
Improving Secure Server Performance by Re-balancing SSL/TLS
Handshakes

Claude Castelluccia, Einar Mykletun, Gene Tsudik

Computer Science Department

School of Information and Computer Science

University of California, Irvine

{ccastell,mykletun,gts}@ics.uci.edu

Abstract

Much of today’s distributed computing takes place in
a client/server model. Despite advances in fault toler-
ance – in particular, replication and load distribution –
server overload remains to be a major problem. In the
Web context, one of the main overload factors is the
direct consequence of expensive Public Key operations
performed by servers as part of each SSL handshake.
Since most SSL-enabled servers use RSA, the burden
of performing many costly decryption operations can
be very detrimental to server performance. This pa-
per examines a promising technique for re-balancing
RSA-based client/server handshakes. This technique
facilitates more favorable load distribution by requir-
ing clients to perform more work (as part of encryp-
tion) and servers to perform commensurately less work,
thus resulting in better SSL throughput. Proposed tech-
niques are based on careful adaptation of variants of
Server-Aided RSA originally constructed by Mat-
sumoto, et al. [1]. Experimental results demonstrate
that suggested methods (termed Client-Aided RSA)
can speed up processing by a factor of between 11 to 19,
depending on the RSA key size. This represents a con-
siderable improvement. Furthermore, proposed tech-
niques can be a useful companion tool for SSL Client
Puzzles in defense against DoS and DDoS attacks.

Keywords: Load-balancing, Server-Aided RSA,
Denial-of-Service, Server-Aided Secure Computation,
Client Puzzles, Hardware Accelerators

1 Introduction

Much of today’s distributed computing takes place
in a client/server setting. Server overload, whether
due to an on-slaught of legitimate client requests or a

Denial-of-Service (DoS) attack, is common occurrence
in modern client/server environments, such as the Web.
Typically, a server becomes swamped under a flood of
simultaneous or closely spaced requests, each requiring
it to perform some costly computation, e.g., decrypt a
key purportedly encrypted by a client.

Techniques for graceful service degradation have
been studied in the past and implemented in real-world
servers. Traffic management and congestion control lit-
erature offers numerous methods for mitigating traffic
spikes in routers. Also, advances in fault tolerance –
in particular, replication and load distribution – have
been very beneficial to Web servers. However, DoS at-
tacks are not thwarted by such measures since their
central goal is to deny service to legitimate clients.
Moreover, server overload can occur for reasons other
than hostile attacks, e.g., a large number of concurrent
benign client requests can still overwhelm a popular
server. This can result in server crashes or in denial-
of-service to clients who are literally left hanging or
presented with a familiar “server busy” message.

Scope of Paper: In this paper, we explore one pos-
sible approach to alleviating server load in the Web
setting. Specifically, we target SSL/TLS client-server
handshakes and focus on altering the computational
balance (and burden) between SSL clients and servers.
This paper makes a contribution by investigating so-
called Server-Aided RSA (SA-RSA) techniques as a
way of reducing server overload1. SA-RSA was orig-
inally proposed as a way to reduce load on small
devices (primarily smartcards) by farming out some
heavy-weight cryptographic computation to more pow-
erful servers – host computers equipped with smartcard
readers. We adapt SA-RSA to the SSL/TLS setting by

1Contrary to “popular belief”, our proposed solution is not
subject to the meet-in-the-middle attack proposed in [6]

1

re-assigning the roles: SSL clients become “servers” in
SA-RSA parlance and overloaded SSL servers become
“weak clients”. The resultant Client-Aided RSA (CA-
RSA) turns out to be surprisingly effective, achieving
server speed-ups of between 11 and 19 times over plain
SSL, depending on RSA modulus size.

From the outset, we note that there are alterna-
tive techniques for speeding up, or reducing load on,
SSL/TLS servers, such as employing Elliptic Curve-
based cryptosystems. However, we believe that, in
the near future, the well-known and time-tested RSA
cryptosystem will continue to dominate in SSL/TLS
handshake protocol. Therefore, this paper focuses on
improving SSL/TLS performance assuming the use of
RSA. (Other relevant approaches and techniques, e.g.,
cryptographic hardware accelerators, are discussed in
Section 5.)

Organization of Paper: The rest of the paper is
organized as follows. Section 2 overviews SSL/TLS
and motivates our work. Section 3 describes our SSL
extension, Client-Aided RSA, for speeding up perfor-
mance of secure servers and presents performance re-
sults. Section 4 extends our protocol to protect against
DoS attacks. Related work is reviewed in section 5 and
section 6 concludes the paper.

2 Overview of SSL/TLS

This section describes the SSL/TLS handshake pro-
tocol [2]. In the remainder of the paper, the term“SSL”
is used to refer to both SSL and TLS standards. SSL is
the most widely used protocol to ensure secure commu-
nication over the Internet. It is typically employed by
web servers to protect electronic transactions. SSL uses
the RSA cryptosystem during an initial client/server
handshake to establish a shared symmetric key for use
during an SSL session2.

2.1 SSL Handshake Protocol Description

The simplest version of the SSL handshake (key-
establishment) protocol is shown in figure 1 and con-
sists of two communication rounds that contain the
following messages and computations:

1. Client sends a “client hello” message to server.
This indicates that client wants to initialize a
SSL/TLS session and the message includes the ci-
pher suites client supports and a random nonce
rc.

