
On the Notion of Statistical Security in

Simulatability Definitions

Dennis Hofheinz and Dominique Unruh

IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth,
Fakultät für Informatik, Universität Karlsruhe, Am Fasanengarten 5,

76 131 Karlsruhe, Germany

Abstract. We investigate the definition of statistical security (i.e., security against un-
bounded adversaries) in the framework of reactive simulatability. This framework allows to
formulate and analyze multi-party protocols modularly by providing a composition theorem
for protocols. However, we show that the notion of statistical security, as defined by Backes,
Pfitzmann and Waidner for the reactive simulatability framework, does not allow for secure
composition of protocols. This in particular invalidates the proof of the composition theorem.
We give evidence that the reason for the non-composability of statistical security is no artifact
of the framework itself, but of the particular formulation of statistical security. Therefore, we
give a modified notion of statistical security in the reactive simulatability framework. We
prove that this notion allows for secure composition of protocols.
As to the best of our knowledge, no formal definition of statistical security has been fixed
for Canetti’s universal composability framework, we believe that our observations and results
can also help to avoid potential pitfalls there.
Keywords: Reactive simulatability, universal composability, statistical security, protocol
composition.

1 Introduction

Recently, simulatability-based characterizations of security for cryptographic protocols re-
ceived a lot of attention. In particular, several modelings of multi-party computation (e.g.,
[PW00,Can00,PW01,Can01,BPW04]) have been presented which allow for secure composi-
tion of protocols. All these models share the idea of simulatability: a protocol is considered
secure only relative to another protocol. That is, a protocol π is as secure as another pro-
tocol τ (usually an idealization of the respective protocol task), if every attack on π can
be simulated by an attack on τ .

A little more formally, this means that for every adversary Aπ attacking π, there is an
adversary Aτ (sometimes referred to as the simulator) that attacks τ , such that from an
outside view, both attacks and protocols “look the same.” There are different interpreta-
tions of what “looking the same” means concretely. In any case, a designated entity called
the “honest user” and denoted H is employed to check for differences between protocol π

(together with adversary Aπ) and protocol τ (with Aτ). Therefore, H may interact with
protocol participants and even with the adversary.

One might now choose H in dependence of Aτ ; alternatively, the simulator Aτ may
be allowed to depend on the respective distinguisher H. For more discussion on relations
between the two induced security notions, cf. [HU05].

Orthogonal to this, one can demand perfect indistinguishability of π and τ , i.e., that ev-
ery distinguisher H has identical views when running with π, resp. τ . Alternatively, one may
demand that these views are only statistically close, or that they are only computationally
indistinguishable.1

For the reactive simulatability framework due to Backes, Pfitzmann and Waidner (see,
e.g., [PW01,BPW04]), formal definitions of these requirements have been given. For all
possible combinations of requirements, the induced security definition was shown to behave
well under composition of protocols. That is, it was proved in [PW01] that once a protocol
π is as secure as another protocol τ , it can be substituted for τ in a larger protocol without
losing security (in the sense that the protocol which uses π is as secure as the one which
uses τ).

1.1 Our Results

Here we show that the notion of statistical security given in [PW01,BPW04] does not allow
for secure composition of protocols (in the above sense). In particular, this disproves the
composition theorem of [PW01] for statistical security. However, a change in the definition
of statistical security fixes the problem, so that the original proof idea applies. We show
this by reproving the composition theorem for the statistical case.

We motivate the change in the definition of statistical security and point out other
problems (apart from the composability issue) of the old definition. As to the best of our
knowledge, no formal definition of statistical security has been fixed for Canetti’s model of
universal composability [Can01], we believe that our observations and results can also help
to avoid potential pitfalls there.

1.2 Organization

After recalling the mathematical preliminaries in Section 2 (note that an overview over
the reactive simulatability framework is given in Appendix A), we explain in Section 3
why the original definition of statistical security does not compose; to this end, we give a
counterexample. In Section 4, we give a modified criterion for statistical security and prove
that this criterion allows for secure composition of protocols. Section 5 concludes this work.

2 Mathematical Preliminaries

First, we recall the notion of statistical distance.

Definition 1. Let X and Y be Ω-valued random variables. Then the statistical distance
∆stat(X,Y) of X and Y is

∆stat(X,Y) = sup
M⊆Ω

M measurable

|Pr [X ∈ M] − Pr [Y ∈ M]|.

1 In the latter case, which captures computational security, generally only polynomially bounded adver-
saries and honest users are considered.

2

Note that if Ω is countable or finite, we can write this as

∆stat(X,Y) =
1

2

∑

z∈Ω

|Pr [X = z] − Pr [Y = z]|.

For re-proving the composition theorem for our notion of statistical security, we will
need the following technical lemma:

Lemma 2. Let X and Y be Ω-valued random variables.

(i) For any function f : Ω → Ω′, we have

∆stat(f(X), f(Y)) ≤ ∆stat(X,Y).

(ii) If X and Y are sequences of random variables, so that X = (X1,X2, . . .), and Y =
(Y1, Y2, . . .) with Xi, Yi ∈ T and Ω = T N for some set T , then

∆stat(X,Y) = sup
t

∆stat(X1...t, Y1...t)

where X1...t := (X1,X2, . . . ,Xt) is the prefix of X of length t, and Y1...t is defined
analogously.

