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Abstrat

A deniable authentiation sheme using RSA is desribed and proven seure in the

random orale model. A ountermeasure to a well-known attak on eÆient deniable

authentiation to multiple reipients is desribed and proven seure.

1 Introdution

Email and text messaging are single-pass media. Their authentiation has therefore tradi-

tionally used digital signatures. But signatures leave evidene that third parties an verify.

Sometimes this is undesirable and it is preferable to have deniable authentiation instead.

Indeed, while ommon sense ditates to authentiate all messages, it also ditates to be

very areful what you sign.

In deniable authentiation, a sender Alie and a reipient Bob eah have their own publi

keys. Alie sends an authentiated message to Bob using her private key and Bob's publi

key. Bob veri�es the authentiated message with his private key and Alie's publi key.

Alie does this without digitally signing anything. Bob has no proof to others that Alie

used her private key to do anything.

Related onepts to deniable authentiation are plausible deniability and prevention of

surreptitious forwarding. The IETF S/MIME protool, whih an be used to seure email,

inludes an AuthentiatedData type that does not inlude a signature, and is instead se-

ured with DiÆe-Hellman key agreement [Hou99℄ or ellipti urve Menezes-Qu-Vanstone

(ECMQV) [BWBL02℄. The term deniable authentiation is also used in [dRG05℄ for es-

sentially the same notion as here. Less similar onepts are undeniable signatures and

designated on�rmer signatures.

Deniable authentiation is straightforward with DiÆe-Hellman (DH) key agreement and

its derivatives suh as ECMQV, at least for the ase of single reipients. Most (single-pass)

authentiation methods based on Rivest-Shamir-Adleman (RSA) have, however, used a

onventional signature, and as suh were not fully deniable. A deniable authentiation

sheme based on RSA is desribed and proven seure under the standard RSA assumption

and the random orale model. It is also proved seure under a strong assumption about

RSA and a milder assumption on hash funtions.

In eÆient multi-reipient deniable authentiation, it is neessary not to permit a mali-

ious reipient to modify the message for other reipients. This paper provides a mehanism

to prevent this kind of attak.

�

Certiom Researh
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1.1 Appliations

Deniable authentiation an be used as part of a ountermeasure against spam. If reipients

insist that every message they reeive is authentiated, then they an resist sender address

spoo�ng. One sender identities are reliable, sender address �ltering an be more e�etive.

Against spam, deniable authentiation has an advantage over signatures in that senders

of mass reipient messages must authentiate separately for eah reipient. Spammers thus

inur a per-reipient disinentive. This an be ombined with other tehniques of adding a

sender-side ost.

Another appliation of deniable authentiation is the protetion of sensitive organiza-

tion data. Suppose suh data is leaked outside the organization. If a signature has been

applied to the data, an outsider ould asertain that the data is authenti. If only deniable

authentiation was applied, however, then the outside ould not be sure the leak was not

fabriated.

1.2 Standards

Existing standards for disrete logarithm based key agreement, suh as X9.42 and X9.63,

are already useful for deniable authentiation. Indeed, they have already been used in other

standards, suh as S/MIME, for deniable authentiation.

On the other hand, standards for RSA generally do not provide (single-pass) deniable

authentiation. For example, the urrent draft of ANS X9.44 gives two key agreement

shemes using RSA and one key transport sheme. Both agreement shemes are derived

from the protool TLS. The �rst key agreement sheme and the key transport sheme do not

have bilateral authentiation beause the sender does not have a publi key. The seond key

agreement sheme involves digital signatures, so full deniability is not possible. Deniable

authentiation would be a useful addition to standards like ANS X9.44.

Seure eÆient deniable authentiation with multiple reipients would be a valuable

enhanement of standards that speify deniable authentiation. The S/MIME standard is

good example of this, partiularly [BWBL02, Hou99℄.

1.3 Previous Work

Several key establishment mehanisms using digital signatures and publi key enryption

are desribed in [MvOV95, x12.5.2℄. These shemes do not have full deniability when used

with digital signatures suh as PKCS #1 v. 1.5 and PSS. Even when used with raw RSA

digital signatures, they do not have full deniability beause identi�ers are inluded in the

signatures. (Inidentally, raw RSA digital signatures are weak in the sense that existential

forgery is easy.)

Triple-wrapping message, either by sign-enrypt-sign or enrypt-sign-enrypt, is not

fully deniable authentiation, beause Alie signs something that Bob an show to others.

