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Abstract

We consider cubic boolean bent functions, each cubic monomial of which contains

the same variable. We investigate canonical forms of these functions under affine

transformations of variables. In particular, we refine the affine classification of cubic

bent functions of 8 variables.

1 Preliminaries

Let Vn be an n-dimensional vector space over the field F2, and Fn be the set of all boolean

functions Vn → F2. We identify a function f ∈ Fn of x = (x1, . . . , xn) with its algebraic

normal form, that is, a polynomial of the ring F2[x1, . . . , xn] reduced modulo the ideal (x2
1 −

x1, . . . , x
2
n − xn). Denote by deg f the degree of such polynomial.

The Walsh–Hadamard transform associates with f ∈ Fn the function

∧

f (u) =
∑

x∈Vn

χ(f(x) + x · u), u ∈ Vn,

where χ(a) = (−1)a is the additive character of F2 and x ·u is the dot product of two vectors.

Denote by
∧

F n the image of Fn under the mapping f 7→
∧

f .

Let Bn be the set of all boolean bent functions of n variables: f ∈ Bn if |
∧

f (u)| = 2n/2

for all u ∈ Vn. Bent functions were introduced by Rothaus in 1976 [7], and since then have

been widely studied. It is clear that Bn 6= ∅ only for even n. Therefore, when we write Bn,

we mean that n is even.

Let AGLn be the general affine group of transformations of Vn. An element σ ∈ AGLn

acts as follows: σ(x) = xA + b, where A is an invertible n × n matrix over F2, b ∈ Vn.

Extend the action of AGLn on Fn in a natural way:

σ(f)(x) = f(xA + b),

1



and call two functions affine equivalent if one can be obtained from the other by a transfor-

mation σ ∈ AGLn and addition of an affine function l (deg l ≤ 1).

It is known that affine equivalent functions are both bent or both not bent. In this

connection it would be interesting to find the number and representatives of affine equivalence

classes of Bn.

By Dickson’s theorem (see, for example, [6]), any quadratic function f(x1, . . . , xn) is

affine equivalent to the function

x1x2 + . . . + x2m−1x2m. (1)

The number 2m here is determined uniquely and called the rank of f (rank f). It is known

that f is bent iff rank f = n and, consequently, every quadratic bent function of n variables

is affine equivalent to the function (1) with m = n/2.

Unfortunately, obtaining similar classification even for cubic bent functions is a more

complex problem. Today, such classification is completed only for n = 6: any cubic bent

function of 6 variables is affine equivalent to one of the three functions given by Rothaus

in [7].

Hou in [5] has considered cubic bent functions of 8 variables. Using the classification of

cubic forms (see [2, 4]), Hou stated that any such function f(x), x ∈ V8, is affine equivalent

to one of the following:

f1(x) = x1x2x3 + q1(x),

f2(x) = x1x2x3 + x2x4x5 + q2(x),

f3(x) = x1x2x7 + x3x4x7 + x5x6x7 + q3(x),

f4(x) = x1x2x3 + x2x4x5 + x3x4x6 + q4(x),

f5(x) = x1x2x3 + x2x4x5 + x3x4x6 + x1x4x7 + q5(x),

where deg qi = 2. Thus, to complete the classification, it remains to refine the functions qi.

Hou refined q1, further we will refine q2 and q3.

We will use the following observation: each cubic monomial of f2 contains the variable x2

and each cubic monomial of f3 contains x7. In accordance with this observation, consider

cubic bent functions of the form

f(u, v,x) = ua(v,x) + b(u, v,x), x ∈ Vn, deg a = 2, deg b ≤ 2. (2)

Let us examine the properties of such functions.
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2 Results

Before proceeding, recall the notion of bent rectangles from [1]. Let f ∈ Fn and m, k be

positive integers such that n = m + k. Define the function

f (u,v) =
∑

y∈Vk

χ(f(u,y) + v · y), u ∈ Vm, v ∈ Vk,

and call it the rectangle of f . Denote by F m,k the set of all such rectangles.