2Diffie-Hellman is also supported, at least, according to SSL
specifications. However, neither Microsoft nor Netscape offer
browser support for non-RSA certificates [3].

2. Server responds with a “server hello” message that
includes server’s public-key certificate and a ran-
dom nonce rs. It also specifies server’s choice of
cipher suite from among client’s candidates.

3. Client chooses a secret random 48-byte3 pre-
master secret x and computes the shared master
secret k by inputting values x, rc, rs into hash func-
tion f . It then encrypts x with the server’s RSA
public key and attaches the ciphertext to a “client
key exchange” message that is sent to server.

4. Server decrypts the pre-master secret using its pri-
vate RSA key, and uses it to compute the shared
master secret as f(x, rc, rs). To conclude the
handshake, server sends a “server finished” mes-
sage that includes a keyed hash of all handshake
messages.

The most computationally expensive step in the SSL
handshake protocol is the server’s RSA private-key de-
cryption. Critical web servers often employ expen-
sive cryptographic hardware to speed-up the decryp-
tion process, enabling them to handle more simultane-
ous SSL handshake requests, and, thereby, more SSL
connections. Hardware accelerators and other tech-
niques for speeding up RSA decryptions are discussed
in section 5.

2.2 Computational Imbalance

As noted above, the goal of the SSL/TLS hand-
shake is the establishment of a shared client-server key.
The most important component of this process is the
client’s encryption of a (randomly selected) key under
the server’s RSA public key. The ciphertext is then
transmitted to the server which decrypts it and ex-
tracts the key. The core of the over-exertion problem
is the RSA decryption operation.

RSA is a mature, well-studied and nearly ubiqui-
tous public key encryption method [4]. However, many
(perhaps even most) implementations of RSA encryp-
tion are computationally lopsided: they use small pub-
lic exponents, such as: 3, 17, and 216 + 1. As a result,
RSA encryption is relatively cheap, requiring only a
few modular multiplications, whereas, corresponding
decryption is expensive as it requires a full-blown expo-
nentiation with the private exponent (d). We note that
decryption remains expensive even if the well-known
CRT (Chinese Remainder Theorem) technique is used
to speed it up. This imbalanced arrangement is clearly

3Actually, only 46 of the 48 bytes are random. The other 2
bytes contain the SSL version number.

2

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−→
server hello rs, cipherspecs

←−−−−−−−−−−−−−−−−
x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n) client key exchange

−−−−−−−−−−−−−−−−→
x = yd (mod n)
k = f(x, rc, rs)

server finish

←−−−−−−−−−−−−−−−−

Figure 1. The SSL handshake

beneficial for computationally challenged clients, how-
ever, it is detrimental to server’s connection through-
put and general availability.

One possible solution to correct the imbalance is
to select the private exponent d to be small, thereby
speeding up decryption. However, choosing too small
of a value leads to RSA becoming insecure, as shown in
[5]. Therefore the performance improvement provided
by this solution is limited.

A more drastic approach is to alter the underlying
key establishment protocol to have the server gener-
ate and encrypt the session key, thus shifting the de-
cryption burden to the client. Besides being a radical
change, this would necessitate a client first supplying
an RSA public key to the server. If the client’s pub-
lic key is uncertified, the server would need to perform
a public key encryption without verifying the supplied
public key. This, once again, presents an opportunity
for DoS attacks. To require all clients’ public keys to
be certified is a major burden for clients. Moreover,
the server would need to verify a certificate chain for
each connection which is an expensive proposition.

However, the main problem with the above approach
is that the server would still need to be authenticated.
Recall that the key establishment in SSL/TLS serves
a dual purpose: in addition to securely transporting a
client-selected key to the server, the protocol implicitly
authenticates the server. The latter would be lost if the
server encrypts the session key for the client; unless, of
course, the server signs something which brings us right
back to the computational imbalance issue.

3 Client-Aided RSA

The purpose of the above discussion is to motivate
techniques for re-balancing the lopsidedness of RSA
decryption and, as a result, speeding up decryption
operations on the server side. To do so, we focus on
the well-known general technique of Server-Aided Se-
cret Computation (SASC) and Server-Aided RSA (SA-
RSA), in particular. The original idea of Server-Aided
RSA is due to Matsumoto, et al. [1]. Its prime mo-
tivation is to off-load expensive RSA signature com-
putation from a weak device (such as a smartcard) to
a powerful-but-untrusted server, without exposing any
information about the device’s private exponent.

In this paper, we flip SA-RSA around to obtain
Client-Aided RSA (CA-RSA). The main idea is
to shift some computational burden from the server to
the clients. Specifically, we want the clients to perform
the bulk of the work in RSA decryption, thereby al-
lowing the server to accept and process more incoming
requests.

3.1 Protocol Description

We now describe the CA-RSA algorithm. We first
introduce the basic version and then extend it to obtain
CA-RSA.

3.1.1 Basic Version

We begin by representing the server’s private exponent
as d = f1d1 + f2d2 + ... + fkdk (mod φ(n)), where the
fi’s and di’s are random vector elements of c and |n|
bits, respectively.