If the signed data is a iphertext, Bob an generally reveal the plaintext and provide some

additional data suh that third parties an verify the orrespondene of plaintext to ipher-

text. In fat, with most enryption shemes, Bob an do this without even revealing his

private key. If the iphertext is only the enryption a symmetri authentiation key, not a

message itself, then authentiation is weakly deniable, in the sense that Bob annot prove

Alie used the symmetri authentiation key on partiular messages, but he an prove that

Alie authentiated the key.
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Some ountermeasures to surreptitious forwarding, suh as those surveyed by Davis

[Dav01℄, primarily aim to prevent forwarding only in the sense that the user's regular ryp-

tographi appliation annot perform it. More ative adversaries will not use onventional

software, and instead use software that an extrat the signatures.

2 Sheme Ingredients

This setion de�nes the ingredients to the sheme.

2.1 Some Notation for General Trapdoor Permutations

The RSA primitive is a trapdoor permutation. The deniable authentiation sheme desribed

in this paper works for any trapdoor permutation. So, for the sake of generality, we use a

generi notation for trapdoor permutations. We �rst desribe how the notation works in

general, and then desribe how it applies to RSA.

A trapdoor permutation pair is (N;n), where N is an easily omputable publi funtion

and n = N

�1

is a private inverse funtion. The funtion is n is easily omputable only

by the key pair owner. So, omputing n from the desription of N is infeasible. Suh a

funtion N is alled a trapdoor permutation and n is alled its trapdoor inverse. We may

also all N and n the publi key and private key, respetively, although this lashes slightly

with the onventional terminology with RSA.

In the ase of RSA, the trapdoor key pair (N;n) is as follows. Let e be some publi

value, typially e = 3 or e = 2

16

+1. Let p; q be seret primes with gd(e; (p�1)(q�1)) = 1.

Let N be the funtion de�ned by N(x) = x

e

mod pq. In a slight abuse of our own notation,

we also write N = pq in line with onventional notation for RSA. The trapdoor inverse is

de�ned as n = N

�1

, so n(y) = y

d

mod N , where d = e

�1

mod (p� 1)(q � 1). In another

abuse of notation, we might write n for d. The pair (N;n) is an RSA key pair with publi

permutation N and private permutation n.

Although RSA is the most widely used and known trapdoor permutation, others are

known. One of the most important is Rabin-Williams (RW), whose seurity is known to

be equivalent to the hardness of fatoring. Our system will work with general trapdoor

permutations.

Let [N ℄ be the domain of the funtion N and let [n℄ be the domain of funtion n. For

RSA, we an use [N ℄ = [n℄ = fx : 0 6 x 6 N �1; gd(x;N) = 1g, as a subset of integers. In

pratie, it is equivalent to regard [N ℄ for RSA as the set of integers in the interval [1; N�1℄.

Both Alie and Bob have key pairs. We write (A; a) for the key pair of Alie, and (B; b)

for Bob's key pair. Alie will generally be the sender and authentiator of the message,

and Bob will generally be reipient and veri�er of authentiated message. Eah will have

an authenti opy of the other's publi key. For further simpliity, we may also identify

Alie and Bob with their publi keys. The meaning of A and B as entity or publi key (as

trapdoor permutation or RSA integer) will be made lear, either from ontext or expliitly.

It will be eÆieny in the trapdoor-based deniable authentiation sheme for two dif-

ferent domains [A℄ and [B℄ to have signi�ant overlap. For RSA funtions, this is easily

ahieved if A and B are near in size.

For other intermediate values in the protools, we generally use upperase letters for

publi values that anybody an determine and lowerase for seret values that only Alie

or Bob an determine. This onvention is similar to that used with some kinds of publi

key ryptography.
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2.2 Key derivation funtions

Established keys are derived from the established seret and other shared data using a key

derivation funtion (KDF). Key derivation funtions are onstruted from hash funtions.

One onstrution is the KDF of ANS X9.63. The shemes desribed in this paper are suh

that the following data in the parameters strengthens the seurity.

� Identi�ers for Alie and Bob an be inluded in the key derivation parameters, whih

helps to thwart unknown key share attaks. Identi�ers an be publi keys or rep-

resentations of names, or hashes of the latter. If symmetry is desired, so that the

established key annot be said to be direted from Alie to Bob, or vie versa, Al-

ie and Bob's identi�er an be ombined with a symmetri funtion suh as integer

multipliation.

� Time or none values inluded in the key derivation funtion help to ensure freshness

of the established key, whih helps to ensure weak impliit entity authentiation and

known-key seurity.

� A MAC tag an be inlude the key derivation funtion. This helps to avoid message

tampering that might be possible in an eÆient multi-reipient deniable authentiation

sheme.

2.3 Intermediate Bijetion

The seurity of the deniable authentiation may be enhaned with some seure bijetions.

