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Abstra
t. The group of m-torsion points on an ellipti
 
urve, for a

prime number m, forms a two-dimensional ve
tor spa
e. It was sug-

gested and proven by Yoshida that under 
ertain 
onditions the ve
tor

de
omposition problem (VDP) on a two-dimensional ve
tor spa
e is at

least as hard as the 
omputational DiÆe-Hellman problem (CDHP) on

a one-dimensional subspa
e. In this work we show that even though this

assessment is true, it applies to the VDP for m-torsion points on an el-

lipti
 
urve only if the 
urve is supersingular. But in that 
ase the CDHP

on the one-dimensional subspa
e has a known sub-exponential solution.

Furthermore, we present a family of hyperellipti
 
urves of genus two

that are suitable for the VDP.
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1 Introdu
tion

It is generally believed that the 
omputational DiÆe-Hellman problem

(CDHP) is a mathemati
ally hard problem. Yoshida et al. [YMF02℄,

[YMF03℄ proposed a new hard problem; that of ve
tor de
omposition

(VD). Yoshida [Yos03℄ proves suÆ
ient 
onditions for whi
h the VDP on

a two-dimensional ve
tor spa
e is at least as hard as the CDHP on a one-

dimensional subspa
e. We shall show that for every example on an ellipti



urve that meets the 
ondition, the DiÆe-Hellman problem is weak. We

then 
onsider the ve
tor de
omposition problem for hyperellipti
 
urves.

Pre
ise de�nitions of CDHP and VDP are given in Se
tion 2. We re
ite

Theorem 2.21 from Yoshida [Yos03℄ that provides a set of suÆ
ient 
on-

ditions on a two-dimensional ve
tor spa
e su
h that its VDP is at least

as hard as the CDHP on a one-dimensional subspa
e. Then under these


onditions one 
an solve the CDHP in the underlying one-dimensional

subspa
e by 
alling two instan
es of the VD problem. In Se
tion 3 we



prove that any ellipti
 
urve for whi
h the suÆ
ient 
onditions in Se
tion

2 hold is bound to be supersingular. In Se
tion 4 we 
onsider the 
lassi-

�
ation of genus 2 
urves a

ording to their automorphism group [Igu60℄

and give a family of hyperellipti
 
urves of genus two that are suitable

for the VDP. In Se
tion 5 we prove that these 
urves satisfy the suÆ
ient


onditions of Se
tion 2 and des
ribe the VDP for su
h 
urves in details.

2 Ve
tor De
omposition Problem

We formally de�ne the ve
tor de
omposition problem (VDP) and the

Computational DiÆe-Hellman problem (CDHP). More importantly The-

orem 2.21 of Yoshida [Yos03℄ is presented. This theorem states suÆ
ient


onditions on the two-dimensional ve
tor spa
e under whi
h the VDP is

at least as hard as the CDHP on the one-dimensional subspa
e. The proof

of the suÆ
ien
y of these 
onditions 
an be found in Yoshida [Yos03℄.

De�nition 1. The Ve
tor De
omposition Problem on V (a two-dimensio-

nal ve
tor spa
e over F) is \Given e

1

; e

2

; v 2 V su
h that fe

1

; e

2

g is an

F-basis for V, �nd the ve
tor u 2 V su
h that u 2 he

1

i and v� u 2 he

2

i".

De�nition 2. The 
omputational DiÆe-Hellman problem on V

0

(a one-

dimensional ve
tor spa
e over F) is \Given e 2 V

0

n f0g and ae; be 2 hei,

�nd abe 2 hei".

Theorem 1. (Yoshida [Yos03, Theorem 2.21℄)

The Ve
tor De
omposition Problem on V is at least as hard as the

CDH problem on V

0

� V if for any e 2 V

0

there are linear isomorphisms

�

e

; F

e

: V ! V whi
h satisfy the following three 
onditions:

(1) For any v 2 V, �

e

(v) and F

e

(v) are e�e
tively de�ned and 
an be


omputed in polynomial time.

(2) fe; �

e

(e)g is an F-basis for V.

(3) There are �

1

; �

2

; �

3

2 F with

F

e

(e) = �

1

e;

F

e

(�

e

(e)) = �

2

e+ �

3

�

e

(e);

and �

1

; �

2

; �

3

6= 0. The elements �

1

; �

2

; �

3

and their inverses 
an be


omputed in polynomial time.

To make the theorem 
lear, we will present a slight modi�
ation of the

proof given by Yoshida [Yos03℄ here.



Proof. We will show that given (e; ae; be), the quantity abe 
an be 
om-

puted by solving two instan
es of the VD problem. For the nontrivial 
ase

of ae 6= 0 we 
ompute the following,

e

0

= (�

�1

2

(�

3

� �

1

)ae� �

�1

2

e) = �e;

e

1

= ae+ �

e

(e

0

) = ae+ ��

e

(e);

e

2

= F

e

(e

1

) = (�

3

a� 1)e+ �

3

��

e

(e):

It is 
lear that �

3

e

1

� e

2

= e and the de
omposition of be on the

basisfe

1

; e

2

g is u = �

3

be

1

. Furthermore de
omposition of u on the basis

fe; �

e

(e)g results in u

0

= �

3

abe. The answer to the DHP is �

�1

3

u

0

= abe.