The proof of (i) is straightforward from Definition 1, and (ii) is show in Appendix B.
As in [PW01,BPW04], we use the notion “class of small functions” for capturing what

it means that the statistical distance of two user-views gets “small” eventually (i.e., for
large security parameters). Formally, we call a set SMALL of functions N→ R≥0 a class of
small functions if it is closed under addition, and contains with a function g every function
g′ with g′ ≤ g.

Typically used classes of small functions are the set

NEGL := {f : N→ R≥0 | ∀c ∈ N ∃kc ∈ N ∀k > kc : f(k) < k−c}

of negligible functions, or the set

EXPSMALL := {f : N→ R≥0 | ∃c ∈ N, k0 ∈ N ∀k > k0 : f(k) < 2−k · k−c}

of exponentially small functions.

3 A Counterexample to Composition

In the present section, we present a simple counterexample to the composition theorem of
[PW01,Bac02]. A reader unfamiliar with the reactive simulatability framework might want
to read the short summary of that framework in Appendix A first.

Let M0 be a machine with ports in?, out! and out⊳! (cf. Figure 1), i.e., the machine
has an incoming connection in!, and an outgoing connection out! on which it can enforce

3

out⊳!

out!

in? in!

in⊳!

result!

result⊳!

adv?

service ports

M0 M1

Fig. 1. Machines used in the counterexample. The honest user may only connect to the service ports.

immediate delivery by using the clock port2 out⊳!. The program of M0 is really trivial, M0

simply ignores any inputs, and never generates outputs.
Now consider the machine M′

0 that has the same ports as M0 and the following program:

– Upon the 2k-th input on in?, output alive on out! (and sent a 1 on out⊳! to ensure the
immediate delivery of that message). Here k denotes the security parameter.

Using these machines we can now define two protocols M̂0 and M̂ ′
0:

3 M̂0 := {M0}
consists only of the machine M0, and all ports of M0 may be accessed by the honest user,
i.e., there are no special connections intended for the communication between protocol and
adversary.

Formally, in the modeling of [PW01], the protocol M̂0 is represented by the structure
(M̂0, S) with S := {in↔?, in⊳?, out↔!}.

The protocol M̂ ′
0 is defined analogously to M̂0, but consists of M′

0 instead of M0.
Recapitulating, we now have two protocols M̂0 and M̂ ′

0, the first of which never reacts
to inputs, while the second gives an answer after 2k inputs.

Now consider the definition of statistical security:

Definition 3 (Statistical security [PW01,Bac02,BPW04]). Let (M̂1, S) and (M̂2, S)
be structures with identical service ports S. We say that (M̂1, S) is statistically as secure
as (M̂2, S) for a class SMALL of small functions, written (M̂1, S) ≥SMALL

sec (M̂2, S), if the
following holds:

For every configuration conf 1 = (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S), there is a configu-
ration conf 2 = (M̂2, S,H,A2) ∈ Conf(M̂2, S) such that it holds for every polynomial l,
that

∆stat(view conf 1,l(H), view conf 2,l(H)), (1)

as a function in the security parameter k, is contained in SMALL.
Here by viewconf i,l

(H) we denote the prefix consisting of the first l(k) components of
viewconf i

(H).

2 The existence of clock ports is required by the modeling of [PW01]. However, in our counterexample
they play only a very subordinate role. The reader can ignore them and simply assume that any message
is immediately delivered to the recipient.

3 Both are in fact “one-party protocols”. It would be possible to make two-party protocols out of these.
However one-party protocols are sufficient for the purpose of creating a counterexample, so for the sake
of simplicity we formulate the example using these.

4

In other words, we demand that for every real adversary A1 and user H, there is a
simulator A2, such that the statistical difference of polynomial prefixes of H’s views in real
and ideal model is small in the security parameter. Note that H, as well as the adversaries
A1, A2 are allowed to be unbounded.

Since the honest user’s view is restricted to a polynomial number of messages sent and
received from the protocol, he will not be able to distinguish the two protocols, so we get
the following lemma (some care must however be taken for the case where the adversary
connects to some of M0’s ports, see the proof):

Lemma 4. We have (M̂0, S) ≥NEGL
sec (M̂ ′

0, S), i.e., the protocol M̂0 is statistically as secure
as M̂ ′

0.

Proof. To show the lemma, we have to show that for any honest user H and any adversary

A1, s.t. conf1 := (M̂0, S,H,A1) ∈ ConfM̂
′

0(M̂0, S) (which essentially means that H and A1

only connect to ports they are allowed to connect to), there exists a simulator A2, s.t. the
following holds. First, conf2 := (M̂ ′

0, S,H,A2) ∈ Conf(M̂ ′
0, S) (i.e., A2 connects only to ports

it may connect to), and, second, polynomial prefixes of H’s view in runs with A1 (together
with protocol M̂0) and A2 (together with protocol M̂ ′

0) are statistically close.
We now distinguish the following cases (since H is only allowed to have ports out?, in!,

in⊳! and ports going to the adversary):

1. H has port in! or in⊳! (and ports to the adversary).
2. H has neither in! nor in⊳!.

We first examine case 1. The machine M0 is only activated when a message to M0 is
sent via in! and is scheduled via in⊳!. So any activation of M0 implies a prior activation of
H (and thus an entry in H’s view). Since M0 behaves identically to M′

0 for the first 2k − 1
activations, we can replace M0 by M′

0 without changing the first 2k − 1 entries of H’s view.
Formally

view{H,A1,M0},2k−1(H) = view{H,A1,M′

0},2
k−1(H),

and so for any polynomial l,

∆stat

(

view{H,A1,M0},l(H), view{H,A1,M′

0},l
(H)

)

vanishes for sufficiently large k and therefore is in particular negligible. So setting A2 := A1,
we have found a simulator.