The bijetions should take a form suh as S : � ! � where � � [b℄ and � � [a℄, with

these subsets ontaining almost elements of their supersets. Both diretions of the bijetion

should be easily omputable. The bijetion is a �xed publi algorithm, although it may

optionally have a key. The bijetion needs to be seure in a sense similar to a seure hash

funtion. So �nding u and S(u) with a given a struture (independent of the de�nition of

S) should be roughly as hard as doing so if S were a random bijetion. For example, it

should not be possible to make both u and S(u) small. In the seurity analysis this helps

to avoid an attak and to prove seurity.

The seure bijetion helps eliminates struture, suh as small size, that an attak might

exploit. Potentially, the bijetion an be built from a blok ipher, or possibly a key wrap

funtion. The key an be �xed for all appliations of the sheme, or it ould be seleted

dynamially, or made a funtion of the other values in the sheme.

2.4 Message Authentiation Code

A Message Authentiation Code (MAC) is an algorithm that takes input of a message M

and of seret key K, and then outputs a tag T = MAC

K

(M). Without knowledge of K, it

should infeasible to ompute the orret value T . In other words, a MAC is believed to be

unforgeable. Parties that know K an send a MAC tag T with the message M and then be

sure that no other parties have modi�ed the message M .

3 RSA-Based Shemes for Deniable Authentiation

Deniable authentiation is fairly straightforward with DH based key agreement, as follows.

Agree on a symmetri key, using a sheme that provides mutual authentiation. Then apply
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a (symmetri) message authentiation ode (MAC) to the message. This is the approah

taken in S/MIME's AuthentiatedData type. Essentially, the sheme here is the same.

The interesting part is how RSA key agreement is done, in a single-pass, without signing

anything.

A simpli�ed version of the sheme is given in Figure 1. Alie sends Z = a(B(x)) to Bob,

where x is a random value that Bob an reover from Z as x = b(A(Z)). Alie and Bob an

use x to derive a symmetri key k that they an use for any purpose, generally. In this ase,

they use k to ompute MAC tag T on a message M . Alie sends M , T , and Z in a single

pass. In seleting x, Alie uses a while loop to get an intermediate value Y = B(x) 2 [a℄,

so that she an apply a. The purpose of this to ensure that Z and x do not have an bias

that an attaker might be able to exploit.

Alie Bob

While(Y 62 [a℄) :

x 2

R

[B℄

Y = S(B(x));

Z = a(Y )

k = KDF(x;A;B; T )

T = MAC

k

(M)

M;T;Z

����!

Y = S

�1

(A(Z))

x = b(Y )

k = KDF(x;A;B; T )

T

?

= MAC

k

(M)

Figure 1: Simpli�ed version of RSA message authentiation

The sheme in Figure 1 an be simpli�ed by hoosing S as the trivial identity funtion,

and by not inluding identi�ers in the key derivation funtion. This simpli�ations lead to

some problems, however as noted below.

3.1 A Forgery Attak Against Small RSA Exponents

When the trapdoor funtion is RSA with small values of e, suh as e = 3, and the bijetion

S is the trivial identity funtion, the following attak is possible.

Eve selets a value Z <

e

p

A;

e

p

B. From this Z, Bob will omputes x = b(S

�1

(A(Z))) =

b(Z

e

) = Z. Eve knows x = Z, and an derive k and ompute T = MAC

k

(M). She an thus

forge Alie's authentiation.

(If Alie hooses x randomly, there is negligible hane that she will generate suh Z.)

Although a suitable bijetion S an easily prevents the forgery attak for small expo-

nents, alternative ountermeasures are possible. Larger exponents ould be used or Bob

ould just automatially rejet small values of Z.

3.2 An Unknown Key-Share Attak

The simpli�ed sheme is vulnerable to an unknown key share attak, whih is a kind of an

identity theft attak. In an unknown key-share attak, Eve replaes Alie's identity with
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her own, making Bob think that Eve sent the message. (If Eve annot stop the message

from reahing Bob, then he will see idential messages from Alie and Eve.) In this attak,

Eve annot make Bob think Alie said something she did not. Eve annot forge Alie's

authentiation.

Eve an obviously authentiate M is sent in the lear, beause she an just authentiate

M with her own publi key E. In other words, the attak is only meaningful if M is

somehow enrypted. Suppose that M was enrypted as C = ENC

k

(M). If M is enrypted

and authentiated from Eve, that Eve must know the message and the message from be

her.

Eve an launh the unknown key-share attak on the simpli�ed sheme as follows. She

omputes Y = S

�1

(A(Z)). Then she omputes Z

0

= E(Z), where E is her publi trapdoor

funtion. She replaes (C; T; Z) by (C; T; Z

0

). When Bob reeives the modi�ed message, it

will appear to be from Eve. In a sense the message is from Eve, beause Eve authentiated

it, she just doesn't know what the message is.