The following process take place when a server wants
to offload the computation xd (mod n) to a client:

3

1. Server sends vector D = (d1, d2, ..., dk) to client.

2. Client computes vector Z = (z1, z2, ..., zk), where
zi = xdi (mod n), and sends it back to server.

3. Finally, server computes
∏k

i=1 z
fi

i =
∏k

i=1 xfidi =
xd (mod n)

The choice of parameters: k, c, and the fi’s is dis-
cussed in section 3.4. Note that, assuming that it is
computationally difficult to “break” RSA, parameter
selection should not introduce any attacks that com-
promise the security of the above computation by the
server, namely xd (mod n). An attacker can attempt
to exhaust all possible vector values fi thereby deriving
d. Thus, a minimal requirement for c and k is that a
brute force attack (which requires 2c×k steps) should
be as difficult as breaking underlying RSA4.

3.1.2 CA-RSA

CA-RSA improves upon the performance of the basic
scheme by taking advantage of the Chinese Remainder
Theorem (CRT). Quisquater and Couvreur [7] demon-
strated how RSA secret key exponentiations could be
sped up with CRT. The technique works as follows:
Let dp = d mod (p− 1) and dq = d mod (q − 1). For
Mp = Mdp (mod p) and Mq = Mdq (mod q), we have
Md = Mp×np+Mq×nq (mod n), where np = q×(q−1

(mod p)) and nq = p × (p−1 (mod q)). Because np

and nq can be pre-computed, and, since exponentia-
tions mod p or q are more efficient to compute than
those mod n, we can expect an approximate factor of 4
speed-up of private-key operations [8] when using the
CRT.

In CA-RSA, the server initially pre-computes
dp, dq, np and nq, where np and nq are derived as de-
scribed above:

dp =
k∑

i=1

fidi mod (p−1), dq =
k∑

i=1

gidi mod (q−1)

All fi’s and gi’s are random c-bit values.
The following takes place when a server wants to

offload the computation of xd (mod n) to a client:

1. Server sends vector D = (d1, d2, ..., dk) to the
Client.

2. Client computes vector Z = (z1, z2, ..., zk), where
zi = xdi (mod n), and sends it back to server.

4Actually, only 2c×k/2 steps are needed to break this basic
scheme via the classical meet-in-the-middle attack [6]. However,
the attack in [6] does not apply to the CA-RSA protocol de-
scribed in the following section.

3. Server computes intermediary values Mp =∏k

i=1 z
fi

i (mod p) and Mq =
∏k

i=1 z
gi

i (mod q).
Finally, xd = Mpnp + Mqnq (mod n).

3.2 Incorporating CA-RSA into the SSL Hand-
shake

We now describe the modifications to the SSL
Handshake protocol necessary to incorporate CA-RSA.
The client hello and server hello messages remain un-
changed, although the server’s certificate (which is sent
as part of the server hello message) now includes the
vector D = (d1, d2, ..., dk). The client chooses a random
value x, which is then used to derive the SSL session
key, and uses the server’s public exponent to encrypt
it: y = xe (mod n). Next, the client uses D to con-
struct a vector Z by computing the individual vector
elements zi = ydi (mod n), for 1 ≤ i ≤ k. This vector
is included in the client key exchange message. The
server, upon receiving this message, performs its CRT
computations and derives yd = (xe)d = x (mod n).
The remainder of the handshake remains unchanged.
Figure 2 shows the modified protocol.

3.3 Security and Parameter Selection

This section discusses security considerations and
parameter selection issues for CA-RSA.

Two Server-Aided RSA schemes were originally pro-
posed by Matsumoto et al. [1]: RSA-S1 and RSA-S2.
They correspond to “Simple CA-RSA” and CA-RSA
algorithms, respectively. In fact, CA-RSA is almost
identical to RSA-S2, except the roles of the client and
server are reversed.

Initially, RSA-S1 and RSA-S2 used binary expo-
nent values for fi and gi. These versions of Server-
Aided RSA were soon subject to attacks. Recall that,
in RSA-S1, the private exponent d is represented as
d =

∑k

i=1 fidi (mod φ(n)), where the fi’s are ran-
domly selected c-bit elements (c = 1 when binary ex-
ponents are used). Once vector D = (d1, d2, ..., dk) is
sent to the client (as part of the protocol), the secrecy
of private exponent d relies upon the secrecy of the fi’s.
Using binary values for the fi’s allows for simple, but
effective, attacks [9, 10].

Subsequent incarnations (RSA-S1M and RSA-S2M)
by Matsumoto, et al. [11] were also attacked by Lim
and Lee [12]. This led to the development of parameter
selection guidelines for RSA-S1 and RSA-S2 [13, 14].
The goals of these guidelines were to protect against
known vulnerabilities and to suggest parameter val-
ues that would withstand brute force attacks aimed at

4

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−−−−−−−→
server hello rs, cipherspecs

←−−−−−−−−−−−−−−−−−−−−−−
x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n)
zi = ydi (mod n)
Z = (z1, ..., zk)

client key exchange

−−−−−−−−−−−−−−−−−−−−−−−→
Mp =

∏k

i=1 z
fi

i (mod p)

Mq =
∏k

i=1 z
gi

i (mod q)
x = yd = Mpnp + Mqnq (mod n)

k = f(x, rc, rs)
server finish

←−−−−−−−−−−−−−−−−−−−−−−

Figure 2. Incorporating CA-RSA into the SSL handshake protocol

finding the server’s private RSA exponent d. In sum-
mary, when used together with the suggested param-
eter guidelines, CA-RSA (i.e., RSA-S2) has not been
successfully attacked.5

For CA-RSA, the guidelines required for it to be in-
feasible to deduce values dp or dq via brute force, since
an attacker with knowledge of either one would be able
to factor modulus n and thereby break RSA. Given a
vector D = (d1, d2, ..., dk), a search through all possible
values of F (respectively G) would reveal dp (respec-
tively dq). Because there are k c-bit vector elements,
the guidelines mandated that the search space of 2c×k

values be large enough to prevent such an exhaustive
search.