Now let us consider case 2. Here the adversary A1 has ports in! and in⊳!. Let now A2 be
identical to A1 with the exception, that any output on in! and in⊳! is suppressed. Since M0

ignores these outputs anyway, this does not change the view of H. In the resulting network,
no message is ever sent to the machine M0, so we can replace M0 by M′

0 without changing
H’s view. I.e.,

view{M0,H,A1}(H) = view{M0,H,A2}(H) = view{M′

0,H,A1}(H)

which shows that A2 is a simulator for A1 in Case 2. ⊓⊔

5

To disprove the composition theorem, we now construct a protocol M̂1 that uses M̂0,
and show that in that context, M̂0 may not be replaced by M̂ ′

0 without loss of security.

The machine M1 is a machine with ports {in!, in⊳!, adv?, result!, result⊳!}, i.e., the machine
has two outgoing connections in! and result! that it schedules itself, as well as an incoming
connection adv? (cf. Figure 1). (The seeming misnomer in! for an outgoing connection stems
from the fact that this port will later be connected to the in-port in? of M0.)

The machine M1 has the following program:

– Upon the i-th message (denoted m here) via adv?, where i ≤ 2k, send the message m

on in! (and deliver it by sending 1 on in⊳!.

– Upon the i-th message via adv?, where i > 2k, send a message done on result! (and
deliver it by sending 1 on result⊳!).

The protocol M̂1 is then defined to contain only the machine M1. The honest user is
allowed access to the in! and result! connection of M1, but the connection adv! is only visible
to the adversary.

Formally, the protocol is defined to be the structure (M̂1, S1) with M̂1 = {M1}, and
S1 = {in↔!, result↔!}.

We can now examine the composition of the protocols M̂1 and M̂0. This composition
(as depicted in Figure 2) yields a protocol M̂10 = {M1,M0}. The honest user may connect
to out! and result!, but not to adv?.

adv?

out⊳!

out!

in? in!

in⊳!

result!

result⊳!

service ports

M0 M1

Fig. 2. The composed protocol M̂10. The honest user may only connect to the service ports.

Similarly, we have the composition M̂ ′
10 of M̂1 and M̂ ′

0.

We can now show the

Lemma 5. It is (M̂10, S) 6≥NEGL
sec (M̂ ′

10, S), i.e., the protocol M̂10 is not statistically as
secure as M̂ ′

10.

Proof. The protocol M̂10 behaves as follows: The first 2k input messages from the adversary
(on adv?) are forwarded from M1 to M0, where they are ignored. Every further input on
adv? results in a message done sent to the honest user.

6

Consider the following adversary A1: It has the ports adv!, adv⊳!, clk⊳?.4 In each of its
first 2k+1 activations, A1 sends a message ping on adv! to M1. After the 2k+1-th activation,
A1 halts. The honest user H is defined to have the ports result?, out?. The honest user simply
reads all incoming messages (which implies that these messages are added to its view).

Then in a run of the protocol M̂10 with A1 and H, the first 2k messages from A1 will
be transmitted via M1 to M0 and then ignored, while the (2k + 1)-st message will trigger
a message done from M1 to H.

So, when running with M̂10 and A1, the view of H consists only of one incoming message
done on result?.

Now consider the protocol M̂ ′
10: The first 2k inputs from the adversary (on adv?) are

forwarded from M1 to M′
0. Upon the 2k-th of these, M′

0 will send alive via out! to H. Only
upon the (2k + 1)-st message via adv?, a message is sent via result! to the honest user.

Therefore, for any simulator A2, if the view of H (running with M̂ ′
10 and A2) contains

a message done on result?, it also contains a message alive on out? at some earlier point
of its view. Thus, no simulator can mimic the view of H when running with M̂10 and A1.

This shows that M̂10 is not statistically as secure as M̂ ′
10. ⊓⊔

Lemmas 4 and 5 are easily adapted to the case of universal statistical security (universal
security means that the simulator only depends on the adversary, not on the honest user).
Furthermore, the used class NEGL of small functions can be substituted by, e.g., the class
EXPSMALL.

The composition theorem states that if M̂0 is statistically as secure as M̂ ′
0, then the

composed protocol M̂10 is statistically as secure as the composed protocol M̂ ′
10. Thus we

get from Lemmas 4 and 5 the

Corollary 6. The composition theorem of [PW01,Bac02] does not hold for statistical se-
curity.

To see why the proof of [PW01] of the composition theorem fails in this case, see the
comments in our proof of Theorem 8.

3.1 Further difficulties

In this section we sketch some further problems arising from Definition 3 to show why we
believe that not the composition theorem but the details of Definition 3 should be fixed.