A key step in the above solution is that fe

1

; e

2

g should form a F-basis

for V. The 
ondition (2) above implies that fe; �

e

(e)g is an F-basis for

V. The 
ondition for fe

1

; e

2

g forming a basis is that the following matrix

must be nonsingular,

�

a �

�

3

a� 1 �

3

�

�

:

Clearly if � 6= 0 then the matrix above is nonsingular. Now assume

that � = 0. Then a = (�

3

� �

1

)

�1

and the desired quantity abe =

(�

3

� �

1

)

�1

be. �

Next we shall show an example of applying VDP for solving CDHP.

For reasons that will be
ome 
lear, in analogy to the notation for a point

on an algebrai
 
urve, we shall represent an element of the ve
tor spa
e

V

0

with letter P .

Example 1. We will illustrate the theorem for the values �

1

= 1; �

2

=

�1; �

3

= �1. Also we shall assume that the maps �

P

and F

P

do not

depend on P and thus the subs
ript P 
an be dropped,

F (P ) = P;

F (�(P )) = �P � �(P ):

Let P;A = aP;B = bP be given. Then abP 
an be 
omputed from

the VDP as follows. Let

S = A+ 2�(A) + �(P )

= aP + (2a+ 1)�(P ):



And let T = F (S), so that

T = A+ 2(�A� �(A))� P � �(P )

= (�a� 1)P � (2a+ 1)�(P ):

Then S + T = �P and V DP ((S; T );�B) gives 
omponent bS on S.

Finally, V DP ((P; �(P )); bS) gives 
omponent abP on P .

The 
onditions stated in the theorem are stronger than what is in

fa
t ne
essary to prove the theorem. Indeed it is enough to have two

linear endomorphisms that satisfy the 
ondition stated above. The last


ondition and the fa
t that fe; �

e

(e)g is an F-basis for V, for
es F

e

to

have an inverse, while �

e

is simply an endomorphism of the ve
tor spa
e

that does not need to have an inverse. The signi�
an
e of this be
omes

apparent in the 
ase where V is 
hosen to be the ve
tor spa
e of m-

torsion points of an ellipti
 
urve. Then studying the endomorphism ring

of the 
urve 
lassi�es all the possibilities for the linear endomorphisms

�

e

; F

e

: V ! V.

The theorem above indeed seems quite strong. Basi
ally, as long as

the two-dimensional ve
tor spa
e V is equipped with the proper linear

endomorphisms, then the VDP is at least as hard as the CDHP on the

one-dimensional subspa
e.

The above theorem is an elegant result, but it is of no signi�
an
e as

long as one 
annot �nd an example of the ve
tor spa
e V and a subspa
e

V

0

satisfying the desired 
onditions.

3 Ve
tor De
omposition Problem on Ellipti
 Curves

In this se
tion we prove that an ellipti
 
urve that meets the 
onditions

of Theorem 1 has to be supersingular and thus not appropriate for 
ryp-

tographi
 purposes.

Yoshida [Yos03℄ proposes to 
hoose V = E[m℄, the full group of m-

torsion points on an ellipti
 
urve, and V

0

= E(F

p

)\E[m℄, the subgroup

of F

p

-rational m-torsion points, where

Notation 1.

p : a prime with p � 2 (mod 3);

E : y

2

= x

3

+ 1; an ellipti
 
urve over F

p

;

m : a prime su
h that 6m = p+ 1;

E[m℄ = fP 2 E j mP = 0g � E(F

p

2
):



The map F is the Frobenius map, F (x; y) = (x

p

; y

p

), and the map � is


hosen to be

�(x; y) = (!x; y); where !

2

+ ! + 1 = 0:

Theorem 1 applies with �

1

= 1; �

2

= �1; �

3

= �1, whi
h is the

spe
ial 
ase illustrated in Example 1.

Unfortunately the proposed 
urve E : y

2

= x

3

+1 is supersingular and

thus sus
eptible to the MOV atta
k [MOV93℄. This is not a mere in
iden
e

of a bad 
hoi
e; we will show that under the 
onditions of Theorem 1, if V

is 
hosen to be E[m℄, the group of m-torsion points on an ellipti
 
urve,

then the 
urve is for
ed to be supersingular.

Theorem 2. Any ellipti
 
urve with the two linear endomorphisms �

e

; F

e

:

V ! V satisfying the 
onditions of Theorem 1, where V is 
hosen to be

E[m℄, the group of m-torsion points, is supersingular.

Proof. End(E), the endomorphism ring of E, is of one of three types: the

ring of integers Z, an order in an imaginary quadrati
 �eld, or an order in

a quaternion algebra. Over a �nite �eld only the last two o

ur, and the

last type o

urs if and only if the 
urve is supersingular [Sil99℄, [BSS00℄.

Now assume that the 
urve is not supersingular, then the endomorphism

ring is of rank two and as ve
tor spa
e over Q , End(E) 


Z

Q = h1; �i.

