2

� Z

2

.

Family G Number of Subgps Number of Subgps Number of nonisomorphi

up to onjugay ellipti quotients

(1) V

4

1 1 2

(2) D

12

3 1 2

(3) D

8

2 2 2

(4) Z

3

oD

8

4 2 2

(5) GL

2

(3) 6 1 1

(6) Z

10

0 0 0

the main point of the proof (a hoie suh that f1; �

1

; �

2

; �

3

; �

1

; �

2

g = S

3

would lead to �

1

= �

2

= �

3

, whereas the proof arrives at �

1

6= �

2

= �

3

).

To eah pair of a urve and a subgroup Z

2

� Z

2

up to onjugay

orresponds a unique pair of invariants (u; v) (Theorem 3). The moduli

spaes of invariants (u; v) assoiated to eah family are [SV04℄:

(1) f(u; v) : � = u

2

� 4v + 18u� 27 6= 0g:

(2) f(u; v) : � 6= 0 and 4v � u

2

+ 110u� 1125 = 0g:

(3) f(u; v) : � 6= 0 and v

2

= 4u

3

g:

(4) f(0; 0); (15

2

; 2 � 15

3

)g:

(5) f(5

2

;�2 � 5

3

)g:

(6) the urve has no ellipti involutions

For a urve in family (1) or (2) there is a unique pair (u; v), that

orresponds to a deomposition of the Jaobian J � E

1

� E

2

. For a

urve in family (2) the two ellipti quotients E

1

and E

2

are 3-isogenous

[GS01℄. For a urve in family (3) or (4) there are two pairs (u; v) that

give deompositions of the Jaobian J � E

2

1

and J � E

2

2

, respetively.

The two ellipti quotients E

1

and E

2

are 2�isogenous [Gey74℄. For the

urve (4), the point (15

2

; 2 � 15

3

) orresponds to a subgroup Z

2

� Z

2

of

both D

8

and D

12

whereas (0; 0) orresponds to a subgroup of D

8

but not

of D

12

(see also Remark 2). The urve (5) has up to onjugay a single

subgroup Z

2

� Z

2

that is therefore ontained in both D

8

and D

12

.



4.2 A Suitable Class of Genus Two Curves

The urves belonging to the family (2) in Igusa's lassi�ation are hara-

terized by a redued automorphism x 7! �1=x+1 of order three ating as

(110)(���) on the Weierstrass points. After a suitable frational trans-

formation, the ation on the Weierstrass points diagonilizes and a urve

in family (2) an be written as

y

2

= x

6

� ax

3

+ 1; for a

2

=

(1 + �)

2

(2� �)

2

(1� 2�)

2

�

1� �+ �

2

�

3

: (5)

With j the j�invariant of the ellipti urve y

2

= x(x � 1)(x � �) in

Legendre form, we an write a

2

= 4(j�1728)=j: Curves of the given form

arise if we sale

y

2

= (x

3

� r

2

)(x

3

� s

2

); (6)

over a �eld ontaining a ube root of rs, to

y

2

= (x

3

� r=s)(x

3

� s=r) = x

6

� ax

3

+ 1; for a =

r

2

+ s

2

rs

:

In [CGLR99℄, urves in the family (2) have a normalized form y

2

= x

6

+

x

3

+ t where t is uniquely determined by the isomorphism lass of the

urve. The urves in (5) have t = 1=a

2

. To apply results obtained in

[SV04℄ for the model

y

2

= 

3

x

6

+ 

2

x

4

+ 

1

x

2

+ 

0

;

we use a substitution x = (x + 1)=(x � 1); y = y=(x � 1)

3

to transform

(5) into

y

2

= (2� a)x

6

+ (30 + 3a)x

4

+ (30� 3a)x

2

+ (2 + a):

This yields a parametrization

u =



2



1



3



0

= 9

a

2

� 100

a

2

� 4

; v =



3

2



0

+ 

3

1



3



2

3



2

0

= 54

a

4

+ 360a

2

+ 2000

(a

2

� 4)

2

;

for the equation 4v�u

2

+110u�1125 = 0 of the moduli (u; v) in family (2).