In [Bac02, Section 3.2], a variant of the security notion was introduced, which essentially
consists of restricting the set of possible honest users to such machines which connect to
all service ports (in the normal definition of security, the honest user connects to a subset
of the service ports). It was then shown that this modified notion of security is equivalent
to the old one. Again, using a counterexample very similar to that of the preceding section,
one can show that this does not hold with respect to statistical security.

4 The master clock port clk
⊳? is a special port marking the so-called master scheduler. This machine is

always activated when no message is to be delivered.

7

We very roughly sketch the counterexample: Let Mi be a machine with ports in!, out!,
out⊳!. At the 2k-th activation of Mi, it outputs i on port out! (and triggers immediate
delivery by writing on out⊳!). Then let M̂i := {Mi} be the protocol consisting only of Mi and
where all ports are service ports, i.e., the honest user can (and—in the modified definition—
must) connect to in? and out!. Now, in the modified definition, M̂1 is statistically as secure
as M̂2, since the honest user will not see a different reaction from M1 than from M2 within
a polynomial prefix of its view. However, when allowing honest users which connect only
to a subset of the service ports, the following attack is possible: the honest user connects
only to out!, while the real adversary activates M1 at least 2k times through in?. Then, in
its first activation, the honest user gets the message “1” from M1, which cannot happen
with simulator machine M2 (which can only send message “2”). So M̂1 is not statistically
as secure as M̂1 with respect to the old notion (Definition 3).

In [Bac02, Section 3.1], another lemma states that restricting honest users so that they
may only have one connection to and one connection from the adversary does not change
the security notion. Though we could not construct a counterexample, the proof of that
statement does not go through in the statistical case using Definition 3.5

These two examples together with the invalidity of the composition theorem should
give enough motivation for changing the definition of statistical security. Such a changed
definition will be presented in the next section.

4 The Modified Notion

To address these problems of the definition of statistical security from [PW01,BPW04], we
present a new one. Technically, we vary Definition 3 only slightly: instead of requiring that
only polynomial prefixes of the honest user H’s view in real and ideal executions have small
statistical distance, we require that the statistical distance between the whole of H’s views
is small.6. As will be discussed, this coincides with the requirement that the statistical
distance between all families of finite prefixes of H-views is small.

But even though the definitional change is only minor, its implications are major. First,
we show below that this modified notion allows for composition. Second, complications
which the original notion caused in proofs (see above) do not arise with our modified
definition.

Third, the intuitive security promise of the new notion is noticably stronger: with
statistical security in the sense of Definition 3, only polynomial prefixes of user-views are
considered. A protocol may be statistically secure in that sense even if it loses every intuitive
security property after, say, 2k input messages.7 As shown in the proof of Lemma 5, such

5 In the proof of [Bac02, Section 3.1, Theorem 3.1] it is used that (using the notation of that proof)
from view confA H,1

(HA H) ≈ view confA H,2
(HA H) it follows view confA H,1

(H) ≈ view confA H,2
(H) where H is a

submachine of HA H. However, as detailed in the proof of Theorem 8 in the next section, such a conclusion
is not valid if ≈ means statistical indistinguishability of polynomial prefixes.

6 Note that this is a statistical distance between two random variables with non-countable domain.
7 Of course, when constructing such a protocol, care has to be taken for the cases in which the adversary

A connects to service ports—formally, this is allowed.

8

protocols can break down under composition with a larger protocol that only sparsely
communicates with the honest user.

In contrast to this, the new notion requires that H’s complete views in real and ideal
runs are statistically close. This in particular excludes protocols that are secure only for,
say, 2k invocations. Rather, a protocol must remain secure after an arbitrary number of
input messages to achieve statistical security in the new sense.

For example, consider a protocol which allows an arbitrary number of invocations, and
in each single invocation gets insecure with probability 2−k. Such a protocol may be secure
w.r.t. the old notion, but is certainly insecure w.r.t. the new notion. To see this, note that for
the new notion, even prefixes which cover, say, 22k protocol continuous protocol executions
initiated by a suitable honest user are considered. With overwhelming probability, the
protocol gets insecure in at least one of these 22k executions.

This property of our new notion captures a natural requirement for secure composition
with larger, unbounded protocols. See below for alternatives to our formulation that only
deal with polynomial prefixes of user-views, but impose restrictions on protocols which are
allowed for composition.

Now we turn to the actual definition of our modified notion of statistical security, which
we call “strict statistical security.”

Definition 7 (Strict statistical security). Let (M̂1, S) and (M̂2, S) be structures with
identical service port sets S. We say that (M̂1, S) is strictly statistically as secure as (M̂2, S)
for a class SMALL of small functions, written (M̂1, S) ≥s,SMALL

sec (M̂2, S), if the following
holds:

For every configuration conf 1 = (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S), there is a configura-
tion conf 2 = (M̂2, S,H,A2) ∈ Conf(M̂2, S) such that

∆stat(viewconf 1
(H), view conf 2

(H)), (2)

as a function in the security parameter k, is contained in SMALL.

In other words, we demand that for every real adversary A1 and user H, there is a
simulator A2, such that the statistical difference of H’s views in real and ideal model is
small in the security parameter. Note that on the technical side, the only difference between
Definitions 3 and 7 is that Definition 3 considers only polynomial prefixes of user-views,
whereas Definition 7 considers the user-views as a whole.