For a fixed u call the mapping v 7→ f (u,v) a column of f . Analogously, for a fixed

v call the mapping u 7→ f (u,v) a row of f . By definition, each row of f is an element

of
∧

F k. If furthermore each column of f multiplied by 2(m−k)/2 is an element of
∧

F m, then

the rectangle f is called bent.

In [1] we pointed out the following correspondence between bent functions and bent

rectangles.

Proposition 1. A function f ∈ Fm+k is bent if and only if a rectangle f ∈ F m,k is bent.

Using 2-row bent rectangles f ∈ F 1,n+1, we can proof the following result.

Proposition 2. A cubic bent function of the form (2) is affine equivalent to the function

u(h(x) + v) + g(x), (3)

where h(x) = x1x2 + . . . + x2m−1x2m and g is a quadratic bent function such that g + h is

also bent.

Let StabAGLn
(h) be the stabilizer of h in AGLn, that is, the set of all σ ∈ AGLn such

that σ(h) = h. To refine (3), we have the following possibilities:

(a) apply to g transformations of StabAGLn
(h),

(b) add h to g by replacing u with u + 1.

Proceed with the transformations (a). We need to know the canonical form to which we

can reduce a quadratic bent function g(x) by elements of StabAGLn
(x1x2 + . . . + x2m−1x2m).

Let us state a result in this direction. It will be convenient to rename variables and talk

about a classification of quadratic bent functions g(x,y, z), x,y ∈ Vm, z ∈ V2k, under the

action of StabAGL2(m+k)
(x · y).

Before stating the result, define for r = 1, 2, . . . the function

ρ(x,y, z1, z2) = y1z1 + x1y2 + x2y3 + . . . + xr−1yr + xrz2, x,y ∈ Vr,
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and call it the chain of rank 2r + 2. For r = 0 and “empty” vectors x,y call ρ(x,y, z1, z2) =

z1z2 the chain of rank 2. Denote by

C(α1, α2, . . . , αr) =



















0 0 . . . 0 α1

1 0 . . . 0 α2

0 1 . . . 0 α3

. . . . . . . . . . . . . . . .

0 0 . . . 1 αr



















the companion matrix of the polynomial p(λ) = α1+α2λ+. . .+αrλ
r−1+λr. The characteristic

polynomial of C = C(α1, . . . , αr) equals p(λ) and C is invertible iff α1 6= 0.

Lemma. Any quadratic bent function g(x,y, z), x,y ∈ Vm, z ∈ V2k, by a transformation

of StabAGL2(m+k)
(x · y) and addition of an affine function can be reduced to the form

k
∑

i=1

ρi(xi,yi, z2i−1, z2i) + yk+1QxT
k+1,

where

(i) xi,yi ∈ Vmi
, i = 1, . . . , k + 1, such that (x1, . . . ,xk+1) = x and (y1, . . . ,yk+1) = y;

(ii) ρi is the chain of rank 2mi + 2, i = 1, . . . , k;

(iii) Q is the uniquely determined square matrix of order mk+1, “empty” for mk+1 = 0 and

having the form

Q = diag(C1, . . . , Cd)

for mk+1 > 0. In the last case Ci are invertible companion matrices with characteristic

polynomials pi(λ) such that p1(λ) | p2(λ), p2(λ) | p3(λ), . . . , pd−1(λ) | pd(λ).

Interesting in view of Proposition 2 quadratic bent functions g(x,y, z) have the additional

property: g(x,y, z)+x ·y is also bent. This property imposes the following restriction on Q:

the addition of 1 to its diagonal elements keeps the matrix invertible. Hence, if Ci =

Ci(α1, . . . , αr) is a diagonal companion matrix of Q, then r ≥ 2 and α2 + . . . + αr = 1.

Example. Let m + k = 3. Under the stated restrictions on the diagonal matrices of Q, the

function g(x,y, z) by a transformation of AGL6(x ·y) and addition of an affine function can

be reduced to one of the following forms:

m = 1 m = 2 m = 3

y1z1 + x1z2 + z3z4 y1z1 + x1y2 + x2z2 x1y2 + x2y3 + x3(y1 + y2)

x1y2 + x2(y1 + y2) + z1z2 x1y2 + x2y3 + x3(y1 + y3)
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Concentrate on the case m = 3, k = 0. We have two canonical functions yQxT and yQ̃xT,

where

Q =









0 0 1

1 0 1

0 1 0









, Q̃ =









0 0 1

1 0 0

0 1 1









.