Inlusion of the identi�ers of Alie and Bob in the key derivation funtion seems to pre-

vent this attak. (Resisting unknown key share attaks is not primary objetive of deniable

authentiation, so this property is not investigate in greater detail here.) Alternatively,

Alie ould enrypt Z as well as M , whih also seems to prevent the attak beause Eve

seems to need Z to get Y .

3.2.1 Key Compromise Impersonation

If Eve obtains Bob's private key b, she an impersonate anybody to Bob, inluding Alie.

This is alled key ompromise impersonation in the ontext of key agreement shemes.

Key ompromise impersonation is true for any single-pass deniable authentiation sheme,

beause Bob is apable of produing validly authentiated messages, and thus so is Eve.

3.2.2 Higher Iteration Variants

The sheme uses an alternating appliation of Alie and Bob's trapdoor and trapdoor inverse

funtions, respetively. The sheme an be varied by applying these funtions more often,

suh as:

Z = f(: : : B(a(B(x))) : : : ) (1)

where the outermost funtion f is a or B depending on whether the number of layers is

even or odd. (The intermediate bijetions have been omitted for simpliity.)

These variants have more ostly performane, but some may provide some di�erent kinds

of seurity, as disussed later. (Some variants are ompletely inseure, suh as Z = B(a(x)).)

4 Seurity Analysis of the RSA Sheme

First, the simple proof of deniability is presented. Then some proofs of unforgeability

(authentiity) are skethed.

4.1 Deniability

To demonstrate the deniability of the sheme, we need to show that Bob ould have generate

the pair (Z; x) without Alie's help. Bob an do this just by hoosing random Z 2 [A℄ and

then omputing x = b(A(Z)), repeating as neessary until Y = A(Z) 2 [b℄.
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The pairs (Z; x) generated by Alie and by Bob are indistinguishable. In both ases, the

intermediate value Y = A(Z) = B(x) is uniformly distributed on the set [a℄\ [b℄. Therefore

Bob annot prove that any pair (Z; x) was reated by Alie, provided x was hosen randomly

by Alie. So the pair (Z; x) reated by Alie is not evidene in itself of Alie's involvement

in the key transport sheme.

The sheme does not have forward deniability, in the sense of [dRG05℄, beause Alie

an hoose x non-randomly to enable her to later prove that she generated x and not Bob.

Forward deniability, however, is a slight misnomer in that if Alie's system is ompromised,

then the deniability of her past messages is lost. (Compare to forward serey : if Alie's

system is ompromised, then the serey of her past messages is retained.) A better term

for forward deniability is retratable deniability.

4.2 Seurity From Trapdoors

The standard RSA assumption is that the RSA is a trapdoor funtion. Under this assump-

tion we an prove that the RSA sheme is unforgeable, provided the key derivation funtion

and intermediate bijetion is modeled as a random orale.

Theorem 1 (Unforgeability from a Trapdoor). If the key derivation funtion H is a

random orale, the bijetion S is a random orale, and an adversary Eve an forge a mes-

sage (M;T;Z) that Bob thinks is from Alie, then Eve an ompute either Alie's private

funtions a or Bob's b, or Eve an forge a MAC tag with an unknown random key.

Proof. Suppose that Eve's forgery is (M;T;Z). Beause Bob aepts this from Alie, he

must ompute a value x = b(S

�1

(A(Z))), a value k = H(x;A;B; T ), and he will �nd that

T = MAC

k

(M) holds.

Before generating this forgery, Eve makes queries to the random orale funtion H and

the random orale bijetion S and its inverse S

�1

. Let x

i

be the value orresponding x in

the i

th

query to H and let k

i

be the output. Let (A

j

; B

j

) orrespond to the j

th

query to S

or S

�1

, suh that A

j

= S(B

j

). A query to S has input B

j

and output A

j

, and a query to

S

�1

, vie versa.

If x 6= x

i

for all i, then k 6= k

i

with overwhelming probability. Eve will not know k, and

thus her prodution of T is a MAC forgery. More formally, when x 6= x

i

for all x

i

, then

instead of omputing k as random output of H, we instead invoke a MAC funtion with an

unknown random key. Eve has forged this MAC even though we did not know the key.

The remaining possibility is that x = x

i

for some i. In this ase,

B(x

i

) = B(x) = S(A(Z)): (2)

If (A(Z); B(x

i

)) 6= (A

j

; B

j

) for all j, then in the omputation of x the orale pair omputes

S

�1

(A(Z)) for the �rst time and give a random output R. The probability that (2) holds,

whih is that R = B(x

i

), is then negligible. Therefore, we an onlude (A(Z); B(x

i

) =

(A

j

; B

j

) for some j, with overwhelming probability. We an assume, without loss of gen-

erality, that j is the smallest value for whih this is true. Sine this is the �rst time this

input-output pair has been seen, the output, whihever of A

j

or B

j

that is, will be random.