Universal and black-box flavors of this security definition are derived as usual (e.g.,
for the universal case, we demand that A2 does not depend on H). Similarly, this notion
can be lifted to systems, i.e., sets of protocols which capture several different corruption
situations.

We remark that requiring the term in (2) to be in SMALL is equivalent to requiring
that the statistical distance of the ℓ(k)-step prefixes viewconf 1,ℓ(k)(H) and viewconf 1,ℓ(k)(H)
lies in SMALL for all functions ℓ : N → N. (This is straightforward from Lemma 2(ii).)
This observation may be of practical interest when conducting proofs, since the latter
requirement may be easier to show.

9

In view of this remark, strictly statistical security obviously implies statistical security
as in Definition 3. However, the converse does not hold. Consider the protocols M̂0 and
M̂ ′

0 from Section 3. For these, we have shown that M̂0 is statistically as secure as M̂ ′
0

(w.r.t. Definition 3), but this does not hold w.r.t. strict statistical security.

A corresponding attack would simply consist of activating the machine M0 (resp. M′
0)

2k times and waiting for an alive output on port out?. With our notion of security, such an
output is considered for distinction of M̂0 and M̂ ′

0, since the whole of H’s view is regarded
(not only polynomial prefixes, as with Definition 3).

Of course, it is crucial to validate that the composition theorem holds for the new
notion. In fact, we only need to re-check the original proof from [PW01] for this notion.
Note that it suffices to prove the composition theorem for structures, as it can then be
lifted to systems.

In the formulation and the proof of the theorem, we will make use of the composition
operator “||” for structures defined in [PW01] (cf. also Appendix A; informally, “||” simply
combines two protocols so that they may use each other).

Theorem 8. Let structures (M̂0, S0) and (M̂ ′
0, S0) with the same set of service ports S0

be given. Let furthermore (M̂1, S1) be a structure that is composable with both (M̂0, S0)
and (M̂ ′

0, S0). Let SMALL be a class of small functions. Then (M̂0, S0) ≥
s,SMALL
sec (M̂ ′

0, S0)

implies (M̂0, S0)||(M̂1, S1) ≥
s,SMALL
sec (M̂ ′

0, S0)||(M̂1, S1).

Proof. The proof is the same as in [PW01]; here, we focus on the places where the original
definition of statistical security causes problems.

We write (M̂#, S) := (M̂0, S0)||(M̂1, S1) and (M̂∗, S) := (M̂ ′
0, S0)||(M̂1, S1). We have

to show that for every suitable configuration conf # = (M̂#, S,H,A#) of (M̂#, S) (i.e., for
every honest user H and adversary A#), there is a corresponding configuration conf ∗ of
(M̂∗, S) (i.e., a simulator A∗), such that the statistical distance

∆stat(viewconf #(H), view conf ∗(H)) (3)

is, as a function in k, contained in SMALL.

The basic proof idea is depicted in Figure 3.

So let a configuration conf # = (M̂#, S,H,A#) ∈ ConfM̂
∗

(M̂#, S) be given. Combin-
ing the machines in M̂1 and the honest user H yields a new honest user H0. Together
with the adversary A0 := A#, this forms a new configuration conf 0 = (M̂0, S0,H0,A0) ∈

ConfM̂
′

0(M̂0, S0).

By the combination lemma (Lemma 2.1 in [PW01]), the views of H in these configura-
tions are identical.8 Formally, we have

viewconf #(H) = viewconf 0
(H). (4)

8 Note however, that in conf 0, H is only a submachine of the honest user H0.

10

✲

❄

✛

H

M̂0

M̂1
M̂#

S

A
#

H

M̂0

M̂1 A0

= A
#

S0

conf
#

conf0

H0
Define H0, A0

H

S

M̂1
M̂∗

M̂ ′

0

A
∗

= A
′

0

H

M̂1

S0

M̂ ′

0

A
′

0

conf
∗

conf
′

0

H0
Define M̂∗, A

∗

(M̂0, S0) ≥ (M̂ ′

0, S0)

Fig. 3. Proof sketch for the composition theorem reproduced from [PW01]

Since (M̂0, S0) ≥s,SMALL
sec (M̂ ′

0, S0) by assumption, there exists an adversary A′
0 and a

configuration conf ′0 = (M̂ ′
0, S0,H0,A

′
0) ∈ Conf(M̂ ′

0, S0) such that

∆stat(viewconf 0
(H0), viewconf ′0

(H0)) (5)

is, as a function in k, contained in SMALL.

The crucial point here is that (M̂0, S0) ≥s,SMALL
sec (M̂ ′

0, S0) only guarantees that H0’s
views are close (meaning that the statistical difference lies in SMALL). For going further,
we have to deduce that also H’s views are close.

Fortunately, since H is a submachine of H0, and thus view(H) is a function of view(H0),
this is directly implied by Lemma 2 (i). Thus,

∆stat(viewconf 0
(H), view conf ′0

(H)) (6)

is, as a function in k, contained in SMALL.