When choosing CA-RSA parameters, we specifically
selected the values c and k such as to meet the require-
ments set forth in the guidelines while making the dif-
ficulty of exhausting the resulting search space at least
equivalent to (or harder than) breaking the underly-
ing RSA cryptosystem. As is well-known, the strength
of the RSA cryptosystem, when correctly instantiated,
depends upon the key (modulus) size. Currently, 1024-
bit keys are common, however, based upon projected
advances in computing power, experts in the cryptog-
raphy research community recommend using larger val-
ues for longer-term security.

Exhaustive search of 2c×k values is equivalent to
searching for all possible keys in a symmetric-key cryp-

5Certain other variations of Server-Aided RSA [15, 16] were
later found suspectible to lattice reduction attacks [17, 18].

tosystem (for example DES, AES or Blowfish). Thus,
based upon the RSA key size used, we need to deter-
mine symmetric key size that would provide equivalent
security. Lenstra and Verheul give formulas for deter-
mining such keys in their well-known work on cryp-
tographic key size selection [19]. They use historical
cryptanalysis developments and projected computing
powers to develop hypotheses and create formulas for
choosing cryptographic key sizes, depending upon how
far into the future the cryptosystems are to remain se-
cure. Since their formulas cover both symmetric and
asymmetric cryptosystems, the results are applicable
for our purposes. Based on their formulas, RSA with
1024- and 1536-bit keys would be roughly equal in
strength to a symmetric-key cryptosystem with 72- and
80-bit keys, respectively.

3.4 Performance

This subsection describes our experimental results

3.4.1 Experiment set-up

We measured the speedup in the execution time of RSA
decryptions when using CA-RSA instead of plain RSA
(with CRT). As noted in section 2, the most compu-
tationally expensive operation in the SSL handshake
protocol is the server’s private key decryption. There-
fore, we determine an upper bound on the number of
SSL requests by measuring the number of RSA decryp-

5

tions a server can perform within a given time frame.
Our hardware platform was a 1.7 Ghz Intel Celeron
with 256 MB RAM running Red Hat 9.0 Linux. The
scripts were written using the OpenSSL cryptographic
library (version 0.9.7). RSA keys of 1024, 1536 and
2048 bits were used so as to test CA-RSA performance
with both current and future security parameters.

3.4.2 Results

Table 1 lists the average decryption time (in msecs) for
the three moduli with both plain RSA and CA-RSA.

Table 1. Average decryption time (msec):

Key size RSA CA-RSA c× k Improvement

1024 7.05 0.62 72 11.33
1536 19.79 1.25 80 15.76
2048 44.22 2.31 88 19.12

These results show CA-RSA speedups of 11.3, 15.8
and 19.1 times (as opposed to plain RSA) for 1024-,
1536- and 2048-bit keys, respectively. Expected theo-
retical speed-ups are 13, 17.8 and 21.7, respectively.
These results compare favorably with another tech-
nique aimed at speeding up RSA decryptions – SSL
batching proposed by Shacham and Boneh [20] – which
achieves a factor of 2.5 speed-up for 1024-bit RSA keys.

As described in section 3.3, the CA-RSA values c

and k were selected based upon key size formulas in
[19], such that c × k corresponds to a symmetric key
comparable in strength to the corresponding RSA key.
Specifically, for 1024-, 1536- and 2048-bit keys, c × k

was set to 72, 80 and 88 bits, respectively. The re-
sults mean that a server with a 1024-bit RSA key can
perform approximately 11 times as many decryption
operations per second. A secure web server achieving
such speedups (of one order in magnitude) becomes
comparable to hardware-accelerated SSL servers when
using CA-RSA as opposed to plain RSA.

For CA-RSA, the optimal parameter selection strat-
egy is to minimize k and thereby maximize c. The
parameter selection guidelines (section 3.3) specify the
smallest possible value of k to be 2, and c is there-
fore set to 36, 40 and 44 bits for the 72, 80 and 88 bit
keys, respectively. Figure 3 shows how decryption time
varies depending on the distribution of bits between pa-
rameters c and k, while maintaining the property that
c × k = 72, 80 and 88 for the RSA keys of equivalent
strength.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 D
ec

ry
pt

io
n

T
im

e
(m

se
c)

RSA-CA2 parameter k

1024 RSA, c*k=144
1536 RSA, c*k=160
2048 RSA, c*k=176

Figure 3. CA-RSA decryption time (msec) when varying
parameters c and k

3.5 Discussion

Althought CA-RSA reduces the computation load
at the server, it introduces certain computation and
bandwidth costs at the clients.

• Computation: A client with a computing en-
vironment described in section 3.4.1 would incur
added computational costs of approximately 21.9,
66 and 150.9 msecs when computing the elements
of vector Z for 1024-, 1536- and 2048-bit RSA
keys, respectively. We believe that this added
computation cost is negligible and acceptable for
most clients. For weak computational devices off-
loading techniques such as the one described in
[21] could be used.