Thus we have:

F = a+ b� and � = 
+ d�:

The 
ondition F (e) = �

1

e and the fa
t that fe; �(e)g is an F-basis

implies that b = 0 and a = �

1

, and

F Æ �(e) = �

1

�(e):

But fe; �(e)g is a basis, thus

F Æ �(e) = �

2

e+ �

3

�(e)

implies �

2

= 0 (and �

1

= �

3

). �

4 Curves of Genus Two

The diÆ
ulty of the ve
tor de
omposition problem is based on The-

orem 1 [Yos03, Theorem 2.21℄. Under the 
onditions of the theorem,

the ve
tor de
omposition problem 
an be 
alled to solve the underlying



one-dimensional DiÆe-Hellman problem. Thus the ve
tor de
omposition

problem is hard if the DiÆe-Hellman problem on a one-dimensional sub-

spa
e is hard.

This will be the 
ase for example if the one-dimensional subspa
e is

a 
y
li
 subgroup Z=mZ of large prime order in the group of points of a

general ellipti
 
urve. Assume that the full m-torsion of the ellipti
 
urve

is de�ned over a small extension of the original base �eld so that we 
an


hoose as our two-dimensional ve
tor spa
e the group Z=mZ� Z=mZ

of all m-torsion points on the ellipti
 
urve. Then, the Weil-pairing is

non-degenerate over the extension �eld and the MOV atta
k applies to

redu
e the one-dimensional DiÆe-Helman problem to a problem in the

multipli
ative group of the extension �eld, where it has a sub-exponential

solution. More seriously, as shown by Theorem 2, the 
onditions of The-

orem 1 hold for the group Z=mZ�Z=mZ of m-torsion points only if the

ellipti
 
urve is of supersingular type. And in that 
ase the MOV atta
k

applies with small degree (at most six) of the extension �eld. Altogether,

this means that the full m-torsion of an ellipti
 
urve is not a suitable

ve
tor spa
e for the two-dimensional VDP.

If we 
hoose the group Z=mZ�Z=mZ as a subgroup of the m-torsion

points in the Ja
obian of a higher genus 
urve then we 
an avoid the MOV

atta
k and the Frey-R�u
k atta
k [FR94℄, [FMR99℄ and we 
an satisfy the


onditions of Theorem 1 for 
urves that are not supersingular.

In this se
tion we 
onsider 
urves of higher genus. We 
an indeed �nd


urves with m-torsion of rank two among families of hyperellipti
 
urves

with non-trivial automorphisms. Su
h families have been 
lassi�ed for


urves of genus two. In the next se
tion we re
all these results and present

a family of genus 2 
urves that is suitable for the ve
tor de
omposition

problem.

4.1 A Suitable Class of Genus 2 Curves

Igusa's 
lassi�
ation of genus 2 
urves a

ording to their automorphism

group [Igu60, Se
tion 8, Hyperellipti
 
urves with many automorphisms℄

lists three in�nite families and three spe
ial 
urves. The more re
ent publi-


ations [CGLR99℄, [CQ02℄, [GS01℄, [SV04℄ des
ribe these families in more

detail and add further properties. We give the 
lassi�
ation and some im-

portant properties. In the next se
tion, we fo
us on one of the in�nite

families.



Ignoring the 
ase of even 
hara
teristi
, a hyperellipti
 
urve of genus

two is birationally equivalent to a 
urve in Rosenhain normal form

y

2

= x(x� 1)(x � �)(x� �)(x� �): (1)

The moduli spa
e M

2

of genus 2 
urves is an aÆne variety of dimen-

sion three whose 
oordinate ring is generated by the 
lassi
al invariants

J

2

; J

4

; J

6

; J

10

of a binary sexti
 [Igu60℄. Let G denote the full automor-

phism group of a 
urve and e

0

2 G the 
anoni
al involution. Igusa 
las-

si�es 
urves with non-trivial redu
ed automorphism group

�

G = G=he

0

i

a

ording to their Rosenhain form. For the spe
ial 
hoi
e � = �(1 �

�)=(1 � �), the three fa
tors x� �, x(x� �) and (x � 1)(x � �) be
ome

linearly dependent and the 
urve has a nontrivial involution that a
ts on

the roots of the Rosenhain form as (1�)(0�)(1 �). The same family is

des
ribed in Ja
obi normal form by an equation

y

2

= x(x� 1)(x� a)(x� b)(x� ab): (2)

The 
hoi
e 
 = ab makes the fa
tors x, (x� a)(x� b) and (x� 1)(x� 
)

linearly dependent and 
orresponds to a nontrivial involution that a
ts

on the roots of the Ja
obi form as (1 0)(a b)(1 ab). Cassels and Flynn

[CF96℄ des
ribe a straightforward pro
edure to bring a 
urve with given

non-trivial involution in the form

C : y

2

= 


3

x

6

+ 


2

x

4

+ 


1

x

2

+ 


0

: (3)

So that the non-trivial involutions e

1

= (x; y) 7! (�x; y) and e

2

=

(x; y) 7! (�x;�y) a
t on the roots via x 7! �x. The quotients E

1

=

C=he

1

i and E

2

= C=he

2

i are the ellipti
 
urves

E

1

: y

2

= 


3

x

3

+ 


2

x

2

+ 


1

x+ 


0

; C �! E

1

: (x; y) 7! (x

2

; y);

E

2

: y

2

= 


0

x

3

+ 


1

x

2

+ 


2

x+ 


3

; C �! E

2

: (x; y) 7! (1=x

2

; y=x

3

):