However, this implication is in general not valid when dealing with statistical security
in the sense of Definition 3: there, (M̂0, S0) ≥

SMALL
sec (M̂ ′

0, S0) means that only polynomial
prefixes of H0-views are close. But not every polynomial H-prefix may be contained in a
polynomial H0-prefix, e.g., when H’s activations are “sparse” w.r.t. H0-activations. (The
example from Section 3 shows a simple situation in which this is the case.)

So here we cannot conclude that all polynomial H-prefixes are statistically close. This
explains why the original proof from [PW01] cannot go through for the original notion of
statistical security.

11

To carry on with the proof for strict statistical security, we decompose the honest user
H0 into H and the machines from M̂1. The resulting configuration conf ∗ thus consists of
user H, adversary A∗ := A′

0 and the composed structure (M̂∗, S) = (M̂ ′
0, S0)||(M̂1, S1).

Again, the combination lemma ensures that this decomposition does not affect the views
of any machine; in particular, we have

viewconf ∗(H) = viewconf ′0
(H). (7)

Combining (4,6,7), we find that (3) is in fact a small function in k, which finishes the
proof. ⊓⊔

This shows that our notion behaves well under composition. Inspection of the proofs in
Sections 3.1 and 3.2 of [Bac02] shows furthermore that the problems depicted in Section 3.1
of this work (which arise with the original definition of statistical security) vanish with our
definition of strictly statistical security.

However, the approach for modifying statistical security that we chose for Definition 7
is certainly not the only one imaginable. In particular, one may be interested in a compos-
able definition that only considers polynomial prefixes of user-views (as did the original
definition). This might be appreciable in situations in which a protocol is guaranteed to be
used in larger protocols only a polynomial number of times.

In fact, if one restricts to protocols M̂1 that are polynomial-time, then the composi-
tion theorem of [PW01,BPW04] holds for the original statistical security definition.9 As
explained in the proof of Theorem 8, the situation gets problematic only when the larger
protocol M̂1 is not polynomial-time (and thus, in the notation of that proof, H’s view might
be “sparse” in H0’s view).

Alternatively, one could think of restricting to users, adversaries and protocol machines
which halt after a polynomial number of activations (but need not be computationally
bounded in each single activation). With such a restriction, only users with polynomial-
sized views are considered, and thus, statistical security in the sense of Definition 3 is then
equivalent to that of Definition 7.

5 Conclusion

We have shown that the original notion of statistical security for multi-party protocols
from [PW01,BPW04] does not compose. Furthermore, we have depicted problems in proofs
which this notion causes.

As a possible solution, we have introduced an alternative definition of statistical security
which we have then proved to behave well under composition. The mentioned problems in
proofs do not appear with our notion.

9 Note however, that the proof problems mentioned in Section 3.1 remain with the original notion of
statistical security even restricting to strictly polynomial protocols.

12

Acknowledgements

We thank Jörn Müller-Quade for valuable discussions. This work was partially funded by
the EC project ProSecCo under IST-2001-39227.

A Reactive Simulatability

Here we review the notion of reactive simulatability. This introduction only very roughly
sketches the definitions, and the reader is encouraged to read [BPW04] for more detailed
information and formal definitions.

Reactive simulatability is a definition of security which defines a protocol M̂1 (the real
protocol) to be as secure as another protocol M̂2 (the ideal protocol, the trusted host), if
for any adversary A1 (also called the real adversary), and any honest user H, there is a
simulator A2 (also called the ideal adversary), s.t. the view of H is indistinguishable in the
following two scenarios:

– The honest user H runs together with the real adversary A1 and the real protocol M̂1

– The honest user H runs together with the simulator A2 and the ideal protocol M̂2.

Note that there is a security parameter k common to all machines, so that the notion of
indistinguishability makes sense.

This definition allows to specify some trusted host—which is defined to be a secure
implementation of some cryptographic task—as the ideal protocol, and then to consider
the question, whether a real protocol is as secure as the trusted host (and thus also a
secure implementation of that task). In order to understand the above definitions in more

p?✲ ✲

❄
Sending machine Receiving machine

Buffer p̃

p!

Scheduler for buffer p̃

p⊳!

Fig. 4. A connection

detail, we have to specify what is meant by machines “running together”. Consider a set
of machines (called a collection). Each machine has so-called simple in-ports (written p?),
simple out-ports (written p!), and clock out-ports (written p⊳!). Ports with the same name
(p in our example) are considered to belong together and are associated with a buffer p̃.
These are then interconnected as in Figure 4 (note that some or all ports may originate
from the same machine). Now when a collection runs, the following happens: at every point
in time, exactly one machine is activated. It may now read its simple in-ports (representing
incoming network connections), do some work, and then write output to its simple out-
ports. After such an activation the contents of the simple out-ports p! are appended to

13

the queue of messages stored in the associated buffer p̃. However, since now all messages
are stored in buffers and will not be delivered by themselves, machines additionally have
after each activation the possibility to write a number n ≥ 1 to at most one clock out-
port p⊳!. Then the n-th undelivered message of buffer p̃ will be written to the simple in-port
p? and deleted from the buffer’s queue. The machine that has the simple in-port p? will
be activated next. So the clock out-ports control the scheduling. Usually, a connection is
clocked by (i.e., the corresponding clock out-port is part of) the sender, or by the adversary.
Since the most important use of a clock out-port is to write a 1 onto it (“deliver the oldest
message in the buffer”), we say a machine schedules a connection or a message when a
machine writes a 1 onto the clock port of that connection.