The ellipti quotients of a urve in family (2) are 3�isogenous. We

determine the 3�isogeny expliitly when the urve is of the from (5). In



general, an ellipti urve with a stable torsion subgroup of order three

has a model over the base �eld

E : y

2

= x

3

+ d(3ax + b)

2

: (7)

The line x = 0 intersets the urve in a stable 3�torsion subgroup

T = fO; (0;+b

p

d); (0;�b

p

d)g. An isogeny de�ned on E preserves the

di�erential dx=y and is of the form (x; y) 7! (R(x); R

0

(x)y) [Sil94℄. The

3�isogeny � : E �! E

0

with kernel T onto an ellipti urve E

0

of the

form (7) is easily and uniquely determined by requiring that R(x) van-

ishes on the full 3�torsion, that is on the zeros of the Hessian of the

urve. We �nd that

� = (x(y

2

+ 3d(ax + b)

2

) : y(y

2

� 9d(ax+ b)

2

) : x

3

);

E

0

: y

2

= x

3

� 3d(3ax+ 3b� 12a

3

d)

2

:

Over a �eld ontaining

p

d, the model for E sales to d = 1; a = 1; b =

b=(da

3

). Over a �eld ontaining

p

�3d, we an write E

0

as in (7) with

d

0

= 1; a

0

= 1; b

0

= (3b� 12a

3

d)=(�3da

3

) = 4� b=(da

3

).

In partiular, we see that the two ellipti urves

E

1

: y

2

= x

3

+ (3x+ 2 + a)

2

; E

2

: y

2

= x

3

+ (3x+ 2� a)

2

are 3�isogenous over a �eld ontaining

p

�3. They are quotients of the

urve y

2

= x

6

� ax

3

+ 1 for the involutions (x; y) 7! (1=x; y=x

3

) and

(x; y) 7! (1=x;�y=x

3

), respetively. The orresponding quotient maps

are given by

(x; y) 7!

�

�

(2 + a)x

(x+ 1)

2

;

(2 + a)y

(x+ 1)

3

�

2 E

1

;

(x; y) 7!

�

(2� a)x

(x� 1)

2

;

(2� a)y

(x� 1)

3

�

2 E

2

:

For the various representations of the hyperellipti urves in the family

(2), one an �nd expressions for the j�invariants of the ellipti quotients

in [CGLR99℄, [CQ02℄, [GS01℄, [SV04℄. In eah ase, veri�ation that the

ellipti quotients are 3�isogenous is straightforward. The modular equa-

tion �

3

(j; j

0

) vanishes if and only if j and j

0

are 3�isogenous. Klein

[Kle21℄ gives a useful desription of the modular equation of level three

using resolvents. Let  : X

0

(3) �! X(1),

j =  (�) = 27

�(� + 8)

3

(� � 1)

3

:



Then j =  (�) and j

0

=  (�

0

) are 3�isogenous whenever (��1)(�

0

�1) =

1 [Coh94℄. In fat, for �; �

0

suh that (� � 1)(�

0

� 1) = 1, the urves

E : y

2

= x

3

+ (3x+ 4=�)

2

and E

0

: y

2

= x

3

+ (3x+ 4=�

0

)

2

are 3�isogenous and have j�invariants j =  (�) and j

0

=  (�

0

).

Lemma 1. The Jaobian of the hyperellipti urve

C : y

2

= x

6

� ax

3

+ 1

is isogenous to a produt of ellipti urves E

1

and E

2

,

E

1

: y

2

= x

3

+ (3x+ 2 + a)

2

;

E

2

: y

2

= x

3

+ (3x+ 2� a)

2

;

with j-invariants

j

1

=  (

4

2 + a

) = 4 � 1728

(5 + 2a)

3

(2 + a)(2� a)

3

;

j

2

=  (

4

2� a

) = 4 � 1728

(5� 2a)

3

(2� a)(2 + a)

3

:

5 Vetor Deomposition Problem on Genus Two Curves

In this setion we will show that the genus two urves of Lemma 1 are

indeed suitable for VDP. We onsider the urves over a �eld of harater-

isti p � 2 (mod 3) and we assume that a

2

2 F

p

. First we onsider the

ase that E

1

and E

2

are de�ned over F

p

(a 2 F

p

), then separately the

ase that E

1

and E

2

are de�ned over F

p

2 but onjugate over F

p

(a 62 F

p

).

In the latter ase, hoosing �3 as a �xed nonresidue in F

p

, the urves

have an equation C

0

: y

2

= x

6

� (a=

p

�3)x

3

+ 1 over F

p

2
, and a model

C : y

2

= x

6

� ax

3

� 3 over F

p

.

5.1 Vetor Deomposition Problem on Curves of the form

C : y

2

= x

6

� ax

3

+ 1

Lemma 1 of Setion 4 desribes the Jaobian of the urves up to isogeny

as a produt of two ellipti urves E

1

and E

2

. The ellipti urves E

1

and

E

2

are 3�isogenous over an extension �eld that ontains the third roots

of unity. Over the extension �eld, both E

1

and E

2

have the same number

of points. The setup for the VDP is now as follows.



We hoose C : y

2

= X

6

� ax

3

+ 1 suh that E

1

has a large yli

subgroup Z=mZ of rational points over F

p

, for p � 2 (mod 3). Then we

hoose as two-dimensional vetor spae V the m-torsion Z=mZ� Z=mZ

in the Jaobian of the hyperellipti urve C over the extension �eld F

p

2
.