Let Ir be the identity r × r matrix. The characteristic polynomial of Q + I3 coincides with

the characteristic polynomial of Q̃ and we can choose an invertible matrix S such that

S−1(Q̃ + I3)S = Q.

It means that by adding the function x · y to yQ̃xT and then applying the transformation

(x,y) 7→ (xST,yS−1) of StabAGL6(x · y), we get the function yQxT.

Using the example above, we immediately obtain the following result that actually con-

tains refinements of the functions f1, f2, f3 from the previous section.

Proposition 3. Let f(u, v, x1, . . . , x6) be a cubic bent function of the form (2). Then f is

affine equivalent to one of the following functions:

u(x1x2 + v) + x1x3 + x2x4 + x5x6,

u(x1x2 + x3x4 + v) + x1x4 + x2x5 + x3x6,

u(x1x2 + x3x4 + v) + x1x4 + x3(x2 + x4) + x5x6,

u(x1x2 + x3x4 + x5x6 + v) + x1x4 + x3x6 + x5(x2 + x4).

Now, to complete the affine classification of B8, it remains to refine quadratic parts of

the functions f4 and f5. Note that every cubic monomial of these functions contains at least

one of the variables x1, x4 (or, for example, x2, x4) and it is promising to use 4-row bent

rectangles for the classification.

3 Proofs

Proof of Proposition 1

Let f ∈ Bn. Define the function g ∈ Fn by the rule

χ(g(v,u)) = 2−n/2
∧

f (u,v), u ∈ Vk, v ∈ Vm,
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and determine the corresponding rectangle g ∈ F k,m:

g (v,u) = 2−n/2
∑

x∈Vm

∧

f (x,v)χ(u · x)

= 2−n/2
∑

x∈Vm

∑

w∈Vm

∑

y∈Vk

χ(f(w,y) + x · w + v · y + u · x)

= 2−n/2
∑

y∈Vk

∑

w∈Vm

χ(f(w,y) + v · y)
∑

x∈Vm

χ((w + u) · x).

Since for a ∈ Vm,
∑

x∈Vm

χ(a · x) =

{

2m, a = 0,

0 otherwise,

we have

g (v,u) = 2m−n/2
∑

y∈Vk

χ(f(u,y) + v · y) = 2(m−k)/2 f (u,v).

Therefore, each column of f multiplied by 2(m−k)/2 is an element of
∧

F m and f is bent.

Conversely, if f is bent then g (v,u) = 2(m−k)/2 f (u,v) is well defined rectangle that

corresponds to the function g(v,u), χ(g(v,u)) = 2−n/2
∧

f (u,v). Hence |
∧

f (u,v)| = 2n/2 for

all u, v and f is bent.

Proof of Proposition 2

Let f(u, v,x) have the form (2). Construct the rectangle f ∈ F 1,n+1. The rows of f are

results of applying the Walsh-Hadamard transform to the functions

f1(v,x) = b(0, v,x), f2(v,x) = a(v,x) + b(1, v,x).

The functions fi are quadratic and Dickson’s theorem yields

1) |
∧

f i(w)| ∈ {0, 2n+1−rank fi/2}, w ∈ Vn+1;

2) the supports Ei ⊂ Vn+1 of
∧

f i are flats of dimensions rank fi.

Examining the restrictions on columns of f , we conclude that f is bent iff dim E1,2 = n and

E1 ∩ E2 = ∅.

Using an affine transformation of (v,x), we can make

E1 = {(0,x) : x ∈ Vn}, E2 = {(1,x) : x ∈ Vn}.