At the start of a run, or when no machine is activated at some point, a designated
machine called the master scheduler is activated. For this, the master scheduler has a
special port, called the master clock port clk⊳?.

Note that not all collections can be executed, only so-called closed collections, where
all connections have their simple in-, simple out-, and clock out-port. If a collection is not
closed, we call the ports having no counterpart free ports.

In order to understand how this idea of networks relates to the above sketch of reac-
tive simulatability, one has to get an idea of what is meant by a protocol. A protocol is
represented by a so-called structure (M̂, S), consisting of a collection M̂ of the protocol
participants (parties, trusted hosts, etc.), and a subset of the free ports of M̂ , the so-called
service ports S.10 The service ports represent the protocol’s interface (the connections to
the protocol’s users). The honest user can then only connect to the service ports (and to the
adversary), all other free ports of the protocol are intended for the communication with the
adversary (they may e.g. represent side channels, possibilities of attack, etc.). Since usually
a protocol does not explicitly communicate with an adversary, such free non-service ports
are more commonly found with trusted hosts, explicitly modelling their imperfections.

With this information, we can review the above “definition” of security. Namely, the
honest user H, the adversary, and the simulator are nothing else but machines, and the
protocols are structures. The view of H is then the restriction of the run (the transcripts of
all states and in-/output of all machines during the protocols execution, also called trace)
to the ports and states of H.

The definition, as presented so far, still has one drawback. We have not introduced
the concept of a corruption. This can be accommodated by defining so-called systems. A
system is a set of structures, where to each “corruption situation” (set of machines, which
are corrupted) corresponds one structure. That is, when a machine is corrupted, it is not
present anymore in the corresponding structure, and the adversary takes its place. For a
trusted host, the corresponding system usually consists of structures for each corruption
situation, too, where those connections of the trusted host that are associated with a
corrupted party, are under the control of the adversary.

10 The exact definition of service ports is a little complicated, since it gives the ports of the buffers the
honest user can connect to, not the ports of the protocol machines. On an intuitive level however, one
can image that the service port indicate the protocol parties’ ports the honest user can use.

14

We can now refine the definition of security as follows: A real system Sys1 is as secure as
an ideal system Sys2, if every structure in Sys1 is as secure as the corresponding structure
in Sys2.

A major advantage of a security definition by simulatability is the possibility of com-
position. The notion of composition can be sketched as follows: If we have one structure
or system A (usually a protocol) implementing some other structure or system B (usually
some primitive), and we have some protocol XB (having B as a sub-protocol, i.e. using
the primitive), then by replacing B by A in XB , we get a protocol XA which is as secure
as XB . This allows to design protocols modularly: first we design a protocol XB , and then
we find an implementation for B.

Since formally, it is not important which protocol is the outer and which the inner one
in the composition, we write the composition of structures in a more symmetric fashion:
(M̂1, S)‖(M̂0, S) denotes the composition of structures (M̂1, S) and (M̂0, S) (instead of

writing the cumbersome (M̂1, S)(M̂0,S)).

A.1 Glossary

In this section we explain the technical terms used in this paper. Longer and formal defi-
nitions can be found in [BPW04].

[Ĉ][Ĉ][Ĉ]: Completion of the collection Ĉ. Results from adding all missing buffers to Ĉ.
buffer: Stores message sent from a simple out- to a simple in-port. Needs an input from
a clock port to deliver. clock out-port p⊳!p⊳!p⊳!: A port used to schedule connection p.
closed collection: A collection is closed if all ports have all their necessary counterparts.
collection: A set of machines. combination: The combination of a set of machines
is a new machine simulating the other machines. A set of machines can be replaced by
its combination without changing the view of any machine. composition: Replacing
sub-protocols by other sub-protocols. computational security: When in the security
definition, honest user and adversary are restricted to machines running in polynomial
time, and the views are computationally indistinguishable. configuration: A structure
together with an honest user and an adversary. Conf(M̂2, S)Conf(M̂2, S)Conf(M̂2, S): Set of ideal configurations

that are possible for structure (M̂2, S). ConfM̂2(M̂1, S)ConfM̂2(M̂1, S)ConfM̂2(M̂1, S): Set of real configurations possible
for structure (M̂1, S) when comparing it with ideal protocol M̂2. EXPSMALL: The
set of exponentially small functions. free ports: The free ports of a collection are those
missing their counterpart. honest user: Represents the setting in which the protocol
runs. Also called environment. master clock port clk⊳?clk⊳?clk⊳?: A special port by which the
master scheduler is activated. master scheduler: The machine that gets activated when
no machine would get activated. NEGL: The set of negligible functions (asymptotically
smaller than the inverse of any polynomial). perfect security: When in the security
definition, the real and ideal run have to be identical, not only indistinguishable. Further
the machines are completely unrestricted. ports(M)ports(M)ports(M): The set of all ports a machine or
collection M has. run: The transcript of everything that happens while a collection
is run. Formally a random variable over sequences. runconf,k,l is the random variable of