If the j

th

query is to S, then its input is B

j

= B(x

i

). Its output is some random value

R, beause this is the �rst time input-output pair has been seen. But Eve eventually �nds

Z suh that A(Z) = A

j

= R. Therefore Eve has inverted A on random input.
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If the j

th

is to S

�1

, then its input is A

j

= A(Z). Its output is some random value R,

beause this is the �rst time the input-output pair has been seen. But Eve eventually �nds

x

i

suh that B(x

i

) = B

j

= R. Therefore Eve has inverted B on random input.

This redution is atually eÆient, beause of the following trik. If one wants to invert

A on random R. Then we an output a value A

j

= R

j

= RA(U

j

). When Eve inverts A on

R

j

to get Z, we have Z=U

j

as the inverse of R. Similarly reasoning applies to inversion of

B.

Stritly speaking the proof above only addresses passive adversaries. An ative adversary

Eve an ask Alie to authentiate hosen messages to Bob. Eve an also ask Bob to verify

hosen tags. The redution above must be slightly modi�ed so that Eve's queries to Alie

and Bob an be answered even though their private keys are not known to the redution.

When Eve asks Alie to authentiate message M

k

, we will make a virtual query to the

S orale. We hoose random (Z

k

; x

k

) and set (A

k

; B

k

) = (A(Z

k

); B(x

k

)). Neither A

k

nor

B

k

is the input or the output. Eah is simultaneously both input and output. Both values

are random, so Eve will still regard S as a random orale. The rest of the argument holds.

Queries to Bob are handled more easily. A query (M

l

; T

l

; Z

l

) to Bob is rejeted if A(Z

l

)

has not yet been in an input-output pair for S or its inverse. If it has appeared as suh a

pair and it is not the output of Alie's query, then it is either invalid or a forgery. Therefore

we rejet all queries to Bob that are not outputs from Alie. This is the orret response,

one that Eve will think is real, unless the query is a forgery. If it is a forgery, then we use

the previous arguments to break the trapdoor funtions or the MAC.

4.3 Seurity From Claw Resistane

The assumption of a random orale orale bijetion an be removed, if a stronger assumption

about the trapdoor funtions is made. This proof applies even if the bijetion is the trivial

identity funtion, provided the stronger ondition holds.

4.3.1 Claw Resistane

A law for a pair of funtions (F;G) is a pair (u; v) suh that F (u) = G(v). The pair

(F;G) is law resistant if it is not easy to �nd a law for the pair. The basi deniable

authentiation sheme, without the intermediate bijetion, relies the law resistane of the

trapdoor funtions.

The following informal onjeture about the law resistane of RSA funtions is plausi-

ble, if not reasonable.

Conjeture 1 (RSA Claw Resistane). Let A and B be two di�erent RSA trapdoor

funtions. The pair (A;B) is law resistant, unless the assoiated exponents are very small.

As already noted earlier, ifA and B share a small ommon exponent e, then a law an be

found as follows. Choose a Z <

e

p

A;

e

p

B. Then (Z;Z) is law

1

beause A(Z) = Z

e

= B(Z).

More generally, if the exponents are a and b, respetively, and they divide a ommon small

value e, then one has a law (Z

(e=a)

; Z

(e=b)

).

(If an adversary with aess to a law generating orale annot �nd an additional law,

then the pair of funtions is adaptively law resistant. The adaptive law resistane of RSA

also seems a reasonable assumption.)

1

An anonymous referee duly informed of this lever attak.
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When S is not the trivial identity funtion, we are interested in the law resistane of

the pair (A;S ÆB).

4.3.2 Seurity Result

Again, we rely on the key derivation funtion being a random orale. The bijetion S an

be anything however, provided law resistane is ahieved with A and B.

Theorem 2. If the key derivation funtion KDF is a random orale hash H and Eve an

forge a message from Alie to Bob, then Eve an break the MAC or an �nd a law for

(A;S Æ B).

Proof. Suppose Eve's forgery is (M;T;Z). To verify, Bob would ompute x = b(S

�1

(A(Z))),

then k = H(x;A;B; T ) and then he would get T = MAC

k

(M). Note that A(Z) = S(B(x)),

so (Z; x) is a law for (A;S Æ B).

Let x

i

be the input orresponding to x in the i

th

query to H. If x 6= x

i

for all i, then

the value of k is a random value that Eve has never seen, so Eve must be able to break the

MAC funtion.

Otherwise x = x

i

, where, without loss of generality, i is the smallest of suh values.