The Ja
obian J of C de
omposes up to isogeny as J � E

1

�E

2

. Existen
e

of the isogeny is immediate with the te
hniques from [KR89℄. The isogeny

is indu
ed by the produ
t of the quotient maps and has kernel of type

Z

2

� Z

2

with non-trivial elements (e; 0) � (�e; 0), for (e; 0) 2 C:

After s
aling, (3) be
omes

y

2

= x

6

� s

1

x

4

+ s

2

x

2

� 1: (4)

Following [SV04℄, let

u = s

1

s

2

=




2




1




3




0

; v = s

3

1

+ s

3

2

=




3

2




0

+ 


3

1




3




2

3




2

0

:



Observe that, for y

2

= f(x),

u = (

X

f(z)=0

z

2

)(

X

f(z)=0

z

�2

); u

2

+ 4u� 2v = (

X

f(z)=0

z

4

)(

X

f(z)=0

z

�4

):

The following theorem by Shaska and V�olklein shows that u; v param-

eterize the moduli spa
e of genus 2 
urves together with the image of an

ellipti
 involution in the redu
ed automorphism group. In other words, a

point in this moduli spa
e represents the isomorphism 
lass of a Galois


over C=P

1

of type Z

2

�Z

2

= f1; e

0

; e

1

; e

2

g, su
h that e

0

is the 
anoni
al

involution and the quotients C=he

1

i = E

1

and C=he

2

i = E

2

are ellipti



urves.

Theorem 3. [SV04, Lemma 1℄ For (s

1

; s

2

) 2 k

2

with �(x

6

� s

1

x

4

+

s

2

x

2

� 1) 6= 0, Equation (4) de�nes a genus 2 �eld K

s

1

;s

2

: Its redu
ed

automorphism group 
ontains the ellipti
 involution �

s

1

;s

2

: x 7! �x. Two

su
h pairs (K

s

1

;s

2

; �

s

1

;s

2

) and (K

s

0

1

;s

0

2

; �

s

0

1

;s

0

2

) are isomorphi
 if and only if

(u; v) = (u

0

; v

0

), where

(u; v) = (s

1

s

2

; s

3

1

+ s

3

2

)

Remark 1. Formulas to 
ompute the Igusa invariants J

2

; J

4

; J

6

; J

10

and

thus the absolute invariants i

2

; i

4

; i

10

from (u; v) 
an be found in [SV04℄.

There one 
an also �nd formulas for the j�invariants of the ellipti
 
urves

E

1

and E

2

in terms of u; v.

Remark 2. A pair (u; v) des
ribes a pair (K; f1; e

0

; e

1

; e

2

g). Thus the quo-

tients C �! E

1

and C �! E

2

of C 
orrespond to the same point (u; v)

in the moduli spa
e, although E

1

and E

2

need not be isomorphi
. And to

�nd the number of nonisomorphi
 quotients C �! E, for a given 
urve

C, a point in the moduli spa
e may need to be 
ounted with multipli
ity

two. In addition, some 
urves C may 
orrespond to more than one point

(u; v) in the moduli spa
e. This happens for example for (u; v) = (0; 0)

and (u; v) = (15

2

; 2 � 15

3

) that represent nonisomorphi
 Z

2

�Z

2

quotients

of the same 
urve. The involution w 7! �w on z

2

= w

6

+ 1 is the unique


entral involution in the redu
ed automorphism group D

12

. Under the

isomorphism from y

2

= 2x

6

+ 30x

4

+ 30x

2

+ 2 to z

2

= w

6

+ 1 given

by w = (x + 1)=(x � 1); z = y=(x � 1)

3

the ellipti
 involution x 7! �x


orresponds to w 7! 1=w whi
h is 
ontained in a subgroup S

3

of D

12

.

Igusa's 
lassi�
ation of genus two 
urves with many (more than two)

automorphisms 
ontains the three in�nite families (1), (2) and (3) and



Table 1. Igusa's Classi�
ation of Genus 2 Curves.

Family

�

G = G=he

o

i G (�; �; �) Comment

(1) Z

2

V

4

� = �(1� �)=(1� �) (1�)(0�)(1 �) 2

�

G

(2) S

3

D

12

� = �1=�+ 1; � = 1=(1� �) (1 1 0)(�� �) 2

�

G

(3) V

4

D

8

� = 1=�; � = �1 (1 0)(��) 2

�

G

(3') V

4

D

8

� = 1=(2� �); � = �=(2� �) (1�)(0 �) 2

�

G

(4)=(2) \ (3) D

12

Z

3

oD

8

(2; 1=2;�1) ' y

2

= x

6

+ 1

(5)=(2) \ (3') S

4

GL

2

(3) (1 + i; (1 + i)=2; i) ' y

2

= x

5

� x

(6) Z

5

Z

10

' y

2

= x

5

� 1

the three spe
ial 
urves (4), (5) and (6). Table 1 depi
ts their redu
ed

automorphism group, full automorphism group and Rosenhain form. For

the family (3), we add an equivalent des
ription (3').

In ea
h 
ase a 
urve belongs to a family whenever its redu
ed au-

tomorphism group 
ontains the parti
ular permutation given in the last


olumn. Conversely, a 
urve in a family 
an always be represented su
h

that it has a redu
ed automorphism of the given form.