And we hoose as one-dimensional subspae V

0

the subspae Z=mZ of V

that is rational over F

p

.

Notation 2.

p : a prime with p � 2 (mod 3);

C : y

2

= x

6

� ax

3

+ 1; a urve with a 2 F

p

;

Ja(C) : Jaobian of the urve C;

V = Z=mZ� Z=mZ� Ja(C)(F

p

2
);

V

0

= Z=mZ� Ja(C)(F

p

):

Let !; �! be primitive third roots of unity, and let

� : (x; y) 7! (!x; y);

�

� : (x; y) 7! (�!x; y);

F : (x; y) 7! (x

p

; y

p

);

� : (x; y) 7! (x

�1

; yx

�3

):

Lemma 2. For any element e 2 Ja(C)(F

p

),

�(�(e)) = �e� �(e);

and

F (�(e)) = �F (e)� �(F (e)):

Proof. The map �

2

+ � + 1 is the trae map onto the Jaobian of the

quotient urve C=h�i. But C=h�i is the urve y

2

= x

2

� ax+1 whih has

trivial Jaobian. Thus �

2

+ �+ 1 is the zero map.

For the seond laim, we need that �

2

ÆF = F Æ�. But this is lear, sine

for p � 2 (mod 3) both sides map (x; y) 7! (!

2

x

p

; y

p

).

Lemma 3. For an element e 2 Ja(C)(F

p

) of prime order m > 3,

he; �(e)i ' Z=mZ� Z=mZ:

Proof. Sine � is an automorphism of C, the elements e and �(e) have the

same order in the Jaobian of C. And it suÆes to show that �(e) 62 hei:

Assume to the ontrary that �(e) = �e; and thus in partiular �(e) 2

Ja(C)(F

p

): The previous lemma yields �

2

e = �e��e and �e = �e��e.

But then 0 = (2� + 1)(2� + 1)e = (�4 � 4� + 4� + 1)e = �3e, whih

ontradits m > 3.



The family of the urves C : y

2

= x

6

� ax

3

+ 1 with the linear maps

F and � of Notation 2 ful�ll the requirement of Theorem 1.

Theorem 4. Let C : y

2

= x

6

� ax

3

+ 1 be a hyperellipti urve, and let

V and V

0

be vetor spaes of dimensions two and one, respetively, as in

Notation 2. For any e 2 V

0

with 3e 6= 0, the two-dimensional vetor spae

V has a basis fe; �(e)g suh that the following holds,

F (e) = e;

F (�(e)) = �e� �(e):

The VDP on V, with respet to the basis fe;  (e)g, is at least as hard as

the omputational DiÆe-Hellman problem in V

0

: given (e; ae; be) ompute

abe. If V

0

is hosen to be of prime order then it an be identi�ed with a

subgroup of E

1

(F

p

) or E

2

(F

p

).

Proof. Lemma 3 gives that fe; �(e)g forms a basis. The other properties

follow from Lemma 2 and the fat that e is F

p

-rational. The laim that

these urves are indeed suitable for VDP follows from Theorem 1, in par-

tiular from the speial ase treated in Example 1. To investigate the one-

dimensional vetor spae V

0

, let E

1

= Ja(C)=h�i, E

2

= Ja(C)=h��i.

Multipliation by 2 on Ja(C) fators as

Ja(C) �! E

1

�E

2

; P 7! (P

1

; P

2

) = (P + �P; P � �P ):

E

1

�E

2

�! Ja(C); (P

1

; P

2

) 7! (P

1

+ P

2

) = 2P:

(8)

Sine both morphisms are de�ned over F

p

, it is lear that a subgroup of

prime order in Ja(F

p

) an be identi�ed with a subgroup of E

1

(F

p

) or

E

2

(F

p

). �

The fatorization in the proof of Theorem 4 extends to a ommutative

diagram of subgroups of Ja(F

2

p

).

Ja(F

p

)

��

//
E

1

(F

p

)�E

2

(F

p

)

��

//
Ja(F

p

)

��

E

1

(F

p

2
)

//
E

1

(F

p

)�E

2

(F

p

)

//
Ja(F

p

)

P

��

//
(P

1

; P

2

)

��

//
2P

��

Q

//
(Q

1

; Q

2

)

//
�6P



For P 2 Ja(C)(F

p

), let Q = �P + ��P 2 E

1

(F

p

2
), and let

Q

1

= Q+ F (Q);

Q

2

= (��

�

�)Q+ F ((��

�

�)Q):

It follows from

F (�P ) =

�

�P; F (��P ) = ��P;

and Lemma 2 that

Q

1

= �P � �(P ) = �P

1

2 E

1

(F

p

);

Q

2

= �3P + 3�P = �3P

2

2 E

2

(F

p

):

And the diagram ommutes.