Now, sine x

i

is the input to an H query, Eve has found x

i

. Eve eventually �nds Z, and

(Z; x

i

) = (Z; x

i

), whih is a law, so Eve has found a law.

Again, the proof above works for passive adversaries. To address ative adversaries, we

must answer Eve's queries to Alie and Bob as well.

A query to Alie is handled by hoosing a random k

j

and Z

j

, then omputing the

orresponding T

j

. The orresponding value of x

j

is not known beause we do not have

Bob's private key, but we an hek if x

i

= x

j

, beause S(B(x)) = S(B(x

i

)) = A(Z

j

). So,

when Eve sends suh a hash query, we an output k

i

= k

j

and be onsistent with Alie's

output. The rest of the argument then applies.

Queries to Bob are handled in the same way as before.

4.4 Seurity of Other Iterated Variants

We briey onsider using di�erent patterns of alternating ompositions of the a and B

funtions. For simpliity, we assume that S is the trivial identity bijetion.

� Suppose that Z = B(a(x)). This is inseure beause an (a; b)-law (Z; x) = (B(y); A(y))

for any y makes impersonation of Alie to Bob possible.

� Suppose that Z = a(B(a(x))). If Eve an �nd an (A;B)-law (Z; x

0

), then she has

Z = a(B(a(A(x

0

)))), so she an impersonate Alie to Bob. Thus this variant is annot

be muh more seure than Z = a(B(x)).

� Suppose that Z = B(a(B(x))). If Eve an �nd an (A;B)-law (Z

0

; x), then she has

Z = B(Z

0

) = B(a(B(x))), so she impersonate Alie to Bob. Thus this variant is

annot be muh more seure than Z = a(B(x)).

� Suppose that Z = B(a(B(a(x)))). If Eve an �nd an (A;B)-law (Z

0

; x

0

), so that

Z

0

= a(B(x

0

)), then she an �nd (Z; x) = (B(Z

0

); A(x

0

)) suh that Z = B(Z

0

) =

B(a(B(x

0

))) = B(a(B(a(x)))), enabling her to impersonate Alie to Bob. Thus this

variant is annot be muh more seure than Z = a(B(x)).
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� Suppose that Z = a(B(a(B(x)))). If Eve an �nd two (A;B)-laws (Z; x

0

) and (Z

0

; x)

suh that x

0

= Z

0

, then she forge (Z; x). The seurity of this system is thus based

on a problem that might be harder than the (A;B)-law problem. In fat, �nding a

(Z; x) is equivalent to the (b ÆA; a Æ B)-law problem.

Roughly speaking, an initial B or terminal a may be dropped from a seurity perspetive.

Using more iterations inreases the performane ost, while it does not seem to appreiably

inrease the basi underlying seurity.

5 Seurity of Multiasted Deniable Authentiation

Suppose that Alie wishes to authentiate a long message to multiple reipients. The obvious

approah is to establish a key with eah reipient and then to ompute a separate MAC tag

on the message for eah message. The ost of this approah is proportional to:

(Length of message)� (Number of reipients)

Therefore, if the number of reipients is large and the message is long, this approah an grow

very expensive. In these situations, Alie would muh prefer a ost whih is proportional

to a sum of the two fators above.

Note that this setion applies to any deniable authentiation sheme, inluding ones

based on DiÆe-Hellman or ECMQV. Some details may be illustrated with the RSA-based

sheme for onveniene.

5.1 Key Wrapping

To avoid repeated MAC omputation, Alie an use a single ommon MAC key  for all

reipients. She then needs to seurely transport  to eah of the reipients.

One way to authentily transport  to multiple reipients, and the approah taken in

S/MIME [Hou99℄, is as follows. Alie agrees on distint keys with eah reipient. Say that

key k

B

is agreed with Bob and k

C

, with Charles. Then Alie wraps the key  for eah

reipient using that reipient's agreed key.

(Wrapping is essentially enryption.) Alie wraps  with key k

B

to obtain a wrapped

key w

B

for reipient Bob. Bob unwraps w

B

using k

B

to obtain . Now Bob an verify the

MAC tag T = MAC



(M) of the message.

5.2 A Multiasting Attak

The following attak is well-known, and has been noted in [BWBL02℄, for example.

A maliious reipient Charles an unwrap w

C

with k

C

to obtain . Now that Charles

has the key , he an abuse if for an attak. He an pik any message M

0

and ompute

T

0

= MAC



(M

0

). Charles an send w

B

, T

0

and M

0

to Bob, along with any other key

establishment data that Alie send to Bob to agree on k

B

. When Bob reeives this, he may

believe that M

0

ame from Alie.