The families (2) and (3) ('(3')) are one-dimensional subfamilies of

the two-dimensional family (1). They interse
t in the two spe
ial 
urves

(4) and (5). In [CGLR99℄, [CQ02℄, it is erroneously 
laimed that only

(4) lies in the interse
tion of (2) and (3). The last 
olumn provides gen-

erators for the redu
ed automorphism group. For any given family, the

redu
ed automorphism group is obtained by adding the generator in the

last 
olumn to the group generated by the parent families.

For ea
h family, the number of subgroups of type Z

2

�Z

2

are listed in

Table 2. In the same table, we list the number of these subgroups up to


onjuga
y and the resulting number of nonisomorphi
 ellipti
 quotients

[CGLR99℄, [CQ02℄, [SV04℄. For ea
h family, all the numbers in Table 2

follow immediately from the properties of the group G. The upper bound

2 for the number of nonisomorphi
 ellipti
 quotients is established in a

di�erent way in [GS01℄. There all ellipti
 quotients for a given Rosen-

hain form are 
omputed and 
ompared. The proof of [GS01, Theorem

11℄ misrepresents the involution �

1

whi
h is 
onfusing but does not harm



Table 2. Enumeration of Subgroups of Type Z

2

� Z

2

.

Family G Number of Subgps Number of Subgps Number of nonisomorphi


up to 
onjuga
y ellipti
 quotients

(1) V

4

1 1 2

(2) D

12

3 1 2

(3) D

8

2 2 2

(4) Z

3

oD

8

4 2 2

(5) GL

2

(3) 6 1 1

(6) Z

10

0 0 0

the main point of the proof (a 
hoi
e su
h that f1; �

1

; �

2

; �

3

; �

1

; �

2

g = S

3

would lead to �

1

= �

2

= �

3

, whereas the proof arrives at �

1

6= �

2

= �

3

).

To ea
h pair of a 
urve and a subgroup Z

2

� Z

2

up to 
onjuga
y


orresponds a unique pair of invariants (u; v) (Theorem 3). The moduli

spa
es of invariants (u; v) asso
iated to ea
h family are [SV04℄:

(1) f(u; v) : � = u

2

� 4v + 18u� 27 6= 0g:

(2) f(u; v) : � 6= 0 and 4v � u

2

+ 110u� 1125 = 0g:

(3) f(u; v) : � 6= 0 and v

2

= 4u

3

g:

(4) f(0; 0); (15

2

; 2 � 15

3

)g:

(5) f(5

2

;�2 � 5

3

)g:

(6) the 
urve has no ellipti
 involutions

For a 
urve in family (1) or (2) there is a unique pair (u; v), that


orresponds to a de
omposition of the Ja
obian J � E

1

� E

2

. For a


urve in family (2) the two ellipti
 quotients E

1

and E

2

are 3-isogenous

[GS01℄. For a 
urve in family (3) or (4) there are two pairs (u; v) that

give de
ompositions of the Ja
obian J � E

2

1

and J � E

2

2

, respe
tively.

The two ellipti
 quotients E

1

and E

2

are 2�isogenous [Gey74℄. For the


urve (4), the point (15

2

; 2 � 15

3

) 
orresponds to a subgroup Z

2

� Z

2

of

both D

8

and D

12

whereas (0; 0) 
orresponds to a subgroup of D

8

but not

of D

12

(see also Remark 2). The 
urve (5) has up to 
onjuga
y a single

subgroup Z

2

� Z

2

that is therefore 
ontained in both D

8

and D

12

.



4.2 A Suitable Class of Genus Two Curves

The 
urves belonging to the family (2) in Igusa's 
lassi�
ation are 
hara
-

terized by a redu
ed automorphism x 7! �1=x+1 of order three a
ting as

(110)(���) on the Weierstrass points. After a suitable fra
tional trans-

formation, the a
tion on the Weierstrass points diagonilizes and a 
urve

in family (2) 
an be written as

y

2

= x

6

� ax

3

+ 1; for a

2

=

(1 + �)

2

(2� �)

2

(1� 2�)

2

�

1� �+ �

2

�

3

: (5)

With j the j�invariant of the ellipti
 
urve y

2

= x(x � 1)(x � �) in

Legendre form, we 
an write a

2

= 4(j�1728)=j: Curves of the given form

arise if we s
ale

y

2

= (x

3

� r

2

)(x

3

� s

2

); (6)

over a �eld 
ontaining a 
ube root of rs, to

y

2

= (x

3

� r=s)(x

3

� s=r) = x

6

� ax

3

+ 1; for a =

r

2

+ s

2

rs

:

In [CGLR99℄, 
urves in the family (2) have a normalized form y

2

= x

6

+

x

3

+ t where t is uniquely determined by the isomorphism 
lass of the


urve. The 
urves in (5) have t = 1=a

2

. To apply results obtained in

[SV04℄ for the model

y

2

= 


3

x

6

+ 


2

x

4

+ 


1

x

2

+ 


0

;

we use a substitution x = (x + 1)=(x � 1); y = y=(x � 1)

3

to transform

(5) into

y

2

= (2� a)x

6

+ (30 + 3a)x

4

+ (30� 3a)x

2

+ (2 + a):

This yields a parametrization

u =




2




1




3




0

= 9

a

2

� 100

a

2

� 4

; v =




3

2




0

+ 


3

1




3




2

3




2

0

= 54

a

4

+ 360a

2

+ 2000

(a

2

� 4)

2

;

for the equation 4v�u

2

+110u�1125 = 0 of the moduli (u; v) in family (2).