It means that f is affine equivalent to the function

u(g1(x) + g2(x) + v) + g1(x), gi ∈ Bn, deg gi = 2.
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Let rank(g1+g2) = 2m. Using an affine transformation of x, we can convert g1(x)+g2(x)

to the form h(x)+ l(x), where h(x) = x1x2 + . . .+x2m−1x2m and l is an affine function. Now

replacing now v with v + l, we obtain the function

u(h(x) + v) + g(x), g, g + h ∈ Bn, deg g = 2,

that is affine equivalent to f .

Proof of Lemma

We will use notations that can be easily understood by the following example: the transfor-

mation that replaces x1 with x1 +x2, y2 with y2 + y1 and does not change all other variables

is denoted by {x1 y x1 + x2, y2 y y2 + y1}.

Start the proof with two auxiliary results.

Sublemma 1. Any quadratic bent function g(x,y), x,y ∈ Vm, by a transformation of

StabAGL2m
(x · y) and addition of an affine function can be reduced to the form

yQxT, Q = diag(C1, . . . , Cd),

where Ci are invertible companion matrices with characteristic polynomials pi(λ) such that

p1(λ) | p2(λ), p2(λ) | p3(λ), . . . , pd−1(λ) | pd(λ). The matrix Q is determined uniquely.

Proof. During the proof we will consecutively eliminate monomials xixj and yiyj in g, then

bring g to the form yQxT and prove the uniqueness of Q.

1. Write

g(x,y) = x1(a2x2 + . . . + amxm + b1y1 + b2y2 + . . . + bmym + c) + g1(x2, . . . , xm,y).

If some of the coefficients ai, bi, i = 2, . . . , m, are nonzero, then by renumbering the vari-

ables xi, yi and interchanging x2 and y2 if necessary, we can make b2 = 1.

Now by the transformations

(a) {x1 y x1 + b1x2, y2 y y2 + b1y1},

(b) {y2 y y2 + a2x2 + a2},

(c) {y2 y y2 + aixi + biyi + aibi, xi y xi + bix2, yi y yi + aix2}, i = 3, . . . , m,

and addition of x1 if necessary, we bring g to the form

x1y2 + g2(x2, . . . , xm,y).

Applying similar transformations to

g2(x2, . . . , xm,y) = x2(a
′

3x3 + . . . + a′

mxm + b′1y1 + . . . + b′mym + c′) + g3(x3, . . . , xm,y)
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and further, at some stage we get the function

x1y2 + x2y3 + . . . + xr−1yr + xr(α1y1 + . . . + αryr) + g4(xr+1, . . . , xm,y).

2. Denote x1 = (x1, . . . , xr), y1 = (y1, . . . , yr) and rewrite this function as

y1CxT
1 + g4(xr+1, . . . , xm,y),

where C = C(α1, . . . , αr) is a companion matrix.

The matrices C and CT are similar, that is, there exists an invertible matrix S such

that S−1CS = CT. Using the transformation {x1 y y1S
T,y1 y x1S

−1}, we bring g to the

form

x1y2 + x2y3 + . . . + xr−1yr + xr(α1y1 + . . . + αryr) + g5(x, yr+1, . . . , ym).

3. If g5 contains the monomial x1x2, eliminate it by replacing y2 with y2 + x2 + 1. Next

eliminate the monomials x1xj , 3 ≤ j ≤ m, by the transformations {y2 y y2+xj , yj y yj+x2}

and the monomials x1yj, r+1 ≤ j ≤ m, by the transformations {y2 y y2+yj, xj y xj +x2}.

In similar way we can eliminate the monomials x2x3, . . . , x2xm, x2yr+1, . . . , x2ym, x3x4,

. . . , xr−1xr, xr−1yr+1, . . . , xr−1ym and hence obtain the function

x1y2 + x2y3 + . . . + xr−1yr + xr(α1y1 + . . . + αmym + βr+1xr+1 + . . . + βmxm)

+ g6(xr+1, . . . , xm, yr+1, . . . , ym).

If αr+1 = . . . = αm = βr+1 = . . . = βm = 0, we continue to eliminate monomials xixj ,

yiyj in the function g6 of a lesser number of variables. Otherwise, if some of the coeffi-

cients αr+1, . . . , αm, βr+1, . . . , βm are nonzero, then return to step 1, bring g to the form

x1y2 + x2y3 + . . . + xr′−1yr′ + xr′(α
′

1y1 + . . . + α′

r′yr′) + g′

4(xr′+1, . . . , xm,y), r′ > r,

and repeat steps 2, 3.