If Charles an interept the original message, then it an replae it with M

0

. If not,

Bob will reeive two messages M and M

0

, a genuine one from Alie and a forged one from

Charles.
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5.3 Countermeasure: Hashing the Tag

If Alie does not trust Charles, then she needs a ountermeasure to the multiasting attak.

Alie an inlude the tag T in the input to the key derivation. This seems to stop Charles

from launhing the attak.

Intuitively, the reasoning for this is as follows. If Charles hanges T to T

0

this will ause

Bob to get a di�erent value k

0

B

for k

B

, or a di�erent value w

0

B

for w

B

, respetively. In

either ase, Bob will get a di�erent value 

0

for , a value whih Charles annot determine.

Therefore, Charles will not be able to produe the orret tag.

If we assume that the key derivation is random orale, then we an prove this result

more rigorously.

Theorem 3. If the key derivation funtion used to ompute reipient keys k is a random

orale hash H, the key wrap funtion is suh that unwrapping W with a random key k

gives indistinguishable from random result , the MAC funtion is unforgeable and ollision-

resistant, the input to the hash inludes the MAC tag T , and the underlying key agreement

sheme is seure in the sense Bob has a shared seret x with Alie that nobody else an

ompute, then Charles annot impersonate Alie to Bob.

Proof. Suppose that Charles produes a forgery (M;T;W;Z) where Alie did not authenti-

ate message M . Here, Z is some key agreement data that Bob reeives purportedly from

Alie, so that we interpret the notation of the RSA sheme more generally. The values T

and W are MAC tag and wrapped key W .

Bob will �rst ompute his shared seret key as x = F (b; A; Z) where F is a key agreement

funtion, b is Bob's private key, and A is Alie's publi key. Then, Bob will derive his

reipient key as k = H(x; T ). Next, Bob reovers  = Wrap

�1

(k;W ). Finally, Bob �nds

that T = MAC



(M).

Let (x

i

; T

i

) be the i

th

query input to the H orale. If (x; T ) 6= (x

i

; T

i

) for all i, then

k = H(x; T ) has some random value. This means that  is random value, by nature of the

wrap funtion. In this ase, Charles an break the MAC.

Otherwise (x; T ) = (x

i

; T

i

) for some i, whih we will again assume is the smallest suh

i. Before making this query, Charles knew x and T . Again, the output k = k

i

is random,

so the  an be argued to be random. Thus Charles an break the MAC.

The above argument only works for passive adversaries, so does not say muh. We

now presume that Charles has aess to an Alie orale, whih authentiates a message of

Charles' hoie to both Bob and Charles.

The input to the Alie orale is a message M

j

. The output is (T

j

;W

j

; Z

j

;W

0

j

; Z

0

j

) where

W

0

j

and Z

0

j

are intended for Charles. Charles an use this values to derive his reipient key

and unwrap W

0

j

to obtain the MAC key 

j

. Charles an ompute T

j

from 

j

, so he does

not really need it. For onveniene, we simplify the Alie orale by regarding its output as

(W

j

; Z

j

; 

j

).

Now k

j

= H(x

j

; T

j

), where k

j

is Bob's reipient key for M

j

and the x

j

is his raw agreed

key. We assumed that Charles annot learn x

j

. We regard (x

j

; T

j

) as an input to the hash

orale, but one whose input Charles does not get to hoose the input. Charles learns one of

the inputs, T

j

but not neessarily the output k

j

or the other input x

j

. The same argument

as before still applies, however, that (x; T ) in the forgery must be one of the hash queries,

or else Charles an break the MAC.

Again as before, sine Charles annot have broken the MAC, we an also dedue (x; T ) 6=

(x

i

; T

i

) for his own hash queries (otherwise k

i

is random and Charles an break the MAC).
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Therefore, Charles must have somehow arranged that (x; T ) = (x

j

; T

j

) from one of the

queries to Alie. In this ase, k = H(x; T ) = H(x

j

; T

j

) = k

j

.

If W = W

j

, then  = 

j

beause the unwrap funtion is deterministi. If M 6= M

j

then Charles has found a ollision in the MAC funtion, beause MAC



(M) = T = T

j

=

MAC



(M

j

). Of ourse if M = M

j

, then M is not a forgery. This is a message-ollision in

the MAC.

If W 6=W

j

, then ertainly  6= 

j

. Now Charles has found a ollision in the MAC again,

beause MAC



(M) = T = T

j

= MAC



j

(M

j

). This is a key-ollision in the MAC.

For MAC suh as HMAC, a MAC ollision gives a ollision in the underlying hash. Hash

funtions are designed to a level of ollision resistane, however this may not be as high as

their other seurity properties.