• Bandwidth: The bandwidth overhead associ-
ated with the client key exchange message now
includes the vector Z. It contains k |n|-bit ele-
ments, where n is the RSA modulus. Recall that,
with plain RSA, the client only sends y = xe

(mod n). Therefore, with k = 2 (chosen for opti-
mal performance), the resulting extra bandwidth
translates into |n| bits. This corresponds to less
than one ethernet frame (1500 bytes)6. Further-
more, adding such a small number of bits in the
SSL handshake does not have a significant impact
on performance. In fact, as shown in [22], SSL is
purely CPU bounded and optimizations intended
to reduce network bandwidth have little effect on
server throughput.

6On a related note, the vector D needs to be added to the
server’s public-key certificate. This can be achieved by including
it as an extension field in X.509v3 format.

6

Note that one reasonable strategy is to use our re-
balancing technique only when the server gets over-
loaded, and use regular SSL otherwise. In this case,
the previously described extra computation and band-
width costs only occurs occasionally.

4 SSL Speedup and DoS Protection

Server overload is either due to an on-slaught of le-
gitimate client requests or a Denial-of-Service (DoS)
attack. A server can become swamped under a flood of
simultaneous of closely spaced requests, each requiring
it to perform some costly computation, e.g., decrypt
a key purportedly encrypted by a client. This makes
SSL servers prime targets of DoS and DDoS attacks.

The protocol described in section 3 increases the
number of SSL connections that the server can handle
by re-balancing the computations between the server
and client. This makes the job of a potential DoS at-
tacker more difficult, but a resourceful attacker can still
achieve his goal by increasing his resources accordingly.
In addition to CA-RSA, which helps the server by re-
ducing its computational load, we need a mechanism
that that also makes the job of the attackers more dif-
ficult.

We view the DoS menace as being two-fold: (1) the
adversary overwhelms the server with a sheer num-
ber of gratuitous service requests and, (2) the ad-
versary over-exerts the server by forcing it to per-
form many heavy-weight cryptographic operations. Al-
though client puzzles alleviate both problems (see sec-
tion 4.1), they do not completely solve either. Ar-
guably, there might be simply no way to solve the
former since a determined and resourceful adversary
will always be able to flood the server with a storm
of requests (even if they are quickly filtered out). On
the other hand, a computationally powerful adversary
can efficiently dispense with the minor “inconvenience”
posed by puzzles and similar techniques; such an ad-
versary can still force the server to perform many ex-
pensive cryptographic operations and thus render the
server unavailable to legitimate clients.

An attacker who attempts to incapacitate a secure
web server needs only to initiate as many SSL hand-
shake requests per second as the number of RSA de-
cryptions the server can perform per second. (For ex-
ample, on our test server, one RSA decryption takes
approximately 7 msec, thus, it can perform at most
142 decryptions per second. However, higher-end web
servers can perform up to 4, 400 RSA decryptions per
second [23].) The feasibility of such DoS attacks is
partly because a client can request the server to per-
form many RSA decryptions without performing any

significant amount of work itself. A possible remedy
is to: (1) ask the client to perform a certain amount
of additional work prior to triggering the server to de-
crypt, and/or (2) speed up the decryption operation on
the server side such that a DoS attack requires greater
resources. Our solution combines the above two prop-
erties: it requires a client to perform additional compu-
tation which then lessens the load on the server, thus
allowing it to perform more RSA decryptions and ac-
cept/process more incoming connections.

4.1 Client Puzzles and SSL

Juels and Brainard introduced the use of client
puzzles as a cryptographic countermeasure to protect
against DoS attacks [24]. Dean and Stubblefield subse-
quently proposed using client puzzles to specifically de-
fend web servers running the SSL protocol [25]. Their
scheme requires a client to solve a given puzzle before
being able to establish an SSL session with a server.
This forces the client to perform a certain amount of
computational work prior to requesting the server to
carry out expensive operations (such as RSA decryp-
tions). That way, a DoS attack becomes more com-
putationally demanding to execute as clients can no
longer freely trigger RSA decryptions. The type of
client puzzle they use consists of inverting a hash func-
tion when given the hash digest and a certain portion
of the pre-image.

The addition of client puzzles does not alter the
message flow in the SSL handshake protocol, but does
require two of the messages to be extended. After
the client has sent its client hello message, the server
chooses a random a-bit value s and inputs it to a cryp-
tograhic hash function. It then includes the hash digest
t = hash(s) along with the b first bits of s (where b < a)
to the client in the server hello message. Using these
b bits, the client solves the “client puzzle” via brute-
force and finds a value s’ that hashes to the desired t.
With knowledge of the first b pre-image bits, the client
only needs to attempt approximately 2a−b candidate
values before finding a valid solution s’ that satisfies
t = hash(s’).

The client then includes s’ in its client key exchange
message. Only if s’ verifies - i.e, it is of correct length
and its hash output is t - will the server proceed with
the SSL handshake and decrypt the encrypted session
key submitted by the client.