4. Using the manipulations above, we can eliminate all monomials xixj , yiyj and bring g

to the form yQxT, where Q is an m×m matrix. Given an invertible matrix S of order m, we

can replace (x,y) with (xST,yS−1) and thus pass from Q to the similar matrix Q̃ = S−1QS.

Under an appropriate choice of S, we can bring Q to the Frobenius canonical form given in

the statement.

On the other hand, if g is equivalent to yQ̃xT under the action of StabAGL2m
(x ·y), then

the matrices Q and Q̃ are similar. Indeed, the equivalence of yQxT and yQ̃xT means that

there exists an invertible matrix A of order 2m such that

A

(

0 Im

Im 0

)

AT =

(

0 Im

Im 0

)

, A

(

0 Q

QT 0

)

AT =

(

0 Q̃

Q̃T 0

)

.
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Hence invariant polynomials of the λ-matrices

(

0 λIm + Q

λIm + QT 0

)

,

(

0 λIm + Q̃

λIm + Q̃T 0

)

are equal (see, for example, [3, ch. 6]). Consequently, invariant polynomials of the λ-

matrices λIm + Q and λIm + Q̃ are equal too, matrices Q, Q̃ are similar and have the

same Frobenius canonical form.

Sublemma 2. Any quadratic bent function g(x,y, z), x,y ∈ Vm, z ∈ V2k, k > 0, that does

not contain the monomials zizj, 1 ≤ i < j ≤ 2k, by a transformation of StabAGL2(m+k)
(x ·y)

and addition of an affine function can be reduced to the form

y1z1 + x1y2 + . . . + xr−1yr + xrz2 + g′(xr+1, . . . , xm, yr+1, . . . , ym, z3, . . . , z2k).

Proof. We divide the proof into four steps.

1. Since g does not contain the monomials z1zj and has full rank, g must contain at least

one monomial of the form xiz1 or yiz1, say y1z1. Write

g(x,y, z) = (y1 + l1)(z1 + l2) + g1(x, y2, . . . , ym, z2, . . . , z2k),

where l1 = l1(x, y2, . . . , ym) and l2 = l2(x, y2, . . . , ym, z2, . . . , z2k) are affine functions. Re-

placing z1 with z1 + l2, then using some of the transformations

(a) {y1 y y1 + x1 + 1},

(b) {y1 y y1 + xi, yi y yi + x1}, 2 ≤ i ≤ m,

(c) {y1 y y1 + yi, xi y xi + x1}, 2 ≤ i ≤ m,

and adding z1 if necessary, we obtain the function

y1z1 + g2(x, y2, . . . , ym, z2, . . . , z2k).

2. If g2 does not contain the monomials x1zj , then we proceed as in step 1 of the previous

proof and bring g to the form

y1z1 + x1y2 + g3(x2, . . . , xm, y2, . . . , ym, z2, . . . , z2k).

Continuing with the function g3 and further, at some stage we obtain one of the following

functions:

y1z1 + x1y2 + . . . + xr−1yr + xr(α2y2 + . . . + αryr)

+ g4(xr+1, . . . , xm, y2, . . . , ym, z2, . . . , z2k), (4)
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or

y1z1 + x1y2 + . . . + xr−1yr + g5(xr, . . . , xm, y2, . . . , ym, z2, . . . , z2k), (5)

where g5 contains a monomial of the form xrzj , say xrz2.

Consider the function (4). If we replace xi with xi +αi+1xr, i = 1, . . . , r−1, we eliminate

all monomials that contain xr. Therefore the function (4) is not bent and we reject it.

Rewrite (5) as

y1z1 + x1y2 + . . . + xr−1yr + (xr + l1)(z2 + l2) + g6(xr+1, . . . , xm, y2, . . . , ym, z3, . . . , z2k),

where l1 = l1(xr+1, . . . , xm, y2, . . . , ym) and l2 = l2(xr+1, . . . , xm, y2, . . . , ym, z3, . . . , z2k) are

affine functions.