A signi�ant improvement in the result above would be not too rely on ollision resis-

tane of the MAC funtion. However, it is not lear that one an rely on a purely standard

assumption about the MAC. For example, if Charles an hoose a message M , get a MAC

key  and �nd a MAC message-ollision M

0

with M under key , then he an still imper-

sonate Bob. This may be possible even with an unforgeable MAC.

5.4 Other Countermeasures

Some alternatives to hashing the tag T in the key derivation funtion are:

� Inlude T as an optional authentiated input to the key wrap funtion. The seurity

of this approah depends very muh on the properties of the wrap funtions. The

existing wrap funtions are not yet very well-studied.

� Compute a separate MAC tag for eah reipient, but do so on a digest of the message,

either as a hash or as another MAC tag. Tagging a tag is preferable to tagging a

hash from a seurity standpoint, beause then one does not need to rely on ollision

resistane of the hash funtion. On the other hand, hashing has the advantage the

message an be hashed independently for the key establishment operations.

5.5 Spei� Appliation to the RSA Sheme

The RSA sheme an support multiasting by using a key wrap algorithm and the methods

above, or multiasting an integrated more deeply into the sheme. In the integrated form,

Alie hooses a value x suh that B(x) belongs to all of the domains of the reipients. If

sender and reipient domains are similar in size, this will generally only take one try at a

random x. The key K derived from x inorporates the tag T , so Charles annot tamper

with the message to impersonate Alie to Bob.

5.6 Replay Attaks

In a replay attak, Eve resends an old authentiated message (M;T;Z) sent by Alie to Bob.

Eve gets Bob to think she is sending a message again, when she is not. Stritly speaking,

replay resistane is not a formal goal of deniable authentiation

2

. The primary goal is to

resist forgery, where Eve makes Bob aept a message that Alie never sent. Nevertheless,

2

Replay resistane is not usually required for MAC shemes, so why should it be require for its asymmetri

variant.
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it is reasonable to have a ountermeasure against replay attaks. Resisting replay attaks

an be done with tehniques similar to those for resisting multiasting attaks.

The time (or just the date) an be inluded in the message. If Alie and Bob have

roughly synhronized loks, then Bob an aept the message if its time is within the

allowed tolerane from message transmission. For potentially stronger protetion, the time

an put into the key derivation funtion or key wrap funtion.

More generally, other inreasing nones an be used. (Time is essentially speial kind

of none.) These require, however, that Alie and Bob keep trak of the latest none. An

advantage of nones is that they are not limited to a smallest division of time, suh as a

seond or day. A disadvantage of stritly inreasing nones is that the messages arrive out

of order, then some valid messages may be rejeted, unless some tolerane is admitted.

6 Conlusion

Notwithstanding the results in this paper, it is too early to reommend deniable authenti-

ation with RSA, if more well-studied approahes based on DH or ECMQV are available.

No ompelling advantage of RSA over alternatives exists. Nevertheless, if deniable authen-

tiation is required and only RSA publi keys are available, then this sheme may be used,

and thus may be appropriate for inlusion in standards for RSA. Mostly, it is interesting to

note that deniable authentiation with RSA is possible

3

at all, given that the usual padding

shemes for seuring RSA make it impossible.

If deniable authentiation proves important in the future, then presumably seuring its

multiast form will also prove important. It is important to avoid the pitfalls mentioned in

this paper. One of the ountermeasures desribed here may beome useful.
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A Deniable Publi-Key Enryption

Most publi-key enryption algorithms have the property that the derypter an reveal the

derypted plaintext to third parties without ompromising the seurity of the deryption

key. Furthermore, a ommon side e�et of this is that third parties an verify the validity of

this deryption. (To do this, the derypter may need to provide additional information to

the third party, suh as padding.) In other words, most publi-key enryption algorithms

are undeniable, in the sense that the derypter an prove to others that orret math

between iphertext and plaintext. An enryption is deniable if the derypter annot prove

to third parties the orrespondene between the plaintext and iphertext. Most symmetri-

key enryption algorithms are half-deniable in the sense that proving the math between

plaintext and iphertext requires revealing the private key, so annot be proved to untrusted

third parties.

Given a deniable publi-key enryption sheme, signing of a deniably enrypted message

is a form of weakly deniable authentiation, beause something is signed, but the message

annot be bound to the signer. This is similar to enrypting a symmetri authentiation

key, and may not have any advantages over it.

The deniability of enryption may be a related to the notion of veri�able enryption

de�ned by Camenish and Shoup [CS03℄.

B System Wide Deniability

In some infrastrutures, email is often forwarded hop to hop by several mail servers before

reahing its destination. Evidene of this trail, if available, may be hard for Alie to deny. If

mail servers sign eah hop, then deniability is quite hindered. Ultimately, if full deniability

is to be ahieved at a system level, signing message hops should be avoided.
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