The ellipti
 quotients of a 
urve in family (2) are 3�isogenous. We

determine the 3�isogeny expli
itly when the 
urve is of the from (5). In



general, an ellipti
 
urve with a stable torsion subgroup of order three

has a model over the base �eld

E : y

2

= x

3

+ d(3ax + b)

2

: (7)

The line x = 0 interse
ts the 
urve in a stable 3�torsion subgroup

T = fO; (0;+b

p

d); (0;�b

p

d)g. An isogeny de�ned on E preserves the

di�erential dx=y and is of the form (x; y) 7! (R(x); 
R

0

(x)y) [Sil94℄. The

3�isogeny � : E �! E

0

with kernel T onto an ellipti
 
urve E

0

of the

form (7) is easily and uniquely determined by requiring that R(x) van-

ishes on the full 3�torsion, that is on the zeros of the Hessian of the


urve. We �nd that

� = (x(y

2

+ 3d(ax + b)

2

) : y(y

2

� 9d(ax+ b)

2

) : x

3

);

E

0

: y

2

= x

3

� 3d(3ax+ 3b� 12a

3

d)

2

:

Over a �eld 
ontaining

p

d, the model for E s
ales to d = 1; a = 1; b =

b=(da

3

). Over a �eld 
ontaining

p

�3d, we 
an write E

0

as in (7) with

d

0

= 1; a

0

= 1; b

0

= (3b� 12a

3

d)=(�3da

3

) = 4� b=(da

3

).

In parti
ular, we see that the two ellipti
 
urves

E

1

: y

2

= x

3

+ (3x+ 2 + a)

2

; E

2

: y

2

= x

3

+ (3x+ 2� a)

2

are 3�isogenous over a �eld 
ontaining

p

�3. They are quotients of the


urve y

2

= x

6

� ax

3

+ 1 for the involutions (x; y) 7! (1=x; y=x

3

) and

(x; y) 7! (1=x;�y=x

3

), respe
tively. The 
orresponding quotient maps

are given by

(x; y) 7!

�

�

(2 + a)x

(x+ 1)

2

;

(2 + a)y

(x+ 1)

3

�

2 E

1

;

(x; y) 7!

�

(2� a)x

(x� 1)

2

;

(2� a)y

(x� 1)

3

�

2 E

2

:

For the various representations of the hyperellipti
 
urves in the family

(2), one 
an �nd expressions for the j�invariants of the ellipti
 quotients

in [CGLR99℄, [CQ02℄, [GS01℄, [SV04℄. In ea
h 
ase, veri�
ation that the

ellipti
 quotients are 3�isogenous is straightforward. The modular equa-

tion �

3

(j; j

0

) vanishes if and only if j and j

0

are 3�isogenous. Klein

[Kle21℄ gives a useful des
ription of the modular equation of level three

using resolvents. Let  : X

0

(3) �! X(1),

j =  (�) = 27

�(� + 8)

3

(� � 1)

3

:



Then j =  (�) and j

0

=  (�

0

) are 3�isogenous whenever (��1)(�

0

�1) =

1 [Coh94℄. In fa
t, for �; �

0

su
h that (� � 1)(�

0

� 1) = 1, the 
urves

E : y

2

= x

3

+ (3x+ 4=�)

2

and E

0

: y

2

= x

3

+ (3x+ 4=�

0

)

2

are 3�isogenous and have j�invariants j =  (�) and j

0

=  (�

0

).

Lemma 1. The Ja
obian of the hyperellipti
 
urve

C : y

2

= x

6

� ax

3

+ 1

is isogenous to a produ
t of ellipti
 
urves E

1

and E

2

,

E

1

: y

2

= x

3

+ (3x+ 2 + a)

2

;

E

2

: y

2

= x

3

+ (3x+ 2� a)

2

;

with j-invariants

j

1

=  (

4

2 + a

) = 4 � 1728

(5 + 2a)

3

(2 + a)(2� a)

3

;

j

2

=  (

4

2� a

) = 4 � 1728

(5� 2a)

3

(2� a)(2 + a)

3

:

5 Ve
tor De
omposition Problem on Genus Two Curves

In this se
tion we will show that the genus two 
urves of Lemma 1 are

indeed suitable for VDP. We 
onsider the 
urves over a �eld of 
hara
ter-

isti
 p � 2 (mod 3) and we assume that a

2

2 F

p

. First we 
onsider the


ase that E

1

and E

2

are de�ned over F

p

(a 2 F

p

), then separately the


ase that E

1

and E

2

are de�ned over F

p

2 but 
onjugate over F

p

(a 62 F

p

).

In the latter 
ase, 
hoosing �3 as a �xed nonresidue in F

p

, the 
urves

have an equation C

0

: y

2

= x

6

� (a=

p

�3)x

3

+ 1 over F

p

2
, and a model

C : y

2

= x

6

� ax

3

� 3 over F

p

.

5.1 Ve
tor De
omposition Problem on Curves of the form

C : y

2

= x

6

� ax

3

+ 1

Lemma 1 of Se
tion 4 des
ribes the Ja
obian of the 
urves up to isogeny

as a produ
t of two ellipti
 
urves E

1

and E

2

. The ellipti
 
urves E

1

and

E

2

are 3�isogenous over an extension �eld that 
ontains the third roots

of unity. Over the extension �eld, both E

1

and E

2

have the same number

of points. The setup for the VDP is now as follows.