The computational cost of a hash computation is
almost negligible when compared to an RSA decryption
(a hash is about 3 to 4 orders of magnitude faster to
compute), so the addition of puzzle verification step
adds a very minor server side overhead. The amount

7

Client SSL Server

rc, cipher-specs client hello

−−−−−−−−−−−−−−−−−−−−−−−→
rs, cipherspecs

s ∈R {0, 1}a, t = hash(s)
server hello rs, t, s(b), cipherspecs

←−−−−−−−−−−−−−−−−−−−−−−
s′ s.t. t = h(s′)
x ∈R {0, 1}48

k = f(x, rc, rs)
y = xe (mod n)
zi = ydi (mod n)
Z = (z1, ..., zk), s′

client key exchange

−−−−−−−−−−−−−−−−−−−−−−−→
verify t = h(s′)

Mp =
∏k

i=1 z
fi

i (mod p)

Mq =
∏k

i=1 z
gi

i (mod q)
x = yd = Mpnp + Mqnq (mod n)

k = f(x, rc, rs)
server finish

←−−−−−−−−−−−−−−−−−−−−−−

Figure 4. Incorporating CA-RSA together with Client Puzzles into the SSL handshake protocol

of work needed to be done by the client in order to
solve the puzzle depends upon its computing resources
and, more importantly, the number of unknown bits in
the pre-image value sent by the server.

The addition of client puzzles to the SSL handshake
protocol has the advantage of making DoS attacks more
elaborate to carry out. A single client machine is no
longer able to easily overload an SSL server by sending
consecutive SSL initiation requests, as it would need
to solve the appropriate client puzzles, thereby limiting
the number of valid requests it could send per second.
A more noticeable side effect of utilizing client-puzzles
is that client browser software needs to be modified to
make it work with the puzzles during the SSL hand-
shake protocol.

4.2 Combining Client Puzzles and CA-RSA

We now sketch out a way of combining client puzzles
and CA-RSA. When a client initiates a session with a
secure web server, it receives di values (included in the
server’s certificate) and a puzzle as part of the SSL
handshake. The client solves the puzzle, computes zi

as required by CA-RSA and returns these values, along
with the puzzle solution, to the server. If the server
successfully verifies the puzzle solution, it performs the

CA-RSA partial decryption needed to compute the ses-
sion key. Figure 4 gives an overview of the protocol.
The notation s(b) refers to the first b bits of the pre-
image value s. A client response without a valid puzzle
solution is simply ignored.

Of course, a malicious client can solve the puzzle
and still send bogus zi’s to the server. However, the
amount of wasted effort is much less – 11 times smaller
for 1024-bit RSA keys – than in case when only client
puzzles are used (as in [25]).

Furthermore, the extra work resulting from CA-
RSA by the client effectively adds to the cost of solving
the puzzle, but does not affect an adversary since he
can skip the CA-RSA step and only work on the puz-
zle. However, as shown in figure 5, the CA-RSA cost
quickly becomes negligible compared to client puzzle
cost as the puzzle size increases. More precisely, when
the attack is not severe, and therefore the puzzle size
is small, the added cost to a legitimate client is very
small. But when the intensity of the attack increases,
and subsequently the puzzle size increases, the extra
cost of CA-RSA fades away.

Both the client puzzle and our CA-RSA mechanisms
aim at solving the problem of server overload in differ-
ent but complementary ways:

• Puzzles slow DoS attacks by forcing attackers to

8

 1

 10

 100

 1000

 10000

 10 12 14 16 18 20

tim
e

(m
se

c)

puzzle size (b)

Client Puzzle
CA-RSA

Figure 5. Comparing client computational cost of client
puzzles and CA-RSA

perform some work before the server commits re-
sources.

• CA-RSA reduces server load by outsourcing some
of the its computation to the clients, allowing the
server to accommodate more SSL requests.

In summary, the combination of client puzzles and
CA-RSA offers an effective countermeasure to server
overload and DoS/DDoS attacks.

5 Related Work

Techniques for speeding up SSL transactions typi-
cally aim to accelerate RSA decryptions and can be
classified into two categories: dedicated cryptographic
hardware accelerators and non-standard RSA decryp-
tion techniques.

5.1 Hardware Accelerators

SSL hardware accelerators are dedicated modular
arithmetic processing units aimed at speeding up RSA
computations. One example of a hardware accelerator
is the SonicWALL SSL-RX [23] which is claimed to
achieve up to 4,400 RSA decryptions per second, and
comes with a price tag of around $14,000.

Accelerators range widely in both speed and price.
They also often give a smaller than expected increase
in SSL throughput. In [22], Coarfa, et al. analyze the
performance of SSL and conclude that hardware ac-
celerators are not as effective as originally thought: :
depending on the workload, one might only achieve a
factor of 2 speedup. Specifically, when session re-use
is high, resulting in few full SSL handshakes, only a

modest gain in SSL throughput is actually achieved:
approximately a factor of 2 speedup. Authors suggest
that, instead of purchasing a relatively expensive cryp-
tographic accelerator, a better choice would be to in-
vest in a faster CPU to better handle encryption of
application data during SSL sessions. This conclusion
is inline with our work that does not require any spe-
cific hardware but would benefit from a more powerful
CPU.

Berson, et al. [26] propose offering cryptographic
operations, such as modular exponentiations, as a
network service. A so-called cryptoserver would be
equipped with a multiple hardware accelerators and
its services would be shared amongst many clients. Al-
though trust is a major concern in this model, there are
some application settings where the cryptoserver might
be in the same security perimeter as its users (e.g., web
servers). An example would be a cryptoserver support-
ing SSL for a group of secure web servers that are all
part of the same organization. A similar idea is due to
Mraz [21] where certain portions of the SSL protocol –
RSA processing and bulk encryption – are offloaded to
an array of special-purpose (SSL handshake-optimized)
servers.