Replacing z2 with z2 + l2, then using some of the transformations

(a) {xr y xr + xi, yi y yi + yr}, r + 1 ≤ i ≤ m,

(b) {xr y xr + yi, xi y xi + yr}, 2 ≤ i ≤ m, i 6= r,

(c) {xr y xr + yr + 1},

and adding z2 if necessary, we bring (5) to the form

y1z1 + x1y2 + . . . + xr−1yr + xrz2 + g7(xr+1, . . . , xm, y2, . . . , ym, z3, . . . , z2k). (6)

3. By the transformations {xr−1 y xr−1+xi, yi y yi+yr−1} eliminate the monomials yrxi,

r + 1 ≤ i ≤ m, in (6). Next by the transformations {xr−1 y xr−1 + yj , xj y xj + yr−1}

eliminate the monomials yryj, 2 ≤ j ≤ m, j 6= r−1. The monomial yr−1yr can be eliminated

by replacing xr−1 with xr−1 + yr−1 + 1. In similar way consecutively eliminate all other

monomials yr−1xi, yr−1yj, . . . , y2xi, y2yj. Then eliminate possibly appeared monomials y1xi,

y1yj by replacing z1 with z1 + xi or z1 + yi.

Finally we obtain the function

y1z1 + x1y2 + . . . + xr−1yr + xrz2

+

r
∑

i=2

2k
∑

j=3

aijyizj + g′(xr+1, . . . , xm, yr+1, . . . , ym, z3, . . . , z2k). (7)

4. If some of the coefficients aij are nonzero, then we proceed as follows

(a) interchange xi and yr+1−i, i = 1, . . . , r,

(b) interchange z1 and z2,
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(c) repeat step 2 and obtain the function

y1z1 + x1y2 + . . . + xr′−1yr′ + xr′z2 + g′

7(xr′+1, . . . , xm, y2, . . . , ym, z3, . . . , z2k), r′ < r,

instead of (6),

(d) repeat steps 3, 4.

It is clear that after some iteration by the schema above we obtain the function of the

form (7), where all the coefficients aij = 0.

Return to the proof of Lemma. If g contains a monomial of the form zizj , say z1z2, then

we can write

g(x,y, z) = (z1 + l1)(z2 + l2) + g1(x,y, z3, . . . , z2k),

where l1 = l1(x,y, z3, . . . , z2k) and l2 = l2(x,y, z3, . . . , z2k) are affine functions. Applying the

transformation {z1 y z1 + l1, z2 y z2 + l2}, we bring g to the form

z1z2 + g2(x,y, z3, . . . , z2k).

In similar way we can isolate all other monomials of the form zizj , then using sublemmas

extract chains ρi(xi,yi, z2i−1, z2i) of ranks 2mi + 2 ≥ 4 and finally fix the term yk+1QxT
k+1.

It remains to proof the uniqueness of the matrix Q. Let E and R be the square matrices

of order 2(m + k) such that

(x,y, z)R(x,y, z)T =

k
∑

i=1

ρi(xi,yi, z2i−1, z2i) + xk+1QyT
k+1,

(x,y, z)E(x,y, z)T = x · y.

Suppose that g can be reduced to yet another function

k
∑

i=1

ρ̃i(x̃i, ỹi, z2i−1, z2i) + x̃k+1Q̃ỹT
k+1, x̃i, ỹi ∈ Vm̃i

,

that represented by a matrix R̃. Repeating the arguments of step 4 of the proof of Sub-

lemma 1, we conclude that invariant polynomials of the λ-matrices

S =

(

0 R + λE

RT + λE 0

)

, S̃ =

(

0 R̃ + λE

R̃T + λE 0

)

are coincide. To the chains ρi, ρ̃i there correspond blocks of S, S̃ such that all their invariant

polynomials are equal to 1. It yields that invariant polynomials of the λ-matrices Q+λImk+1
,

Q̃ + λIm̃k+1
are equal and, consequently, mk+1 = m̃k+1 and Q = Q̃.
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