We 
hoose C : y

2

= X

6

� ax

3

+ 1 su
h that E

1

has a large 
y
li


subgroup Z=mZ of rational points over F

p

, for p � 2 (mod 3). Then we


hoose as two-dimensional ve
tor spa
e V the m-torsion Z=mZ� Z=mZ

in the Ja
obian of the hyperellipti
 
urve C over the extension �eld F

p

2
.

And we 
hoose as one-dimensional subspa
e V

0

the subspa
e Z=mZ of V

that is rational over F

p

.

Notation 2.

p : a prime with p � 2 (mod 3);

C : y

2

= x

6

� ax

3

+ 1; a 
urve with a 2 F

p

;

Ja
(C) : Ja
obian of the 
urve C;

V = Z=mZ� Z=mZ� Ja
(C)(F

p

2
);

V

0

= Z=mZ� Ja
(C)(F

p

):

Let !; �! be primitive third roots of unity, and let

� : (x; y) 7! (!x; y);

�

� : (x; y) 7! (�!x; y);

F : (x; y) 7! (x

p

; y

p

);

� : (x; y) 7! (x

�1

; yx

�3

):

Lemma 2. For any element e 2 Ja
(C)(F

p

),

�(�(e)) = �e� �(e);

and

F (�(e)) = �F (e)� �(F (e)):

Proof. The map �

2

+ � + 1 is the tra
e map onto the Ja
obian of the

quotient 
urve C=h�i. But C=h�i is the 
urve y

2

= x

2

� ax+1 whi
h has

trivial Ja
obian. Thus �

2

+ �+ 1 is the zero map.

For the se
ond 
laim, we need that �

2

ÆF = F Æ�. But this is 
lear, sin
e

for p � 2 (mod 3) both sides map (x; y) 7! (!

2

x

p

; y

p

).

Lemma 3. For an element e 2 Ja
(C)(F

p

) of prime order m > 3,

he; �(e)i ' Z=mZ� Z=mZ:

Proof. Sin
e � is an automorphism of C, the elements e and �(e) have the

same order in the Ja
obian of C. And it suÆ
es to show that �(e) 62 hei:

Assume to the 
ontrary that �(e) = �e; and thus in parti
ular �(e) 2

Ja
(C)(F

p

): The previous lemma yields �

2

e = �e��e and �e = �e��e.

But then 0 = (2� + 1)(2� + 1)e = (�4 � 4� + 4� + 1)e = �3e, whi
h


ontradi
ts m > 3.



The family of the 
urves C : y

2

= x

6

� ax

3

+ 1 with the linear maps

F and � of Notation 2 ful�ll the requirement of Theorem 1.

Theorem 4. Let C : y

2

= x

6

� ax

3

+ 1 be a hyperellipti
 
urve, and let

V and V

0

be ve
tor spa
es of dimensions two and one, respe
tively, as in

Notation 2. For any e 2 V

0

with 3e 6= 0, the two-dimensional ve
tor spa
e

V has a basis fe; �(e)g su
h that the following holds,

F (e) = e;

F (�(e)) = �e� �(e):

The VDP on V, with respe
t to the basis fe;  (e)g, is at least as hard as

the 
omputational DiÆe-Hellman problem in V

0

: given (e; ae; be) 
ompute

abe. If V

0

is 
hosen to be of prime order then it 
an be identi�ed with a

subgroup of E

1

(F

p

) or E

2

(F

p

).

Proof. Lemma 3 gives that fe; �(e)g forms a basis. The other properties

follow from Lemma 2 and the fa
t that e is F

p

-rational. The 
laim that

these 
urves are indeed suitable for VDP follows from Theorem 1, in par-

ti
ular from the spe
ial 
ase treated in Example 1. To investigate the one-

dimensional ve
tor spa
e V

0

, let E

1

= Ja
(C)=h�i, E

2

= Ja
(C)=h��i.

Multipli
ation by 2 on Ja
(C) fa
tors as

Ja
(C) �! E

1

�E

2

; P 7! (P

1

; P

2

) = (P + �P; P � �P ):

E

1

�E

2

�! Ja
(C); (P

1

; P

2

) 7! (P

1

+ P

2

) = 2P:

(8)

Sin
e both morphisms are de�ned over F

p

, it is 
lear that a subgroup of

prime order in Ja
(F

p

) 
an be identi�ed with a subgroup of E

1

(F

p

) or

E

2

(F

p

). �

The fa
torization in the proof of Theorem 4 extends to a 
ommutative

diagram of subgroups of Ja
(F

2

p

).

Ja
(F

p

)

��

//
E

1

(F

p

)�E

2

(F

p

)

��

//
Ja
(F

p

)

��

E

1

(F

p

2
)

//
E

1

(F

p

)�E

2

(F

p

)

//
Ja
(F

p

)

P

��

//
(P

1

; P

2

)

��

//
2P

��

Q

//
(Q

1

; Q

2

)

//
�6P



For P 2 Ja
(C)(F

p

), let Q = �P + ��P 2 E

1

(F

p

2
), and let

Q

1

= Q+ F (Q);

Q

2

= (��

�

�)Q+ F ((��

�

�)Q):

It follows from

F (�P ) =

�

�P; F (��P ) = ��P;

and Lemma 2 that

Q

1

= �P � �(P ) = �P

1

2 E

1

(F

p

);

Q

2

= �3P + 3�P = �3P

2

2 E

2

(F

p

):

And the diagram 
ommutes.