We have shown that genus two urves of the form y

2

= x

6

� ax

3

+ 1

satisfy the requirements of Theorem 1 and an be onsidered for the vetor

deomposition problem. The impliation of Theorem 1 is that the VDP

in the Jaobian of suh a urve is at least as hard as the CDHP on the

ellipti urve E

1

that appears in its deomposition Ja(C) � E

1

� E

2

.

However, we saw that V

0

is a subgroup of E

1

(F

p

) and we do not bene�t

from the full size of Ja(F

p

). This is of ourse undesirable beause even

though we pay the prie of omputing in Ja(F

p

), the seurity is only

proportional to the size of the points on E

1

(F

p

).

5.2 Vetor Deomposition Problem on Curves of the form

C : y

2

= x

6

� ax

3

� 3

In setion 5.1 we saw that although the urves of form C : y

2

= x

6

�ax

3

+1

are suitable for VDP, the omputations for VDP are done in Ja(F

p

) while

they are only as seure as the CDHP on the ellipti urve E

1

(F

p

). In this

setion we onsider another lass of genus two urves that do not have

this problem. For p � 2 (mod 3), let �3 2 F

p

be a �xed nonsquare. Any

urve with equation y

2

= x

6

+ Ax

3

+ B over F

p

, with B a nonsquare, is

isomorphi over F

p

to a urve C : y

2

= x

6

� ax

3

� 3 and isomorphi over

F

p

2 to a urve C

0

: y

2

= x

6

� (a=

p

�3)x

3

+ 1:



Notation 3.

p : a prime with p � 2 (mod 3);

C : y

2

= x

6

� ax

3

� 3; a urve with a 2 F

p

;

Ja(C) : Jaobian of the urve C;

V = Z=mZ� Z=mZ� Ja(C)(F

p

2 );

V

0

= Z=mZ� Ja(C)(F

p

):

De�ne morphisms �;

�

�; F as before. In partiular Lemma 2 and Lemma

3 still hold. But, for �

6

= �3; �

2

2 F

p

, de�ne

� : (x; y) 7! (!x; y);

�

� : (x; y) 7! (�!x; y);

F : (x; y) 7! (x

p

; y

p

);

� : (x; y) 7! (

�

2

x

;

�

3

y

x

3

):

Theorem 5. Let C : y

2

= x

6

� ax

3

� 3 be a hyperellipti urve, and let

V and V

0

be vetor spaes of dimensions two and one, respetively, as in

Notation 3. For any e 2 V

0

with 3e 6= 0, the two-dimensional vetor spae

V has a basis fe; �(e)g suh that the following holds,

F (e) = e;

F (�(e)) = �e� �(e):

The VDP on V, with respet to the basis fe; �(e)g, is at least as hard as

the omputational DiÆe-Hellman problem in V

0

: given (e; ae; be) ompute

abe.

Proof. The proof of theorem 4 still holds.

Note that V

0

in general is not a subgroup ofE

1

(F

p

). WithE

1

= Ja(C)=h�i

and E

2

= Ja(C)=h��i, multipliation by 2 on Ja(C) fators as in (8).

The quotients E

1

and E

2

are in general de�ned over F

p

2
but not over F

p

.

For P 2 Ja(C)(F

p

), let Q = �P + ��P 2 E

1

(F

p

2
): We have

F (�P ) =

�

�P; F (��P ) = ���P:

Thus, for

�

Q = F (Q),

Q = �P +

�

��P;

�

Q =

�

�P � ��P:



Finally, with Lemma 2, P = ��Q�

�

�

�

Q. So that the groups Ja(C)(F

p

)

and E

1

(F

p

2
) are isomorphi.

Ja(F

p

)

//
E

1

(F

p

2
)

//
Ja(F

p

)

P

//
Q

//
(��Q�

�

�FQ) = P

Sine E

1

is in general not de�ned over F

p

, it is possible for a suitable

hoie of urve C : y

2

= x

6

� ax

3

� 3; to �nd V

0

of large prime order and

of small index in E

1

(F

p

2
).

6 Conlusion

Yoshida proved Theorem 1 that guarantees the intratability of the vetor

deomposition problem for a two-dimensional vetor spae. In this work

we prove that if the group of m-torsion points on an ellipti urve is

hosen as the two-dimensional vetor spae, then the onditions of the

theorem fore the urve to be supersingular.

Moreover, we onsider the VDP on the Jaobian variety of urves of

higher genus, for whih the onditions of the theorem turn out to be less

restritive. We introdue a family of hyperellipti urves of genus two for

whih the VDP is at least as hard as the DiÆe-Hellman problem on a

general ellipti urve.
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