5.2 RSA Speedup Techniques

Another approach to speeding up SSL handshakes
involves techniques for accelerating RSA decryptions
without the use of specialized hardware. We begin by
describing the seminal work by Shacham and Boneh
which proposes three methods for faster RSA decryp-
tions [20, 27]. From an encryptor’s (i.e., an SSL
client’s) perspective, all three methods are backward
compatible with standard RSA. Also, all speedups dis-
cussed below are based on 1024-bit RSA and are rela-
tive to the cost of performing plain RSA decryptions.

The first technique is based on multi-factor RSA
moduli. Specifically, the RSA setting is that of multi-
prime and multi-power moduli, where n = pqr or
n = p2q (instead of the usual n = pq), and decryp-
tion is performed using CRT and Hensel lifting [28],
respectively. One can expect theoretical speedups of
around 2.25 with n = pqr and 3.38 for n = p2q. Ex-
periments show real speedups to be around 1.73 and
2.3, respectively.

Similar to CA-RSA, the second method – rebalanced
RSA – shifts the workload to the encryptor. It is a
variant of an earlier technique by Weiner [29]. Specif-
ically, d is chosen to be close to n such that both d

mod (p−1) and d mod (q−1) are small integers. The
resulting public exponent e also becomes close to n,
which is much larger than typical values (i.e., e = 3, 17,

9

or 65537). It is in fact so large that Microsoft Inter-
net Explorer (IE) cannot accept it; IE allots a maxi-
mum of 32 bits for the public exponent e. Rebalanced
RSA offers the theoretical speedup of 3.6 but the actual
speedup is 3.2.

The third technique – batch RSA – is based on Fiat’s
Batch RSA which, in turn, relies on simultaneous ex-
ponentiations [30]. This technique offers the speedup
factor of 2.5. Batch RSA uses a batching parameter b

that defines the number of ciphertexts needed in order
to batch-decrypt. (Typically, b is set to 4 for optimal
performance.) Each SSL server needs b RSA public key
certificates, each with identical modulus but different
public and private keys. When it receives b pending
SSL handshake requests, each based upon one of the
certificates, the server takes advantage of the batch-
ing technique and performs b decryptions in less time
than if it executed them sequentially. A heavily loaded
web server using a round-robin strategy when sending
certificates to clients would incur minimal latency be-
fore receiving 4 SSL handshake requests with distinct
certificates.

We now mention one other technique for speeding up
RSA computations. In [31], Lim and Lee discuss using
RSA precomputations in order to speed up modular
exponentiation. A tradeoff is made between storage
space (committed to precomputed values) and compu-
tation time, with more pre-computations resulting in
more efficient exponentiations. This technique outper-
forms other modular exponentiation algorithms such as
Square-and-Multiply and BGMW methods [8].

5.3 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) has been gain-
ing attention as an attractive alternative to more tra-
ditional public-key cryptosystems. ECC offers certain
advantages, notably, it can provide an equivalent level
of security as other public key methods with smaller
key sizes and faster computation. Currently, one of
the main reasons hindering wider acceptance of ECC
is the existence of multiple patents.

In [32] Gupta, et al. analyze achievable performance
gains when using ECC to speed up SSL. Their results
show that the performance gain of ECC over RSA in-
creases for larger key sizes. In comparison with cur-
rently common 1024-bit RSA setting, they measure a
speedup factor of the server RSA decryption time of
2.4 when using 160-bit ECC keys which offers equiv-
alent level of security. Since our scheme provides a
performance gain of about 11 compared to the regular
RSA setting, it would outperform ECC’s performance
by a ratio of 4. In order words, ECC benefits, such as

short keys, do not help to solve our problem of server
overload.

6 Conclusion

We proposed a variation of Server-Aided RSA for re-
balancing RSA-based client/server handshakes, specif-
ically targeting SSL/TLS. Clients are required to per-
form “useful” work, thereby freeing up the server’s re-
sources and allowing it to perform commensurately less
work, thus resulting in better throughput. We stress
that our approach is not an alternative, but a sup-
plement, to client puzzles in defense against DoS and
DDoS attacks. Experimental results demonstrate that
our Client-Aided RSA solution achieves substantial
performance improvements over the basic RSA (with
CRT) decryption algorithm, namely speedups of be-
tween 11 and 19, depending on the RSA key size. A se-
cure web server achieving software-speedups of one or-
der in magnitude becomes competitive with hardware-
accelerated SSL servers.

References

[1] T. Matsumoto, K. Kato, and H. Imai, “Speeding up Secret
Computations with Insecure Auxiliary Devices,” Proceed-
ings of Crypto ’88, pp. 497–506, 1988.

[2] Private communication, “Private communication with
David Wagner,” 2005.

[3] Network Working Group, “RFC 2246 - The TLS Proto-
col Version 1.0,” Internet RFC/STD/FYI/BCP Archives,
1999, http://www.faqs.org/rfcs/rfc2246.html.

[4] BEA WebLogic, “BEA WebLogic Server Frequently
Asked Questions,” http://e-docs.bea.com/wls/docs60/

faq/security.html.