15

the run when running the configuration conf upon security parameter k, restricted to its
first l elements. If k is omitted, a family of random variables is meant. If l is omitted, we
mean the full run. service ports: The ports of a structure to which the honest user
may connect. They represent the interface of the protocol. As service ports are most often
ports of a buffer, they are sometimes specified through the set Sc of their complementary
ports; Sc consists of all ports which directly connect to a service port. simple in-port
p?p?p?: A port of a machine, where it can receive messages from other machines. simple
out-port p!p!p!: As simple in-port, but for sending. statistical security: When in
the security definition the statistical distance of polynomial prefixes of the views have a
statistical distance which lies in a set of small functions SMALL (in the security parameter
k). Usually SMALL = NEGL. Further the machines are completely unrestricted. (See also
Definition 3.) structure: A collection together with a set of service ports, represents a
protocol. trace: Synonym for run. view: A subsequence of the run. The view(M) of
some collection or machine M consists of the run restricted to the ports and states of M .
Possible indices are as with runs.

B Proof of Lemma 2 (ii)

Let µ(M) := Pr [X ∈ M] − Pr [Y ∈ M] for measurable A ⊆ Ω. Then µ is a finite signed
measure and therefore there is a Hahn decomposition for µ [Hal74, § 29, Th. A], i.e., a
partition of Ω into disjoint measurable sets Ω+ and Ω−, s.t. µ(A) ≥ 0 for all measurable
A ⊆ Ω+, and µ(A) ≤ 0 for all measurable A ⊆ Ω−. Therefore µ(Ω+) is maximal.

Let A be a measurable subset of T n. Then A′ := {αω : α ∈ A,ω ∈ T N}, i.e., A′ is the
set of all sequences beginning with words in A. Then the set

A0 := {A′ : n ∈ N, A ⊆ T n measurable}

is an algebra and generates the σ-algebra A of measurable subsets of T N = Ω.

Let now µ̃(A) := µ(A ∩ Ω+) − µ(A ∩ Ω−) for measurable A ⊆ Ω. Since µ̃ is a finite
measure, there are Cn ∈ A0 that approximate Ω+ [Hal74, § 13, Th. D] in the sense that

lim
n→∞

µ̃
(

(Ω+ \ Cn) ∪ (Cn \ Ω+)
)

= 0.

However

µ̃
(

(Ω+ \ Cn) ∪ (Cn \ Ω+)
)

= µ
(

(

(Ω+ \ Cn) ∪ (Cn \ Ω+)
)

∩ Ω+
)

− µ
(

(

(Ω+ \ Cn) ∪ (Cn \ Ω+)
)

∩ Ω−
)

= µ(Ω+ \ Cn) − µ(Cn ∩ Ω−).

Since µ(Ω+ \ Cn) ≥ 0 and µ(Cn ∩ Ω−) ≤ 0 and the difference goes to 0, it is

lim
n→∞

µ(Ω+ \ Cn) = lim
n→∞

µ(Cn ∩ Ω−) = 0

16

and thus

lim
n→∞

µ(Cn) = lim
n→∞

µ(Ω+) − µ(Ω+ \ Cn) + µ(Cn ∩ Ω−) = µ(Ω+).

Since Cn ∈ A0, there is a tn ∈ N, s.t. Cn = A′ for some A ⊆ T tn , and then

µ(Cn) = µ(A′) = Pr
[

X ∈ A′
]

− Pr
[

Y ∈ A′
]

= Pr [X1...tn ∈ A] − Pr [Y1...tn ∈ A]

≤ sup
A⊆T tn

A measurable

∣

∣Pr [X1...tn ∈ A] − Pr [Y1...tn ∈ A]
∣

∣

= ∆stat(X1...tn , Y1...tn)

and therefore (recall that µ(Ω+) was maximal)

∆stat(X,Y) = µ(Ω+) = lim
n→∞

µ(Cn)

≤ lim
n→∞

∆stat(X1...tn , Y1...tn)

≤ sup
t∈N

∆stat(X1...t, Y1...t)

Since further ∆stat(X,Y) ≥ supt∈N ∆stat(X1...t, Y1...t) by Lemma 2 (i), we have

∆stat(X,Y) = sup
t∈N

∆stat(X1...t, Y1...t)

which concludes the proof. ⊓⊔

References

[Bac02] Michael Backes. Cryptographically Sound Analysis of Security Protocols. PhD thesis, Universität
des Saarlandes, 2002.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asynchronous reactive systems.
IACR ePrint Archive, March 2004.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of

Cryptology, 3(1):143–202, 2000.
[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In

42th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pages
136–145. IEEE Computer Society, 2001.

[Hal74] Paul R. Halmos. Measure Theory. Springer-Verlag, New York, 1974.
[HU05] Dennis Hofheinz and Dominique Unruh. Comparing two notions of simulatability. In Theory of

Cryptography, Proceedings of TCC 2005, Lecture Notes in Computer Science. Springer-Verlag,
2005. To be published.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive
systems. In 7th ACM Conference on Computer and Communications Security, Proceedings of

CCS 2000, pages 245–254. ACM Press, 2000.
[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its appli-

cation to secure message transmission. In IEEE Symposium on Security and Privacy, Proceedings

of SSP 2001, pages 184–200. IEEE Computer Society, 2001.

17