We have shown that genus two 
urves of the form y

2

= x

6

� ax

3

+ 1

satisfy the requirements of Theorem 1 and 
an be 
onsidered for the ve
tor

de
omposition problem. The impli
ation of Theorem 1 is that the VDP

in the Ja
obian of su
h a 
urve is at least as hard as the CDHP on the

ellipti
 
urve E

1

that appears in its de
omposition Ja
(C) � E

1

� E

2

.

However, we saw that V

0

is a subgroup of E

1

(F

p

) and we do not bene�t

from the full size of Ja
(F

p

). This is of 
ourse undesirable be
ause even

though we pay the pri
e of 
omputing in Ja
(F

p

), the se
urity is only

proportional to the size of the points on E

1

(F

p

).

5.2 Ve
tor De
omposition Problem on Curves of the form

C : y

2

= x

6

� ax

3

� 3

In se
tion 5.1 we saw that although the 
urves of form C : y

2

= x

6

�ax

3

+1

are suitable for VDP, the 
omputations for VDP are done in Ja
(F

p

) while

they are only as se
ure as the CDHP on the ellipti
 
urve E

1

(F

p

). In this

se
tion we 
onsider another 
lass of genus two 
urves that do not have

this problem. For p � 2 (mod 3), let �3 2 F

p

be a �xed nonsquare. Any


urve with equation y

2

= x

6

+ Ax

3

+ B over F

p

, with B a nonsquare, is

isomorphi
 over F

p

to a 
urve C : y

2

= x

6

� ax

3

� 3 and isomorphi
 over

F

p

2 to a 
urve C

0

: y

2

= x

6

� (a=

p

�3)x

3

+ 1:



Notation 3.

p : a prime with p � 2 (mod 3);

C : y

2

= x

6

� ax

3

� 3; a 
urve with a 2 F

p

;

Ja
(C) : Ja
obian of the 
urve C;

V = Z=mZ� Z=mZ� Ja
(C)(F

p

2 );

V

0

= Z=mZ� Ja
(C)(F

p

):

De�ne morphisms �;

�

�; F as before. In parti
ular Lemma 2 and Lemma

3 still hold. But, for �

6

= �3; �

2

2 F

p

, de�ne

� : (x; y) 7! (!x; y);

�

� : (x; y) 7! (�!x; y);

F : (x; y) 7! (x

p

; y

p

);

� : (x; y) 7! (

�

2

x

;

�

3

y

x

3

):

Theorem 5. Let C : y

2

= x

6

� ax

3

� 3 be a hyperellipti
 
urve, and let

V and V

0

be ve
tor spa
es of dimensions two and one, respe
tively, as in

Notation 3. For any e 2 V

0

with 3e 6= 0, the two-dimensional ve
tor spa
e

V has a basis fe; �(e)g su
h that the following holds,

F (e) = e;

F (�(e)) = �e� �(e):

The VDP on V, with respe
t to the basis fe; �(e)g, is at least as hard as

the 
omputational DiÆe-Hellman problem in V

0

: given (e; ae; be) 
ompute

abe.

Proof. The proof of theorem 4 still holds.

Note that V

0

in general is not a subgroup ofE

1

(F

p

). WithE

1

= Ja
(C)=h�i

and E

2

= Ja
(C)=h��i, multipli
ation by 2 on Ja
(C) fa
tors as in (8).

The quotients E

1

and E

2

are in general de�ned over F

p

2
but not over F

p

.

For P 2 Ja
(C)(F

p

), let Q = �P + ��P 2 E

1

(F

p

2
): We have

F (�P ) =

�

�P; F (��P ) = ���P:

Thus, for

�

Q = F (Q),

Q = �P +

�

��P;

�

Q =

�

�P � ��P:



Finally, with Lemma 2, P = ��Q�

�

�

�

Q. So that the groups Ja
(C)(F

p

)

and E

1

(F

p

2
) are isomorphi
.

Ja
(F

p

)

//
E

1

(F

p

2
)

//
Ja
(F

p

)

P

//
Q

//
(��Q�

�

�FQ) = P

Sin
e E

1

is in general not de�ned over F

p

, it is possible for a suitable


hoi
e of 
urve C : y

2

= x

6

� ax

3

� 3; to �nd V

0

of large prime order and

of small index in E

1

(F

p

2
).

6 Con
lusion

Yoshida proved Theorem 1 that guarantees the intra
tability of the ve
tor

de
omposition problem for a two-dimensional ve
tor spa
e. In this work

we prove that if the group of m-torsion points on an ellipti
 
urve is


hosen as the two-dimensional ve
tor spa
e, then the 
onditions of the

theorem for
e the 
urve to be supersingular.

Moreover, we 
onsider the VDP on the Ja
obian variety of 
urves of

higher genus, for whi
h the 
onditions of the theorem turn out to be less

restri
tive. We introdu
e a family of hyperellipti
 
urves of genus two for

whi
h the VDP is at least as hard as the DiÆe-Hellman problem on a

general ellipti
 
urve.
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