[5] Ron L. Rivest, Adi Shamir, and Leonard M. Adleman, “A
Method for Obtaining Digital Signatures and Public-Key
Cryptosystems,” Communications of the ACM, vol. 21, pp.
120–126, 1978.

[6] D. Boneh and G. Durfee, “Cryptanalysis of RSA with Pri-
vate Key d Less than n0.292,” IEEE Transactions on In-
formation Theory, vol. 46, pp. 1339–1349, 2000.

[7] J. Quisquater and C. Couvreur, “Fast decipherment algo-
rithm for RSA public-key cryptosystem,” Electronic Let-
ters, vol. 18, pp. 1905–907, 1982.

[8] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone,
“Handbook of Applied Cryptography,” The CRC Press se-
ries on discrete mathematics and its applications, 1997.

[9] B. Pfitzmann and M. Waidner, “Attacks on Protocols for
Server-Aided RSA Computations,” Proceedings of Euro-
crypt ’92, pp. 153–162, 1992.

[10] R. J. Anderson, “Attack on Server Assisted Authentication
Protocols,” Electronic Letters, vol. 28, pp. 1473, 1992.

[11] T. Matsumoto, H. Imai, C. S. Laih, and S. M. Yen, “On
verifiable implicit asking protocols for RSA computation,”
Advances in Cryptology - Proceedings of Auscrypt ’92, vol.
718, pp. 296–307, 1992.

10

[12] C. H. Lim and P. J. Lee, “Security and performance of
server-aided RSA computation protocols,” Advances in
Cryptology - CRYPTO ’95, pp. 70–83, 1995.

[13] J. Burns and C. Mitchell, “Parameter Selection for Server-
Aided RSA Computation Schemes,” IEEE Transactions on
Computing, vol. 43, pp. 163–174, 1994.

[14] C. Laih and F. Tu, “Remarks on Parameter Selection for
Server-Aided Secret RSA Computation Schemes,” Inter-
national Workshops on Parallel Processing, pp. 167–173,
1999.

[15] P. Béguin and J.J. Quisquater, “Fast Server-Aided RSA
Signatures Secure Against Active Attacks,” Advances in
Cryptology - CRYPTO ’95, pp. 57–69, 1995.

[16] S. Hong, J. Shin, and H. Lee-Kwang, “A new approach to
server-aided secret computation,” International Conference
on Information Security and Cryptology, pp. 33–45, 1998.

[17] J. Merkle, “Multi-round passive attacks on server-aided
RSA protocols,” Proceedings of the 7th ACM conference
on Computer end Communications security, pp. 102–107,
2000.

[18] P. Nguyen and I. Shparlinski, “On the insecurity of a server-
aided RSA protocol,” Proceedings of Asiacrypt ’01, vol.
2248, pp. 21–35, 2001.

[19] Arjen K. Lenstra and Eric R. Verheul, “Selecting crypto-
graphic key sizes,” Journal of Cryptology: the journal of
the International Association for Cryptologic Research, vol.
14, no. 4, pp. 255–293, 2001.

[20] H. Shacham and D. Boneh, “Improving SSL Handshake
Performance via Batching,” Proceedings of RSA 2001, vol.
2020, pp. 28–43, 2001.

[21] Ron Mraz, “Secure Blue: An Architecture for a High Vol-
ume SSL Internet Server,” 17th Annual Computer Security
Applications Conference, 2001.

[22] Cristian Coarfa, Peter Druschel and Dan S. Wallach, “Per-
formance Analysis of TLS Web Servers,” 9th Network and
Systems Security Symposium, pp. 553–558, 2002.

[23] SonicWALL, “SonicWALLE SSL-RX,” http://www.

sonicwall.com/products/sslrx.html.

[24] Ari Juels and John Brainard, “Client Puzzles: A Crypto-
graphic Defense Against Connection Depletion,” 5th Net-
work and Systems Security Symposium, pp. 151–165, 1999.

[25] D. Dean and A. Stubblefield, “Using Client Puzzles to Pro-
tect TLS,” Proceedings of the USENIX Security Sympo-
sium, 2001.

[26] T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Spre-
itzer, “Cryptography as a Network Service,” 7th Network
and Systems Security Symposium, 2001.

[27] D. Boneh and H. Shacham, “Fast Variants of RSA,” Cryp-
toBytes (RSA Laboratories), vol. 5, pp. 1–9, 2002.

[28] H. Cohen, “A Course in Computational Algebraic Number
Theory,” Graduate Texts in Mathematics, vol. 138, pp. 6,
1996.

[29] M. Weiner, “Cryptanalysis of Short RSA Secret Expo-
nents,” IEEE Transactions on Information Theory, vol.
36(3), pp. 553–558, 1990.

[30] A. Fiat, “Batch RSA,” Proceedings of Crypto ’89, pp. 175–
185, 1989.

[31] C. H. Lim and P. J. Lee, “More Flexible Exponentiation
with Precomputation,” Advances in Cryptology - CRYPTO
’94, pp. 95–107, 1994.

[32] Vipul Gupta and Douglas Stebila and Stephen Fung,
“Speeding up Secure Web Transactions Using Elliptic Curve
Cryptgraphy,” 11th Network and Systems Security Sympo-
sium, pp. 231–239, 2004.

11

